id
stringlengths
14
16
text
stringlengths
20
3.26k
source
stringlengths
65
181
6acd78e17921-3
Parameters obj (Any) – Return type Model classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ Parameters b (Union[str, bytes]) – content_type (unicode) – encoding (unicode) – proto (Protocol) – allow_pickle (bool) – Return type Model abstract plan(inputs: dict, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → Plan[source]¶ Given input, decide what to do. Parameters inputs (dict) – callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – kwargs (Any) – Return type Plan classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ Parameters by_alias (bool) – ref_template (unicode) – Return type DictStrAny classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ Parameters by_alias (bool) – ref_template (unicode) – dumps_kwargs (Any) – Return type unicode classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. Parameters localns (Any) – Return type None classmethod validate(value: Any) → Model¶ Parameters value (Any) – Return type Model
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.task_planner.BasePlanner.html
298419e7afcb-0
langchain_experimental.autonomous_agents.hugginggpt.task_planner.load_chat_planner¶ langchain_experimental.autonomous_agents.hugginggpt.task_planner.load_chat_planner(llm: BaseLanguageModel) → TaskPlanner[source]¶ Load the chat planner. Parameters llm (BaseLanguageModel) – Return type TaskPlanner
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.task_planner.load_chat_planner.html
81def1659867-0
langchain_experimental.autonomous_agents.autogpt.prompt.AutoGPTPrompt¶ class langchain_experimental.autonomous_agents.autogpt.prompt.AutoGPTPrompt[source]¶ Bases: BaseChatPromptTemplate, BaseModel Prompt for AutoGPT. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param ai_name: str [Required]¶ param ai_role: str [Required]¶ param input_types: Dict[str, Any] [Optional]¶ A dictionary of the types of the variables the prompt template expects. If not provided, all variables are assumed to be strings. param input_variables: List[str] [Required]¶ A list of the names of the variables the prompt template expects. param metadata: Optional[Dict[str, Any]] = None¶ Metadata to be used for tracing. param output_parser: Optional[BaseOutputParser] = None¶ How to parse the output of calling an LLM on this formatted prompt. param partial_variables: Mapping[str, Any] [Optional]¶ A dictionary of the partial variables the prompt template carries. Partial variables populate the template so that you don’t need to pass them in every time you call the prompt. param send_token_limit: int = 4196¶ param tags: Optional[List[str]] = None¶ Tags to be used for tracing. param token_counter: Callable[[str], int] [Required]¶ param tools: List[BaseTool] [Required]¶ async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation runs ainvoke in parallel using asyncio.gather.
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.prompt.AutoGPTPrompt.html
81def1659867-1
Default implementation runs ainvoke in parallel using asyncio.gather. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. Parameters inputs (List[Input]) – config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Optional[Any]) – Return type List[Output] async abatch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → AsyncIterator[Tuple[int, Union[Output, Exception]]]¶ Run ainvoke in parallel on a list of inputs, yielding results as they complete. Parameters inputs (Sequence[Input]) – config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Optional[Any]) – Return type AsyncIterator[Tuple[int, Union[Output, Exception]]] async aformat(**kwargs: Any) → str¶ Format the chat template into a string. Parameters **kwargs (Any) – keyword arguments to use for filling in template variables in all the template messages in this chat template. Returns formatted string Return type str async aformat_messages(**kwargs: Any) → List[BaseMessage]¶ Format kwargs into a list of messages. Parameters kwargs (Any) – Return type List[BaseMessage] async aformat_prompt(**kwargs: Any) → PromptValue¶ Create Prompt Value. Parameters kwargs (Any) – Return type PromptValue
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.prompt.AutoGPTPrompt.html
81def1659867-2
Create Prompt Value. Parameters kwargs (Any) – Return type PromptValue async ainvoke(input: Dict, config: Optional[RunnableConfig] = None, **kwargs: Any) → PromptValue¶ Default implementation of ainvoke, calls invoke from a thread. The default implementation allows usage of async code even if the runnable did not implement a native async version of invoke. Subclasses should override this method if they can run asynchronously. Parameters input (Dict) – config (Optional[RunnableConfig]) – kwargs (Any) – Return type PromptValue assign(**kwargs: Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]) → RunnableSerializable[Any, Any]¶ Assigns new fields to the dict output of this runnable. Returns a new runnable. from langchain_community.llms.fake import FakeStreamingListLLM from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import SystemMessagePromptTemplate from langchain_core.runnables import Runnable from operator import itemgetter prompt = ( SystemMessagePromptTemplate.from_template("You are a nice assistant.") + "{question}" ) llm = FakeStreamingListLLM(responses=["foo-lish"]) chain: Runnable = prompt | llm | {"str": StrOutputParser()} chain_with_assign = chain.assign(hello=itemgetter("str") | llm) print(chain_with_assign.input_schema.schema()) # {'title': 'PromptInput', 'type': 'object', 'properties': {'question': {'title': 'Question', 'type': 'string'}}} print(chain_with_assign.output_schema.schema()) #
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.prompt.AutoGPTPrompt.html
81def1659867-3
print(chain_with_assign.output_schema.schema()) # {'title': 'RunnableSequenceOutput', 'type': 'object', 'properties': {'str': {'title': 'Str', 'type': 'string'}, 'hello': {'title': 'Hello', 'type': 'string'}}} Parameters kwargs (Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]) – Return type RunnableSerializable[Any, Any] async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output. Parameters input (Input) – config (Optional[RunnableConfig]) – kwargs (Optional[Any]) – Return type AsyncIterator[Output] astream_events(input: Any, config: Optional[RunnableConfig] = None, *, version: Literal['v1', 'v2'], include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) → AsyncIterator[StreamEvent]¶ [Beta] Generate a stream of events. Use to create an iterator over StreamEvents that provide real-time information about the progress of the runnable, including StreamEvents from intermediate results. A StreamEvent is a dictionary with the following schema: event: str - Event names are of theformat: on_[runnable_type]_(start|stream|end).
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.prompt.AutoGPTPrompt.html
81def1659867-4
name: str - The name of the runnable that generated the event. run_id: str - randomly generated ID associated with the given execution ofthe runnable that emitted the event. A child runnable that gets invoked as part of the execution of a parent runnable is assigned its own unique ID. parent_ids: List[str] - The IDs of the parent runnables thatgenerated the event. The root runnable will have an empty list. The order of the parent IDs is from the root to the immediate parent. Only available for v2 version of the API. The v1 version of the API will return an empty list. tags: Optional[List[str]] - The tags of the runnable that generatedthe event. metadata: Optional[Dict[str, Any]] - The metadata of the runnablethat generated the event. data: Dict[str, Any] Below is a table that illustrates some evens that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table. ATTENTION This reference table is for the V2 version of the schema. event name chunk input output on_chat_model_start [model name] {“messages”: [[SystemMessage, HumanMessage]]} on_chat_model_stream [model name] AIMessageChunk(content=”hello”) on_chat_model_end [model name] {“messages”: [[SystemMessage, HumanMessage]]} AIMessageChunk(content=”hello world”) on_llm_start [model name] {‘input’: ‘hello’} on_llm_stream [model name] ‘Hello’ on_llm_end [model name] ‘Hello human!’ on_chain_start format_docs on_chain_stream format_docs “hello world!, goodbye world!” on_chain_end format_docs [Document(…)]
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.prompt.AutoGPTPrompt.html
81def1659867-5
on_chain_end format_docs [Document(…)] “hello world!, goodbye world!” on_tool_start some_tool {“x”: 1, “y”: “2”} on_tool_end some_tool {“x”: 1, “y”: “2”} on_retriever_start [retriever name] {“query”: “hello”} on_retriever_end [retriever name] {“query”: “hello”} [Document(…), ..] on_prompt_start [template_name] {“question”: “hello”} on_prompt_end [template_name] {“question”: “hello”} ChatPromptValue(messages: [SystemMessage, …]) Here are declarations associated with the events shown above: format_docs: def format_docs(docs: List[Document]) -> str: '''Format the docs.''' return ", ".join([doc.page_content for doc in docs]) format_docs = RunnableLambda(format_docs) some_tool: @tool def some_tool(x: int, y: str) -> dict: '''Some_tool.''' return {"x": x, "y": y} prompt: template = ChatPromptTemplate.from_messages( [("system", "You are Cat Agent 007"), ("human", "{question}")] ).with_config({"run_name": "my_template", "tags": ["my_template"]}) Example: from langchain_core.runnables import RunnableLambda async def reverse(s: str) -> str: return s[::-1] chain = RunnableLambda(func=reverse) events = [ event async for event in chain.astream_events("hello", version="v2") ] # will produce the following events (run_id, and parent_ids
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.prompt.AutoGPTPrompt.html
81def1659867-6
] # will produce the following events (run_id, and parent_ids # has been omitted for brevity): [ { "data": {"input": "hello"}, "event": "on_chain_start", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"chunk": "olleh"}, "event": "on_chain_stream", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"output": "olleh"}, "event": "on_chain_end", "metadata": {}, "name": "reverse", "tags": [], }, ] Parameters input (Any) – The input to the runnable. config (Optional[RunnableConfig]) – The config to use for the runnable. version (Literal['v1', 'v2']) – The version of the schema to use either v2 or v1. Users should use v2. v1 is for backwards compatibility and will be deprecated in 0.4.0. No default will be assigned until the API is stabilized. include_names (Optional[Sequence[str]]) – Only include events from runnables with matching names. include_types (Optional[Sequence[str]]) – Only include events from runnables with matching types. include_tags (Optional[Sequence[str]]) – Only include events from runnables with matching tags. exclude_names (Optional[Sequence[str]]) – Exclude events from runnables with matching names. exclude_types (Optional[Sequence[str]]) – Exclude events from runnables with matching types. exclude_tags (Optional[Sequence[str]]) – Exclude events from runnables with matching tags.
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.prompt.AutoGPTPrompt.html
81def1659867-7
exclude_tags (Optional[Sequence[str]]) – Exclude events from runnables with matching tags. kwargs (Any) – Additional keyword arguments to pass to the runnable. These will be passed to astream_log as this implementation of astream_events is built on top of astream_log. Returns An async stream of StreamEvents. Return type AsyncIterator[StreamEvent] Notes async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, with_streamed_output_list: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶ Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state. Parameters input (Any) – The input to the runnable. config (Optional[RunnableConfig]) – The config to use for the runnable. diff (bool) – Whether to yield diffs between each step, or the current state. with_streamed_output_list (bool) – Whether to yield the streamed_output list. include_names (Optional[Sequence[str]]) – Only include logs with these names. include_types (Optional[Sequence[str]]) – Only include logs with these types.
