calicartels commited on
Commit
fd88f1f
·
0 Parent(s):

feat: add dataset with proper structure

Browse files
.gitattributes ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ *.pt filter=lfs diff=lfs merge=lfs -text
2
+ *.npz filter=lfs diff=lfs merge=lfs -text
3
+ *.npy filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,402 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ task_categories:
4
+ - graph-ml
5
+ tags:
6
+ - horology
7
+ size_categories:
8
+ - 100K<n<1M
9
+ ---
10
+
11
+ # Watch Market Analysis Graph Neural Network Dataset
12
+
13
+ ## Table of Contents
14
+ [Summary](#summary)
15
+ [Dataset Description](#dataset-description)
16
+ [Technical Details](#technical-details)
17
+ [Exploratory Data Analysis](#exploratory-data-analysis)
18
+ [Ethics and Limitations](#ethics-and-limitations)
19
+ [Usage](#usage)
20
+
21
+ <details>
22
+ <summary>Detailed Table of Contents</summary>
23
+
24
+ * Summary
25
+ * Key Statistics
26
+ * Primary Use Cases
27
+ * Dataset Description
28
+ * Data Structure
29
+ * Features
30
+ * Network Properties
31
+ * Processing Parameters
32
+ * Technical Details
33
+ * Power Analysis
34
+ * Implementation Details
35
+ * Network Architecture
36
+ * Embedding Dimensions
37
+ * Network Parameters
38
+ * Condition Scoring
39
+ * Exploratory Data Analysis
40
+ * Brand Distribution
41
+ * Feature Correlations
42
+ * Market Structure Visualizations
43
+ * UMAP Analysis
44
+ * t-SNE Visualization
45
+ * PCA Analysis
46
+ * Network Visualizations
47
+ * Ethics and Limitations
48
+ * Data Collection and Privacy
49
+ * Known Biases
50
+ * Usage Guidelines
51
+ * License
52
+ * Usage
53
+ * Required Files
54
+ * Loading the Dataset
55
+ * Code Examples
56
+
57
+ </details>
58
+
59
+ ---
60
+
61
+
62
+ ## Summary
63
+
64
+ This dataset transforms traditional watch market data into a Graph Neural Network (GNN) structure, specifically designed to capture the complex dynamics of the pre-owned luxury watch market.
65
+ It addresses three key market characteristics that traditional recommendation systems often miss:
66
+
67
+ - **Condition-Based Value Dynamics**: Captures how a watch's condition influences its market position and value relative to other timepieces
68
+ - **Temporal Price Behaviors**: Models non-linear price patterns where certain watches appreciate while others depreciate
69
+ - **Inter-Model Relationships**: Maps complex value relationships between different models that transcend traditional brand hierarchies
70
+
71
+ ### Key Statistics
72
+ - Total Watches: 284,491
73
+ - Total Brands: 28
74
+ - Price Range: $50 - $3.2M
75
+ - Year Range: 1559-2024
76
+
77
+ ### Primary Use Cases
78
+ - Advanced watch recommendation systems
79
+ - Market positioning analysis
80
+ - Value relationship modeling
81
+ - Temporal trend analysis
82
+
83
+ ## Dataset Description
84
+
85
+ ### Data Structure
86
+ The dataset is structured as a PyTorch Geometric Data object with three main components:
87
+ - Node features tensor (watch attributes)
88
+ - Edge index matrix (watch connections)
89
+ - Edge attributes (similarity weights)
90
+
91
+ ### Features
92
+ Key features include:
93
+ - **Brand Embeddings**: 128-dimensional vectors capturing brand identity and market position
94
+ - **Material Embeddings**: 64-dimensional vectors for material types and values
95
+ - **Movement Embeddings**: 64-dimensional vectors representing technical hierarchies
96
+ - **Temporal Features**: 32-dimensional cyclical embeddings for year and seasonal patterns
97
+ - **Condition Scores**: Standardized scale (0.5-1.0) based on watch condition
98
+ - **Price Features**: Log-transformed and normalized across market segments
99
+ - **Physical Attributes**: Standardized measurements in millimeters
100
+
101
+ ### Network Properties
102
+ - **Node Connections**: 3-5 edges per watch
103
+ - **Similarity Threshold**: 70% minimum similarity for edge creation
104
+ - **Edge Weights**: Based on multiple similarity factors:
105
+ - Price (50% influence)
106
+ - Brand similarity
107
