path
stringlengths 11
71
| content
stringlengths 75
124k
|
---|---|
Tactic.lean | import Mathlib.Tactic.Abel
import Mathlib.Tactic.AdaptationNote
import Mathlib.Tactic.ApplyAt
import Mathlib.Tactic.ApplyCongr
import Mathlib.Tactic.ApplyFun
import Mathlib.Tactic.ApplyWith
import Mathlib.Tactic.ArithMult
import Mathlib.Tactic.ArithMult.Init
import Mathlib.Tactic.Attr.Core
import Mathlib.Tactic.Attr.Register
import Mathlib.Tactic.Basic
import Mathlib.Tactic.Bound
import Mathlib.Tactic.Bound.Attribute
import Mathlib.Tactic.Bound.Init
import Mathlib.Tactic.ByContra
import Mathlib.Tactic.CC
import Mathlib.Tactic.CC.Addition
import Mathlib.Tactic.CC.Datatypes
import Mathlib.Tactic.CC.Lemmas
import Mathlib.Tactic.CancelDenoms
import Mathlib.Tactic.CancelDenoms.Core
import Mathlib.Tactic.Cases
import Mathlib.Tactic.CasesM
import Mathlib.Tactic.CategoryTheory.BicategoricalComp
import Mathlib.Tactic.CategoryTheory.BicategoryCoherence
import Mathlib.Tactic.CategoryTheory.Coherence
import Mathlib.Tactic.CategoryTheory.Elementwise
import Mathlib.Tactic.CategoryTheory.Monoidal
import Mathlib.Tactic.CategoryTheory.MonoidalComp
import Mathlib.Tactic.CategoryTheory.Reassoc
import Mathlib.Tactic.CategoryTheory.Slice
import Mathlib.Tactic.Change
import Mathlib.Tactic.Check
import Mathlib.Tactic.Choose
import Mathlib.Tactic.Clean
import Mathlib.Tactic.ClearExcept
import Mathlib.Tactic.ClearExclamation
import Mathlib.Tactic.Clear_
import Mathlib.Tactic.Coe
import Mathlib.Tactic.Common
import Mathlib.Tactic.ComputeDegree
import Mathlib.Tactic.CongrExclamation
import Mathlib.Tactic.CongrM
import Mathlib.Tactic.Constructor
import Mathlib.Tactic.Continuity
import Mathlib.Tactic.Continuity.Init
import Mathlib.Tactic.ContinuousFunctionalCalculus
import Mathlib.Tactic.Contrapose
import Mathlib.Tactic.Conv
import Mathlib.Tactic.Convert
import Mathlib.Tactic.Core
import Mathlib.Tactic.DefEqTransformations
import Mathlib.Tactic.DeprecateMe
import Mathlib.Tactic.DeriveFintype
import Mathlib.Tactic.DeriveToExpr
import Mathlib.Tactic.DeriveTraversable
import Mathlib.Tactic.Eqns
import Mathlib.Tactic.Eval
import Mathlib.Tactic.ExistsI
import Mathlib.Tactic.Explode
import Mathlib.Tactic.Explode.Datatypes
import Mathlib.Tactic.Explode.Pretty
import Mathlib.Tactic.ExtendDoc
import Mathlib.Tactic.ExtractGoal
import Mathlib.Tactic.ExtractLets
import Mathlib.Tactic.FBinop
import Mathlib.Tactic.FailIfNoProgress
import Mathlib.Tactic.FieldSimp
import Mathlib.Tactic.FinCases
import Mathlib.Tactic.Find
import Mathlib.Tactic.FunProp
import Mathlib.Tactic.FunProp.AEMeasurable
import Mathlib.Tactic.FunProp.Attr
import Mathlib.Tactic.FunProp.ContDiff
import Mathlib.Tactic.FunProp.Core
import Mathlib.Tactic.FunProp.Decl
import Mathlib.Tactic.FunProp.Differentiable
import Mathlib.Tactic.FunProp.Elab
import Mathlib.Tactic.FunProp.FunctionData
import Mathlib.Tactic.FunProp.Mor
import Mathlib.Tactic.FunProp.RefinedDiscrTree
import Mathlib.Tactic.FunProp.StateList
import Mathlib.Tactic.FunProp.Theorems
import Mathlib.Tactic.FunProp.ToBatteries
import Mathlib.Tactic.FunProp.Types
import Mathlib.Tactic.GCongr
import Mathlib.Tactic.GCongr.Core
import Mathlib.Tactic.GCongr.ForwardAttr
import Mathlib.Tactic.Generalize
import Mathlib.Tactic.GeneralizeProofs
import Mathlib.Tactic.Group
import Mathlib.Tactic.GuardGoalNums
import Mathlib.Tactic.GuardHypNums
import Mathlib.Tactic.Have
import Mathlib.Tactic.HaveI
import Mathlib.Tactic.HelpCmd
import Mathlib.Tactic.HigherOrder
import Mathlib.Tactic.Hint
import Mathlib.Tactic.ITauto
import Mathlib.Tactic.InferParam
import Mathlib.Tactic.Inhabit
import Mathlib.Tactic.IntervalCases
import Mathlib.Tactic.IrreducibleDef
import Mathlib.Tactic.Lemma
import Mathlib.Tactic.Lift
import Mathlib.Tactic.LiftLets
import Mathlib.Tactic.Linarith
import Mathlib.Tactic.Linarith.Datatypes
import Mathlib.Tactic.Linarith.Frontend
import Mathlib.Tactic.Linarith.Lemmas
import Mathlib.Tactic.Linarith.Oracle.FourierMotzkin
import Mathlib.Tactic.Linarith.Oracle.SimplexAlgorithm
import Mathlib.Tactic.Linarith.Oracle.SimplexAlgorithm.Datatypes
import Mathlib.Tactic.Linarith.Oracle.SimplexAlgorithm.Gauss
import Mathlib.Tactic.Linarith.Oracle.SimplexAlgorithm.PositiveVector
import Mathlib.Tactic.Linarith.Oracle.SimplexAlgorithm.SimplexAlgorithm
import Mathlib.Tactic.Linarith.Parsing
import Mathlib.Tactic.Linarith.Preprocessing
import Mathlib.Tactic.Linarith.Verification
import Mathlib.Tactic.LinearCombination
import Mathlib.Tactic.Linter
import Mathlib.Tactic.Linter.GlobalAttributeIn
import Mathlib.Tactic.Linter.HashCommandLinter
import Mathlib.Tactic.Linter.HaveLetLinter
import Mathlib.Tactic.Linter.Lint
import Mathlib.Tactic.Linter.MinImports
import Mathlib.Tactic.Linter.OldObtain
import Mathlib.Tactic.Linter.RefineLinter
import Mathlib.Tactic.Linter.Style
import Mathlib.Tactic.Linter.TextBased
import Mathlib.Tactic.Linter.UnusedTactic
import Mathlib.Tactic.Measurability
import Mathlib.Tactic.Measurability.Init
import Mathlib.Tactic.MinImports
import Mathlib.Tactic.MkIffOfInductiveProp
import Mathlib.Tactic.ModCases
import Mathlib.Tactic.Monotonicity
import Mathlib.Tactic.Monotonicity.Attr
import Mathlib.Tactic.Monotonicity.Basic
import Mathlib.Tactic.Monotonicity.Lemmas
import Mathlib.Tactic.MoveAdd
import Mathlib.Tactic.NoncommRing
import Mathlib.Tactic.Nontriviality
import Mathlib.Tactic.Nontriviality.Core
import Mathlib.Tactic.NormNum