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.prompt.AutoGPTPrompt.html
81def1659867-8
include_types (Optional[Sequence[str]]) – Only include logs with these types. include_tags (Optional[Sequence[str]]) – Only include logs with these tags. exclude_names (Optional[Sequence[str]]) – Exclude logs with these names. exclude_types (Optional[Sequence[str]]) – Exclude logs with these types. exclude_tags (Optional[Sequence[str]]) – Exclude logs with these tags. kwargs (Any) – Return type Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]] async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of atransform, which buffers input and calls astream. Subclasses should override this method if they can start producing output while input is still being generated. Parameters input (AsyncIterator[Input]) – config (Optional[RunnableConfig]) – kwargs (Optional[Any]) – Return type AsyncIterator[Output] batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation runs invoke in parallel using a thread pool executor. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. Parameters inputs (List[Input]) – config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Optional[Any]) – Return type List[Output]
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.prompt.AutoGPTPrompt.html
81def1659867-9
kwargs (Optional[Any]) – Return type List[Output] batch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → Iterator[Tuple[int, Union[Output, Exception]]]¶ Run invoke in parallel on a list of inputs, yielding results as they complete. Parameters inputs (Sequence[Input]) – config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Optional[Any]) – Return type Iterator[Tuple[int, Union[Output, Exception]]] bind(**kwargs: Any) → Runnable[Input, Output]¶ Bind arguments to a Runnable, returning a new Runnable. Useful when a runnable in a chain requires an argument that is not in the output of the previous runnable or included in the user input. Example: from langchain_community.chat_models import ChatOllama from langchain_core.output_parsers import StrOutputParser llm = ChatOllama(model='llama2') # Without bind. chain = ( llm | StrOutputParser() ) chain.invoke("Repeat quoted words exactly: 'One two three four five.'") # Output is 'One two three four five.' # With bind. chain = ( llm.bind(stop=["three"]) | StrOutputParser() ) chain.invoke("Repeat quoted words exactly: 'One two three four five.'") # Output is 'One two' Parameters kwargs (Any) – Return type Runnable[Input, Output] config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.prompt.AutoGPTPrompt.html
81def1659867-10
The type of config this runnable accepts specified as a pydantic model. To mark a field as configurable, see the configurable_fields and configurable_alternatives methods. Parameters include (Optional[Sequence[str]]) – A list of fields to include in the config schema. Returns A pydantic model that can be used to validate config. Return type Type[BaseModel] configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶ Configure alternatives for runnables that can be set at runtime. from langchain_anthropic import ChatAnthropic from langchain_core.runnables.utils import ConfigurableField from langchain_openai import ChatOpenAI model = ChatAnthropic( model_name="claude-3-sonnet-20240229" ).configurable_alternatives( ConfigurableField(id="llm"), default_key="anthropic", openai=ChatOpenAI() ) # uses the default model ChatAnthropic print(model.invoke("which organization created you?").content) # uses ChatOpenAI print( model.with_config( configurable={"llm": "openai"} ).invoke("which organization created you?").content ) Parameters which (ConfigurableField) – default_key (str) – prefix_keys (bool) – kwargs (Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) – Return type RunnableSerializable[Input, Output]
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.prompt.AutoGPTPrompt.html
81def1659867-11
Return type RunnableSerializable[Input, Output] configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶ Configure particular runnable fields at runtime. from langchain_core.runnables import ConfigurableField from langchain_openai import ChatOpenAI model = ChatOpenAI(max_tokens=20).configurable_fields( max_tokens=ConfigurableField( id="output_token_number", name="Max tokens in the output", description="The maximum number of tokens in the output", ) ) # max_tokens = 20 print( "max_tokens_20: ", model.invoke("tell me something about chess").content ) # max_tokens = 200 print("max_tokens_200: ", model.with_config( configurable={"output_token_number": 200} ).invoke("tell me something about chess").content ) Parameters kwargs (Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) – Return type RunnableSerializable[Input, Output] classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values Parameters _fields_set (Optional[SetStr]) – values (Any) – Return type Model construct_full_prompt(goals: List[str]) → str[source]¶ Parameters goals (List[str]) – Return type str
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.prompt.AutoGPTPrompt.html
81def1659867-12
Parameters goals (List[str]) – Return type str copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep (bool) – set to True to make a deep copy of the model self (Model) – Returns new model instance Return type Model dict(**kwargs: Any) → Dict¶ Return dictionary representation of prompt. Parameters kwargs (Any) – Return type Dict format(**kwargs: Any) → str¶ Format the chat template into a string. Parameters **kwargs (Any) – keyword arguments to use for filling in template variables in all the template messages in this chat template. Returns formatted string Return type str format_messages(**kwargs: Any) → List[BaseMessage][source]¶ Format kwargs into a list of messages. Parameters kwargs (Any) – Return type List[BaseMessage] format_prompt(**kwargs: Any) → PromptValue¶ Format prompt. Should return a PromptValue. :param **kwargs: Keyword arguments to use for formatting. Returns PromptValue. Parameters
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.prompt.AutoGPTPrompt.html
81def1659867-13
:param **kwargs: Keyword arguments to use for formatting. Returns PromptValue. Parameters kwargs (Any) – Return type PromptValue classmethod from_orm(obj: Any) → Model¶ Parameters obj (Any) – Return type Model get_graph(config: Optional[RunnableConfig] = None) → Graph¶ Return a graph representation of this runnable. Parameters config (Optional[RunnableConfig]) – Return type Graph get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate input to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the runnable is invoked with. This method allows to get an input schema for a specific configuration. Parameters config (Optional[RunnableConfig]) – A config to use when generating the schema. Returns A pydantic model that can be used to validate input. Return type Type[BaseModel] classmethod get_lc_namespace() → List[str]¶ Get the namespace of the langchain object. Return type List[str] get_name(suffix: Optional[str] = None, *, name: Optional[str] = None) → str¶ Get the name of the runnable. Parameters suffix (Optional[str]) – name (Optional[str]) – Return type str get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate output to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the runnable is invoked with. This method allows to get an output schema for a specific configuration.
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.prompt.AutoGPTPrompt.html
81def1659867-14
This method allows to get an output schema for a specific configuration. Parameters config (Optional[RunnableConfig]) – A config to use when generating the schema. Returns A pydantic model that can be used to validate output. Return type Type[BaseModel] get_prompts(config: Optional[RunnableConfig] = None) → List[BasePromptTemplate]¶ Parameters config (Optional[RunnableConfig]) – Return type List[BasePromptTemplate] invoke(input: Dict, config: Optional[RunnableConfig] = None) → PromptValue¶ Transform a single input into an output. Override to implement. Parameters input (Dict) – The input to the runnable. config (Optional[RunnableConfig]) – A config to use when invoking the runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Returns The output of the runnable. Return type PromptValue classmethod is_lc_serializable() → bool¶ Return whether this class is serializable. Return type bool json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict().
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.prompt.AutoGPTPrompt.html
81def1659867-15
Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – by_alias (bool) – skip_defaults (Optional[bool]) – exclude_unset (bool) – exclude_defaults (bool) – exclude_none (bool) – encoder (Optional[Callable[[Any], Any]]) – models_as_dict (bool) – dumps_kwargs (Any) – Return type unicode classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. Return type List[str] map() → Runnable[List[Input], List[Output]]¶ Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input. Example from langchain_core.runnables import RunnableLambda def _lambda(x: int) -> int: return x + 1 runnable = RunnableLambda(_lambda) print(runnable.map().invoke([1, 2, 3])) # [2, 3, 4] Return type Runnable[List[Input], List[Output]] classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ Parameters path (Union[str, Path]) – content_type (unicode) – encoding (unicode) – proto (Protocol) –
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.prompt.AutoGPTPrompt.html
81def1659867-16
encoding (unicode) – proto (Protocol) – allow_pickle (bool) – Return type Model classmethod parse_obj(obj: Any) → Model¶ Parameters obj (Any) – Return type Model classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ Parameters b (Union[str, bytes]) – content_type (unicode) – encoding (unicode) – proto (Protocol) – allow_pickle (bool) – Return type Model partial(**kwargs: Union[str, Callable[[], str]]) → BasePromptTemplate¶ Return a partial of the prompt template. Parameters kwargs (Union[str, Callable[[], str]]) – Return type BasePromptTemplate pick(keys: Union[str, List[str]]) → RunnableSerializable[Any, Any]¶ Pick keys from the dict output of this runnable. Pick single key:import json from langchain_core.runnables import RunnableLambda, RunnableMap as_str = RunnableLambda(str) as_json = RunnableLambda(json.loads) chain = RunnableMap(str=as_str, json=as_json) chain.invoke("[1, 2, 3]") # -> {"str": "[1, 2, 3]", "json": [1, 2, 3]} json_only_chain = chain.pick("json") json_only_chain.invoke("[1, 2, 3]") # -> [1, 2, 3] Pick list of keys:from typing import Any import json from langchain_core.runnables import RunnableLambda, RunnableMap as_str = RunnableLambda(str) as_json = RunnableLambda(json.loads)
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.prompt.AutoGPTPrompt.html
81def1659867-17
as_str = RunnableLambda(str) as_json = RunnableLambda(json.loads) def as_bytes(x: Any) -> bytes: return bytes(x, "utf-8") chain = RunnableMap( str=as_str, json=as_json, bytes=RunnableLambda(as_bytes) ) chain.invoke("[1, 2, 3]") # -> {"str": "[1, 2, 3]", "json": [1, 2, 3], "bytes": b"[1, 2, 3]"} json_and_bytes_chain = chain.pick(["json", "bytes"]) json_and_bytes_chain.invoke("[1, 2, 3]") # -> {"json": [1, 2, 3], "bytes": b"[1, 2, 3]"} Parameters keys (Union[str, List[str]]) – Return type RunnableSerializable[Any, Any] pipe(*others: Union[Runnable[Any, Other], Callable[[Any], Other]], name: Optional[str] = None) → RunnableSerializable[Input, Other]¶ Compose this Runnable with Runnable-like objects to make a RunnableSequence. Equivalent to RunnableSequence(self, *others) or self | others[0] | … Example from langchain_core.runnables import RunnableLambda def add_one(x: int) -> int: return x + 1 def mul_two(x: int) -> int: return x * 2 runnable_1 = RunnableLambda(add_one) runnable_2 = RunnableLambda(mul_two) sequence = runnable_1.pipe(runnable_2) # Or equivalently: # sequence = runnable_1 | runnable_2 # sequence = RunnableSequence(first=runnable_1, last=runnable_2) sequence.invoke(1)
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.prompt.AutoGPTPrompt.html
81def1659867-18
sequence.invoke(1) await sequence.ainvoke(1) # -> 4 sequence.batch([1, 2, 3]) await sequence.abatch([1, 2, 3]) # -> [4, 6, 8] Parameters others (Union[Runnable[Any, Other], Callable[[Any], Other]]) – name (Optional[str]) – Return type RunnableSerializable[Input, Other] pretty_print() → None¶ Return type None pretty_repr(html: bool = False) → str[source]¶ Human-readable representation. Parameters html (bool) – Return type str save(file_path: Union[Path, str]) → None¶ Save the prompt. Parameters file_path (Union[Path, str]) – Path to directory to save prompt to. Return type None Example: .. code-block:: python prompt.save(file_path=”path/prompt.yaml”) classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ Parameters by_alias (bool) – ref_template (unicode) – Return type DictStrAny classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ Parameters by_alias (bool) – ref_template (unicode) – dumps_kwargs (Any) – Return type unicode stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output. Parameters input (Input) – config (Optional[RunnableConfig]) –
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.prompt.AutoGPTPrompt.html
81def1659867-19
Parameters input (Input) – config (Optional[RunnableConfig]) – kwargs (Optional[Any]) – Return type Iterator[Output] to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ Serialize the runnable to JSON. Return type Union[SerializedConstructor, SerializedNotImplemented] to_json_not_implemented() → SerializedNotImplemented¶ Return type SerializedNotImplemented transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated. Parameters input (Iterator[Input]) – config (Optional[RunnableConfig]) – kwargs (Optional[Any]) – Return type Iterator[Output] classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. Parameters localns (Any) – Return type None classmethod validate(value: Any) → Model¶ Parameters value (Any) – Return type Model with_alisteners(*, on_start: Optional[AsyncListener] = None, on_end: Optional[AsyncListener] = None, on_error: Optional[AsyncListener] = None) → Runnable[Input, Output]¶ Bind asynchronous lifecycle listeners to a Runnable, returning a new Runnable. on_start: Asynchronously called before the runnable starts running. on_end: Asynchronously called after the runnable finishes running. on_error: Asynchronously called if the runnable throws an error. The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.prompt.AutoGPTPrompt.html
81def1659867-20
type, input, output, error, start_time, end_time, and any tags or metadata added to the run. Example: Parameters on_start (Optional[AsyncListener]) – on_end (Optional[AsyncListener]) – on_error (Optional[AsyncListener]) – Return type Runnable[Input, Output] with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶ Bind config to a Runnable, returning a new Runnable. Parameters config (Optional[RunnableConfig]) – kwargs (Any) – Return type Runnable[Input, Output] with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,), exception_key: Optional[str] = None) → RunnableWithFallbacksT[Input, Output]¶ Add fallbacks to a runnable, returning a new Runnable. Example from typing import Iterator from langchain_core.runnables import RunnableGenerator def _generate_immediate_error(input: Iterator) -> Iterator[str]: raise ValueError() yield "" def _generate(input: Iterator) -> Iterator[str]: yield from "foo bar" runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks( [RunnableGenerator(_generate)] ) print(''.join(runnable.stream({}))) #foo bar Parameters fallbacks (Sequence[Runnable[Input, Output]]) – A sequence of runnables to try if the original runnable fails. exceptions_to_handle (Tuple[Type[BaseException], ...]) – A tuple of exception types to handle. exception_key (Optional[str]) – If string is specified then handled exceptions will be passed
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.prompt.AutoGPTPrompt.html
81def1659867-21
exception_key (Optional[str]) – If string is specified then handled exceptions will be passed to fallbacks as part of the input under the specified key. If None, exceptions will not be passed to fallbacks. If used, the base runnable and its fallbacks must accept a dictionary as input. Returns A new Runnable that will try the original runnable, and then each fallback in order, upon failures. Return type RunnableWithFallbacksT[Input, Output] with_listeners(*, on_start: Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]] = None, on_end: Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]] = None, on_error: Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]] = None) → Runnable[Input, Output]¶ Bind lifecycle listeners to a Runnable, returning a new Runnable. on_start: Called before the runnable starts running, with the Run object. on_end: Called after the runnable finishes running, with the Run object. on_error: Called if the runnable throws an error, with the Run object. The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run. Example: from langchain_core.runnables import RunnableLambda from langchain_core.tracers.schemas import Run import time def test_runnable(time_to_sleep : int): time.sleep(time_to_sleep) def fn_start(run_obj: Run): print("start_time:", run_obj.start_time) def fn_end(run_obj: Run): print("end_time:", run_obj.end_time) chain = RunnableLambda(test_runnable).with_listeners(
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.prompt.AutoGPTPrompt.html
81def1659867-22
chain = RunnableLambda(test_runnable).with_listeners( on_start=fn_start, on_end=fn_end ) chain.invoke(2) Parameters on_start (Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]]) – on_end (Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]]) – on_error (Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]]) – Return type Runnable[Input, Output] with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶ Create a new Runnable that retries the original runnable on exceptions. Example: from langchain_core.runnables import RunnableLambda count = 0 def _lambda(x: int) -> None: global count count = count + 1 if x == 1: raise ValueError("x is 1") else: pass runnable = RunnableLambda(_lambda) try: runnable.with_retry( stop_after_attempt=2, retry_if_exception_type=(ValueError,), ).invoke(1) except ValueError: pass assert (count == 2) Parameters retry_if_exception_type (Tuple[Type[BaseException], ...]) – A tuple of exception types to retry on wait_exponential_jitter (bool) – Whether to add jitter to the wait time between retries stop_after_attempt (int) – The maximum number of attempts to make before giving up Returns
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.prompt.AutoGPTPrompt.html
81def1659867-23
stop_after_attempt (int) – The maximum number of attempts to make before giving up Returns A new Runnable that retries the original runnable on exceptions. Return type Runnable[Input, Output] with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶ Bind input and output types to a Runnable, returning a new Runnable. Parameters input_type (Optional[Type[Input]]) – output_type (Optional[Type[Output]]) – Return type Runnable[Input, Output] property InputType: Type[Input]¶ The type of input this runnable accepts specified as a type annotation. property OutputType: Any¶ The type of output this runnable produces specified as a type annotation. property config_specs: List[ConfigurableFieldSpec]¶ List configurable fields for this runnable. property input_schema: Type[BaseModel]¶ The type of input this runnable accepts specified as a pydantic model. property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”} name: Optional[str] = None¶ The name of the runnable. Used for debugging and tracing. property output_schema: Type[BaseModel]¶ The type of output this runnable produces specified as a pydantic model.
