import os import pandas as pd from sklearn.model_selection import train_test_split from datasets import Dataset, DatasetDict import pyarrow as pa import pyarrow.parquet as pq # Define the directory to save Parquet files parquet_dir = "./dataset_parquet" # Create the directory if it doesn't exist os.makedirs(parquet_dir, exist_ok=True) # Load your CSV file into a pandas DataFrame df = pd.read_csv("data-final.csv", delimiter='\t') # Split the DataFrame into train, validation, and test sets train_df, temp_df = train_test_split(df, test_size=0.4, random_state=42) val_df, test_df = train_test_split(temp_df, test_size=0.5, random_state=42) # Convert the pandas DataFrames to Hugging Face Datasets train_dataset = Dataset.from_pandas(train_df) val_dataset = Dataset.from_pandas(val_df) test_dataset = Dataset.from_pandas(test_df) # Create a DatasetDict dataset_dict = DatasetDict({ "train": train_dataset, "validation": val_dataset, "test": test_dataset }) # Convert each split to Parquet format and save for split_name, dataset in dataset_dict.items(): table = pa.Table.from_pandas(dataset.to_pandas()) pq.write_table(table, os.path.join(parquet_dir, f"{split_name}.parquet")) print("Dataset splits saved as Parquet files.")