# Lint as: python3 """QC question classification dataset.""" import csv import datasets from datasets.tasks import TextClassification _DESCRIPTION = """\ This data collection contains all the data used in our learning question classification experiments(see [1]), which has question class definitions, the training and testing question sets, examples of preprocessing the questions, feature definition scripts and examples of semantically related word features. This work has been done by Xin Li and Dan Roth and supported by [2]. """ _CITATION = """""" _TRAIN_DOWNLOAD_URL = "https://huggingface.co/datasets/vmalperovich/SST-5/raw/main/train.csv" _TEST_DOWNLOAD_URL = "https://huggingface.co/datasets/vmalperovich/SST-5/raw/main/test.csv" _VALID_DOWNLOAD_URL = "https://huggingface.co/datasets/vmalperovich/SST-5/raw/main/validation.csv" CATEGORY_MAPPING = {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4 } class SST5(datasets.GeneratorBasedBuilder): """SST5 sentiment classification dataset.""" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "text": datasets.Value("string"), "label": datasets.features.ClassLabel(names=list(CATEGORY_MAPPING.keys())), } ), homepage="", citation=_CITATION, task_templates=[TextClassification(text_column="text", label_column="label")], ) def _split_generators(self, dl_manager): train_path = dl_manager.download_and_extract(_TRAIN_DOWNLOAD_URL) test_path = dl_manager.download_and_extract(_TEST_DOWNLOAD_URL) valid_path = dl_manager.download_and_extract(_VALID_DOWNLOAD_URL) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": valid_path}), ] def _generate_examples(self, filepath): """Generate examples.""" with open(filepath, encoding="utf-8") as csv_file: csv_reader = csv.reader( csv_file, quotechar='"', delimiter="\t", quoting=csv.QUOTE_ALL, skipinitialspace=True ) # _ = next(csv_reader) # skip header for id_, row in enumerate(csv_reader): label, text = row label = CATEGORY_MAPPING[label] yield id_, {"text": text, "label": label}