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.prompt.AutoGPTPrompt.html
009cfebdcd5e-0
langchain_experimental.autonomous_agents.autogpt.output_parser.AutoGPTAction¶ class langchain_experimental.autonomous_agents.autogpt.output_parser.AutoGPTAction(name: str, args: Dict)[source]¶ Action returned by AutoGPTOutputParser. Create new instance of AutoGPTAction(name, args) Attributes args Alias for field number 1 name Alias for field number 0 Methods __init__() count(value, /) Return number of occurrences of value. index(value[, start, stop]) Return first index of value. Parameters name (str) – args (Dict) – __init__()¶ count(value, /)¶ Return number of occurrences of value. index(value, start=0, stop=9223372036854775807, /)¶ Return first index of value. Raises ValueError if the value is not present.
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.output_parser.AutoGPTAction.html
8756f9262d92-0
langchain_experimental.autonomous_agents.hugginggpt.task_planner.Step¶ class langchain_experimental.autonomous_agents.hugginggpt.task_planner.Step(task: str, id: int, dep: List[int], args: Dict[str, str], tool: BaseTool)[source]¶ A step in the plan. Methods __init__(task, id, dep, args, tool) Parameters task (str) – id (int) – dep (List[int]) – args (Dict[str, str]) – tool (BaseTool) – __init__(task: str, id: int, dep: List[int], args: Dict[str, str], tool: BaseTool)[source]¶ Parameters task (str) – id (int) – dep (List[int]) – args (Dict[str, str]) – tool (BaseTool) –
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.task_planner.Step.html
532be8636888-0
langchain_experimental.autonomous_agents.hugginggpt.task_executor.Task¶ class langchain_experimental.autonomous_agents.hugginggpt.task_executor.Task(task: str, id: int, dep: List[int], args: Dict, tool: BaseTool)[source]¶ Task to be executed. Methods __init__(task, id, dep, args, tool) completed() failed() pending() run() save_product() Parameters task (str) – id (int) – dep (List[int]) – args (Dict) – tool (BaseTool) – __init__(task: str, id: int, dep: List[int], args: Dict, tool: BaseTool)[source]¶ Parameters task (str) – id (int) – dep (List[int]) – args (Dict) – tool (BaseTool) – completed() → bool[source]¶ Return type bool failed() → bool[source]¶ Return type bool pending() → bool[source]¶ Return type bool run() → str[source]¶ Return type str save_product() → None[source]¶ Return type None
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.task_executor.Task.html
d65f2043f4b5-0
langchain_experimental.autonomous_agents.autogpt.output_parser.AutoGPTOutputParser¶ class langchain_experimental.autonomous_agents.autogpt.output_parser.AutoGPTOutputParser[source]¶ Bases: BaseAutoGPTOutputParser Output parser for AutoGPT. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation runs ainvoke in parallel using asyncio.gather. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. Parameters inputs (List[Input]) – config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Optional[Any]) – Return type List[Output] async abatch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → AsyncIterator[Tuple[int, Union[Output, Exception]]]¶ Run ainvoke in parallel on a list of inputs, yielding results as they complete. Parameters inputs (Sequence[Input]) – config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Optional[Any]) – Return type AsyncIterator[Tuple[int, Union[Output, Exception]]]
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.output_parser.AutoGPTOutputParser.html
d65f2043f4b5-1
Return type AsyncIterator[Tuple[int, Union[Output, Exception]]] async ainvoke(input: Union[str, BaseMessage], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → T¶ Default implementation of ainvoke, calls invoke from a thread. The default implementation allows usage of async code even if the runnable did not implement a native async version of invoke. Subclasses should override this method if they can run asynchronously. Parameters input (Union[str, BaseMessage]) – config (Optional[RunnableConfig]) – kwargs (Optional[Any]) – Return type T async aparse(text: str) → T¶ Parse a single string model output into some structure. Parameters text (str) – String output of a language model. Returns Structured output. Return type T async aparse_result(result: List[Generation], *, partial: bool = False) → T¶ Parse a list of candidate model Generations into a specific format. The return value is parsed from only the first Generation in the result, whichis assumed to be the highest-likelihood Generation. Parameters result (List[Generation]) – A list of Generations to be parsed. The Generations are assumed to be different candidate outputs for a single model input. partial (bool) – Returns Structured output. Return type T assign(**kwargs: Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]) → RunnableSerializable[Any, Any]¶ Assigns new fields to the dict output of this runnable. Returns a new runnable. from langchain_community.llms.fake import FakeStreamingListLLM from langchain_core.output_parsers import StrOutputParser
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.output_parser.AutoGPTOutputParser.html
d65f2043f4b5-2
from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import SystemMessagePromptTemplate from langchain_core.runnables import Runnable from operator import itemgetter prompt = ( SystemMessagePromptTemplate.from_template("You are a nice assistant.") + "{question}" ) llm = FakeStreamingListLLM(responses=["foo-lish"]) chain: Runnable = prompt | llm | {"str": StrOutputParser()} chain_with_assign = chain.assign(hello=itemgetter("str") | llm) print(chain_with_assign.input_schema.schema()) # {'title': 'PromptInput', 'type': 'object', 'properties': {'question': {'title': 'Question', 'type': 'string'}}} print(chain_with_assign.output_schema.schema()) # {'title': 'RunnableSequenceOutput', 'type': 'object', 'properties': {'str': {'title': 'Str', 'type': 'string'}, 'hello': {'title': 'Hello', 'type': 'string'}}} Parameters kwargs (Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]) – Return type RunnableSerializable[Any, Any] async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output. Parameters input (Input) – config (Optional[RunnableConfig]) – kwargs (Optional[Any]) – Return type AsyncIterator[Output]
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.output_parser.AutoGPTOutputParser.html
d65f2043f4b5-3
kwargs (Optional[Any]) – Return type AsyncIterator[Output] astream_events(input: Any, config: Optional[RunnableConfig] = None, *, version: Literal['v1', 'v2'], include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) → AsyncIterator[StreamEvent]¶ [Beta] Generate a stream of events. Use to create an iterator over StreamEvents that provide real-time information about the progress of the runnable, including StreamEvents from intermediate results. A StreamEvent is a dictionary with the following schema: event: str - Event names are of theformat: on_[runnable_type]_(start|stream|end). name: str - The name of the runnable that generated the event. run_id: str - randomly generated ID associated with the given execution ofthe runnable that emitted the event. A child runnable that gets invoked as part of the execution of a parent runnable is assigned its own unique ID. parent_ids: List[str] - The IDs of the parent runnables thatgenerated the event. The root runnable will have an empty list. The order of the parent IDs is from the root to the immediate parent. Only available for v2 version of the API. The v1 version of the API will return an empty list. tags: Optional[List[str]] - The tags of the runnable that generatedthe event. metadata: Optional[Dict[str, Any]] - The metadata of the runnablethat generated the event. data: Dict[str, Any] Below is a table that illustrates some evens that might be emitted by various
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.output_parser.AutoGPTOutputParser.html
d65f2043f4b5-4
Below is a table that illustrates some evens that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table. ATTENTION This reference table is for the V2 version of the schema. event name chunk input output on_chat_model_start [model name] {“messages”: [[SystemMessage, HumanMessage]]} on_chat_model_stream [model name] AIMessageChunk(content=”hello”) on_chat_model_end [model name] {“messages”: [[SystemMessage, HumanMessage]]} AIMessageChunk(content=”hello world”) on_llm_start [model name] {‘input’: ‘hello’} on_llm_stream [model name] ‘Hello’ on_llm_end [model name] ‘Hello human!’ on_chain_start format_docs on_chain_stream format_docs “hello world!, goodbye world!” on_chain_end format_docs [Document(…)] “hello world!, goodbye world!” on_tool_start some_tool {“x”: 1, “y”: “2”} on_tool_end some_tool {“x”: 1, “y”: “2”} on_retriever_start [retriever name] {“query”: “hello”} on_retriever_end [retriever name] {“query”: “hello”} [Document(…), ..] on_prompt_start [template_name] {“question”: “hello”} on_prompt_end [template_name] {“question”: “hello”} ChatPromptValue(messages: [SystemMessage, …]) Here are declarations associated with the events shown above: format_docs: def format_docs(docs: List[Document]) -> str:
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.output_parser.AutoGPTOutputParser.html
d65f2043f4b5-5
format_docs: def format_docs(docs: List[Document]) -> str: '''Format the docs.''' return ", ".join([doc.page_content for doc in docs]) format_docs = RunnableLambda(format_docs) some_tool: @tool def some_tool(x: int, y: str) -> dict: '''Some_tool.''' return {"x": x, "y": y} prompt: template = ChatPromptTemplate.from_messages( [("system", "You are Cat Agent 007"), ("human", "{question}")] ).with_config({"run_name": "my_template", "tags": ["my_template"]}) Example: from langchain_core.runnables import RunnableLambda async def reverse(s: str) -> str: return s[::-1] chain = RunnableLambda(func=reverse) events = [ event async for event in chain.astream_events("hello", version="v2") ] # will produce the following events (run_id, and parent_ids # has been omitted for brevity): [ { "data": {"input": "hello"}, "event": "on_chain_start", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"chunk": "olleh"}, "event": "on_chain_stream", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"output": "olleh"}, "event": "on_chain_end", "metadata": {}, "name": "reverse", "tags": [], }, ] Parameters input (Any) – The input to the runnable.
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.output_parser.AutoGPTOutputParser.html
d65f2043f4b5-6
}, ] Parameters input (Any) – The input to the runnable. config (Optional[RunnableConfig]) – The config to use for the runnable. version (Literal['v1', 'v2']) – The version of the schema to use either v2 or v1. Users should use v2. v1 is for backwards compatibility and will be deprecated in 0.4.0. No default will be assigned until the API is stabilized. include_names (Optional[Sequence[str]]) – Only include events from runnables with matching names. include_types (Optional[Sequence[str]]) – Only include events from runnables with matching types. include_tags (Optional[Sequence[str]]) – Only include events from runnables with matching tags. exclude_names (Optional[Sequence[str]]) – Exclude events from runnables with matching names. exclude_types (Optional[Sequence[str]]) – Exclude events from runnables with matching types. exclude_tags (Optional[Sequence[str]]) – Exclude events from runnables with matching tags. kwargs (Any) – Additional keyword arguments to pass to the runnable. These will be passed to astream_log as this implementation of astream_events is built on top of astream_log. Returns An async stream of StreamEvents. Return type AsyncIterator[StreamEvent] Notes
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.output_parser.AutoGPTOutputParser.html
d65f2043f4b5-7
An async stream of StreamEvents. Return type AsyncIterator[StreamEvent] Notes async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, with_streamed_output_list: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶ Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state. Parameters input (Any) – The input to the runnable. config (Optional[RunnableConfig]) – The config to use for the runnable. diff (bool) – Whether to yield diffs between each step, or the current state. with_streamed_output_list (bool) – Whether to yield the streamed_output list. include_names (Optional[Sequence[str]]) – Only include logs with these names. include_types (Optional[Sequence[str]]) – Only include logs with these types. include_tags (Optional[Sequence[str]]) – Only include logs with these tags. exclude_names (Optional[Sequence[str]]) – Exclude logs with these names. exclude_types (Optional[Sequence[str]]) – Exclude logs with these types. exclude_tags (Optional[Sequence[str]]) – Exclude logs with these tags.