import Mathlib.Tactic.NormNum.Basic
import Mathlib.Tactic.NormNum.BigOperators
import Mathlib.Tactic.NormNum.Core
import Mathlib.Tactic.NormNum.DivMod
import Mathlib.Tactic.NormNum.Eq
import Mathlib.Tactic.NormNum.GCD
import Mathlib.Tactic.NormNum.Ineq
import Mathlib.Tactic.NormNum.Inv
import Mathlib.Tactic.NormNum.IsCoprime
import Mathlib.Tactic.NormNum.LegendreSymbol
import Mathlib.Tactic.NormNum.NatFib
import Mathlib.Tactic.NormNum.NatSqrt
import Mathlib.Tactic.NormNum.OfScientific
import Mathlib.Tactic.NormNum.Pow
import Mathlib.Tactic.NormNum.Prime
import Mathlib.Tactic.NormNum.Result
import Mathlib.Tactic.NthRewrite
import Mathlib.Tactic.Observe
import Mathlib.Tactic.PPWithUniv
import Mathlib.Tactic.Peel
import Mathlib.Tactic.Polyrith
import Mathlib.Tactic.Positivity
import Mathlib.Tactic.Positivity.Basic
import Mathlib.Tactic.Positivity.Core
import Mathlib.Tactic.Positivity.Finset
import Mathlib.Tactic.ProdAssoc
import Mathlib.Tactic.ProjectionNotation
import Mathlib.Tactic.Propose
import Mathlib.Tactic.ProxyType
import Mathlib.Tactic.PushNeg
import Mathlib.Tactic.Qify
import Mathlib.Tactic.RSuffices
import Mathlib.Tactic.Recall
import Mathlib.Tactic.Recover
import Mathlib.Tactic.ReduceModChar
import Mathlib.Tactic.ReduceModChar.Ext
import Mathlib.Tactic.Relation.Rfl
import Mathlib.Tactic.Relation.Symm
import Mathlib.Tactic.Relation.Trans
import Mathlib.Tactic.Rename
import Mathlib.Tactic.RenameBVar
import Mathlib.Tactic.Replace
import Mathlib.Tactic.RewriteSearch
import Mathlib.Tactic.Rify
import Mathlib.Tactic.Ring
import Mathlib.Tactic.Ring.Basic
import Mathlib.Tactic.Ring.PNat
import Mathlib.Tactic.Ring.RingNF
import Mathlib.Tactic.Sat.FromLRAT
import Mathlib.Tactic.Says
import Mathlib.Tactic.ScopedNS
import Mathlib.Tactic.Set
import Mathlib.Tactic.SetLike
import Mathlib.Tactic.SimpIntro
import Mathlib.Tactic.SimpRw
import Mathlib.Tactic.Simps.Basic
import Mathlib.Tactic.Simps.NotationClass
import Mathlib.Tactic.SlimCheck
import Mathlib.Tactic.SplitIfs
import Mathlib.Tactic.Spread
import Mathlib.Tactic.Subsingleton
import Mathlib.Tactic.Substs
import Mathlib.Tactic.SuccessIfFailWithMsg
import Mathlib.Tactic.SudoSetOption
import Mathlib.Tactic.SuppressCompilation
import Mathlib.Tactic.SwapVar
import Mathlib.Tactic.TFAE
import Mathlib.Tactic.Tauto
import Mathlib.Tactic.TermCongr
import Mathlib.Tactic.ToAdditive
import Mathlib.Tactic.ToAdditive.Frontend
import Mathlib.Tactic.ToExpr
import Mathlib.Tactic.ToLevel
import Mathlib.Tactic.Trace
import Mathlib.Tactic.TryThis
import Mathlib.Tactic.TypeCheck
import Mathlib.Tactic.TypeStar
import Mathlib.Tactic.UnsetOption
import Mathlib.Tactic.Use
import Mathlib.Tactic.Variable
import Mathlib.Tactic.WLOG
import Mathlib.Tactic.Widget.Calc
import Mathlib.Tactic.Widget.CommDiag
import Mathlib.Tactic.Widget.CongrM
import Mathlib.Tactic.Widget.Conv
import Mathlib.Tactic.Widget.GCongr
import Mathlib.Tactic.Widget.InteractiveUnfold
import Mathlib.Tactic.Widget.SelectInsertParamsClass
import Mathlib.Tactic.Widget.SelectPanelUtils
import Mathlib.Tactic.Widget.StringDiagram
import Mathlib.Tactic.Zify
|
Algebra\AddTorsor.lean | /-
Copyright (c) 2020 Joseph Myers. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Myers, Yury Kudryashov
-/
import Mathlib.Data.Set.Pointwise.SMul
/-!
# Torsors of additive group actions
This file defines torsors of additive group actions.
## Notations
The group elements are referred to as acting on points. This file
defines the notation `+ᵥ` for adding a group element to a point and
`-ᵥ` for subtracting two points to produce a group element.
## Implementation notes
Affine spaces are the motivating example of torsors of additive group actions. It may be appropriate
to refactor in terms of the general definition of group actions, via `to_additive`, when there is a
use for multiplicative torsors (currently mathlib only develops the theory of group actions for
multiplicative group actions).
## Notations
* `v +ᵥ p` is a notation for `VAdd.vadd`, the left action of an additive monoid;
* `p₁ -ᵥ p₂` is a notation for `VSub.vsub`, difference between two points in an additive torsor
as an element of the corresponding additive group;
## References
* https://en.wikipedia.org/wiki/Principal_homogeneous_space
* https://en.wikipedia.org/wiki/Affine_space
-/
/-- An `AddTorsor G P` gives a structure to the nonempty type `P`,
acted on by an `AddGroup G` with a transitive and free action given
by the `+ᵥ` operation and a corresponding subtraction given by the
`-ᵥ` operation. In the case of a vector space, it is an affine
space. -/
class AddTorsor (G : outParam Type*) (P : Type*) [AddGroup G] extends AddAction G P,
VSub G P where
[nonempty : Nonempty P]
/-- Torsor subtraction and addition with the same element cancels out. -/
vsub_vadd' : ∀ p₁ p₂ : P, (p₁ -ᵥ p₂ : G) +ᵥ p₂ = p₁
/-- Torsor addition and subtraction with the same element cancels out. -/
vadd_vsub' : ∀ (g : G) (p : P), g +ᵥ p -ᵥ p = g
-- Porting note(#12096): removed `nolint instance_priority`; lint not ported yet
attribute [instance 100] AddTorsor.nonempty
-- Porting note(#12094): removed nolint; dangerous_instance linter not ported yet
--attribute [nolint dangerous_instance] AddTorsor.toVSub
/-- An `AddGroup G` is a torsor for itself. -/
-- Porting note(#12096): linter not ported yet
--@[nolint instance_priority]
instance addGroupIsAddTorsor (G : Type*) [AddGroup G] : AddTorsor G G where
