harpreetsahota commited on
Commit
dbb828d
·
verified ·
1 Parent(s): 6e498fc

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +131 -105
README.md CHANGED
@@ -11,18 +11,19 @@ tags:
11
  - fiftyone
12
  - image
13
  - object-detection
14
- dataset_summary: '
15
 
16
 
17
 
18
 
19
- This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 739 samples.
 
20
 
21
 
22
  ## Installation
23
 
24
 
25
- If you haven''t already, install FiftyOne:
26
 
27
 
28
  ```bash
@@ -44,9 +45,9 @@ dataset_summary: '
44
 
45
  # Load the dataset
46
 
47
- # Note: other available arguments include ''max_samples'', etc
48
 
49
- dataset = load_from_hub("harpreetsahota/FiftyOne-GUI-Grounding-Train")
50
 
51
 
52
  # Launch the App
@@ -54,171 +55,196 @@ dataset_summary: '
54
  session = fo.launch_app(dataset)
55
 
56
  ```
57
-
58
- '
59
  ---
60
 
61
- # Dataset Card for fiftyone_gui_train_set
62
-
63
- <!-- Provide a quick summary of the dataset. -->
64
-
65
-
66
-
67
-
68
-
69
- This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 739 samples.
70
-
71
- ## Installation
72
-
73
- If you haven't already, install FiftyOne:
74
-
75
- ```bash
76
- pip install -U fiftyone
77
- ```
78
-
79
- ## Usage
80
-
81
- ```python
82
- import fiftyone as fo
83
- from fiftyone.utils.huggingface import load_from_hub
84
-
85
- # Load the dataset
86
- # Note: other available arguments include 'max_samples', etc
87
- dataset = load_from_hub("harpreetsahota/FiftyOne-GUI-Grounding-Train")
88
-
89
- # Launch the App
90
- session = fo.launch_app(dataset)
91
- ```
92
 
 
93
 
94
  ## Dataset Details
95
 
96
  ### Dataset Description
97
 
98
- <!-- Provide a longer summary of what this dataset is. -->
99
-
100
-
101
 
102
- - **Curated by:** [More Information Needed]
103
- - **Funded by [optional]:** [More Information Needed]
104
- - **Shared by [optional]:** [More Information Needed]
105
- - **Language(s) (NLP):** en
106
- - **License:** [More Information Needed]
107
 
108
- ### Dataset Sources [optional]
 
 
 
 
109
 
110
- <!-- Provide the basic links for the dataset. -->
111
 
112
- - **Repository:** [More Information Needed]
113
- - **Paper [optional]:** [More Information Needed]
114
- - **Demo [optional]:** [More Information Needed]
115
 
116
  ## Uses
117
 
118
- <!-- Address questions around how the dataset is intended to be used. -->
119
-
120
  ### Direct Use
121
 
122
- <!-- This section describes suitable use cases for the dataset. -->
123
 
124
- [More Information Needed]
 
 
 
 
125
 
126
  ### Out-of-Scope Use
127
 
128
- <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
129
-
130
- [More Information Needed]
131
 
132
  ## Dataset Structure
133
 
134
- <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
135
-
136
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
137
 
138
  ## Dataset Creation
139
 
140
  ### Curation Rationale
141
 
142
- <!-- Motivation for the creation of this dataset. -->
143
-
144
- [More Information Needed]
145
 
146
  ### Source Data
147
 
148
- <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
149
-
150
  #### Data Collection and Processing
151
 
152
- <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
 
 
 
 
 
153
 
154
- [More Information Needed]
155
 
156
  #### Who are the source data producers?
157
 
158
- <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
159
 
160
- [More Information Needed]
161
-
162
- ### Annotations [optional]
163
-
164
- <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
165
 
166
  #### Annotation process
167
 
168
- <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
 
 
 
 
 
169
 
170
- [More Information Needed]
171
 
172
  #### Who are the annotators?
173
 
174
- <!-- This section describes the people or systems who created the annotations. -->
175
 
176
- [More Information Needed]
177
 
178
- #### Personal and Sensitive Information
 
 
 
179
 
180
- <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
181
-
182
- [More Information Needed]
183
 
184
  ## Bias, Risks, and Limitations
185
 
186
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
 
 
 
 
 
 
 
 
187
 
188
- [More Information Needed]
 
 
 
189
 
190
  ### Recommendations
191
 
192
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
 
 
 
 
 
193
 
194
- Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
195
 
196
- ## Citation [optional]
 
 
 
 
 
197
 
198
- <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
 
 
 
 
 
199
 
200
- **BibTeX:**
201
 
202
- [More Information Needed]
 
 
 
 
 
 
 
 
 
203
 
204
  **APA:**
 
205
 
206
- [More Information Needed]
207
-
208
- ## Glossary [optional]
209
-
210
- <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
211
-
212
- [More Information Needed]
213
-
214
- ## More Information [optional]
215
-
216
- [More Information Needed]
217
-
218
- ## Dataset Card Authors [optional]
219
 
220
- [More Information Needed]
221
 
222
  ## Dataset Card Contact
223
 
224
- [More Information Needed]
 
