Datasets:
File size: 3,636 Bytes
01cd62c e507f67 01cd62c e507f67 01cd62c e507f67 01cd62c e507f67 01cd62c e507f67 01cd62c e507f67 01cd62c e507f67 01cd62c e507f67 01cd62c e507f67 01cd62c e507f67 01cd62c e507f67 01cd62c e507f67 01cd62c e507f67 01cd62c e507f67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
---
annotations_creators: []
language: en
size_categories:
- 1K<n<10K
task_categories:
- object-detection
task_ids: []
pretty_name: arcade_combined_export
tags:
- fiftyone
- image
- object-detection
dataset_summary: '
This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 3000 samples.
## Installation
If you haven''t already, install FiftyOne:
```bash
pip install -U fiftyone
```
## Usage
```python
import fiftyone as fo
from fiftyone.utils.huggingface import load_from_hub
# Load the dataset
# Note: other available arguments include ''max_samples'', etc
dataset = load_from_hub("pjramg/arcade_fiftyone")
# Launch the App
session = fo.launch_app(dataset)
```
'
---
# Dataset Card for arcade_combined_export
<!-- Provide a quick summary of the dataset. -->
This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 3000 samples.
## Installation
If you haven't already, install FiftyOne:
```bash
pip install -U fiftyone
```
## Usage
```python
import fiftyone as fo
from fiftyone.utils.huggingface import load_from_hub
# Load the dataset
# Note: other available arguments include 'max_samples', etc
dataset = load_from_hub("pjramg/arcade_fiftyone")
# Launch the App
session = fo.launch_app(dataset)
```
# ARCADE Combined Dataset (FiftyOne Format)
The **ARCADE Combined Dataset** is a curated collection of coronary angiography images and annotations designed to evaluate coronary artery stenosis. This version has been processed and exported using [FiftyOne](https://voxel51.com/fiftyone), and includes cleaned segmentation data, metadata fields for clinical context, and embedded visual labels.
## Dataset Structure
- `segmentations`: COCO-style detection masks per coronary artery segment.
- `phase`: The acquisition phase of the angiography video.
- `task`: A specific labeling task (segmentation or regression) is used.
- `subset_name`: Subdivision info (train, val, test).
- `coco_id`: Corresponding COCO ID for alignment with original sources.
- `filepath`: Path to the image file.
- `metadata`: Image metadata including dimensions and pixel spacing.
## Format
This dataset is stored in **FiftyOneDataset format**, which consists of:
- `data.json`: Metadata and label references
- `data/`: Folder containing all image samples
- Optional: auxiliary files (e.g., `README.md`, config, JSON index)
To load it in Python:
```python
import fiftyone as fo
dataset = fo.Dataset.from_dir(
dataset_dir="arcade_combined_fiftyone",
dataset_type=fo.types.FiftyOneDataset,
)
```
## Source
The original ARCADE dataset was introduced in the paper:
Labrecque Langlais et al. (2023) — Evaluation of Stenoses Using AI Video Models Applied to Coronary Angiographies.
https://doi.org/10.21203/rs.3.rs-3610879/v1
This combined version aggregates and restructures subsets across tasks and phases, harmonized with FiftyOne tooling for streamlined model training and evaluation.
## License
This dataset is shared for research and academic use only. Please consult the original dataset license for clinical or commercial applications.
## Citation
```bibtex
@article{avram2023evaluation,
title={Evaluation of Stenoses Using AI Video Models Applied to Coronary Angiographies},
author={Labrecque Langlais, E. and Corbin, D. and Tastet, O. and Hayek, A. and Doolub, G. and Mrad, S. and Tardif, J.-C. and Tanguay, J.-F. and Marquis-Gravel, G. and Tison, G. and Kadoury, S. and Le, W. and Gallo, R. and Lesage, F. and Avram, R.},
year={2023}
}
```
## Dataset Card Contact
[Paula Ramos](https://huggingface.co/datasets/pjramg) |