vsub := Sub.sub
vsub_vadd' := sub_add_cancel
vadd_vsub' := add_sub_cancel_right
/-- Simplify subtraction for a torsor for an `AddGroup G` over
itself. -/
@[simp]
theorem vsub_eq_sub {G : Type*} [AddGroup G] (g₁ g₂ : G) : g₁ -ᵥ g₂ = g₁ - g₂ :=
rfl
section General
variable {G : Type*} {P : Type*} [AddGroup G] [T : AddTorsor G P]
/-- Adding the result of subtracting from another point produces that
point. -/
@[simp]
theorem vsub_vadd (p₁ p₂ : P) : p₁ -ᵥ p₂ +ᵥ p₂ = p₁ :=
AddTorsor.vsub_vadd' p₁ p₂
/-- Adding a group element then subtracting the original point
produces that group element. -/
@[simp]
theorem vadd_vsub (g : G) (p : P) : g +ᵥ p -ᵥ p = g :=
AddTorsor.vadd_vsub' g p
/-- If the same point added to two group elements produces equal
results, those group elements are equal. -/
theorem vadd_right_cancel {g₁ g₂ : G} (p : P) (h : g₁ +ᵥ p = g₂ +ᵥ p) : g₁ = g₂ := by
-- Porting note: vadd_vsub g₁ → vadd_vsub g₁ p
rw [← vadd_vsub g₁ p, h, vadd_vsub]
@[simp]
theorem vadd_right_cancel_iff {g₁ g₂ : G} (p : P) : g₁ +ᵥ p = g₂ +ᵥ p ↔ g₁ = g₂ :=
⟨vadd_right_cancel p, fun h => h ▸ rfl⟩
/-- Adding a group element to the point `p` is an injective
function. -/
theorem vadd_right_injective (p : P) : Function.Injective ((· +ᵥ p) : G → P) := fun _ _ =>
vadd_right_cancel p
/-- Adding a group element to a point, then subtracting another point,
produces the same result as subtracting the points then adding the
group element. -/
theorem vadd_vsub_assoc (g : G) (p₁ p₂ : P) : g +ᵥ p₁ -ᵥ p₂ = g + (p₁ -ᵥ p₂) := by
apply vadd_right_cancel p₂
rw [vsub_vadd, add_vadd, vsub_vadd]
/-- Subtracting a point from itself produces 0. -/
@[simp]
theorem vsub_self (p : P) : p -ᵥ p = (0 : G) := by
rw [← zero_add (p -ᵥ p), ← vadd_vsub_assoc, vadd_vsub]
/-- If subtracting two points produces 0, they are equal. -/
theorem eq_of_vsub_eq_zero {p₁ p₂ : P} (h : p₁ -ᵥ p₂ = (0 : G)) : p₁ = p₂ := by
rw [← vsub_vadd p₁ p₂, h, zero_vadd]
/-- Subtracting two points produces 0 if and only if they are
equal. -/
@[simp]
theorem vsub_eq_zero_iff_eq {p₁ p₂ : P} : p₁ -ᵥ p₂ = (0 : G) ↔ p₁ = p₂ :=
Iff.intro eq_of_vsub_eq_zero fun h => h ▸ vsub_self _
theorem vsub_ne_zero {p q : P} : p -ᵥ q ≠ (0 : G) ↔ p ≠ q :=
not_congr vsub_eq_zero_iff_eq
/-- Cancellation adding the results of two subtractions. -/
@[simp]
theorem vsub_add_vsub_cancel (p₁ p₂ p₃ : P) : p₁ -ᵥ p₂ + (p₂ -ᵥ p₃) = p₁ -ᵥ p₃ := by
apply vadd_right_cancel p₃
rw [add_vadd, vsub_vadd, vsub_vadd, vsub_vadd]
/-- Subtracting two points in the reverse order produces the negation
of subtracting them. -/
@[simp]
theorem neg_vsub_eq_vsub_rev (p₁ p₂ : P) : -(p₁ -ᵥ p₂) = p₂ -ᵥ p₁ := by
refine neg_eq_of_add_eq_zero_right (vadd_right_cancel p₁ ?_)
rw [vsub_add_vsub_cancel, vsub_self]
theorem vadd_vsub_eq_sub_vsub (g : G) (p q : P) : g +ᵥ p -ᵥ q = g - (q -ᵥ p) := by
rw [vadd_vsub_assoc, sub_eq_add_neg, neg_vsub_eq_vsub_rev]
/-- Subtracting the result of adding a group element produces the same result
as subtracting the points and subtracting that group element. -/
theorem vsub_vadd_eq_vsub_sub (p₁ p₂ : P) (g : G) : p₁ -ᵥ (g +ᵥ p₂) = p₁ -ᵥ p₂ - g := by
rw [← add_right_inj (p₂ -ᵥ p₁ : G), vsub_add_vsub_cancel, ← neg_vsub_eq_vsub_rev, vadd_vsub, ←
add_sub_assoc, ← neg_vsub_eq_vsub_rev, neg_add_self, zero_sub]
/-- Cancellation subtracting the results of two subtractions. -/
@[simp]
theorem vsub_sub_vsub_cancel_right (p₁ p₂ p₃ : P) : p₁ -ᵥ p₃ - (p₂ -ᵥ p₃) = p₁ -ᵥ p₂ := by
rw [← vsub_vadd_eq_vsub_sub, vsub_vadd]
/-- Convert between an equality with adding a group element to a point
and an equality of a subtraction of two points with a group
element. -/
theorem eq_vadd_iff_vsub_eq (p₁ : P) (g : G) (p₂ : P) : p₁ = g +ᵥ p₂ ↔ p₁ -ᵥ p₂ = g :=
⟨fun h => h.symm ▸ vadd_vsub _ _, fun h => h ▸ (vsub_vadd _ _).symm⟩
theorem vadd_eq_vadd_iff_neg_add_eq_vsub {v₁ v₂ : G} {p₁ p₂ : P} :
v₁ +ᵥ p₁ = v₂ +ᵥ p₂ ↔ -v₁ + v₂ = p₁ -ᵥ p₂ := by
rw [eq_vadd_iff_vsub_eq, vadd_vsub_assoc, ← add_right_inj (-v₁), neg_add_cancel_left, eq_comm]
namespace Set
open Pointwise
-- porting note (#10618): simp can prove this
--@[simp]
theorem singleton_vsub_self (p : P) : ({p} : Set P) -ᵥ {p} = {(0 : G)} := by
rw [Set.singleton_vsub_singleton, vsub_self]
end Set
@[simp]
theorem vadd_vsub_vadd_cancel_right (v₁ v₂ : G) (p : P) : v₁ +ᵥ p -ᵥ (v₂ +ᵥ p) = v₁ - v₂ := by
rw [vsub_vadd_eq_vsub_sub, vadd_vsub_assoc, vsub_self, add_zero]
/-- If the same point subtracted from two points produces equal
results, those points are equal. -/
theorem vsub_left_cancel {p₁ p₂ p : P} (h : p₁ -ᵥ p = p₂ -ᵥ p) : p₁ = p₂ := by
rwa [← sub_eq_zero, vsub_sub_vsub_cancel_right, vsub_eq_zero_iff_eq] at h
/-- The same point subtracted from two points produces equal results
if and only if those points are equal. -/
@[simp]
theorem vsub_left_cancel_iff {p₁ p₂ p : P} : p₁ -ᵥ p = p₂ -ᵥ p ↔ p₁ = p₂ :=
⟨vsub_left_cancel, fun h => h ▸ rfl⟩
/-- Subtracting the point `p` is an injective function. -/
theorem vsub_left_injective (p : P) : Function.Injective ((· -ᵥ p) : P → G) := fun _ _ =>
vsub_left_cancel
/-- If subtracting two points from the same point produces equal
results, those points are equal. -/
theorem vsub_right_cancel {p₁ p₂ p : P} (h : p -ᵥ p₁ = p -ᵥ p₂) : p₁ = p₂ := by
refine vadd_left_cancel (p -ᵥ p₂) ?_
rw [vsub_vadd, ← h, vsub_vadd]
/-- Subtracting two points from the same point produces equal results
if and only if those points are equal. -/
@[simp]
