File size: 3,636 Bytes
01cd62c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e507f67
01cd62c
e507f67
01cd62c
 
 
e507f67
 
 
 
 
 
 
01cd62c
e507f67
01cd62c
e507f67
 
 
 
01cd62c
e507f67
01cd62c
e507f67
 
 
 
 
 
 
 
01cd62c
e507f67
01cd62c
e507f67
 
01cd62c
e507f67
01cd62c
e507f67
 
01cd62c
 
e507f67
01cd62c
e507f67
 
 
 
 
 
 
01cd62c
 
 
e507f67
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
---
annotations_creators: []
language: en
size_categories:
- 1K<n<10K
task_categories:
- object-detection
task_ids: []
pretty_name: arcade_combined_export
tags:
- fiftyone
- image
- object-detection
dataset_summary: '




  This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 3000 samples.


  ## Installation


  If you haven''t already, install FiftyOne:


  ```bash

  pip install -U fiftyone

  ```


  ## Usage


  ```python

  import fiftyone as fo

  from fiftyone.utils.huggingface import load_from_hub


  # Load the dataset

  # Note: other available arguments include ''max_samples'', etc

  dataset = load_from_hub("pjramg/arcade_fiftyone")


  # Launch the App

  session = fo.launch_app(dataset)

  ```

  '
---

# Dataset Card for arcade_combined_export

<!-- Provide a quick summary of the dataset. -->





This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 3000 samples.

## Installation

If you haven't already, install FiftyOne:

```bash
pip install -U fiftyone
```

## Usage

```python
import fiftyone as fo
from fiftyone.utils.huggingface import load_from_hub

# Load the dataset
# Note: other available arguments include 'max_samples', etc
dataset = load_from_hub("pjramg/arcade_fiftyone")

# Launch the App
session = fo.launch_app(dataset)
```


# ARCADE Combined Dataset (FiftyOne Format)

The **ARCADE Combined Dataset** is a curated collection of coronary angiography images and annotations designed to evaluate coronary artery stenosis. This version has been processed and exported using [FiftyOne](https://voxel51.com/fiftyone), and includes cleaned segmentation data, metadata fields for clinical context, and embedded visual labels.

## Dataset Structure

- `segmentations`: COCO-style detection masks per coronary artery segment.
- `phase`: The acquisition phase of the angiography video.
- `task`: A specific labeling task (segmentation or regression) is used.
- `subset_name`: Subdivision info (train, val, test).
- `coco_id`: Corresponding COCO ID for alignment with original sources.
- `filepath`: Path to the image file.
- `metadata`: Image metadata including dimensions and pixel spacing.

## Format

This dataset is stored in **FiftyOneDataset format**, which consists of:
- `data.json`: Metadata and label references
- `data/`: Folder containing all image samples
- Optional: auxiliary files (e.g., `README.md`, config, JSON index)

To load it in Python:

```python
import fiftyone as fo
dataset = fo.Dataset.from_dir(
    dataset_dir="arcade_combined_fiftyone",
    dataset_type=fo.types.FiftyOneDataset,
)
```
## Source

The original ARCADE dataset was introduced in the paper:

Labrecque Langlais et al. (2023) — Evaluation of Stenoses Using AI Video Models Applied to Coronary Angiographies.
https://doi.org/10.21203/rs.3.rs-3610879/v1

This combined version aggregates and restructures subsets across tasks and phases, harmonized with FiftyOne tooling for streamlined model training and evaluation.

## License
This dataset is shared for research and academic use only. Please consult the original dataset license for clinical or commercial applications.


## Citation

```bibtex
@article{avram2023evaluation,
  title={Evaluation of Stenoses Using AI Video Models Applied to Coronary Angiographies},
  author={Labrecque Langlais, E. and Corbin, D. and Tastet, O. and Hayek, A. and Doolub, G. and Mrad, S. and Tardif, J.-C. and Tanguay, J.-F. and Marquis-Gravel, G. and Tison, G. and Kadoury, S. and Le, W. and Gallo, R. and Lesage, F. and Avram, R.},
  year={2023}
}
```

## Dataset Card Contact

[Paula Ramos](https://huggingface.co/datasets/pjramg)