+ - Material type
108
+ - Temporal proximity
109
+ - Condition score
110
+
111
+ ### Processing Parameters
112
+ - Batch Size: 50 watches per chunk
113
+ - Processing Window: 1000 watches
114
+ - Edge Generation Batch: 32 watches
115
+ - Network Architecture: Combined GCN and GAT layers with 4 attention heads
116
+
117
+ ## Technical Details
118
+
119
+ ### Power Analysis
120
+ Minimum sample requirements based on statistical analysis:
121
+ - Basic Network: 10,671 nodes (95% confidence, 3% margin)
122
+ - GNN Requirements: 14,400 samples (feature space dimensionality)
123
+ - Brand Coverage: 768 watches per brand
124
+ - Price Segments: 4,320 watches per segment
125
+
126
+ Current dataset (284,491 watches) exceeds requirements with:
127
+ - 5,000+ samples per major brand
128
+ - 50,000+ samples per price segment
129
+ - Sufficient network density
130
+
131
+ ### Implementation Details
132
+
133
+ #### Network Architecture
134
+ - 3 GNN layers with residual connections
135
+ - 64 hidden channels
136
+ - 20% dropout rate
137
+ - 4 attention heads
138
+ - Learning rate: 0.001
139
+
140
+ #### Embedding Dimensions
141
+ - Brand: 128
142
+ - Material: 64
143
+ - Movement: 64
144
+ - Temporal: 32
145
+
146
+ #### Network Parameters
147
+ - Connections per watch: 3-5
148
+ - Similarity threshold: 70%
149
+ - Batch size: 50 watches
150
+ - Processing window: 1000 watches
151
+
152
+ #### Condition Scoring
153
+ - New: 1.0
154
+ - Unworn: 0.95
155
+ - Very Good: 0.8
156
+ - Good: 0.7
157
+ - Fair: 0.5
158
+
159
+ ## Exploratory Data Analysis
160
+
161
+ **NOTE:**
162
+ Only certain selected visualizations have been mentioned here, to see all the visualizations that have been explored in high-quality interactive graphs, please visit this site:
163
+ [Watch Market Analysis Report](https://incomparable-torrone-ccda90.netlify.app/)
164
+
165
+ ### Brand Distribution
166
+
167
+ ![Brand Distribution Treemap](https://raw.githubusercontent.com/calicartels/watch-market-gnn-code/main/images/2.png)
168
+
169
+ The treemap visualization provides a hierarchical view of market presence:
170
+ - Rolex dominates with the highest representation, reflecting its market leadership
171
+ - Omega and Seiko follow as major players, indicating a strong market presence
172
+ - Distribution reveals clear tiers in the luxury watch market
173
+ - Brand representation correlates with market positioning and availability
174
+
175
+
176
+ ### Feature Correlations
177
+
178
+ ![Feature Correlation Matrix](https://raw.githubusercontent.com/calicartels/watch-market-gnn-code/main/images/3.png)
179
+
180
+ The correlation matrix reveals important market dynamics:
181
+ - **Size vs. Year**: Positive correlation indicating a trend toward larger case sizes in modern watches
182
+ - **Price vs. Size**: Moderate correlation showing larger watches generally command higher prices
183
+ - **Price vs. Year**: Notably low correlation, demonstrating that vintage watches maintain value
184
+ - Each feature contributes unique information, validated by the lack of strong correlations across all variables
185
+
186
+
187
+ ### Market Structure Visualizations
188
+
189
+ #### UMAP Analysis
190
+
191
+ ![UMAP Visualization](https://raw.githubusercontent.com/calicartels/watch-market-gnn-code/main/images/4.png)
192
+
193
+ The UMAP visualization unveils complex market positioning dynamics:
194
+ - Rolex maintains a dominant central position around coordinates (0, -5), showing unparalleled brand cohesion
195
+ - Omega and Breitling cluster in the left segment, indicating strategic market alignment
196
+ - Seiko and Longines occupy the upper-right quadrant, reflecting distinct value propositions
197
+ - Premium timepieces (yellower/greener hues) show tighter clustering, suggesting standardized luxury attributes
198
+ - Smaller, specialized clusters indicate distinct horological collections and style categories
199
+
200
+
201
+ #### t-SNE Visualization
202
+
203
+ ![t-SNE Analysis](https://raw.githubusercontent.com/calicartels/watch-market-gnn-code/main/images/5.png)