theorem vsub_right_cancel_iff {p₁ p₂ p : P} : p -ᵥ p₁ = p -ᵥ p₂ ↔ p₁ = p₂ :=
⟨vsub_right_cancel, fun h => h ▸ rfl⟩
/-- Subtracting a point from the point `p` is an injective
function. -/
theorem vsub_right_injective (p : P) : Function.Injective ((p -ᵥ ·) : P → G) := fun _ _ =>
vsub_right_cancel
end General
section comm
variable {G : Type*} {P : Type*} [AddCommGroup G] [AddTorsor G P]
/-- Cancellation subtracting the results of two subtractions. -/
@[simp]
theorem vsub_sub_vsub_cancel_left (p₁ p₂ p₃ : P) : p₃ -ᵥ p₂ - (p₃ -ᵥ p₁) = p₁ -ᵥ p₂ := by
rw [sub_eq_add_neg, neg_vsub_eq_vsub_rev, add_comm, vsub_add_vsub_cancel]
@[simp]
theorem vadd_vsub_vadd_cancel_left (v : G) (p₁ p₂ : P) : v +ᵥ p₁ -ᵥ (v +ᵥ p₂) = p₁ -ᵥ p₂ := by
rw [vsub_vadd_eq_vsub_sub, vadd_vsub_assoc, add_sub_cancel_left]
theorem vsub_vadd_comm (p₁ p₂ p₃ : P) : (p₁ -ᵥ p₂ : G) +ᵥ p₃ = p₃ -ᵥ p₂ +ᵥ p₁ := by
rw [← @vsub_eq_zero_iff_eq G, vadd_vsub_assoc, vsub_vadd_eq_vsub_sub]
simp
theorem vadd_eq_vadd_iff_sub_eq_vsub {v₁ v₂ : G} {p₁ p₂ : P} :
v₁ +ᵥ p₁ = v₂ +ᵥ p₂ ↔ v₂ - v₁ = p₁ -ᵥ p₂ := by
rw [vadd_eq_vadd_iff_neg_add_eq_vsub, neg_add_eq_sub]
theorem vsub_sub_vsub_comm (p₁ p₂ p₃ p₄ : P) : p₁ -ᵥ p₂ - (p₃ -ᵥ p₄) = p₁ -ᵥ p₃ - (p₂ -ᵥ p₄) := by
rw [← vsub_vadd_eq_vsub_sub, vsub_vadd_comm, vsub_vadd_eq_vsub_sub]
end comm
namespace Prod
variable {G G' P P' : Type*} [AddGroup G] [AddGroup G'] [AddTorsor G P] [AddTorsor G' P']
instance instAddTorsor : AddTorsor (G × G') (P × P') where
vadd v p := (v.1 +ᵥ p.1, v.2 +ᵥ p.2)
zero_vadd _ := Prod.ext (zero_vadd _ _) (zero_vadd _ _)
add_vadd _ _ _ := Prod.ext (add_vadd _ _ _) (add_vadd _ _ _)
vsub p₁ p₂ := (p₁.1 -ᵥ p₂.1, p₁.2 -ᵥ p₂.2)
nonempty := Prod.instNonempty
vsub_vadd' _ _ := Prod.ext (vsub_vadd _ _) (vsub_vadd _ _)
vadd_vsub' _ _ := Prod.ext (vadd_vsub _ _) (vadd_vsub _ _)
-- Porting note: The proofs above used to be shorter:
-- zero_vadd p := by simp ⊢ 0 +ᵥ p = p
-- add_vadd := by simp [add_vadd] ⊢ ∀ (a : G) (b : G') (a_1 : G) (b_1 : G') (a_2 : P) (b_2 : P'),
-- (a + a_1, b + b_1) +ᵥ (a_2, b_2) = (a, b) +ᵥ ((a_1, b_1) +ᵥ (a_2, b_2))
-- vsub_vadd' p₁ p₂ := show (p₁.1 -ᵥ p₂.1 +ᵥ p₂.1, _) = p₁ by simp
-- ⊢ (p₁.fst -ᵥ p₂.fst +ᵥ p₂.fst, ((p₁.fst -ᵥ p₂.fst, p₁.snd -ᵥ p₂.snd) +ᵥ p₂).snd) = p₁
-- vadd_vsub' v p := show (v.1 +ᵥ p.1 -ᵥ p.1, v.2 +ᵥ p.2 -ᵥ p.2) = v by simp
-- ⊢ (v.fst +ᵥ p.fst -ᵥ p.fst, v.snd) = v
@[simp]
theorem fst_vadd (v : G × G') (p : P × P') : (v +ᵥ p).1 = v.1 +ᵥ p.1 :=
rfl
@[simp]
theorem snd_vadd (v : G × G') (p : P × P') : (v +ᵥ p).2 = v.2 +ᵥ p.2 :=
rfl
@[simp]
theorem mk_vadd_mk (v : G) (v' : G') (p : P) (p' : P') : (v, v') +ᵥ (p, p') = (v +ᵥ p, v' +ᵥ p') :=
rfl
@[simp]
theorem fst_vsub (p₁ p₂ : P × P') : (p₁ -ᵥ p₂ : G × G').1 = p₁.1 -ᵥ p₂.1 :=
rfl
@[simp]
theorem snd_vsub (p₁ p₂ : P × P') : (p₁ -ᵥ p₂ : G × G').2 = p₁.2 -ᵥ p₂.2 :=
rfl
@[simp]
theorem mk_vsub_mk (p₁ p₂ : P) (p₁' p₂' : P') :
((p₁, p₁') -ᵥ (p₂, p₂') : G × G') = (p₁ -ᵥ p₂, p₁' -ᵥ p₂') :=
rfl
end Prod
namespace Pi
universe u v w
variable {I : Type u} {fg : I → Type v} [∀ i, AddGroup (fg i)] {fp : I → Type w}
open AddAction AddTorsor
/-- A product of `AddTorsor`s is an `AddTorsor`. -/
instance instAddTorsor [∀ i, AddTorsor (fg i) (fp i)] : AddTorsor (∀ i, fg i) (∀ i, fp i) where
vadd g p i := g i +ᵥ p i
zero_vadd p := funext fun i => zero_vadd (fg i) (p i)
add_vadd g₁ g₂ p := funext fun i => add_vadd (g₁ i) (g₂ i) (p i)
vsub p₁ p₂ i := p₁ i -ᵥ p₂ i
vsub_vadd' p₁ p₂ := funext fun i => vsub_vadd (p₁ i) (p₂ i)
vadd_vsub' g p := funext fun i => vadd_vsub (g i) (p i)
end Pi
namespace Equiv
variable {G : Type*} {P : Type*} [AddGroup G] [AddTorsor G P]
/-- `v ↦ v +ᵥ p` as an equivalence. -/
def vaddConst (p : P) : G ≃ P where
toFun v := v +ᵥ p
invFun p' := p' -ᵥ p
left_inv _ := vadd_vsub _ _
right_inv _ := vsub_vadd _ _
@[simp]
theorem coe_vaddConst (p : P) : ⇑(vaddConst p) = fun v => v +ᵥ p :=
rfl
@[simp]
theorem coe_vaddConst_symm (p : P) : ⇑(vaddConst p).symm = fun p' => p' -ᵥ p :=
rfl
/-- `p' ↦ p -ᵥ p'` as an equivalence. -/
def constVSub (p : P) : P ≃ G where
toFun := (p -ᵥ ·)
invFun := (-· +ᵥ p)
left_inv p' := by simp
right_inv v := by simp [vsub_vadd_eq_vsub_sub]
@[simp] lemma coe_constVSub (p : P) : ⇑(constVSub p) = (p -ᵥ ·) := rfl
@[simp]
theorem coe_constVSub_symm (p : P) : ⇑(constVSub p).symm = fun (v : G) => -v +ᵥ p :=
rfl
variable (P)
/-- The permutation given by `p ↦ v +ᵥ p`. -/
def constVAdd (v : G) : Equiv.Perm P where
toFun := (v +ᵥ ·)
invFun := (-v +ᵥ ·)
left_inv p := by simp [vadd_vadd]
right_inv p := by simp [vadd_vadd]
@[simp] lemma coe_constVAdd (v : G) : ⇑(constVAdd P v) = (v +ᵥ ·) := rfl
variable (G)
@[simp]
theorem constVAdd_zero : constVAdd P (0 : G) = 1 :=
ext <| zero_vadd G
variable {G}
@[simp]
theorem constVAdd_add (v₁ v₂ : G) : constVAdd P (v₁ + v₂) = constVAdd P v₁ * constVAdd P v₂ :=
ext <| add_vadd v₁ v₂
/-- `Equiv.constVAdd` as a homomorphism from `Multiplicative G` to `Equiv.perm P` -/
def constVAddHom : Multiplicative G →* Equiv.Perm P where
toFun v := constVAdd P (Multiplicative.toAdd v)
map_one' := constVAdd_zero G P
map_mul' := constVAdd_add P
variable {P}
-- Porting note: Previous code was:
-- open _Root_.Function
open Function
/-- Point reflection in `x` as a permutation. -/
def pointReflection (x : P) : Perm P :=
(constVSub x).trans (vaddConst x)
theorem pointReflection_apply (x y : P) : pointReflection x y = x -ᵥ y +ᵥ x :=
rfl
@[simp]
theorem pointReflection_vsub_left (x y : P) : pointReflection x y -ᵥ x = x -ᵥ y :=
vadd_vsub ..