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.output_parser.AutoGPTOutputParser.html
d65f2043f4b5-8
exclude_tags (Optional[Sequence[str]]) – Exclude logs with these tags. kwargs (Any) – Return type Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]] async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of atransform, which buffers input and calls astream. Subclasses should override this method if they can start producing output while input is still being generated. Parameters input (AsyncIterator[Input]) – config (Optional[RunnableConfig]) – kwargs (Optional[Any]) – Return type AsyncIterator[Output] batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation runs invoke in parallel using a thread pool executor. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. Parameters inputs (List[Input]) – config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Optional[Any]) – Return type List[Output] batch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → Iterator[Tuple[int, Union[Output, Exception]]]¶ Run invoke in parallel on a list of inputs, yielding results as they complete. Parameters inputs (Sequence[Input]) –
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.output_parser.AutoGPTOutputParser.html
d65f2043f4b5-9
yielding results as they complete. Parameters inputs (Sequence[Input]) – config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Optional[Any]) – Return type Iterator[Tuple[int, Union[Output, Exception]]] bind(**kwargs: Any) → Runnable[Input, Output]¶ Bind arguments to a Runnable, returning a new Runnable. Useful when a runnable in a chain requires an argument that is not in the output of the previous runnable or included in the user input. Example: from langchain_community.chat_models import ChatOllama from langchain_core.output_parsers import StrOutputParser llm = ChatOllama(model='llama2') # Without bind. chain = ( llm | StrOutputParser() ) chain.invoke("Repeat quoted words exactly: 'One two three four five.'") # Output is 'One two three four five.' # With bind. chain = ( llm.bind(stop=["three"]) | StrOutputParser() ) chain.invoke("Repeat quoted words exactly: 'One two three four five.'") # Output is 'One two' Parameters kwargs (Any) – Return type Runnable[Input, Output] config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶ The type of config this runnable accepts specified as a pydantic model. To mark a field as configurable, see the configurable_fields and configurable_alternatives methods. Parameters include (Optional[Sequence[str]]) – A list of fields to include in the config schema. Returns A pydantic model that can be used to validate config. Return type Type[BaseModel]
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.output_parser.AutoGPTOutputParser.html
d65f2043f4b5-10
Return type Type[BaseModel] configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶ Configure alternatives for runnables that can be set at runtime. from langchain_anthropic import ChatAnthropic from langchain_core.runnables.utils import ConfigurableField from langchain_openai import ChatOpenAI model = ChatAnthropic( model_name="claude-3-sonnet-20240229" ).configurable_alternatives( ConfigurableField(id="llm"), default_key="anthropic", openai=ChatOpenAI() ) # uses the default model ChatAnthropic print(model.invoke("which organization created you?").content) # uses ChatOpenAI print( model.with_config( configurable={"llm": "openai"} ).invoke("which organization created you?").content ) Parameters which (ConfigurableField) – default_key (str) – prefix_keys (bool) – kwargs (Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) – Return type RunnableSerializable[Input, Output] configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶ Configure particular runnable fields at runtime. from langchain_core.runnables import ConfigurableField from langchain_openai import ChatOpenAI model = ChatOpenAI(max_tokens=20).configurable_fields( max_tokens=ConfigurableField( id="output_token_number",
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.output_parser.AutoGPTOutputParser.html
d65f2043f4b5-11
max_tokens=ConfigurableField( id="output_token_number", name="Max tokens in the output", description="The maximum number of tokens in the output", ) ) # max_tokens = 20 print( "max_tokens_20: ", model.invoke("tell me something about chess").content ) # max_tokens = 200 print("max_tokens_200: ", model.with_config( configurable={"output_token_number": 200} ).invoke("tell me something about chess").content ) Parameters kwargs (Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) – Return type RunnableSerializable[Input, Output] classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values Parameters _fields_set (Optional[SetStr]) – values (Any) – Return type Model copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.output_parser.AutoGPTOutputParser.html
d65f2043f4b5-12
update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep (bool) – set to True to make a deep copy of the model self (Model) – Returns new model instance Return type Model dict(**kwargs: Any) → Dict¶ Return dictionary representation of output parser. Parameters kwargs (Any) – Return type Dict classmethod from_orm(obj: Any) → Model¶ Parameters obj (Any) – Return type Model get_format_instructions() → str¶ Instructions on how the LLM output should be formatted. Return type str get_graph(config: Optional[RunnableConfig] = None) → Graph¶ Return a graph representation of this runnable. Parameters config (Optional[RunnableConfig]) – Return type Graph get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate input to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the runnable is invoked with. This method allows to get an input schema for a specific configuration. Parameters config (Optional[RunnableConfig]) – A config to use when generating the schema. Returns A pydantic model that can be used to validate input. Return type Type[BaseModel] classmethod get_lc_namespace() → List[str]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] Return type List[str]
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.output_parser.AutoGPTOutputParser.html
d65f2043f4b5-13
Return type List[str] get_name(suffix: Optional[str] = None, *, name: Optional[str] = None) → str¶ Get the name of the runnable. Parameters suffix (Optional[str]) – name (Optional[str]) – Return type str get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate output to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the runnable is invoked with. This method allows to get an output schema for a specific configuration. Parameters config (Optional[RunnableConfig]) – A config to use when generating the schema. Returns A pydantic model that can be used to validate output. Return type Type[BaseModel] get_prompts(config: Optional[RunnableConfig] = None) → List[BasePromptTemplate]¶ Parameters config (Optional[RunnableConfig]) – Return type List[BasePromptTemplate] invoke(input: Union[str, BaseMessage], config: Optional[RunnableConfig] = None) → T¶ Transform a single input into an output. Override to implement. Parameters input (Union[str, BaseMessage]) – The input to the runnable. config (Optional[RunnableConfig]) – A config to use when invoking the runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Returns The output of the runnable. Return type T classmethod is_lc_serializable() → bool¶ Is this class serializable? Return type bool
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.output_parser.AutoGPTOutputParser.html
d65f2043f4b5-14
Is this class serializable? Return type bool json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – by_alias (bool) – skip_defaults (Optional[bool]) – exclude_unset (bool) – exclude_defaults (bool) – exclude_none (bool) – encoder (Optional[Callable[[Any], Any]]) – models_as_dict (bool) – dumps_kwargs (Any) – Return type unicode classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. Return type List[str] map() → Runnable[List[Input], List[Output]]¶ Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input. Example from langchain_core.runnables import RunnableLambda def _lambda(x: int) -> int: return x + 1
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.output_parser.AutoGPTOutputParser.html
d65f2043f4b5-15
def _lambda(x: int) -> int: return x + 1 runnable = RunnableLambda(_lambda) print(runnable.map().invoke([1, 2, 3])) # [2, 3, 4] Return type Runnable[List[Input], List[Output]] parse(text: str) → AutoGPTAction[source]¶ Return AutoGPTAction Parameters text (str) – Return type AutoGPTAction classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ Parameters path (Union[str, Path]) – content_type (unicode) – encoding (unicode) – proto (Protocol) – allow_pickle (bool) – Return type Model classmethod parse_obj(obj: Any) → Model¶ Parameters obj (Any) – Return type Model classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ Parameters b (Union[str, bytes]) – content_type (unicode) – encoding (unicode) – proto (Protocol) – allow_pickle (bool) – Return type Model parse_result(result: List[Generation], *, partial: bool = False) → T¶ Parse a list of candidate model Generations into a specific format. The return value is parsed from only the first Generation in the result, whichis assumed to be the highest-likelihood Generation. Parameters result (List[Generation]) – A list of Generations to be parsed. The Generations are assumed
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.output_parser.AutoGPTOutputParser.html
d65f2043f4b5-16
to be different candidate outputs for a single model input. partial (bool) – Returns Structured output. Return type T parse_with_prompt(completion: str, prompt: PromptValue) → Any¶ Parse the output of an LLM call with the input prompt for context. The prompt is largely provided in the event the OutputParser wants to retry or fix the output in some way, and needs information from the prompt to do so. Parameters completion (str) – String output of a language model. prompt (PromptValue) – Input PromptValue. Returns Structured output Return type Any pick(keys: Union[str, List[str]]) → RunnableSerializable[Any, Any]¶ Pick keys from the dict output of this runnable. Pick single key:import json from langchain_core.runnables import RunnableLambda, RunnableMap as_str = RunnableLambda(str) as_json = RunnableLambda(json.loads) chain = RunnableMap(str=as_str, json=as_json) chain.invoke("[1, 2, 3]") # -> {"str": "[1, 2, 3]", "json": [1, 2, 3]} json_only_chain = chain.pick("json") json_only_chain.invoke("[1, 2, 3]") # -> [1, 2, 3] Pick list of keys:from typing import Any import json from langchain_core.runnables import RunnableLambda, RunnableMap as_str = RunnableLambda(str) as_json = RunnableLambda(json.loads) def as_bytes(x: Any) -> bytes: return bytes(x, "utf-8") chain = RunnableMap( str=as_str, json=as_json, bytes=RunnableLambda(as_bytes) ) chain.invoke("[1, 2, 3]")
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.output_parser.AutoGPTOutputParser.html
d65f2043f4b5-17
) chain.invoke("[1, 2, 3]") # -> {"str": "[1, 2, 3]", "json": [1, 2, 3], "bytes": b"[1, 2, 3]"} json_and_bytes_chain = chain.pick(["json", "bytes"]) json_and_bytes_chain.invoke("[1, 2, 3]") # -> {"json": [1, 2, 3], "bytes": b"[1, 2, 3]"} Parameters keys (Union[str, List[str]]) – Return type RunnableSerializable[Any, Any] pipe(*others: Union[Runnable[Any, Other], Callable[[Any], Other]], name: Optional[str] = None) → RunnableSerializable[Input, Other]¶ Compose this Runnable with Runnable-like objects to make a RunnableSequence. Equivalent to RunnableSequence(self, *others) or self | others[0] | … Example from langchain_core.runnables import RunnableLambda def add_one(x: int) -> int: return x + 1 def mul_two(x: int) -> int: return x * 2 runnable_1 = RunnableLambda(add_one) runnable_2 = RunnableLambda(mul_two) sequence = runnable_1.pipe(runnable_2) # Or equivalently: # sequence = runnable_1 | runnable_2 # sequence = RunnableSequence(first=runnable_1, last=runnable_2) sequence.invoke(1) await sequence.ainvoke(1) # -> 4 sequence.batch([1, 2, 3]) await sequence.abatch([1, 2, 3]) # -> [4, 6, 8] Parameters
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.output_parser.AutoGPTOutputParser.html
d65f2043f4b5-18
# -> [4, 6, 8] Parameters others (Union[Runnable[Any, Other], Callable[[Any], Other]]) – name (Optional[str]) – Return type RunnableSerializable[Input, Other] classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ Parameters by_alias (bool) – ref_template (unicode) – Return type DictStrAny classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ Parameters by_alias (bool) – ref_template (unicode) – dumps_kwargs (Any) – Return type unicode stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output. Parameters input (Input) – config (Optional[RunnableConfig]) – kwargs (Optional[Any]) – Return type Iterator[Output] to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ Serialize the runnable to JSON. Return type Union[SerializedConstructor, SerializedNotImplemented] to_json_not_implemented() → SerializedNotImplemented¶ Return type SerializedNotImplemented transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated. Parameters input (Iterator[Input]) – config (Optional[RunnableConfig]) –
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.output_parser.AutoGPTOutputParser.html
d65f2043f4b5-19
input (Iterator[Input]) – config (Optional[RunnableConfig]) – kwargs (Optional[Any]) – Return type Iterator[Output] classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. Parameters localns (Any) – Return type None classmethod validate(value: Any) → Model¶ Parameters value (Any) – Return type Model with_alisteners(*, on_start: Optional[AsyncListener] = None, on_end: Optional[AsyncListener] = None, on_error: Optional[AsyncListener] = None) → Runnable[Input, Output]¶ Bind asynchronous lifecycle listeners to a Runnable, returning a new Runnable. on_start: Asynchronously called before the runnable starts running. on_end: Asynchronously called after the runnable finishes running. on_error: Asynchronously called if the runnable throws an error. The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run. Example: Parameters on_start (Optional[AsyncListener]) – on_end (Optional[AsyncListener]) – on_error (Optional[AsyncListener]) – Return type Runnable[Input, Output] with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶ Bind config to a Runnable, returning a new Runnable. Parameters config (Optional[RunnableConfig]) – kwargs (Any) – Return type Runnable[Input, Output]
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.output_parser.AutoGPTOutputParser.html
d65f2043f4b5-20
kwargs (Any) – Return type Runnable[Input, Output] with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,), exception_key: Optional[str] = None) → RunnableWithFallbacksT[Input, Output]¶ Add fallbacks to a runnable, returning a new Runnable. Example from typing import Iterator from langchain_core.runnables import RunnableGenerator def _generate_immediate_error(input: Iterator) -> Iterator[str]: raise ValueError() yield "" def _generate(input: Iterator) -> Iterator[str]: yield from "foo bar" runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks( [RunnableGenerator(_generate)] ) print(''.join(runnable.stream({}))) #foo bar Parameters fallbacks (Sequence[Runnable[Input, Output]]) – A sequence of runnables to try if the original runnable fails. exceptions_to_handle (Tuple[Type[BaseException], ...]) – A tuple of exception types to handle. exception_key (Optional[str]) – If string is specified then handled exceptions will be passed to fallbacks as part of the input under the specified key. If None, exceptions will not be passed to fallbacks. If used, the base runnable and its fallbacks must accept a dictionary as input. Returns A new Runnable that will try the original runnable, and then each fallback in order, upon failures. Return type RunnableWithFallbacksT[Input, Output]
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.output_parser.AutoGPTOutputParser.html
d65f2043f4b5-21
Return type RunnableWithFallbacksT[Input, Output] with_listeners(*, on_start: Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]] = None, on_end: Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]] = None, on_error: Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]] = None) → Runnable[Input, Output]¶ Bind lifecycle listeners to a Runnable, returning a new Runnable. on_start: Called before the runnable starts running, with the Run object. on_end: Called after the runnable finishes running, with the Run object. on_error: Called if the runnable throws an error, with the Run object. The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run. Example: from langchain_core.runnables import RunnableLambda from langchain_core.tracers.schemas import Run import time def test_runnable(time_to_sleep : int): time.sleep(time_to_sleep) def fn_start(run_obj: Run): print("start_time:", run_obj.start_time) def fn_end(run_obj: Run): print("end_time:", run_obj.end_time) chain = RunnableLambda(test_runnable).with_listeners( on_start=fn_start, on_end=fn_end ) chain.invoke(2) Parameters on_start (Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]]) – on_end (Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]]) –
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.output_parser.AutoGPTOutputParser.html
d65f2043f4b5-22
on_error (Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]]) – Return type Runnable[Input, Output] with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶ Create a new Runnable that retries the original runnable on exceptions. Example: from langchain_core.runnables import RunnableLambda count = 0 def _lambda(x: int) -> None: global count count = count + 1 if x == 1: raise ValueError("x is 1") else: pass runnable = RunnableLambda(_lambda) try: runnable.with_retry( stop_after_attempt=2, retry_if_exception_type=(ValueError,), ).invoke(1) except ValueError: pass assert (count == 2) Parameters retry_if_exception_type (Tuple[Type[BaseException], ...]) – A tuple of exception types to retry on wait_exponential_jitter (bool) – Whether to add jitter to the wait time between retries stop_after_attempt (int) – The maximum number of attempts to make before giving up Returns A new Runnable that retries the original runnable on exceptions. Return type Runnable[Input, Output] with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶ Bind input and output types to a Runnable, returning a new Runnable. Parameters input_type (Optional[Type[Input]]) – output_type (Optional[Type[Output]]) –
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.output_parser.AutoGPTOutputParser.html
d65f2043f4b5-23
output_type (Optional[Type[Output]]) – Return type Runnable[Input, Output] property InputType: Any¶ The type of input this runnable accepts specified as a type annotation. property OutputType: Type[T]¶ The type of output this runnable produces specified as a type annotation. property config_specs: List[ConfigurableFieldSpec]¶ List configurable fields for this runnable. property input_schema: Type[BaseModel]¶ The type of input this runnable accepts specified as a pydantic model. property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”} name: Optional[str] = None¶ The name of the runnable. Used for debugging and tracing. property output_schema: Type[BaseModel]¶ The type of output this runnable produces specified as a pydantic model.
