File size: 6,766 Bytes
fdca187
 
 
 
 
 
 
 
 
 
 
 
5621208
 
 
5c953b5
 
 
fdca187
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c1ddd2
fdca187
 
 
 
 
 
 
 
 
 
 
6c1ddd2
fdca187
6c1ddd2
fdca187
6c1ddd2
fdca187
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c1ddd2
fdca187
 
 
 
 
 
6c1ddd2
fdca187
6c1ddd2
 
 
 
fdca187
6c1ddd2
fdca187
6c1ddd2
 
 
fdca187
 
 
 
6c1ddd2
 
 
 
fdca187
 
6c1ddd2
 
 
fdca187
 
6c1ddd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdca187
 
 
6c1ddd2
fdca187
 
 
6c1ddd2
 
 
fdca187
 
6c1ddd2
fdca187
6c1ddd2
fdca187
6c1ddd2
fdca187
 
6c1ddd2
fdca187
6c1ddd2
 
fdca187
 
6c1ddd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdca187
 
6c1ddd2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
---
annotations_creators: []
language: en
size_categories:
- 1K<n<10K
task_categories:
- image-classification
- object-detection
task_ids: []
pretty_name: mind2web_multimodal_test_task
tags:
- fiftyone
- visual-agents
- os-agents
- gui-grounding
- image
- image-classification
- object-detection
dataset_summary: '




  This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 1338 samples.


  ## Installation


  If you haven''t already, install FiftyOne:


  ```bash

  pip install -U fiftyone

  ```


  ## Usage


  ```python

  import fiftyone as fo

  from fiftyone.utils.huggingface import load_from_hub


  # Load the dataset

  # Note: other available arguments include ''max_samples'', etc

  dataset = load_from_hub("Voxel51/mind2web_multimodal_test_task")


  # Launch the App

  session = fo.launch_app(dataset)

  ```

  '
---

# Dataset Card for Multimodal Mind2Web "Cross-Task" Test Split

**Note**: This dataset is the test split of the Cross-Task dataset introduced in the paper.

![image/png](m2w_tt.gif)



This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 1338 samples.

## Installation

If you haven't already, install FiftyOne:

```bash
pip install -U fiftyone
```

## Usage

```python
import fiftyone as fo
from fiftyone.utils.huggingface import load_from_hub

# Load the dataset
# Note: other available arguments include 'max_samples', etc
dataset = load_from_hub("Voxel51/mind2web_multimodal_test_task")

# Launch the App
session = fo.launch_app(dataset)
```


## Dataset Description

**Curated by:** The Ohio State University NLP Group (OSU-NLP-Group)  
**Shared by:** OSU-NLP-Group on Hugging Face  
**Language(s) (NLP):** en  
**License:** OPEN-RAIL License

## Dataset Source

**Repository:** https://github.com/OSU-NLP-Group/SeeAct and https://huggingface.co/datasets/osunlp/Multimodal-Mind2Web  
**Paper:** "GPT-4V(ision) is a Generalist Web Agent, if Grounded" by Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, Yu Su  
**Demo:** https://osu-nlp-group.github.io/SeeAct

## Uses

### Direct Use
- Evaluating web agents' ability to generalize to new tasks on familiar websites
- Benchmarking LMMs and LLMs on web navigation tasks
- Training and fine-tuning models for web navigation
- Testing model performance on tasks that require following multi-step instructions

### Out-of-Scope Use
- Developing web agents for harmful purposes (as stated in the paper's impact statement)
- Automating actions that could violate website terms of service
- Creating agents that access users' personal profiles or perform sensitive operations without consent

## Dataset Structure
- Contains 177 tasks across 17 domains and 64 websites
- Tasks average 7.6 actions each
- Average 4,172 visual tokens per task
- Average 607 HTML elements per task
- Average 123,274 HTML tokens per task
- Each example includes task descriptions, HTML structure, operations (CLICK, TYPE, SELECT), target elements with attributes, and action histories


### FiftyOne Dataset Structure

**Basic Info:** 1,338 web UI screenshots with task-based annotations

**Core Fields:**
- `action_uid`: StringField - Unique action identifier
- `annotation_id`: StringField - Annotation identifier
- `target_action_index`: IntField - Index of target action in sequence
- `ground_truth`: EmbeddedDocumentField(Detection) - Element to interact with:
  - `label`: Action type (TYPE, CLICK)
  - `bounding_box`: a list of relative bounding box coordinates in [0, 1] in the following format: `<top-left-x>, <top-left-y>, <width>, <height>]`
  - `target_action_reprs`: String representation of target action
- `website`: EmbeddedDocumentField(Classification) - Website name
- `domain`: EmbeddedDocumentField(Classification) - Website domain category
- `subdomain`: EmbeddedDocumentField(Classification) - Website subdomain category
- `task_description`: StringField - Natural language description of the task
- `full_sequence`: ListField(StringField) - Complete sequence of actions for the task
- `previous_actions`: ListField - Actions already performed in the sequence
- `current_action`: StringField - Action to be performed
- `alternative_candidates`: EmbeddedDocumentField(Detections) - Other possible elements

## Dataset Creation
### Curation Rationale
The Cross-Task split was specifically designed to evaluate an agent's ability to generalize to new tasks on websites and domains it has already encountered during training.

### Source Data
#### Data Collection and Processing
- Based on the original MIND2WEB dataset
- Each HTML document is aligned with its corresponding webpage screenshot image
- Underwent human verification to confirm element visibility and correct rendering for action prediction

#### Who are the source data producers?
Web screenshots and HTML were collected from 64 websites across 17 domains that were also represented in the training data.

### Annotations
#### Annotation process
Each task includes annotated action sequences showing the correct steps to complete the task. These were likely captured through a tool that records user actions on websites.

#### Who are the annotators?
Researchers from The Ohio State University NLP Group or hired annotators, though specific details aren't provided in the paper.

### Personal and Sensitive Information
The dataset focuses on non-login tasks to comply with user agreements and avoid privacy issues.

## Bias, Risks, and Limitations
- Performance on this split is generally better than Cross-Website and Cross-Domain, as models can leverage knowledge of website structures
- Supervised fine-tuning methods show advantages on this split compared to in-context learning
- The dataset may contain biases present in the original websites
- Website layouts and functionality may change over time, affecting the validity of the dataset

## Citation

### BibTeX:

```bibtex
@article{zheng2024seeact,
  title={GPT-4V(ision) is a Generalist Web Agent, if Grounded},
  author={Boyuan Zheng and Boyu Gou and Jihyung Kil and Huan Sun and Yu Su},
  booktitle={Forty-first International Conference on Machine Learning},
  year={2024},
  url={https://openreview.net/forum?id=piecKJ2DlB},
}

@inproceedings{deng2023mindweb,
  title={Mind2Web: Towards a Generalist Agent for the Web},
  author={Xiang Deng and Yu Gu and Boyuan Zheng and Shijie Chen and Samuel Stevens and Boshi Wang and Huan Sun and Yu Su},
  booktitle={Thirty-seventh Conference on Neural Information Processing Systems},
  year={2023},
  url={https://openreview.net/forum?id=kiYqbO3wqw}
}
```
### APA:
Zheng, B., Gou, B., Kil, J., Sun, H., & Su, Y. (2024). GPT-4V(ision) is a Generalist Web Agent, if Grounded. arXiv preprint arXiv:2401.01614.

## Dataset Card Contact
GitHub: https://github.com/OSU-NLP-Group/SeeAct