@[simp]
theorem left_vsub_pointReflection (x y : P) : x -ᵥ pointReflection x y = y -ᵥ x :=
neg_injective <| by simp
@[simp]
theorem pointReflection_vsub_right (x y : P) : pointReflection x y -ᵥ y = 2 • (x -ᵥ y) := by
simp [pointReflection, two_nsmul, vadd_vsub_assoc]
@[simp]
theorem right_vsub_pointReflection (x y : P) : y -ᵥ pointReflection x y = 2 • (y -ᵥ x) :=
neg_injective <| by simp [← neg_nsmul]
@[simp]
theorem pointReflection_symm (x : P) : (pointReflection x).symm = pointReflection x :=
ext <| by simp [pointReflection]
@[simp]
theorem pointReflection_self (x : P) : pointReflection x x = x :=
vsub_vadd _ _
theorem pointReflection_involutive (x : P) : Involutive (pointReflection x : P → P) := fun y =>
(Equiv.apply_eq_iff_eq_symm_apply _).2 <| by rw [pointReflection_symm]
/-- `x` is the only fixed point of `pointReflection x`. This lemma requires
`x + x = y + y ↔ x = y`. There is no typeclass to use here, so we add it as an explicit argument. -/
theorem pointReflection_fixed_iff_of_injective_bit0 {x y : P} (h : Injective (2 • · : G → G)) :
pointReflection x y = y ↔ y = x := by
rw [pointReflection_apply, eq_comm, eq_vadd_iff_vsub_eq, ← neg_vsub_eq_vsub_rev,
neg_eq_iff_add_eq_zero, ← two_nsmul, ← nsmul_zero 2, h.eq_iff, vsub_eq_zero_iff_eq, eq_comm]
-- Porting note: need this to calm down CI
theorem injective_pointReflection_left_of_injective_bit0 {G P : Type*} [AddCommGroup G]
[AddTorsor G P] (h : Injective (2 • · : G → G)) (y : P) :
Injective fun x : P => pointReflection x y :=
fun x₁ x₂ (hy : pointReflection x₁ y = pointReflection x₂ y) => by
rwa [pointReflection_apply, pointReflection_apply, vadd_eq_vadd_iff_sub_eq_vsub,
vsub_sub_vsub_cancel_right, ← neg_vsub_eq_vsub_rev, neg_eq_iff_add_eq_zero,
← two_nsmul, ← nsmul_zero 2, h.eq_iff, vsub_eq_zero_iff_eq] at hy
end Equiv
theorem AddTorsor.subsingleton_iff (G P : Type*) [AddGroup G] [AddTorsor G P] :
Subsingleton G ↔ Subsingleton P := by
inhabit P
exact (Equiv.vaddConst default).subsingleton_congr
|
Algebra\AlgebraicCard.lean | /-
Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Violeta Hernández Palacios
-/
import Mathlib.Algebra.Polynomial.Cardinal
import Mathlib.RingTheory.Algebraic
/-!
### Cardinality of algebraic numbers
In this file, we prove variants of the following result: the cardinality of algebraic numbers under
an R-algebra is at most `# R[X] * ℵ₀`.
Although this can be used to prove that real or complex transcendental numbers exist, a more direct
proof is given by `Liouville.is_transcendental`.
-/
universe u v
open Cardinal Polynomial Set
open Cardinal Polynomial
namespace Algebraic
theorem infinite_of_charZero (R A : Type*) [CommRing R] [IsDomain R] [Ring A] [Algebra R A]
[CharZero A] : { x : A | IsAlgebraic R x }.Infinite :=
infinite_of_injective_forall_mem Nat.cast_injective isAlgebraic_nat
theorem aleph0_le_cardinal_mk_of_charZero (R A : Type*) [CommRing R] [IsDomain R] [Ring A]
[Algebra R A] [CharZero A] : ℵ₀ ≤ #{ x : A // IsAlgebraic R x } :=
infinite_iff.1 (Set.infinite_coe_iff.2 <| infinite_of_charZero R A)
section lift
variable (R : Type u) (A : Type v) [CommRing R] [CommRing A] [IsDomain A] [Algebra R A]
[NoZeroSMulDivisors R A]
theorem cardinal_mk_lift_le_mul :
Cardinal.lift.{u} #{ x : A // IsAlgebraic R x } ≤ Cardinal.lift.{v} #R[X] * ℵ₀ := by
rw [← mk_uLift, ← mk_uLift]
choose g hg₁ hg₂ using fun x : { x : A | IsAlgebraic R x } => x.coe_prop
refine lift_mk_le_lift_mk_mul_of_lift_mk_preimage_le g fun f => ?_
rw [lift_le_aleph0, le_aleph0_iff_set_countable]
suffices MapsTo (↑) (g ⁻¹' {f}) (f.rootSet A) from
this.countable_of_injOn Subtype.coe_injective.injOn (f.rootSet_finite A).countable
rintro x (rfl : g x = f)
exact mem_rootSet.2 ⟨hg₁ x, hg₂ x⟩
theorem cardinal_mk_lift_le_max :
Cardinal.lift.{u} #{ x : A // IsAlgebraic R x } ≤ max (Cardinal.lift.{v} #R) ℵ₀ :=
(cardinal_mk_lift_le_mul R A).trans <|
(mul_le_mul_right' (lift_le.2 cardinal_mk_le_max) _).trans <| by simp
@[simp]
theorem cardinal_mk_lift_of_infinite [Infinite R] :
Cardinal.lift.{u} #{ x : A // IsAlgebraic R x } = Cardinal.lift.{v} #R :=
((cardinal_mk_lift_le_max R A).trans_eq (max_eq_left <| aleph0_le_mk _)).antisymm <|
lift_mk_le'.2 ⟨⟨fun x => ⟨algebraMap R A x, isAlgebraic_algebraMap _⟩, fun _ _ h =>
NoZeroSMulDivisors.algebraMap_injective R A (Subtype.ext_iff.1 h)⟩⟩
variable [Countable R]
@[simp]
protected theorem countable : Set.Countable { x : A | IsAlgebraic R x } := by
rw [← le_aleph0_iff_set_countable, ← lift_le_aleph0]
apply (cardinal_mk_lift_le_max R A).trans
simp
@[simp]
theorem cardinal_mk_of_countable_of_charZero [CharZero A] [IsDomain R] :
#{ x : A // IsAlgebraic R x } = ℵ₀ :=
(Algebraic.countable R A).le_aleph0.antisymm (aleph0_le_cardinal_mk_of_charZero R A)
end lift
section NonLift
variable (R A : Type u) [CommRing R] [CommRing A] [IsDomain A] [Algebra R A]
[NoZeroSMulDivisors R A]
theorem cardinal_mk_le_mul : #{ x : A // IsAlgebraic R x } ≤ #R[X] * ℵ₀ := by
rw [← lift_id #_, ← lift_id #R[X]]
exact cardinal_mk_lift_le_mul R A
theorem cardinal_mk_le_max : #{ x : A // IsAlgebraic R x } ≤ max #R ℵ₀ := by
rw [← lift_id #_, ← lift_id #R]
exact cardinal_mk_lift_le_max R A
@[simp]
theorem cardinal_mk_of_infinite [Infinite R] : #{ x : A // IsAlgebraic R x } = #R :=
lift_inj.1 <| cardinal_mk_lift_of_infinite R A
end NonLift
end Algebraic
|
Algebra\Bounds.lean | /-
Copyright (c) 2021 Yury G. Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury G. Kudryashov
-/
import Mathlib.Algebra.Order.Group.OrderIso
import Mathlib.Data.Set.Pointwise.Basic
import Mathlib.Order.Bounds.OrderIso
import Mathlib.Order.ConditionallyCompleteLattice.Basic
import Mathlib.Algebra.Order.Monoid.Unbundled.OrderDual
/-!