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.output_parser.AutoGPTOutputParser.html
4f5c85dce8d4-0
langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain¶ class langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain[source]¶ Bases: LLMChain Chain generating tasks. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param callback_manager: Optional[BaseCallbackManager] = None¶ [DEPRECATED] Use callbacks instead. param callbacks: Callbacks = None¶ Optional list of callback handlers (or callback manager). Defaults to None. Callback handlers are called throughout the lifecycle of a call to a chain, starting with on_chain_start, ending with on_chain_end or on_chain_error. Each custom chain can optionally call additional callback methods, see Callback docs for full details. param llm: Union[Runnable[LanguageModelInput, str], Runnable[LanguageModelInput, BaseMessage]] [Required]¶ Language model to call. param llm_kwargs: dict [Optional]¶ param memory: Optional[BaseMemory] = None¶ Optional memory object. Defaults to None. Memory is a class that gets called at the start and at the end of every chain. At the start, memory loads variables and passes them along in the chain. At the end, it saves any returned variables. There are many different types of memory - please see memory docs for the full catalog. param metadata: Optional[Dict[str, Any]] = None¶ Optional metadata associated with the chain. Defaults to None. This metadata will be associated with each call to this chain, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a chain with its use case. param output_parser: BaseLLMOutputParser [Optional]¶ Output parser to use.
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
4f5c85dce8d4-1
param output_parser: BaseLLMOutputParser [Optional]¶ Output parser to use. Defaults to one that takes the most likely string but does not change it otherwise. param prompt: BasePromptTemplate [Required]¶ Prompt object to use. param return_final_only: bool = True¶ Whether to return only the final parsed result. Defaults to True. If false, will return a bunch of extra information about the generation. param tags: Optional[List[str]] = None¶ Optional list of tags associated with the chain. Defaults to None. These tags will be associated with each call to this chain, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a chain with its use case. param verbose: bool [Optional]¶ Whether or not run in verbose mode. In verbose mode, some intermediate logs will be printed to the console. Defaults to the global verbose value, accessible via langchain.globals.get_verbose(). __call__(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, include_run_info: bool = False) → Dict[str, Any]¶ [Deprecated] Execute the chain. Parameters inputs (Union[Dict[str, Any], Any]) – Dictionary of inputs, or single input if chain expects only one param. Should contain all inputs specified in Chain.input_keys except for inputs that will be set by the chain’s memory. return_only_outputs (bool) – Whether to return only outputs in the response. If True, only new keys generated by this chain will be
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
4f5c85dce8d4-2
response. If True, only new keys generated by this chain will be returned. If False, both input keys and new keys generated by this chain will be returned. Defaults to False. callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – Callbacks to use for this chain run. These will be called in addition to callbacks passed to the chain during construction, but only these runtime callbacks will propagate to calls to other objects. tags (Optional[List[str]]) – List of string tags to pass to all callbacks. These will be passed in addition to tags passed to the chain during construction, but only these runtime tags will propagate to calls to other objects. metadata (Optional[Dict[str, Any]]) – Optional metadata associated with the chain. Defaults to None include_run_info (bool) – Whether to include run info in the response. Defaults to False. run_name (Optional[str]) – Returns A dict of named outputs. Should contain all outputs specified inChain.output_keys. Return type Dict[str, Any] Notes Deprecated since version langchain==0.1.0: Use invoke instead. async aapply(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → List[Dict[str, str]]¶ Utilize the LLM generate method for speed gains. Parameters input_list (List[Dict[str, Any]]) – callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – Return type List[Dict[str, str]] async aapply_and_parse(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → Sequence[Union[str, List[str], Dict[str, str]]]¶
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
4f5c85dce8d4-3
Call apply and then parse the results. Parameters input_list (List[Dict[str, Any]]) – callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – Return type Sequence[Union[str, List[str], Dict[str, str]]] async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation runs ainvoke in parallel using asyncio.gather. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. Parameters inputs (List[Input]) – config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Optional[Any]) – Return type List[Output] async abatch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → AsyncIterator[Tuple[int, Union[Output, Exception]]]¶ Run ainvoke in parallel on a list of inputs, yielding results as they complete. Parameters inputs (Sequence[Input]) – config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Optional[Any]) – Return type AsyncIterator[Tuple[int, Union[Output, Exception]]]
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
4f5c85dce8d4-4
Return type AsyncIterator[Tuple[int, Union[Output, Exception]]] async acall(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, include_run_info: bool = False) → Dict[str, Any]¶ [Deprecated] Asynchronously execute the chain. Parameters inputs (Union[Dict[str, Any], Any]) – Dictionary of inputs, or single input if chain expects only one param. Should contain all inputs specified in Chain.input_keys except for inputs that will be set by the chain’s memory. return_only_outputs (bool) – Whether to return only outputs in the response. If True, only new keys generated by this chain will be returned. If False, both input keys and new keys generated by this chain will be returned. Defaults to False. callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – Callbacks to use for this chain run. These will be called in addition to callbacks passed to the chain during construction, but only these runtime callbacks will propagate to calls to other objects. tags (Optional[List[str]]) – List of string tags to pass to all callbacks. These will be passed in addition to tags passed to the chain during construction, but only these runtime tags will propagate to calls to other objects. metadata (Optional[Dict[str, Any]]) – Optional metadata associated with the chain. Defaults to None include_run_info (bool) – Whether to include run info in the response. Defaults to False. run_name (Optional[str]) – Returns A dict of named outputs. Should contain all outputs specified inChain.output_keys.
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
4f5c85dce8d4-5
Returns A dict of named outputs. Should contain all outputs specified inChain.output_keys. Return type Dict[str, Any] Notes Deprecated since version langchain==0.1.0: Use ainvoke instead. async agenerate(input_list: List[Dict[str, Any]], run_manager: Optional[AsyncCallbackManagerForChainRun] = None) → LLMResult¶ Generate LLM result from inputs. Parameters input_list (List[Dict[str, Any]]) – run_manager (Optional[AsyncCallbackManagerForChainRun]) – Return type LLMResult async ainvoke(input: Dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any) → Dict[str, Any]¶ Default implementation of ainvoke, calls invoke from a thread. The default implementation allows usage of async code even if the runnable did not implement a native async version of invoke. Subclasses should override this method if they can run asynchronously. Parameters input (Dict[str, Any]) – config (Optional[RunnableConfig]) – kwargs (Any) – Return type Dict[str, Any] apply(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → List[Dict[str, str]]¶ Utilize the LLM generate method for speed gains. Parameters input_list (List[Dict[str, Any]]) – callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – Return type List[Dict[str, str]] apply_and_parse(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → Sequence[Union[str, List[str], Dict[str, str]]]¶ Call apply and then parse the results.
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
4f5c85dce8d4-6
Call apply and then parse the results. Parameters input_list (List[Dict[str, Any]]) – callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – Return type Sequence[Union[str, List[str], Dict[str, str]]] async apredict(callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶ Format prompt with kwargs and pass to LLM. Parameters callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – Callbacks to pass to LLMChain **kwargs (Any) – Keys to pass to prompt template. Returns Completion from LLM. Return type str Example completion = llm.predict(adjective="funny") async apredict_and_parse(callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → Union[str, List[str], Dict[str, str]]¶ Call apredict and then parse the results. Parameters callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – kwargs (Any) – Return type Union[str, List[str], Dict[str, str]] async aprep_inputs(inputs: Union[Dict[str, Any], Any]) → Dict[str, str]¶ Prepare chain inputs, including adding inputs from memory. Parameters inputs (Union[Dict[str, Any], Any]) – Dictionary of raw inputs, or single input if chain expects only one param. Should contain all inputs specified in Chain.input_keys except for inputs that will be set by the chain’s memory. Returns A dictionary of all inputs, including those added by the chain’s memory. Return type Dict[str, str]
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
4f5c85dce8d4-7
Return type Dict[str, str] async aprep_outputs(inputs: Dict[str, str], outputs: Dict[str, str], return_only_outputs: bool = False) → Dict[str, str]¶ Validate and prepare chain outputs, and save info about this run to memory. Parameters inputs (Dict[str, str]) – Dictionary of chain inputs, including any inputs added by chain memory. outputs (Dict[str, str]) – Dictionary of initial chain outputs. return_only_outputs (bool) – Whether to only return the chain outputs. If False, inputs are also added to the final outputs. Returns A dict of the final chain outputs. Return type Dict[str, str] async aprep_prompts(input_list: List[Dict[str, Any]], run_manager: Optional[AsyncCallbackManagerForChainRun] = None) → Tuple[List[PromptValue], Optional[List[str]]]¶ Prepare prompts from inputs. Parameters input_list (List[Dict[str, Any]]) – run_manager (Optional[AsyncCallbackManagerForChainRun]) – Return type Tuple[List[PromptValue], Optional[List[str]]] async arun(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ [Deprecated] Convenience method for executing chain. The main difference between this method and Chain.__call__ is that this method expects inputs to be passed directly in as positional arguments or keyword arguments, whereas Chain.__call__ expects a single input dictionary with all the inputs Parameters *args (Any) – If the chain expects a single input, it can be passed in as the sole positional argument.