204
+
205
+ T-SNE analysis reveals clear market stratification with logarithmic pricing from $50 to $3.2M:
206
+ - **Entry-Level Segment ($50-$4,000)**
207
+ - Anchored by Seiko in the left segment
208
+ - High volume, accessible luxury positioning
209
+ - **Mid-Range Segment ($4,000-$35,000)**
210
+ - Occupies central space
211
+ - Shows competitive positioning between brands
212
+ - Cartier demonstrates strategic positioning between luxury and mid-range
213
+ - **Ultra-Luxury Segment ($35,000-$3.2M)**
214
+ - Dominated by Patek Philippe and Audemars Piguet
215
+ - Clear separation in the right segment
216
+ - Strong brand clustering indicating market alignment
217
+
218
+ #### PCA Analysis
219
+
220
+ ![PCA Visualization](https://raw.githubusercontent.com/calicartels/watch-market-gnn-code/main/images/6.png)
221
+
222
+ Principal Component Analysis provides robust market insights with 56.6% total explained variance:
223
+ - **First Principal Component (31.3%)**
224
+ - Predominantly captures price dynamics
225
+ - Shows clear separation between market segments
226
+ - **Second Principal Component (25.3%)**
227
+ - Reflects brand positioning and design philosophies
228
+ - Reveals vertical dispersion indicating intra-brand diversity
229
+ - **Brand Trajectory**
230
+ - Natural progression from Seiko through Longines, Breitling, and Omega
231
+ - Culminates in Rolex and Patek Philippe
232
+ - Diagonal trend line serves as a market positioning indicator
233
+ - **Market Implications**
234
+ - Successful brands occupy optimal positions along both dimensions
235
+ - Clear differentiation between adjacent competitors
236
+ - Evidence of strategic market positioning
237
+
238
+
239
+ #### Network Visualizations
240
+
241
+
242
+ **Force-Directed Graph**
243
+
244
+ ![Force-Directed Graph](https://raw.githubusercontent.com/calicartels/watch-market-gnn-code/main/images/7.png)
245
+
246
+ The force-directed layout reveals natural market clustering:
247
+ - Richard Mille's peripheral positioning highlights ultra-luxury strategy
248
+ - Dense central clustering shows mainstream luxury brand interconnectivity
249
+ - Edge patterns reveal shared market characteristics
250
+ - Node proximity indicates competitive positioning
251
+
252
+
253
+ **Starburst Visualization**
254
+
255
+ ![Starburst Graph](https://raw.githubusercontent.com/calicartels/watch-market-gnn-code/main/images/8.png)
256
+
257
+ Radial architecture provides a hierarchical market perspective:
258
+ - Central node represents the overall market
259
+ - Green nodes show brand territories with strategic spacing
260
+ - Blue peripheral nodes indicate individual timepieces
261
+ - Node density reveals:
262
+ - Brand portfolio breadth
263
+ - Market penetration depth
264
+ - Segment diversification
265
+ - Balanced spacing between brand nodes indicates market segmentation
266
+
267
+
268
+ ## Ethics and Limitations
269
+
270
+ ### Data Collection and Privacy
271
+ - Dataset consists of publicly available watch listings
272
+ - No personal information, seller details, or private transaction data
273
+ - Serial numbers and identifying marks removed
274
+ - Strict privacy standards maintained throughout collection
275
+
276
+ ### Known Biases
277
+
278
+ #### Connection Strength Bias
279
+ - Edge weights and connections based on author's domain expertise
280
+ - Similarity thresholds (70%) chosen based on personal market understanding
281
+ - Brand value weightings reflect author's market analysis
282
+ - Connection strengths may not universally reflect all market perspectives
283
+
284
+ #### Market Representation Bias
285
+ - Predominantly represents online listings
286
+ - May not fully capture private sales and in-person transactions
287
+ - Popular brands overrepresented (Rolex 25%, Omega 14%)
288
+ - Limited editions and rare pieces underrepresented
289
+
290
+ #### Temporal Bias
291
+ - Stronger representation of recent listings
292
+ - Historical data may be underrepresented
293
+ - Current market conditions more heavily weighted