# Upper/lower bounds in ordered monoids and groups
In this file we prove a few facts like “`-s` is bounded above iff `s` is bounded below”
(`bddAbove_neg`).
-/
open Function Set
open Pointwise
section InvNeg
variable {G : Type*} [Group G] [Preorder G] [CovariantClass G G (· * ·) (· ≤ ·)]
[CovariantClass G G (swap (· * ·)) (· ≤ ·)] {s : Set G} {a : G}
@[to_additive (attr := simp)]
theorem bddAbove_inv : BddAbove s⁻¹ ↔ BddBelow s :=
(OrderIso.inv G).bddAbove_preimage
@[to_additive (attr := simp)]
theorem bddBelow_inv : BddBelow s⁻¹ ↔ BddAbove s :=
(OrderIso.inv G).bddBelow_preimage
@[to_additive]
theorem BddAbove.inv (h : BddAbove s) : BddBelow s⁻¹ :=
bddBelow_inv.2 h
@[to_additive]
theorem BddBelow.inv (h : BddBelow s) : BddAbove s⁻¹ :=
bddAbove_inv.2 h
@[to_additive (attr := simp)]
theorem isLUB_inv : IsLUB s⁻¹ a ↔ IsGLB s a⁻¹ :=
(OrderIso.inv G).isLUB_preimage
@[to_additive]
theorem isLUB_inv' : IsLUB s⁻¹ a⁻¹ ↔ IsGLB s a :=
(OrderIso.inv G).isLUB_preimage'
@[to_additive]
theorem IsGLB.inv (h : IsGLB s a) : IsLUB s⁻¹ a⁻¹ :=
isLUB_inv'.2 h
@[to_additive (attr := simp)]
theorem isGLB_inv : IsGLB s⁻¹ a ↔ IsLUB s a⁻¹ :=
(OrderIso.inv G).isGLB_preimage
@[to_additive]
theorem isGLB_inv' : IsGLB s⁻¹ a⁻¹ ↔ IsLUB s a :=
(OrderIso.inv G).isGLB_preimage'
@[to_additive]
theorem IsLUB.inv (h : IsLUB s a) : IsGLB s⁻¹ a⁻¹ :=
isGLB_inv'.2 h
@[to_additive]
lemma BddBelow.range_inv {α : Type*} {f : α → G} (hf : BddBelow (range f)) :
BddAbove (range (fun x => (f x)⁻¹)) :=
hf.range_comp (OrderIso.inv G).monotone
@[to_additive]
lemma BddAbove.range_inv {α : Type*} {f : α → G} (hf : BddAbove (range f)) :
BddBelow (range (fun x => (f x)⁻¹)) :=
BddBelow.range_inv (G := Gᵒᵈ) hf
end InvNeg
section mul_add
variable {M : Type*} [Mul M] [Preorder M] [CovariantClass M M (· * ·) (· ≤ ·)]
[CovariantClass M M (swap (· * ·)) (· ≤ ·)]
@[to_additive]
theorem mul_mem_upperBounds_mul {s t : Set M} {a b : M} (ha : a ∈ upperBounds s)
(hb : b ∈ upperBounds t) : a * b ∈ upperBounds (s * t) :=
forall_image2_iff.2 fun _ hx _ hy => mul_le_mul' (ha hx) (hb hy)
@[to_additive]
theorem subset_upperBounds_mul (s t : Set M) :
upperBounds s * upperBounds t ⊆ upperBounds (s * t) :=
image2_subset_iff.2 fun _ hx _ hy => mul_mem_upperBounds_mul hx hy
@[to_additive]
theorem mul_mem_lowerBounds_mul {s t : Set M} {a b : M} (ha : a ∈ lowerBounds s)
(hb : b ∈ lowerBounds t) : a * b ∈ lowerBounds (s * t) :=
mul_mem_upperBounds_mul (M := Mᵒᵈ) ha hb
@[to_additive]
theorem subset_lowerBounds_mul (s t : Set M) :
lowerBounds s * lowerBounds t ⊆ lowerBounds (s * t) :=
subset_upperBounds_mul (M := Mᵒᵈ) _ _
@[to_additive]
theorem BddAbove.mul {s t : Set M} (hs : BddAbove s) (ht : BddAbove t) : BddAbove (s * t) :=
(Nonempty.mul hs ht).mono (subset_upperBounds_mul s t)
@[to_additive]
theorem BddBelow.mul {s t : Set M} (hs : BddBelow s) (ht : BddBelow t) : BddBelow (s * t) :=
(Nonempty.mul hs ht).mono (subset_lowerBounds_mul s t)
@[to_additive]
lemma BddAbove.range_mul {α : Type*} {f g : α → M} (hf : BddAbove (range f))
(hg : BddAbove (range g)) : BddAbove (range (fun x => f x * g x)) :=
BddAbove.range_comp (f := fun x => (⟨f x, g x⟩ : M × M))
(bddAbove_range_prod.mpr ⟨hf, hg⟩) (Monotone.mul' monotone_fst monotone_snd)
@[to_additive]
lemma BddBelow.range_mul {α : Type*} {f g : α → M} (hf : BddBelow (range f))
(hg : BddBelow (range g)) : BddBelow (range (fun x => f x * g x)) :=
BddAbove.range_mul (M := Mᵒᵈ) hf hg
end mul_add
section ConditionallyCompleteLattice
section Right
variable {ι G : Type*} [Group G] [ConditionallyCompleteLattice G]
[CovariantClass G G (Function.swap (· * ·)) (· ≤ ·)] [Nonempty ι] {f : ι → G}
@[to_additive]
theorem ciSup_mul (hf : BddAbove (range f)) (a : G) : (⨆ i, f i) * a = ⨆ i, f i * a :=
(OrderIso.mulRight a).map_ciSup hf
@[to_additive]
theorem ciSup_div (hf : BddAbove (range f)) (a : G) : (⨆ i, f i) / a = ⨆ i, f i / a := by
simp only [div_eq_mul_inv, ciSup_mul hf]
@[to_additive]
theorem ciInf_mul (hf : BddBelow (range f)) (a : G) : (⨅ i, f i) * a = ⨅ i, f i * a :=
(OrderIso.mulRight a).map_ciInf hf
@[to_additive]
theorem ciInf_div (hf : BddBelow (range f)) (a : G) : (⨅ i, f i) / a = ⨅ i, f i / a := by
simp only [div_eq_mul_inv, ciInf_mul hf]
end Right
section Left
variable {ι : Sort*} {G : Type*} [Group G] [ConditionallyCompleteLattice G]
[CovariantClass G G (· * ·) (· ≤ ·)] [Nonempty ι] {f : ι → G}
@[to_additive]
theorem mul_ciSup (hf : BddAbove (range f)) (a : G) : (a * ⨆ i, f i) = ⨆ i, a * f i :=
(OrderIso.mulLeft a).map_ciSup hf
@[to_additive]
theorem mul_ciInf (hf : BddBelow (range f)) (a : G) : (a * ⨅ i, f i) = ⨅ i, a * f i :=
(OrderIso.mulLeft a).map_ciInf hf
end Left
end ConditionallyCompleteLattice
|
Algebra\CubicDiscriminant.lean | /-
Copyright (c) 2022 David Kurniadi Angdinata. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: David Kurniadi Angdinata
-/
import Mathlib.Algebra.Polynomial.Splits
/-!
# Cubics and discriminants
This file defines cubic polynomials over a semiring and their discriminants over a splitting field.
## Main definitions
* `Cubic`: the structure representing a cubic polynomial.