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
4f5c85dce8d4-8
sole positional argument. callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – Callbacks to use for this chain run. These will be called in addition to callbacks passed to the chain during construction, but only these runtime callbacks will propagate to calls to other objects. tags (Optional[List[str]]) – List of string tags to pass to all callbacks. These will be passed in addition to tags passed to the chain during construction, but only these runtime tags will propagate to calls to other objects. **kwargs (Any) – If the chain expects multiple inputs, they can be passed in directly as keyword arguments. metadata (Optional[Dict[str, Any]]) – **kwargs – Returns The chain output. Return type Any Example # Suppose we have a single-input chain that takes a 'question' string: await chain.arun("What's the temperature in Boise, Idaho?") # -> "The temperature in Boise is..." # Suppose we have a multi-input chain that takes a 'question' string # and 'context' string: question = "What's the temperature in Boise, Idaho?" context = "Weather report for Boise, Idaho on 07/03/23..." await chain.arun(question=question, context=context) # -> "The temperature in Boise is..." Notes Deprecated since version langchain==0.1.0: Use ainvoke instead. assign(**kwargs: Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]) → RunnableSerializable[Any, Any]¶ Assigns new fields to the dict output of this runnable. Returns a new runnable. from langchain_community.llms.fake import FakeStreamingListLLM
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
4f5c85dce8d4-9
Returns a new runnable. from langchain_community.llms.fake import FakeStreamingListLLM from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import SystemMessagePromptTemplate from langchain_core.runnables import Runnable from operator import itemgetter prompt = ( SystemMessagePromptTemplate.from_template("You are a nice assistant.") + "{question}" ) llm = FakeStreamingListLLM(responses=["foo-lish"]) chain: Runnable = prompt | llm | {"str": StrOutputParser()} chain_with_assign = chain.assign(hello=itemgetter("str") | llm) print(chain_with_assign.input_schema.schema()) # {'title': 'PromptInput', 'type': 'object', 'properties': {'question': {'title': 'Question', 'type': 'string'}}} print(chain_with_assign.output_schema.schema()) # {'title': 'RunnableSequenceOutput', 'type': 'object', 'properties': {'str': {'title': 'Str', 'type': 'string'}, 'hello': {'title': 'Hello', 'type': 'string'}}} Parameters kwargs (Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]) – Return type RunnableSerializable[Any, Any] async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output. Parameters input (Input) – config (Optional[RunnableConfig]) – kwargs (Optional[Any]) – Return type AsyncIterator[Output]
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
4f5c85dce8d4-10
kwargs (Optional[Any]) – Return type AsyncIterator[Output] astream_events(input: Any, config: Optional[RunnableConfig] = None, *, version: Literal['v1', 'v2'], include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) → AsyncIterator[StreamEvent]¶ [Beta] Generate a stream of events. Use to create an iterator over StreamEvents that provide real-time information about the progress of the runnable, including StreamEvents from intermediate results. A StreamEvent is a dictionary with the following schema: event: str - Event names are of theformat: on_[runnable_type]_(start|stream|end). name: str - The name of the runnable that generated the event. run_id: str - randomly generated ID associated with the given execution ofthe runnable that emitted the event. A child runnable that gets invoked as part of the execution of a parent runnable is assigned its own unique ID. parent_ids: List[str] - The IDs of the parent runnables thatgenerated the event. The root runnable will have an empty list. The order of the parent IDs is from the root to the immediate parent. Only available for v2 version of the API. The v1 version of the API will return an empty list. tags: Optional[List[str]] - The tags of the runnable that generatedthe event. metadata: Optional[Dict[str, Any]] - The metadata of the runnablethat generated the event. data: Dict[str, Any] Below is a table that illustrates some evens that might be emitted by various
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
4f5c85dce8d4-11
Below is a table that illustrates some evens that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table. ATTENTION This reference table is for the V2 version of the schema. event name chunk input output on_chat_model_start [model name] {“messages”: [[SystemMessage, HumanMessage]]} on_chat_model_stream [model name] AIMessageChunk(content=”hello”) on_chat_model_end [model name] {“messages”: [[SystemMessage, HumanMessage]]} AIMessageChunk(content=”hello world”) on_llm_start [model name] {‘input’: ‘hello’} on_llm_stream [model name] ‘Hello’ on_llm_end [model name] ‘Hello human!’ on_chain_start format_docs on_chain_stream format_docs “hello world!, goodbye world!” on_chain_end format_docs [Document(…)] “hello world!, goodbye world!” on_tool_start some_tool {“x”: 1, “y”: “2”} on_tool_end some_tool {“x”: 1, “y”: “2”} on_retriever_start [retriever name] {“query”: “hello”} on_retriever_end [retriever name] {“query”: “hello”} [Document(…), ..] on_prompt_start [template_name] {“question”: “hello”} on_prompt_end [template_name] {“question”: “hello”} ChatPromptValue(messages: [SystemMessage, …]) Here are declarations associated with the events shown above: format_docs: def format_docs(docs: List[Document]) -> str:
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
4f5c85dce8d4-12
format_docs: def format_docs(docs: List[Document]) -> str: '''Format the docs.''' return ", ".join([doc.page_content for doc in docs]) format_docs = RunnableLambda(format_docs) some_tool: @tool def some_tool(x: int, y: str) -> dict: '''Some_tool.''' return {"x": x, "y": y} prompt: template = ChatPromptTemplate.from_messages( [("system", "You are Cat Agent 007"), ("human", "{question}")] ).with_config({"run_name": "my_template", "tags": ["my_template"]}) Example: from langchain_core.runnables import RunnableLambda async def reverse(s: str) -> str: return s[::-1] chain = RunnableLambda(func=reverse) events = [ event async for event in chain.astream_events("hello", version="v2") ] # will produce the following events (run_id, and parent_ids # has been omitted for brevity): [ { "data": {"input": "hello"}, "event": "on_chain_start", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"chunk": "olleh"}, "event": "on_chain_stream", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"output": "olleh"}, "event": "on_chain_end", "metadata": {}, "name": "reverse", "tags": [], }, ] Parameters input (Any) – The input to the runnable.
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
4f5c85dce8d4-13
}, ] Parameters input (Any) – The input to the runnable. config (Optional[RunnableConfig]) – The config to use for the runnable. version (Literal['v1', 'v2']) – The version of the schema to use either v2 or v1. Users should use v2. v1 is for backwards compatibility and will be deprecated in 0.4.0. No default will be assigned until the API is stabilized. include_names (Optional[Sequence[str]]) – Only include events from runnables with matching names. include_types (Optional[Sequence[str]]) – Only include events from runnables with matching types. include_tags (Optional[Sequence[str]]) – Only include events from runnables with matching tags. exclude_names (Optional[Sequence[str]]) – Exclude events from runnables with matching names. exclude_types (Optional[Sequence[str]]) – Exclude events from runnables with matching types. exclude_tags (Optional[Sequence[str]]) – Exclude events from runnables with matching tags. kwargs (Any) – Additional keyword arguments to pass to the runnable. These will be passed to astream_log as this implementation of astream_events is built on top of astream_log. Returns An async stream of StreamEvents. Return type AsyncIterator[StreamEvent] Notes
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
4f5c85dce8d4-14
An async stream of StreamEvents. Return type AsyncIterator[StreamEvent] Notes async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, with_streamed_output_list: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶ Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state. Parameters input (Any) – The input to the runnable. config (Optional[RunnableConfig]) – The config to use for the runnable. diff (bool) – Whether to yield diffs between each step, or the current state. with_streamed_output_list (bool) – Whether to yield the streamed_output list. include_names (Optional[Sequence[str]]) – Only include logs with these names. include_types (Optional[Sequence[str]]) – Only include logs with these types. include_tags (Optional[Sequence[str]]) – Only include logs with these tags. exclude_names (Optional[Sequence[str]]) – Exclude logs with these names. exclude_types (Optional[Sequence[str]]) – Exclude logs with these types. exclude_tags (Optional[Sequence[str]]) – Exclude logs with these tags.
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
4f5c85dce8d4-15
exclude_tags (Optional[Sequence[str]]) – Exclude logs with these tags. kwargs (Any) – Return type Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]] async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of atransform, which buffers input and calls astream. Subclasses should override this method if they can start producing output while input is still being generated. Parameters input (AsyncIterator[Input]) – config (Optional[RunnableConfig]) – kwargs (Optional[Any]) – Return type AsyncIterator[Output] batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation runs invoke in parallel using a thread pool executor. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. Parameters inputs (List[Input]) – config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Optional[Any]) – Return type List[Output] batch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → Iterator[Tuple[int, Union[Output, Exception]]]¶ Run invoke in parallel on a list of inputs, yielding results as they complete. Parameters inputs (Sequence[Input]) –
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
4f5c85dce8d4-16
yielding results as they complete. Parameters inputs (Sequence[Input]) – config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Optional[Any]) – Return type Iterator[Tuple[int, Union[Output, Exception]]] bind(**kwargs: Any) → Runnable[Input, Output]¶ Bind arguments to a Runnable, returning a new Runnable. Useful when a runnable in a chain requires an argument that is not in the output of the previous runnable or included in the user input. Example: from langchain_community.chat_models import ChatOllama from langchain_core.output_parsers import StrOutputParser llm = ChatOllama(model='llama2') # Without bind. chain = ( llm | StrOutputParser() ) chain.invoke("Repeat quoted words exactly: 'One two three four five.'") # Output is 'One two three four five.' # With bind. chain = ( llm.bind(stop=["three"]) | StrOutputParser() ) chain.invoke("Repeat quoted words exactly: 'One two three four five.'") # Output is 'One two' Parameters kwargs (Any) – Return type Runnable[Input, Output] config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶ The type of config this runnable accepts specified as a pydantic model. To mark a field as configurable, see the configurable_fields and configurable_alternatives methods. Parameters include (Optional[Sequence[str]]) – A list of fields to include in the config schema. Returns A pydantic model that can be used to validate config. Return type Type[BaseModel]
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
4f5c85dce8d4-17
Return type Type[BaseModel] configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶ Configure alternatives for runnables that can be set at runtime. from langchain_anthropic import ChatAnthropic from langchain_core.runnables.utils import ConfigurableField from langchain_openai import ChatOpenAI model = ChatAnthropic( model_name="claude-3-sonnet-20240229" ).configurable_alternatives( ConfigurableField(id="llm"), default_key="anthropic", openai=ChatOpenAI() ) # uses the default model ChatAnthropic print(model.invoke("which organization created you?").content) # uses ChatOpenAI print( model.with_config( configurable={"llm": "openai"} ).invoke("which organization created you?").content ) Parameters which (ConfigurableField) – default_key (str) – prefix_keys (bool) – kwargs (Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) – Return type RunnableSerializable[Input, Output] configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶ Configure particular runnable fields at runtime. from langchain_core.runnables import ConfigurableField from langchain_openai import ChatOpenAI model = ChatOpenAI(max_tokens=20).configurable_fields( max_tokens=ConfigurableField( id="output_token_number",
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
4f5c85dce8d4-18
max_tokens=ConfigurableField( id="output_token_number", name="Max tokens in the output", description="The maximum number of tokens in the output", ) ) # max_tokens = 20 print( "max_tokens_20: ", model.invoke("tell me something about chess").content ) # max_tokens = 200 print("max_tokens_200: ", model.with_config( configurable={"output_token_number": 200} ).invoke("tell me something about chess").content ) Parameters kwargs (Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) – Return type RunnableSerializable[Input, Output] classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values Parameters _fields_set (Optional[SetStr]) – values (Any) – Return type Model copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
4f5c85dce8d4-19
update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep (bool) – set to True to make a deep copy of the model self (Model) – Returns new model instance Return type Model create_outputs(llm_result: LLMResult) → List[Dict[str, Any]]¶ Create outputs from response. Parameters llm_result (LLMResult) – Return type List[Dict[str, Any]] dict(**kwargs: Any) → Dict¶ Dictionary representation of chain. Expects Chain._chain_type property to be implemented and for memory to benull. Parameters **kwargs (Any) – Keyword arguments passed to default pydantic.BaseModel.dict method. Returns A dictionary representation of the chain. Return type Dict Example chain.dict(exclude_unset=True) # -> {"_type": "foo", "verbose": False, ...} classmethod from_llm(llm: BaseLanguageModel, verbose: bool = True) → LLMChain[source]¶ Get the response parser. Parameters llm (BaseLanguageModel) – verbose (bool) – Return type LLMChain classmethod from_orm(obj: Any) → Model¶ Parameters obj (Any) – Return type Model classmethod from_string(llm: BaseLanguageModel, template: str) → LLMChain¶ Create LLMChain from LLM and template. Parameters llm (BaseLanguageModel) – template (str) – Return type LLMChain generate(input_list: List[Dict[str, Any]], run_manager: Optional[CallbackManagerForChainRun] = None) → LLMResult¶
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
4f5c85dce8d4-20
Generate LLM result from inputs. Parameters input_list (List[Dict[str, Any]]) – run_manager (Optional[CallbackManagerForChainRun]) – Return type LLMResult get_graph(config: Optional[RunnableConfig] = None) → Graph¶ Return a graph representation of this runnable. Parameters config (Optional[RunnableConfig]) – Return type Graph get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate input to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the runnable is invoked with. This method allows to get an input schema for a specific configuration. Parameters config (Optional[RunnableConfig]) – A config to use when generating the schema. Returns A pydantic model that can be used to validate input. Return type Type[BaseModel] classmethod get_lc_namespace() → List[str]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] Return type List[str] get_name(suffix: Optional[str] = None, *, name: Optional[str] = None) → str¶ Get the name of the runnable. Parameters suffix (Optional[str]) – name (Optional[str]) – Return type str get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate output to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