11
  - fiftyone
12
  - image
13
  - object-detection
14
+ dataset_summary: >
15
 
16
 
17
 
18
 
19
+ This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 739
20
+ samples.
21
 
22
 
23
  ## Installation
24
 
25
 
26
+ If you haven't already, install FiftyOne:
27
 
28
 
29
  ```bash
 
45
 
46
  # Load the dataset
47
 
48
+ # Note: other available arguments include 'max_samples', etc
49
 
50
+ dataset = load_from_hub("Voxel51/FiftyOne-GUI-Grounding-Train")
51
 
52
 
53
  # Launch the App
 
55
  session = fo.launch_app(dataset)
56
 
57
  ```
58
+ license: apache-2.0
 
59
  ---
60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
 
62
+ # Dataset Card for FiftyOne GUI Grounding Training Set
63
 
64
  ## Dataset Details
65
 
66
  ### Dataset Description
67
 
68
+ This dataset contains 739 annotated GUI screenshots designed for training computer vision models to understand and interact with graphical user interfaces. The dataset uses the specialized COCO4GUI format, which extends the standard COCO detection format to handle GUI-specific features, interaction sequences, and rich metadata.
 
 
69
 
70
+ The dataset captures real user interface interactions across various applications and platforms, with both bounding box annotations for UI elements and precise keypoint annotations for interaction locations (clicks, taps, etc.).
 
 
 
 
71
 
72
+ - **Curated by:** GUI Dataset Collector Tool
73
+ - **Funded by:** [More Information Needed]
74
+ - **Shared by:** Harpreet Sahota
75
+ - **Language(s):** English (en)
76
+ - **License:** Apache 2.0
77
 
78
+ ### Dataset Sources
79
 
80
+ - **Repository:** [GUI Annotation Tool](https://github.com/harpreetsahota204/gui_annotation_tool)
81
+ - **Paper:** [More Information Needed]
82
+ - **Demo:** [More Information Needed]
83
 
84
  ## Uses
85
 
 
 
86
  ### Direct Use
87
 
88
+ This dataset is designed for:
89
 
90
+ - **GUI Element Detection**: Training models to identify and locate UI components in screenshots
91
+ - **Interaction Point Prediction**: Learning to predict where users should click/interact within interfaces
92
+ - **GUI Understanding**: Developing models that can comprehend user interface layouts and functionality
93
+ - **Workflow Sequence Learning**: Understanding sequences of user interactions and task flows
94
+ - **Cross-platform GUI Analysis**: Training on diverse applications and platforms (macOS, various browsers, etc.)
95
 
96
  ### Out-of-Scope Use
97
 
98
+ - **Privacy-sensitive Applications**: Screenshots may contain application interfaces that could reveal user data
99
+ - **Real-time Automation**: This is a training dataset, not intended for direct deployment in production automation systems
100
+ - **Non-GUI Computer Vision**: Optimized specifically for GUI interactions, not general object detection
101
 
102
  ## Dataset Structure
103
 
104
+ ### Data Format
105
+ - **Images**: 739 PNG screenshots with timestamps (2025-07-22 to 2025-08-08)
106
+ - **Annotations**: COCO4GUI format JSON with extended metadata
107
+ - **Resolution**: Variable (typical: 2992x1866 pixels for macOS screenshots)
108
+
109
+ ### Annotation Categories
110
+ The dataset includes 7 interaction types:
111
+ 1. **click** - Standard mouse clicks
112
+ 2. **type** - Text input actions
113
+ 3. **select** - Selection operations
114
+ 4. **hover** - Mouse hover interactions
115
+ 5. **drag** - Drag and drop operations
116
+ 6. **right_click** - Context menu interactions
117
+ 7. **double_click** - Double-click actions
118
+
119
+ ### Annotation Structure
120
+ Each annotation contains:
121
+ - **Bounding boxes**: Rectangular regions around UI elements
122
+ - **Keypoints**: Precise interaction coordinates (x, y, visibility)
123
+ - **Rich attributes**:
124
+ - `task_description`: Human-readable description of the interaction
125
+ - `action_type`: Type of interaction being performed
126
+ - `element_info`: Information about the UI element
127
+ - `custom_metadata`: Additional context-specific data
128
+
129
+ ### Metadata Fields
130
+ - **Application**: Source application (Arc Browser, Chrome, etc.)
131
+ - **Platform**: Operating system (primarily macOS)
132
+ - **Date captured**: Timestamp of screenshot capture
133
+ - **Sequence information**: For tracking multi-step workflows
134
+ - **GUI metadata**: Application-specific context
135
 
136
  ## Dataset Creation
137
 
138
  ### Curation Rationale
139
 
140
+ This dataset was created to address the need for high-quality, annotated GUI interaction data for training computer vision models that can understand and interact with user interfaces. The focus on both spatial (bounding boxes) and precise (keypoints) annotations enables training of models that can both identify UI elements and predict exact interaction points.
 
