V1_created_html / tmpgb8mbes5.html
TsungChihTsai's picture
Upload tmpgb8mbes5.html
f92bf53 verified
raw
history blame
5.07 kB
<!DOCTYPE html>
<html lang="zh-TW">
<head>
<meta charset="UTF-8">
<title>Ollama 提示語推薦與查詢</title>
<style>
body { font-family: sans-serif; max-width: 600px; margin: 20px auto; }
.suggestion {
cursor: pointer;
padding: 8px;
border: 1px solid #ccc;
margin: 5px 0;
border-radius: 4px;
}
.suggestion:hover {
background-color: #eef;
}
textarea {
width: 100%;
height: 100px;
margin-top: 10px;
font-family: inherit;
padding: 8px;
}
button {
margin-top: 10px;
padding: 8px 16px;
}
pre {
background: #f9f9f9;
padding: 10px;
white-space: pre-wrap;
}
</style>
</head>
<body>
<h1>選擇模型並獲得建議提示</h1>
<label for="modelSelect">選擇模型:</label>
<select id="modelSelect">
<option value="">請選擇模型</option>
</select>
<button id="getSuggestions">取得建議提示</button>
<h3>建議提示:</h3>
<div id="suggestionList">(尚未載入)</div>
<h3>選擇的提示:</h3>
<textarea id="customPrompt" placeholder="請從上方建議中點選,或自行輸入 prompt..."></textarea>
<h3>選擇操作:</h3>
<select id="actionSelect">
<option value="create">創作</option>
<option value="explain">解釋</option>
</select>
<button id="generate">產生</button>
<h3>模型回應:</h3>
<pre id="responseOutput">(尚未查詢)</pre>
<script>
async function loadModels() {
try {
const res = await fetch('http://127.0.0.1:11434/api/tags');
const data = await res.json();
const select = document.getElementById('modelSelect');
data.models.forEach(model => {
const opt = document.createElement('option');
opt.value = model.name;
opt.textContent = model.name;
select.appendChild(opt);
});
} catch (err) {
console.error(err);
alert('無法載入模型,請確認 Ollama 是否已啟動');
}
}
async function getPromptSuggestions() {
const model = document.getElementById('modelSelect').value;
const container = document.getElementById('suggestionList');
if (!model) {
alert('請先選擇模型');
return;
}
container.innerHTML = '載入中...';
const prompt = `你是 ${model} 模型,請列出 3~5 個你擅長的提示語,每個換行顯示,不需要額外說明。`;
try {
const res = await fetch('http://127.0.0.1:11434/api/generate', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ model, prompt, stream: false })
});
const data = await res.json();
const lines = data.response.split('\n').filter(l => l.trim());
container.innerHTML = '';
lines.forEach(line => {
const div = document.createElement('div');
div.className = 'suggestion';
div.textContent = line;
div.addEventListener('click', () => {
document.getElementById('customPrompt').value = line;
});
container.appendChild(div);
});
} catch (err) {
console.error(err);
container.innerHTML = '取得建議失敗';
}
}
async function generateResponse() {
const model = document.getElementById('modelSelect').value;
const prompt = document.getElementById('customPrompt').value.trim();
const action = document.getElementById('actionSelect').value;
const output = document.getElementById('responseOutput');
if (!model || !prompt) {
alert('請選擇模型並輸入 prompt');
return;
}
// 根據選擇的操作調整提示語
let finalPrompt = prompt;
if (action === 'create') {
finalPrompt = `您是該領域專家,請創作:${prompt}`; // 若選擇創作,前置"創作:"提示
} else if (action === 'explain') {
finalPrompt = `您是該領域專家,請解釋:${prompt}`; // 若選擇解釋,前置"解釋:"提示
}
output.textContent = '產生中...';
try {
const res = await fetch('http://127.0.0.1:11434/api/generate', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ model, prompt: finalPrompt, stream: false })
});
const data = await res.json();
output.textContent = data.response || '未收到回應';
} catch (err) {
console.error(err);
output.textContent = '產生失敗';
}
}
document.getElementById('getSuggestions').addEventListener('click', getPromptSuggestions);
document.getElementById('generate').addEventListener('click', generateResponse);
window.onload = loadModels;
</script>
</body>
</html>