4f5c85dce8d4-21
methods will have a dynamic output schema that depends on which configuration the runnable is invoked with. This method allows to get an output schema for a specific configuration. Parameters config (Optional[RunnableConfig]) – A config to use when generating the schema. Returns A pydantic model that can be used to validate output. Return type Type[BaseModel] get_prompts(config: Optional[RunnableConfig] = None) → List[BasePromptTemplate]¶ Parameters config (Optional[RunnableConfig]) – Return type List[BasePromptTemplate] invoke(input: Dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any) → Dict[str, Any]¶ Transform a single input into an output. Override to implement. Parameters input (Dict[str, Any]) – The input to the runnable. config (Optional[RunnableConfig]) – A config to use when invoking the runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. kwargs (Any) – Returns The output of the runnable. Return type Dict[str, Any] classmethod is_lc_serializable() → bool¶ Is this class serializable? Return type bool
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
4f5c85dce8d4-22
Is this class serializable? Return type bool json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – by_alias (bool) – skip_defaults (Optional[bool]) – exclude_unset (bool) – exclude_defaults (bool) – exclude_none (bool) – encoder (Optional[Callable[[Any], Any]]) – models_as_dict (bool) – dumps_kwargs (Any) – Return type unicode classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. Return type List[str] map() → Runnable[List[Input], List[Output]]¶ Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input. Example from langchain_core.runnables import RunnableLambda def _lambda(x: int) -> int: return x + 1
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
4f5c85dce8d4-23
def _lambda(x: int) -> int: return x + 1 runnable = RunnableLambda(_lambda) print(runnable.map().invoke([1, 2, 3])) # [2, 3, 4] Return type Runnable[List[Input], List[Output]] classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ Parameters path (Union[str, Path]) – content_type (unicode) – encoding (unicode) – proto (Protocol) – allow_pickle (bool) – Return type Model classmethod parse_obj(obj: Any) → Model¶ Parameters obj (Any) – Return type Model classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ Parameters b (Union[str, bytes]) – content_type (unicode) – encoding (unicode) – proto (Protocol) – allow_pickle (bool) – Return type Model pick(keys: Union[str, List[str]]) → RunnableSerializable[Any, Any]¶ Pick keys from the dict output of this runnable. Pick single key:import json from langchain_core.runnables import RunnableLambda, RunnableMap as_str = RunnableLambda(str) as_json = RunnableLambda(json.loads) chain = RunnableMap(str=as_str, json=as_json) chain.invoke("[1, 2, 3]") # -> {"str": "[1, 2, 3]", "json": [1, 2, 3]}
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
4f5c85dce8d4-24
json_only_chain = chain.pick("json") json_only_chain.invoke("[1, 2, 3]") # -> [1, 2, 3] Pick list of keys:from typing import Any import json from langchain_core.runnables import RunnableLambda, RunnableMap as_str = RunnableLambda(str) as_json = RunnableLambda(json.loads) def as_bytes(x: Any) -> bytes: return bytes(x, "utf-8") chain = RunnableMap( str=as_str, json=as_json, bytes=RunnableLambda(as_bytes) ) chain.invoke("[1, 2, 3]") # -> {"str": "[1, 2, 3]", "json": [1, 2, 3], "bytes": b"[1, 2, 3]"} json_and_bytes_chain = chain.pick(["json", "bytes"]) json_and_bytes_chain.invoke("[1, 2, 3]") # -> {"json": [1, 2, 3], "bytes": b"[1, 2, 3]"} Parameters keys (Union[str, List[str]]) – Return type RunnableSerializable[Any, Any] pipe(*others: Union[Runnable[Any, Other], Callable[[Any], Other]], name: Optional[str] = None) → RunnableSerializable[Input, Other]¶ Compose this Runnable with Runnable-like objects to make a RunnableSequence. Equivalent to RunnableSequence(self, *others) or self | others[0] | … Example from langchain_core.runnables import RunnableLambda def add_one(x: int) -> int: return x + 1 def mul_two(x: int) -> int: return x * 2 runnable_1 = RunnableLambda(add_one)
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
4f5c85dce8d4-25
return x * 2 runnable_1 = RunnableLambda(add_one) runnable_2 = RunnableLambda(mul_two) sequence = runnable_1.pipe(runnable_2) # Or equivalently: # sequence = runnable_1 | runnable_2 # sequence = RunnableSequence(first=runnable_1, last=runnable_2) sequence.invoke(1) await sequence.ainvoke(1) # -> 4 sequence.batch([1, 2, 3]) await sequence.abatch([1, 2, 3]) # -> [4, 6, 8] Parameters others (Union[Runnable[Any, Other], Callable[[Any], Other]]) – name (Optional[str]) – Return type RunnableSerializable[Input, Other] predict(callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶ Format prompt with kwargs and pass to LLM. Parameters callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – Callbacks to pass to LLMChain **kwargs (Any) – Keys to pass to prompt template. Returns Completion from LLM. Return type str Example completion = llm.predict(adjective="funny") predict_and_parse(callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → Union[str, List[str], Dict[str, Any]]¶ Call predict and then parse the results. Parameters callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – kwargs (Any) – Return type Union[str, List[str], Dict[str, Any]] prep_inputs(inputs: Union[Dict[str, Any], Any]) → Dict[str, str]¶
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
4f5c85dce8d4-26
Prepare chain inputs, including adding inputs from memory. Parameters inputs (Union[Dict[str, Any], Any]) – Dictionary of raw inputs, or single input if chain expects only one param. Should contain all inputs specified in Chain.input_keys except for inputs that will be set by the chain’s memory. Returns A dictionary of all inputs, including those added by the chain’s memory. Return type Dict[str, str] prep_outputs(inputs: Dict[str, str], outputs: Dict[str, str], return_only_outputs: bool = False) → Dict[str, str]¶ Validate and prepare chain outputs, and save info about this run to memory. Parameters inputs (Dict[str, str]) – Dictionary of chain inputs, including any inputs added by chain memory. outputs (Dict[str, str]) – Dictionary of initial chain outputs. return_only_outputs (bool) – Whether to only return the chain outputs. If False, inputs are also added to the final outputs. Returns A dict of the final chain outputs. Return type Dict[str, str] prep_prompts(input_list: List[Dict[str, Any]], run_manager: Optional[CallbackManagerForChainRun] = None) → Tuple[List[PromptValue], Optional[List[str]]]¶ Prepare prompts from inputs. Parameters input_list (List[Dict[str, Any]]) – run_manager (Optional[CallbackManagerForChainRun]) – Return type Tuple[List[PromptValue], Optional[List[str]]] run(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ [Deprecated] Convenience method for executing chain. The main difference between this method and Chain.__call__ is that this
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
4f5c85dce8d4-27
The main difference between this method and Chain.__call__ is that this method expects inputs to be passed directly in as positional arguments or keyword arguments, whereas Chain.__call__ expects a single input dictionary with all the inputs Parameters *args (Any) – If the chain expects a single input, it can be passed in as the sole positional argument. callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – Callbacks to use for this chain run. These will be called in addition to callbacks passed to the chain during construction, but only these runtime callbacks will propagate to calls to other objects. tags (Optional[List[str]]) – List of string tags to pass to all callbacks. These will be passed in addition to tags passed to the chain during construction, but only these runtime tags will propagate to calls to other objects. **kwargs (Any) – If the chain expects multiple inputs, they can be passed in directly as keyword arguments. metadata (Optional[Dict[str, Any]]) – **kwargs – Returns The chain output. Return type Any Example # Suppose we have a single-input chain that takes a 'question' string: chain.run("What's the temperature in Boise, Idaho?") # -> "The temperature in Boise is..." # Suppose we have a multi-input chain that takes a 'question' string # and 'context' string: question = "What's the temperature in Boise, Idaho?" context = "Weather report for Boise, Idaho on 07/03/23..." chain.run(question=question, context=context) # -> "The temperature in Boise is..." Notes Deprecated since version langchain==0.1.0: Use invoke instead. save(file_path: Union[Path, str]) → None¶ Save the chain.
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
4f5c85dce8d4-28
save(file_path: Union[Path, str]) → None¶ Save the chain. Expects Chain._chain_type property to be implemented and for memory to benull. Parameters file_path (Union[Path, str]) – Path to file to save the chain to. Return type None Example chain.save(file_path="path/chain.yaml") classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ Parameters by_alias (bool) – ref_template (unicode) – Return type DictStrAny classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ Parameters by_alias (bool) – ref_template (unicode) – dumps_kwargs (Any) – Return type unicode stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output. Parameters input (Input) – config (Optional[RunnableConfig]) – kwargs (Optional[Any]) – Return type Iterator[Output] to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ Serialize the runnable to JSON. Return type Union[SerializedConstructor, SerializedNotImplemented] to_json_not_implemented() → SerializedNotImplemented¶ Return type SerializedNotImplemented transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated.
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
4f5c85dce8d4-29
input is still being generated. Parameters input (Iterator[Input]) – config (Optional[RunnableConfig]) – kwargs (Optional[Any]) – Return type Iterator[Output] classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. Parameters localns (Any) – Return type None classmethod validate(value: Any) → Model¶ Parameters value (Any) – Return type Model with_alisteners(*, on_start: Optional[AsyncListener] = None, on_end: Optional[AsyncListener] = None, on_error: Optional[AsyncListener] = None) → Runnable[Input, Output]¶ Bind asynchronous lifecycle listeners to a Runnable, returning a new Runnable. on_start: Asynchronously called before the runnable starts running. on_end: Asynchronously called after the runnable finishes running. on_error: Asynchronously called if the runnable throws an error. The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run. Example: Parameters on_start (Optional[AsyncListener]) – on_end (Optional[AsyncListener]) – on_error (Optional[AsyncListener]) – Return type Runnable[Input, Output] with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶ Bind config to a Runnable, returning a new Runnable. Parameters config (Optional[RunnableConfig]) – kwargs (Any) – Return type Runnable[Input, Output]
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
4f5c85dce8d4-30
kwargs (Any) – Return type Runnable[Input, Output] with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,), exception_key: Optional[str] = None) → RunnableWithFallbacksT[Input, Output]¶ Add fallbacks to a runnable, returning a new Runnable. Example from typing import Iterator from langchain_core.runnables import RunnableGenerator def _generate_immediate_error(input: Iterator) -> Iterator[str]: raise ValueError() yield "" def _generate(input: Iterator) -> Iterator[str]: yield from "foo bar" runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks( [RunnableGenerator(_generate)] ) print(''.join(runnable.stream({}))) #foo bar Parameters fallbacks (Sequence[Runnable[Input, Output]]) – A sequence of runnables to try if the original runnable fails. exceptions_to_handle (Tuple[Type[BaseException], ...]) – A tuple of exception types to handle. exception_key (Optional[str]) – If string is specified then handled exceptions will be passed to fallbacks as part of the input under the specified key. If None, exceptions will not be passed to fallbacks. If used, the base runnable and its fallbacks must accept a dictionary as input. Returns A new Runnable that will try the original runnable, and then each fallback in order, upon failures. Return type RunnableWithFallbacksT[Input, Output]
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
4f5c85dce8d4-31
Return type RunnableWithFallbacksT[Input, Output] with_listeners(*, on_start: Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]] = None, on_end: Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]] = None, on_error: Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]] = None) → Runnable[Input, Output]¶ Bind lifecycle listeners to a Runnable, returning a new Runnable. on_start: Called before the runnable starts running, with the Run object. on_end: Called after the runnable finishes running, with the Run object. on_error: Called if the runnable throws an error, with the Run object. The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run. Example: from langchain_core.runnables import RunnableLambda from langchain_core.tracers.schemas import Run import time def test_runnable(time_to_sleep : int): time.sleep(time_to_sleep) def fn_start(run_obj: Run): print("start_time:", run_obj.start_time) def fn_end(run_obj: Run): print("end_time:", run_obj.end_time) chain = RunnableLambda(test_runnable).with_listeners( on_start=fn_start, on_end=fn_end ) chain.invoke(2) Parameters on_start (Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]]) – on_end (Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]]) –
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
4f5c85dce8d4-32
on_error (Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]]) – Return type Runnable[Input, Output] with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶ Create a new Runnable that retries the original runnable on exceptions. Example: from langchain_core.runnables import RunnableLambda count = 0 def _lambda(x: int) -> None: global count count = count + 1 if x == 1: raise ValueError("x is 1") else: pass runnable = RunnableLambda(_lambda) try: runnable.with_retry( stop_after_attempt=2, retry_if_exception_type=(ValueError,), ).invoke(1) except ValueError: pass assert (count == 2) Parameters retry_if_exception_type (Tuple[Type[BaseException], ...]) – A tuple of exception types to retry on wait_exponential_jitter (bool) – Whether to add jitter to the wait time between retries stop_after_attempt (int) – The maximum number of attempts to make before giving up Returns A new Runnable that retries the original runnable on exceptions. Return type Runnable[Input, Output] with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶ Bind input and output types to a Runnable, returning a new Runnable. Parameters input_type (Optional[Type[Input]]) – output_type (Optional[Type[Output]]) –
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
4f5c85dce8d4-33
output_type (Optional[Type[Output]]) – Return type Runnable[Input, Output] property InputType: Type[Input]¶ The type of input this runnable accepts specified as a type annotation. property OutputType: Type[Output]¶ The type of output this runnable produces specified as a type annotation. property config_specs: List[ConfigurableFieldSpec]¶ List configurable fields for this runnable. property input_schema: Type[BaseModel]¶ The type of input this runnable accepts specified as a pydantic model. property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”} name: Optional[str] = None¶ The name of the runnable. Used for debugging and tracing. property output_schema: Type[BaseModel]¶ The type of output this runnable produces specified as a pydantic model.