294
+ - Seasonal variations may affect price patterns
295
+
296
+ #### Brand and Model Bias
297
+ - Skewed toward mainstream luxury brands
298
+ - Limited representation of boutique manufacturers
299
+ - Popular models have more data points
300
+ - Vintage and discontinued models may lack comprehensive data
301
+
302
+ #### Price Bias
303
+ - Asking prices may differ from actual transaction values
304
+ - Regional price variations not fully captured
305
+ - Currency conversion effects on price relationships
306
+ - Market fluctuations may not be fully represented
307
+
308
+ ### Usage Guidelines
309
+
310
+ #### Appropriate Uses
311
+ - Market research and analysis
312
+ - Academic research
313
+ - Watch relationship modeling
314
+ - Price trend studies
315
+ - Educational purposes
316
+
317
+ #### Prohibited Uses
318
+ - Price manipulation or market distortion
319
+ - Unfair trading practices
320
+ - Personal data extraction
321
+ - Misleading market analysis
322
+ - Anti-competitive practices
323
+
324
+ ### License
325
+ This dataset is released under the Apache 2.0 License, which allows:
326
+ - Commercial use
327
+ - Modification
328
+ - Distribution
329
+ - Private use
330
+
331
+ While requiring:
332
+ - License and copyright notice
333
+ - State changes
334
+ - Preserve attributions
335
+
336
+
337
+ ## Usage
338
+
339
+ ### Required Files
340
+ The dataset consists of three main files:
341
+ - `watch_gnn_data.pt` (315 MB): Main PyTorch Geometric data object
342
+ - `edges.npz` (20.5 MB): Edge information
343
+ - `features.npy` (596 MB): Node features
344
+
345
+ ### Loading the Dataset
346
+
347
+ ```python
348
+ import torch
349
+ from torch_geometric.data import Data
350
+
351
+ # Load the main dataset
352
+ data = torch.load('watch_gnn_data.pt')
353
+ ```
354
+
355
+ #### Access components
356
+
357
+ ```
358
+ node_features = data.x # Shape: [284491, combined_embedding_dim]
359
+ edge_index = data.edge_index # Shape: [2, num_edges]
360
+ edge_attr = data.edge_attr # Shape: [num_edges, 1]
361
+ ```
362
+ #### For direct feature access
363
+ ```
364
+ features = np.load('features.npy')
365
+ ```
366
+ #### Get number of nodes
367
+ ```
368
+ num_nodes = data.num_nodes
369
+ ```
370
+
371
+ #### Get number of edges
372
+ ```
373
+ num_edges = data.num_edges
374
+ ```
375
+
376
+ #### Find similar watches (k-nearest neighbors)
377
+ ```
378
+ def find_similar_watches(watch_id, k=5):
379
+ # Get watch features
380
+ watch_features = data.x[watch_id]
381
+
382
+ # Calculate similarities
383
+ similarities = torch.cosine_similarity(
384
+ watch_features.unsqueeze(0),
385
+ data.x,
386
+ dim=1
387
+ )
388
+
389
+ # Get top k similar watches
390
+ _, indices = similarities.topk(k+1) # +1 to exclude self
391
+ return indices[1:] # Exclude self
392
+
393
+ # Get watch features
394
+ def get_watch_features(watch_id):
395
+ return data.x[watch_id]
396
+
397
+ ```
398
+
399
+ ## Note
400
+ - The dataset is optimized for PyTorch Geometric operations
401
+ - Recommended to use GPU for large-scale operations
402
+ - Consider batch processing for memory efficiency
data/edges.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c3e76853c5f212a207f2d2c0f1968637cc240389da00a7fc247cf7d4069f241
3
+ size 20474214
data/features.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3991bfc941dcf0f3ecdb40214368aa98faf1bc3c2125b33047912ac71152d21a
3
+ size 596293264
data/watch_gnn_data.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:abd2be572e4ae01dbac403b77db00cd1022db5327a5a2b5de5633bbcf0d05343
3
+ size 315209989
dataset_infos.json ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "default": {
3
+ "description": "Watch Market GNN Dataset",
4
+ "homepage": "https://huggingface.co/datasets/TMVishnu/watch-market-gnn",
5
+ "license": "apache-2.0",
6
+ "features": {
7
+ "watch_gnn_data": "torch_geometric",
8
+ "edges": "numpy",
9
+ "features": "numpy"
10
+ },
11
+ "task_templates": [
12
+ {
13
+ "task": "graph-ml",
14
+ "task_categories": ["graph-ml"]
15
+ }
16
+ ]
17
+ }
18
+ }