--- license: apache-2.0 task_categories: - text-generation language: - en tags: - cybersecurity - cve - vulnerability size_categories: - 100K **Benchmark Note**\ > Early experiments with *Llama 3.2* and *Gemma* models achieved **94 % accuracy** on CVE class‑prediction tasks after full fine‑tuning on this dataset. ## 4. Dataset Structure Each dialogue is stored as a single **JSON Lines (`.jsonl`)** object with **three top‑level keys**: ```json { "System": "You are a cybersecurity expert specializing in penetration testing, vulnerability research, and exploit development. Provide comprehensive technical analysis of CVE vulnerabilities with academic rigor and practical exploitation insights.", "User": "Provide a comprehensive technical analysis of CVE‑2010‑3763, including exploitation vectors, impact assessment, and remediation strategies.", "Assistant": "## CVE‑2010‑3763 Vulnerability Details ### CVE Metadata - **CVE ID**: CVE‑2010‑3763 - **State**: PUBLISHED ..." } ``` ### Field Reference | Key | Type | Description | |-------------|--------|---------------------------------------------------------------------| | `System` | string | System prompt that frames the assistant’s role and response style. | | `User` | string | End‑user request or question. | | `Assistant` | string | Model answer containing enriched CVE analysis and metadata. | > **Note**: Multi‑turn conversations are represented as separate JSONL lines that share the same `System` context while `User` and `Assistant` evolve turn by turn. ## 5. Processing Pipeline. Processing Pipeline 1. **Source Aggregation** – CVE XML feeds (4.0) + JSON feeds (5.0+). 2. **Asynchronous Parsing** – Custom Rust & Python pipeline (Tokio + asyncio) for 100 % parsing success. 3. **Enrichment Layer** – CVSS scoring, CWE classification, product‑matrix generation. 4. **Conversation Generation** – Expert prompts injected to produce System / User / Assistant structure. 5. **Validation & QA** – Schema checks, de‑duplication, manual spot‑checks. ## 6. Quick Start ### Load with 🤗 `datasets` ```python from datasets import load_dataset cve_chat = load_dataset("/", split="train") print(cve_chat[0]) ``` ### Finetune Example (PEFT & QLoRA) ```bash python train.py \ --model "meta-llama/Meta-Llama-3-8B" \ --dataset "/" \ --peft lora \ --bits 4 ``` ## 7. Data Splits | Split | Records | Notes | | ------------ | ------- | ----- | | `train` | 240 000 | 80 % | | `validation` | 30 000 | 10 % | | `test` | 27 441 | 10 % | ## 8. Contact Contributions, feedback, and pull requests are warmly welcomed!