Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,115 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
task_categories:
|
4 |
+
- text-generation
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
tags:
|
8 |
+
- cybersecurity
|
9 |
+
- cve
|
10 |
+
- vulnerability
|
11 |
+
size_categories:
|
12 |
+
- 100K<n<1M
|
13 |
+
---
|
14 |
+
|
15 |
+
# CVE Chat‑Style Multi‑Turn Cybersecurity Dataset (1999 – 2025)
|
16 |
+
|
17 |
+
 
|
18 |
+
|
19 |
+
## 1. Project Overview
|
20 |
+
|
21 |
+
This repository hosts the **largest publicly available chat‑style, multi‑turn cybersecurity dataset to date**, containing **≈ 300 000 Common Vulnerabilities and Exposures (CVE) records** published between **1999 and 2025**. Each record has been meticulously parsed, enriched, and converted into a conversational format that is ideal for training and evaluating AI and AI‑Agent systems focused on vulnerability analysis, threat intelligence, and cyber‑defense automation.
|
22 |
+
|
23 |
+
## 2. Key Highlights. Key Highlights
|
24 |
+
|
25 |
+
| Feature | Description |
|
26 |
+
| ------------------- | --------------------------------------------------------------------------------------- |
|
27 |
+
| Records | \~300 k CVE entries (1999‑2025) |
|
28 |
+
| Formats Covered | CVE 4.0 (legacy) & CVE 5.0+ (modern) |
|
29 |
+
| Parsing Accuracy | **100 %** (validated) |
|
30 |
+
| Enrichments | CVSS v2 & v3 metrics · CWE taxonomy · Affected‑product matrices · Expert system prompts |
|
31 |
+
| Conversation Depth | Multi‑turn (System / User / Assistant) |
|
32 |
+
| Processing Pipeline | Fully asynchronous, linearly scalable data‑engineering architecture |
|
33 |
+
| License | CC BY‑SA 4.0 |
|
34 |
+
|
35 |
+
## 3. Intended Use Cases
|
36 |
+
|
37 |
+
- **Fine‑tuning LLMs** for vulnerability triage and severity prediction.
|
38 |
+
- **Temporal trend analysis** of vulnerability disclosures.
|
39 |
+
- **Retrieval‑Augmented Generation (RAG)** and autonomous **AI‑Agent** pipelines.
|
40 |
+
- **Real‑time threat‑intelligence** enrichment services.
|
41 |
+
- **Automated penetration‑testing** (pentest) orchestration.
|
42 |
+
|
43 |
+
> **Benchmark Note**\
|
44 |
+
> Early experiments with *Llama 3.2* and *Gemma* models achieved **94 % accuracy** on CVE class‑prediction tasks after full fine‑tuning on this dataset.
|
45 |
+
|
46 |
+
## 4. Dataset Structure
|
47 |
+
|
48 |
+
Each dialogue is stored as a single **JSON Lines (`.jsonl`)** object with **three top‑level keys**:
|
49 |
+
|
50 |
+
```json
|
51 |
+
{
|
52 |
+
"System": "You are a cybersecurity expert specializing in penetration testing, vulnerability research, and exploit development. Provide comprehensive technical analysis of CVE vulnerabilities with academic rigor and practical exploitation insights.",
|
53 |
+
"User": "Provide a comprehensive technical analysis of CVE‑2010‑3763, including exploitation vectors, impact assessment, and remediation strategies.",
|
54 |
+
"Assistant": "## CVE‑2010‑3763 Vulnerability Details
|
55 |
+
|
56 |
+
### CVE Metadata
|
57 |
+
- **CVE ID**: CVE‑2010‑3763
|
58 |
+
- **State**: PUBLISHED
|
59 |
+
..."
|
60 |
+
}
|
61 |
+
```
|
62 |
+
|
63 |
+
### Field Reference
|
64 |
+
|
65 |
+
| Key | Type | Description |
|
66 |
+
|-------------|--------|---------------------------------------------------------------------|
|
67 |
+
| `System` | string | System prompt that frames the assistant’s role and response style. |
|
68 |
+
| `User` | string | End‑user request or question. |
|
69 |
+
| `Assistant` | string | Model answer containing enriched CVE analysis and metadata. |
|
70 |
+
|
71 |
+
> **Note**: Multi‑turn conversations are represented as separate JSONL lines that share the same `System` context while `User` and `Assistant` evolve turn by turn.
|
72 |
+
|
73 |
+
## 5. Processing Pipeline. Processing Pipeline
|
74 |
+
|
75 |
+
1. **Source Aggregation** – CVE XML feeds (4.0) + JSON feeds (5.0+).
|
76 |
+
2. **Asynchronous Parsing** – Custom Rust & Python pipeline (Tokio + asyncio) for 100 % parsing success.
|
77 |
+
3. **Enrichment Layer** – CVSS scoring, CWE classification, product‑matrix generation.
|
78 |
+
4. **Conversation Generation** – Expert prompts injected to produce System / User / Assistant structure.
|
79 |
+
5. **Validation & QA** – Schema checks, de‑duplication, manual spot‑checks.
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
## 6. Quick Start
|
84 |
+
|
85 |
+
### Load with 🤗 `datasets`
|
86 |
+
|
87 |
+
```python
|
88 |
+
from datasets import load_dataset
|
89 |
+
|
90 |
+
cve_chat = load_dataset("<username>/<repo_name>", split="train")
|
91 |
+
print(cve_chat[0])
|
92 |
+
```
|
93 |
+
|
94 |
+
### Finetune Example (PEFT & QLoRA)
|
95 |
+
|
96 |
+
```bash
|
97 |
+
python train.py \
|
98 |
+
--model "meta-llama/Meta-Llama-3-8B" \
|
99 |
+
--dataset "<username>/<repo_name>" \
|
100 |
+
--peft lora \
|
101 |
+
--bits 4
|
102 |
+
```
|
103 |
+
|
104 |
+
## 7. Data Splits
|
105 |
+
|
106 |
+
| Split | Records | Notes |
|
107 |
+
| ------------ | ------- | ----- |
|
108 |
+
| `train` | 240 000 | 80 % |
|
109 |
+
| `validation` | 30 000 | 10 % |
|
110 |
+
| `test` | 27 441 | 10 % |
|
111 |
+
|
112 |
+
|
113 |
+
## 8. Contact
|
114 |
+
|
115 |
+
Contributions, feedback, and pull requests are warmly welcomed!
|