 
141
 
142
  ### Source Data
143
 
 
 
144
  #### Data Collection and Processing
145
 
146
+ Data was collected using a specialized GUI annotation tool that:
147
+ - **Captures live screenshots** of various applications and interfaces
148
+ - **Provides real-time annotation capabilities** with bounding boxes and click points
149
+ - **Maintains rich metadata** about applications, platforms, and interaction context
150
+ - **Supports sequence tracking** for multi-step user workflows
151
+ - **Exports in COCO4GUI format** optimized for FiftyOne integration
152
 
153
+ Screenshots span from July 22, 2025 to August 8, 2025, capturing diverse GUI states and interactions primarily on macOS systems using various browsers and applications.
154
 
155
  #### Who are the source data producers?
156
 
157
+ Screenshots were captured from real application interfaces during normal usage, with manual annotation of interaction points and UI elements using the GUI Dataset Collector tool.
158
 
159
+ ### Annotations
 
 
 
 
160
 
161
  #### Annotation process
162
 
163
+ Annotations were created using a specialized web-based GUI annotation tool that provides:
164
+ - **Interactive bounding box drawing** for UI element regions
165
+ - **Precise click point placement** for interaction coordinates
166
+ - **Rich metadata entry** for task descriptions and element information
167
+ - **Real-time preview** and editing capabilities
168
+ - **Sequence tracking** for multi-step workflows
169
 
170
+ The tool automatically captures metadata like application name, platform, and timestamps while allowing annotators to add detailed descriptions of interactions and UI elements.
171
 
172
  #### Who are the annotators?
173
 
174
+ Annotations were created by the dataset curator using the GUI annotation tool during real interface interactions.
175
 
176
+ ### Personal and Sensitive Information
177
 
178
+ Screenshots may contain application interfaces that could potentially reveal:
179
+ - **Application usage patterns**
180
+ - **Interface layouts and designs**
181
+ - **Partial text content** from applications
182
 
183
+ Care should be taken when using this dataset to ensure compliance with privacy requirements. The dataset focuses on interaction patterns rather than content, but users should review samples for any sensitive information relevant to their use case.
 
 
184
 
185
  ## Bias, Risks, and Limitations
186
 
187
+ ### Technical Limitations
188
+ - **Platform bias**: Primarily macOS screenshots, limiting cross-platform generalization
189
+ - **Application bias**: Heavy focus on browser interfaces and specific applications
190
+ - **Resolution consistency**: Variable screenshot resolutions may affect model training
191
+ - **Temporal scope**: Data collected over a limited time period (July-August 2025)
192
+
193
+ ### Potential Biases
194
+ - **Interface design bias**: Reflects specific application UI paradigms and design patterns
195
+ - **Interaction pattern bias**: May not represent all user interaction styles or accessibility needs
196
+ - **Language bias**: Primarily English-language interfaces
197
 
198
+ ### Risks
199
+ - **Privacy concerns**: Screenshots may inadvertently contain sensitive interface elements
200
+ - **Overfitting risk**: Limited diversity in applications and platforms
201
+ - **Generalization challenges**: Models trained on this data may not generalize well to significantly different GUI paradigms
202
 
203
  ### Recommendations
204
 
205
+ Users should:
206
+ - **Augment with additional data** from diverse platforms and applications
207
+ - **Validate on target use cases** before deployment
208
+ - **Consider privacy implications** when using in production systems
209
+ - **Test cross-platform performance** if deploying across different operating systems
210
+ - **Implement proper data handling** procedures for any sensitive content
211
 
212
+ ## Technical Details
213
 
214
+ ### FiftyOne Integration
215
+ This dataset includes advanced FiftyOne features:
216
+ - **Brain embeddings**: CLIP and image similarity indices computed
217
+ - **Visualization**: UMAP embeddings for data exploration
218
+ - **Uniqueness scoring**: Identifies diverse vs. redundant samples
219
+ - **Representativeness metrics**: Helps identify core vs. outlier samples
220
 
221
+ ### Enhanced Metadata
222
+ The COCO4GUI format provides:
223
+ - **Sequence tracking**: Links related interaction steps
224
+ - **Rich attributes**: Detailed interaction context
225
+ - **GUI-specific fields**: Application, platform, timing metadata
226
+ - **Workflow information**: Multi-step task sequences
227
 
228
+ ## Citation
229
 
230
+ **BibTeX:**
231
+ ```bibtex
232
+ @dataset{fiftyone_gui_grounding_2025,
233
+ title={FiftyOne GUI Grounding Training Set},
234
+ author={Sahota, Harpreet},
235
+ year={2025},
236
+ publisher={Hugging Face},
237
+ url={https://huggingface.co/datasets/harpreetsahota/FiftyOne-GUI-Grounding-Train}
238
+ }
239
+ ```
240
 
241
  **APA:**
242
+ Sahota, H. (2025). FiftyOne GUI Grounding Training Set [Dataset]. Hugging Face. https://huggingface.co/datasets/harpreetsahota/FiftyOne-GUI-Grounding-Train
243
 
244
+ ## Dataset Card Authors
 
 
 
 
 
 
 
 
 
 
 
 
245
 
246
+ Harpreet Sahota
247
 
248
  ## Dataset Card Contact
249
 
250
+ For questions about this dataset, please contact the dataset author through the Hugging Face dataset repository.