* `Cubic.disc`: the discriminant of a cubic polynomial.
## Main statements
* `Cubic.disc_ne_zero_iff_roots_nodup`: the cubic discriminant is not equal to zero if and only if
the cubic has no duplicate roots.
## References
* https://en.wikipedia.org/wiki/Cubic_equation
* https://en.wikipedia.org/wiki/Discriminant
## Tags
cubic, discriminant, polynomial, root
-/
noncomputable section
/-- The structure representing a cubic polynomial. -/
@[ext]
structure Cubic (R : Type*) where
(a b c d : R)
namespace Cubic
open Cubic Polynomial
open Polynomial
variable {R S F K : Type*}
instance [Inhabited R] : Inhabited (Cubic R) :=
⟨⟨default, default, default, default⟩⟩
instance [Zero R] : Zero (Cubic R) :=
⟨⟨0, 0, 0, 0⟩⟩
section Basic
variable {P Q : Cubic R} {a b c d a' b' c' d' : R} [Semiring R]
/-- Convert a cubic polynomial to a polynomial. -/
def toPoly (P : Cubic R) : R[X] :=
C P.a * X ^ 3 + C P.b * X ^ 2 + C P.c * X + C P.d
theorem C_mul_prod_X_sub_C_eq [CommRing S] {w x y z : S} :
C w * (X - C x) * (X - C y) * (X - C z) =
toPoly ⟨w, w * -(x + y + z), w * (x * y + x * z + y * z), w * -(x * y * z)⟩ := by
simp only [toPoly, C_neg, C_add, C_mul]
ring1
theorem prod_X_sub_C_eq [CommRing S] {x y z : S} :
(X - C x) * (X - C y) * (X - C z) =
toPoly ⟨1, -(x + y + z), x * y + x * z + y * z, -(x * y * z)⟩ := by
rw [← one_mul <| X - C x, ← C_1, C_mul_prod_X_sub_C_eq, one_mul, one_mul, one_mul]
/-! ### Coefficients -/
section Coeff
private theorem coeffs : (∀ n > 3, P.toPoly.coeff n = 0) ∧ P.toPoly.coeff 3 = P.a ∧
P.toPoly.coeff 2 = P.b ∧ P.toPoly.coeff 1 = P.c ∧ P.toPoly.coeff 0 = P.d := by
simp only [toPoly, coeff_add, coeff_C, coeff_C_mul_X, coeff_C_mul_X_pow]
norm_num
intro n hn
repeat' rw [if_neg]
any_goals linarith only [hn]
repeat' rw [zero_add]
@[simp]
theorem coeff_eq_zero {n : ℕ} (hn : 3 < n) : P.toPoly.coeff n = 0 :=
coeffs.1 n hn
@[simp]
theorem coeff_eq_a : P.toPoly.coeff 3 = P.a :=
coeffs.2.1
@[simp]
theorem coeff_eq_b : P.toPoly.coeff 2 = P.b :=
coeffs.2.2.1
@[simp]
theorem coeff_eq_c : P.toPoly.coeff 1 = P.c :=
coeffs.2.2.2.1
@[simp]
theorem coeff_eq_d : P.toPoly.coeff 0 = P.d :=
coeffs.2.2.2.2
theorem a_of_eq (h : P.toPoly = Q.toPoly) : P.a = Q.a := by rw [← coeff_eq_a, h, coeff_eq_a]
theorem b_of_eq (h : P.toPoly = Q.toPoly) : P.b = Q.b := by rw [← coeff_eq_b, h, coeff_eq_b]
theorem c_of_eq (h : P.toPoly = Q.toPoly) : P.c = Q.c := by rw [← coeff_eq_c, h, coeff_eq_c]
theorem d_of_eq (h : P.toPoly = Q.toPoly) : P.d = Q.d := by rw [← coeff_eq_d, h, coeff_eq_d]
theorem toPoly_injective (P Q : Cubic R) : P.toPoly = Q.toPoly ↔ P = Q :=
⟨fun h ↦ Cubic.ext (a_of_eq h) (b_of_eq h) (c_of_eq h) (d_of_eq h), congr_arg toPoly⟩
theorem of_a_eq_zero (ha : P.a = 0) : P.toPoly = C P.b * X ^ 2 + C P.c * X + C P.d := by
rw [toPoly, ha, C_0, zero_mul, zero_add]
theorem of_a_eq_zero' : toPoly ⟨0, b, c, d⟩ = C b * X ^ 2 + C c * X + C d :=
of_a_eq_zero rfl
theorem of_b_eq_zero (ha : P.a = 0) (hb : P.b = 0) : P.toPoly = C P.c * X + C P.d := by
rw [of_a_eq_zero ha, hb, C_0, zero_mul, zero_add]
theorem of_b_eq_zero' : toPoly ⟨0, 0, c, d⟩ = C c * X + C d :=
of_b_eq_zero rfl rfl
theorem of_c_eq_zero (ha : P.a = 0) (hb : P.b = 0) (hc : P.c = 0) : P.toPoly = C P.d := by
rw [of_b_eq_zero ha hb, hc, C_0, zero_mul, zero_add]
theorem of_c_eq_zero' : toPoly ⟨0, 0, 0, d⟩ = C d :=
of_c_eq_zero rfl rfl rfl
theorem of_d_eq_zero (ha : P.a = 0) (hb : P.b = 0) (hc : P.c = 0) (hd : P.d = 0) :
P.toPoly = 0 := by
rw [of_c_eq_zero ha hb hc, hd, C_0]
theorem of_d_eq_zero' : (⟨0, 0, 0, 0⟩ : Cubic R).toPoly = 0 :=
of_d_eq_zero rfl rfl rfl rfl
theorem zero : (0 : Cubic R).toPoly = 0 :=
of_d_eq_zero'
theorem toPoly_eq_zero_iff (P : Cubic R) : P.toPoly = 0 ↔ P = 0 := by
rw [← zero, toPoly_injective]
private theorem ne_zero (h0 : P.a ≠ 0 ∨ P.b ≠ 0 ∨ P.c ≠ 0 ∨ P.d ≠ 0) : P.toPoly ≠ 0 := by
contrapose! h0
rw [(toPoly_eq_zero_iff P).mp h0]
exact ⟨rfl, rfl, rfl, rfl⟩
theorem ne_zero_of_a_ne_zero (ha : P.a ≠ 0) : P.toPoly ≠ 0 :=
(or_imp.mp ne_zero).1 ha
theorem ne_zero_of_b_ne_zero (hb : P.b ≠ 0) : P.toPoly ≠ 0 :=
(or_imp.mp (or_imp.mp ne_zero).2).1 hb
theorem ne_zero_of_c_ne_zero (hc : P.c ≠ 0) : P.toPoly ≠ 0 :=
(or_imp.mp (or_imp.mp (or_imp.mp ne_zero).2).2).1 hc
theorem ne_zero_of_d_ne_zero (hd : P.d ≠ 0) : P.toPoly ≠ 0 :=
(or_imp.mp (or_imp.mp (or_imp.mp ne_zero).2).2).2 hd
@[simp]
theorem leadingCoeff_of_a_ne_zero (ha : P.a ≠ 0) : P.toPoly.leadingCoeff = P.a :=
leadingCoeff_cubic ha
@[simp]
theorem leadingCoeff_of_a_ne_zero' (ha : a ≠ 0) : (toPoly ⟨a, b, c, d⟩).leadingCoeff = a :=
leadingCoeff_of_a_ne_zero ha
@[simp]
theorem leadingCoeff_of_b_ne_zero (ha : P.a = 0) (hb : P.b ≠ 0) : P.toPoly.leadingCoeff = P.b := by
rw [of_a_eq_zero ha, leadingCoeff_quadratic hb]
@[simp]
theorem leadingCoeff_of_b_ne_zero' (hb : b ≠ 0) : (toPoly ⟨0, b, c, d⟩).leadingCoeff = b :=
leadingCoeff_of_b_ne_zero rfl hb
