Datasets:
Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,22 +1,45 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
pretty_name: "legora-kb"
|
5 |
+
tags:
|
6 |
+
- quickb
|
7 |
+
- text-chunking
|
8 |
+
- 10K<n<100K
|
9 |
+
task_categories:
|
10 |
+
- text-generation
|
11 |
+
- text-retrieval
|
12 |
+
task_ids:
|
13 |
+
- document-retrieval
|
14 |
+
library_name: quickb
|
15 |
+
---
|
16 |
+
|
17 |
+
# legora-kb
|
18 |
+
|
19 |
+
Generated using [QuicKB](https://github.com/AdamLucek/quickb), a tool developed by [Adam Lucek](https://huggingface.co/AdamLucek).
|
20 |
+
|
21 |
+
QuicKB optimizes document retrieval by creating fine-tuned knowledge bases through an end-to-end pipeline that handles document chunking, training data generation, and embedding model optimization.
|
22 |
+
|
23 |
+
### Chunking Configuration
|
24 |
+
- **Chunker**: RecursiveTokenChunker
|
25 |
+
- **Parameters**:
|
26 |
+
- **chunk_size**: `400`
|
27 |
+
- **chunk_overlap**: `0`
|
28 |
+
- **length_type**: `'character'`
|
29 |
+
- **separators**: `['\n\n', '\n', '.', '?', '!', ' ', '']`
|
30 |
+
- **keep_separator**: `True`
|
31 |
+
- **is_separator_regex**: `False`
|
32 |
+
|
33 |
+
### Dataset Statistics
|
34 |
+
- Total chunks: 57,405
|
35 |
+
- Average chunk size: 52.6 words
|
36 |
+
- Source files: 604
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
### Dataset Structure
|
41 |
+
This dataset contains the following fields:
|
42 |
+
|
43 |
+
- `text`: The content of each text chunk
|
44 |
+
- `source`: The source file path for the chunk
|
45 |
+
- `id`: Unique identifier for each chunk
|