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
e664ccfc04c1-0
langchain_experimental.autonomous_agents.autogpt.output_parser.BaseAutoGPTOutputParser¶ class langchain_experimental.autonomous_agents.autogpt.output_parser.BaseAutoGPTOutputParser[source]¶ Bases: BaseOutputParser Base Output parser for AutoGPT. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation runs ainvoke in parallel using asyncio.gather. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. Parameters inputs (List[Input]) – config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Optional[Any]) – Return type List[Output] async abatch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → AsyncIterator[Tuple[int, Union[Output, Exception]]]¶ Run ainvoke in parallel on a list of inputs, yielding results as they complete. Parameters inputs (Sequence[Input]) – config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Optional[Any]) – Return type AsyncIterator[Tuple[int, Union[Output, Exception]]]
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.output_parser.BaseAutoGPTOutputParser.html
e664ccfc04c1-1
Return type AsyncIterator[Tuple[int, Union[Output, Exception]]] async ainvoke(input: Union[str, BaseMessage], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → T¶ Default implementation of ainvoke, calls invoke from a thread. The default implementation allows usage of async code even if the runnable did not implement a native async version of invoke. Subclasses should override this method if they can run asynchronously. Parameters input (Union[str, BaseMessage]) – config (Optional[RunnableConfig]) – kwargs (Optional[Any]) – Return type T async aparse(text: str) → T¶ Parse a single string model output into some structure. Parameters text (str) – String output of a language model. Returns Structured output. Return type T async aparse_result(result: List[Generation], *, partial: bool = False) → T¶ Parse a list of candidate model Generations into a specific format. The return value is parsed from only the first Generation in the result, whichis assumed to be the highest-likelihood Generation. Parameters result (List[Generation]) – A list of Generations to be parsed. The Generations are assumed to be different candidate outputs for a single model input. partial (bool) – Returns Structured output. Return type T assign(**kwargs: Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]) → RunnableSerializable[Any, Any]¶ Assigns new fields to the dict output of this runnable. Returns a new runnable. from langchain_community.llms.fake import FakeStreamingListLLM from langchain_core.output_parsers import StrOutputParser
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.output_parser.BaseAutoGPTOutputParser.html
e664ccfc04c1-2
from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import SystemMessagePromptTemplate from langchain_core.runnables import Runnable from operator import itemgetter prompt = ( SystemMessagePromptTemplate.from_template("You are a nice assistant.") + "{question}" ) llm = FakeStreamingListLLM(responses=["foo-lish"]) chain: Runnable = prompt | llm | {"str": StrOutputParser()} chain_with_assign = chain.assign(hello=itemgetter("str") | llm) print(chain_with_assign.input_schema.schema()) # {'title': 'PromptInput', 'type': 'object', 'properties': {'question': {'title': 'Question', 'type': 'string'}}} print(chain_with_assign.output_schema.schema()) # {'title': 'RunnableSequenceOutput', 'type': 'object', 'properties': {'str': {'title': 'Str', 'type': 'string'}, 'hello': {'title': 'Hello', 'type': 'string'}}} Parameters kwargs (Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]) – Return type RunnableSerializable[Any, Any] async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output. Parameters input (Input) – config (Optional[RunnableConfig]) – kwargs (Optional[Any]) – Return type AsyncIterator[Output]
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.output_parser.BaseAutoGPTOutputParser.html
e664ccfc04c1-3
kwargs (Optional[Any]) – Return type AsyncIterator[Output] astream_events(input: Any, config: Optional[RunnableConfig] = None, *, version: Literal['v1', 'v2'], include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) → AsyncIterator[StreamEvent]¶ [Beta] Generate a stream of events. Use to create an iterator over StreamEvents that provide real-time information about the progress of the runnable, including StreamEvents from intermediate results. A StreamEvent is a dictionary with the following schema: event: str - Event names are of theformat: on_[runnable_type]_(start|stream|end). name: str - The name of the runnable that generated the event. run_id: str - randomly generated ID associated with the given execution ofthe runnable that emitted the event. A child runnable that gets invoked as part of the execution of a parent runnable is assigned its own unique ID. parent_ids: List[str] - The IDs of the parent runnables thatgenerated the event. The root runnable will have an empty list. The order of the parent IDs is from the root to the immediate parent. Only available for v2 version of the API. The v1 version of the API will return an empty list. tags: Optional[List[str]] - The tags of the runnable that generatedthe event. metadata: Optional[Dict[str, Any]] - The metadata of the runnablethat generated the event. data: Dict[str, Any] Below is a table that illustrates some evens that might be emitted by various
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.output_parser.BaseAutoGPTOutputParser.html
e664ccfc04c1-4
Below is a table that illustrates some evens that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table. ATTENTION This reference table is for the V2 version of the schema. event name chunk input output on_chat_model_start [model name] {“messages”: [[SystemMessage, HumanMessage]]} on_chat_model_stream [model name] AIMessageChunk(content=”hello”) on_chat_model_end [model name] {“messages”: [[SystemMessage, HumanMessage]]} AIMessageChunk(content=”hello world”) on_llm_start [model name] {‘input’: ‘hello’} on_llm_stream [model name] ‘Hello’ on_llm_end [model name] ‘Hello human!’ on_chain_start format_docs on_chain_stream format_docs “hello world!, goodbye world!” on_chain_end format_docs [Document(…)] “hello world!, goodbye world!” on_tool_start some_tool {“x”: 1, “y”: “2”} on_tool_end some_tool {“x”: 1, “y”: “2”} on_retriever_start [retriever name] {“query”: “hello”} on_retriever_end [retriever name] {“query”: “hello”} [Document(…), ..] on_prompt_start [template_name] {“question”: “hello”} on_prompt_end [template_name] {“question”: “hello”} ChatPromptValue(messages: [SystemMessage, …]) Here are declarations associated with the events shown above: format_docs: def format_docs(docs: List[Document]) -> str:
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.output_parser.BaseAutoGPTOutputParser.html
e664ccfc04c1-5
format_docs: def format_docs(docs: List[Document]) -> str: '''Format the docs.''' return ", ".join([doc.page_content for doc in docs]) format_docs = RunnableLambda(format_docs) some_tool: @tool def some_tool(x: int, y: str) -> dict: '''Some_tool.''' return {"x": x, "y": y} prompt: template = ChatPromptTemplate.from_messages( [("system", "You are Cat Agent 007"), ("human", "{question}")] ).with_config({"run_name": "my_template", "tags": ["my_template"]}) Example: from langchain_core.runnables import RunnableLambda async def reverse(s: str) -> str: return s[::-1] chain = RunnableLambda(func=reverse) events = [ event async for event in chain.astream_events("hello", version="v2") ] # will produce the following events (run_id, and parent_ids # has been omitted for brevity): [ { "data": {"input": "hello"}, "event": "on_chain_start", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"chunk": "olleh"}, "event": "on_chain_stream", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"output": "olleh"}, "event": "on_chain_end", "metadata": {}, "name": "reverse", "tags": [], }, ] Parameters input (Any) – The input to the runnable.
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.output_parser.BaseAutoGPTOutputParser.html
e664ccfc04c1-6
}, ] Parameters input (Any) – The input to the runnable. config (Optional[RunnableConfig]) – The config to use for the runnable. version (Literal['v1', 'v2']) – The version of the schema to use either v2 or v1. Users should use v2. v1 is for backwards compatibility and will be deprecated in 0.4.0. No default will be assigned until the API is stabilized. include_names (Optional[Sequence[str]]) – Only include events from runnables with matching names. include_types (Optional[Sequence[str]]) – Only include events from runnables with matching types. include_tags (Optional[Sequence[str]]) – Only include events from runnables with matching tags. exclude_names (Optional[Sequence[str]]) – Exclude events from runnables with matching names. exclude_types (Optional[Sequence[str]]) – Exclude events from runnables with matching types. exclude_tags (Optional[Sequence[str]]) – Exclude events from runnables with matching tags. kwargs (Any) – Additional keyword arguments to pass to the runnable. These will be passed to astream_log as this implementation of astream_events is built on top of astream_log. Returns An async stream of StreamEvents. Return type AsyncIterator[StreamEvent] Notes
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.output_parser.BaseAutoGPTOutputParser.html
e664ccfc04c1-7
An async stream of StreamEvents. Return type AsyncIterator[StreamEvent] Notes async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, with_streamed_output_list: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶ Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state. Parameters input (Any) – The input to the runnable. config (Optional[RunnableConfig]) – The config to use for the runnable. diff (bool) – Whether to yield diffs between each step, or the current state. with_streamed_output_list (bool) – Whether to yield the streamed_output list. include_names (Optional[Sequence[str]]) – Only include logs with these names. include_types (Optional[Sequence[str]]) – Only include logs with these types. include_tags (Optional[Sequence[str]]) – Only include logs with these tags. exclude_names (Optional[Sequence[str]]) – Exclude logs with these names. exclude_types (Optional[Sequence[str]]) – Exclude logs with these types. exclude_tags (Optional[Sequence[str]]) – Exclude logs with these tags.
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.output_parser.BaseAutoGPTOutputParser.html
e664ccfc04c1-8
exclude_tags (Optional[Sequence[str]]) – Exclude logs with these tags. kwargs (Any) – Return type Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]] async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of atransform, which buffers input and calls astream. Subclasses should override this method if they can start producing output while input is still being generated. Parameters input (AsyncIterator[Input]) – config (Optional[RunnableConfig]) – kwargs (Optional[Any]) – Return type AsyncIterator[Output] batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation runs invoke in parallel using a thread pool executor. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. Parameters inputs (List[Input]) – config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Optional[Any]) – Return type List[Output] batch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → Iterator[Tuple[int, Union[Output, Exception]]]¶ Run invoke in parallel on a list of inputs, yielding results as they complete. Parameters inputs (Sequence[Input]) –
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.output_parser.BaseAutoGPTOutputParser.html
e664ccfc04c1-9
yielding results as they complete. Parameters inputs (Sequence[Input]) – config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) – return_exceptions (bool) – kwargs (Optional[Any]) – Return type Iterator[Tuple[int, Union[Output, Exception]]] bind(**kwargs: Any) → Runnable[Input, Output]¶ Bind arguments to a Runnable, returning a new Runnable. Useful when a runnable in a chain requires an argument that is not in the output of the previous runnable or included in the user input. Example: from langchain_community.chat_models import ChatOllama from langchain_core.output_parsers import StrOutputParser llm = ChatOllama(model='llama2') # Without bind. chain = ( llm | StrOutputParser() ) chain.invoke("Repeat quoted words exactly: 'One two three four five.'") # Output is 'One two three four five.' # With bind. chain = ( llm.bind(stop=["three"]) | StrOutputParser() ) chain.invoke("Repeat quoted words exactly: 'One two three four five.'") # Output is 'One two' Parameters kwargs (Any) – Return type Runnable[Input, Output] config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶ The type of config this runnable accepts specified as a pydantic model. To mark a field as configurable, see the configurable_fields and configurable_alternatives methods. Parameters include (Optional[Sequence[str]]) – A list of fields to include in the config schema. Returns A pydantic model that can be used to validate config. Return type Type[BaseModel]
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.output_parser.BaseAutoGPTOutputParser.html
e664ccfc04c1-10
Return type Type[BaseModel] configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶ Configure alternatives for runnables that can be set at runtime. from langchain_anthropic import ChatAnthropic from langchain_core.runnables.utils import ConfigurableField from langchain_openai import ChatOpenAI model = ChatAnthropic( model_name="claude-3-sonnet-20240229" ).configurable_alternatives( ConfigurableField(id="llm"), default_key="anthropic", openai=ChatOpenAI() ) # uses the default model ChatAnthropic print(model.invoke("which organization created you?").content) # uses ChatOpenAI print( model.with_config( configurable={"llm": "openai"} ).invoke("which organization created you?").content ) Parameters which (ConfigurableField) – default_key (str) – prefix_keys (bool) – kwargs (Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) – Return type RunnableSerializable[Input, Output] configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶ Configure particular runnable fields at runtime. from langchain_core.runnables import ConfigurableField from langchain_openai import ChatOpenAI model = ChatOpenAI(max_tokens=20).configurable_fields( max_tokens=ConfigurableField( id="output_token_number",
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.output_parser.BaseAutoGPTOutputParser.html
e664ccfc04c1-11
max_tokens=ConfigurableField( id="output_token_number", name="Max tokens in the output", description="The maximum number of tokens in the output", ) ) # max_tokens = 20 print( "max_tokens_20: ", model.invoke("tell me something about chess").content ) # max_tokens = 200 print("max_tokens_200: ", model.with_config( configurable={"output_token_number": 200} ).invoke("tell me something about chess").content ) Parameters kwargs (Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) – Return type RunnableSerializable[Input, Output] classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values Parameters _fields_set (Optional[SetStr]) – values (Any) – Return type Model copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to include in new model exclude (Optional[Union[AbstractSetIntStr, MappingIntStrAny]]) – fields to exclude from new model, as with values this takes precedence over include
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.output_parser.BaseAutoGPTOutputParser.html
e664ccfc04c1-12
update (Optional[DictStrAny]) – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep (bool) – set to True to make a deep copy of the model self (Model) – Returns new model instance Return type Model dict(**kwargs: Any) → Dict¶ Return dictionary representation of output parser. Parameters kwargs (Any) – Return type Dict classmethod from_orm(obj: Any) → Model¶ Parameters obj (Any) – Return type Model get_format_instructions() → str¶ Instructions on how the LLM output should be formatted. Return type str get_graph(config: Optional[RunnableConfig] = None) → Graph¶ Return a graph representation of this runnable. Parameters config (Optional[RunnableConfig]) – Return type Graph get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate input to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the runnable is invoked with. This method allows to get an input schema for a specific configuration. Parameters config (Optional[RunnableConfig]) – A config to use when generating the schema. Returns A pydantic model that can be used to validate input. Return type Type[BaseModel] classmethod get_lc_namespace() → List[str]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] Return type List[str]
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.output_parser.BaseAutoGPTOutputParser.html