@[simp]
theorem leadingCoeff_of_c_ne_zero (ha : P.a = 0) (hb : P.b = 0) (hc : P.c ≠ 0) :
P.toPoly.leadingCoeff = P.c := by
rw [of_b_eq_zero ha hb, leadingCoeff_linear hc]
@[simp]
theorem leadingCoeff_of_c_ne_zero' (hc : c ≠ 0) : (toPoly ⟨0, 0, c, d⟩).leadingCoeff = c :=
leadingCoeff_of_c_ne_zero rfl rfl hc
@[simp]
theorem leadingCoeff_of_c_eq_zero (ha : P.a = 0) (hb : P.b = 0) (hc : P.c = 0) :
P.toPoly.leadingCoeff = P.d := by
rw [of_c_eq_zero ha hb hc, leadingCoeff_C]
-- @[simp] -- porting note (#10618): simp can prove this
theorem leadingCoeff_of_c_eq_zero' : (toPoly ⟨0, 0, 0, d⟩).leadingCoeff = d :=
leadingCoeff_of_c_eq_zero rfl rfl rfl
theorem monic_of_a_eq_one (ha : P.a = 1) : P.toPoly.Monic := by
nontriviality R
rw [Monic, leadingCoeff_of_a_ne_zero (ha ▸ one_ne_zero), ha]
theorem monic_of_a_eq_one' : (toPoly ⟨1, b, c, d⟩).Monic :=
monic_of_a_eq_one rfl
theorem monic_of_b_eq_one (ha : P.a = 0) (hb : P.b = 1) : P.toPoly.Monic := by
nontriviality R
rw [Monic, leadingCoeff_of_b_ne_zero ha (hb ▸ one_ne_zero), hb]
theorem monic_of_b_eq_one' : (toPoly ⟨0, 1, c, d⟩).Monic :=
monic_of_b_eq_one rfl rfl
theorem monic_of_c_eq_one (ha : P.a = 0) (hb : P.b = 0) (hc : P.c = 1) : P.toPoly.Monic := by
nontriviality R
rw [Monic, leadingCoeff_of_c_ne_zero ha hb (hc ▸ one_ne_zero), hc]
theorem monic_of_c_eq_one' : (toPoly ⟨0, 0, 1, d⟩).Monic :=
monic_of_c_eq_one rfl rfl rfl
theorem monic_of_d_eq_one (ha : P.a = 0) (hb : P.b = 0) (hc : P.c = 0) (hd : P.d = 1) :
P.toPoly.Monic := by
rw [Monic, leadingCoeff_of_c_eq_zero ha hb hc, hd]
theorem monic_of_d_eq_one' : (toPoly ⟨0, 0, 0, 1⟩).Monic :=
monic_of_d_eq_one rfl rfl rfl rfl
end Coeff
/-! ### Degrees -/
section Degree
/-- The equivalence between cubic polynomials and polynomials of degree at most three. -/
@[simps]
def equiv : Cubic R ≃ { p : R[X] // p.degree ≤ 3 } where
toFun P := ⟨P.toPoly, degree_cubic_le⟩
invFun f := ⟨coeff f 3, coeff f 2, coeff f 1, coeff f 0⟩
left_inv P := by ext <;> simp only [Subtype.coe_mk, coeffs]
right_inv f := by
-- Porting note: Added `simp only [Nat.zero_eq, Nat.succ_eq_add_one] <;> ring_nf`
-- There's probably a better way to do this.
ext (_ | _ | _ | _ | n) <;> simp only [Nat.zero_eq, Nat.succ_eq_add_one] <;> ring_nf
<;> try simp only [coeffs]
have h3 : 3 < 4 + n := by linarith only
rw [coeff_eq_zero h3,
(degree_le_iff_coeff_zero (f : R[X]) 3).mp f.2 _ <| WithBot.coe_lt_coe.mpr (by exact h3)]
@[simp]
theorem degree_of_a_ne_zero (ha : P.a ≠ 0) : P.toPoly.degree = 3 :=
degree_cubic ha
@[simp]
theorem degree_of_a_ne_zero' (ha : a ≠ 0) : (toPoly ⟨a, b, c, d⟩).degree = 3 :=
degree_of_a_ne_zero ha
theorem degree_of_a_eq_zero (ha : P.a = 0) : P.toPoly.degree ≤ 2 := by
simpa only [of_a_eq_zero ha] using degree_quadratic_le
theorem degree_of_a_eq_zero' : (toPoly ⟨0, b, c, d⟩).degree ≤ 2 :=
degree_of_a_eq_zero rfl
@[simp]
theorem degree_of_b_ne_zero (ha : P.a = 0) (hb : P.b ≠ 0) : P.toPoly.degree = 2 := by
rw [of_a_eq_zero ha, degree_quadratic hb]
@[simp]
theorem degree_of_b_ne_zero' (hb : b ≠ 0) : (toPoly ⟨0, b, c, d⟩).degree = 2 :=
degree_of_b_ne_zero rfl hb
theorem degree_of_b_eq_zero (ha : P.a = 0) (hb : P.b = 0) : P.toPoly.degree ≤ 1 := by
simpa only [of_b_eq_zero ha hb] using degree_linear_le
theorem degree_of_b_eq_zero' : (toPoly ⟨0, 0, c, d⟩).degree ≤ 1 :=
degree_of_b_eq_zero rfl rfl
@[simp]
theorem degree_of_c_ne_zero (ha : P.a = 0) (hb : P.b = 0) (hc : P.c ≠ 0) : P.toPoly.degree = 1 := by
rw [of_b_eq_zero ha hb, degree_linear hc]
@[simp]
theorem degree_of_c_ne_zero' (hc : c ≠ 0) : (toPoly ⟨0, 0, c, d⟩).degree = 1 :=
degree_of_c_ne_zero rfl rfl hc
theorem degree_of_c_eq_zero (ha : P.a = 0) (hb : P.b = 0) (hc : P.c = 0) : P.toPoly.degree ≤ 0 := by
simpa only [of_c_eq_zero ha hb hc] using degree_C_le
theorem degree_of_c_eq_zero' : (toPoly ⟨0, 0, 0, d⟩).degree ≤ 0 :=
degree_of_c_eq_zero rfl rfl rfl
@[simp]
theorem degree_of_d_ne_zero (ha : P.a = 0) (hb : P.b = 0) (hc : P.c = 0) (hd : P.d ≠ 0) :
P.toPoly.degree = 0 := by
rw [of_c_eq_zero ha hb hc, degree_C hd]
@[simp]
theorem degree_of_d_ne_zero' (hd : d ≠ 0) : (toPoly ⟨0, 0, 0, d⟩).degree = 0 :=
degree_of_d_ne_zero rfl rfl rfl hd
@[simp]
theorem degree_of_d_eq_zero (ha : P.a = 0) (hb : P.b = 0) (hc : P.c = 0) (hd : P.d = 0) :
P.toPoly.degree = ⊥ := by
rw [of_d_eq_zero ha hb hc hd, degree_zero]
-- @[simp] -- porting note (#10618): simp can prove this
theorem degree_of_d_eq_zero' : (⟨0, 0, 0, 0⟩ : Cubic R).toPoly.degree = ⊥ :=
degree_of_d_eq_zero rfl rfl rfl rfl
@[simp]
theorem degree_of_zero : (0 : Cubic R).toPoly.degree = ⊥ :=
degree_of_d_eq_zero'
@[simp]
theorem natDegree_of_a_ne_zero (ha : P.a ≠ 0) : P.toPoly.natDegree = 3 :=
natDegree_cubic ha
@[simp]
theorem natDegree_of_a_ne_zero' (ha : a ≠ 0) : (toPoly ⟨a, b, c, d⟩).natDegree = 3 :=
natDegree_of_a_ne_zero ha
theorem natDegree_of_a_eq_zero (ha : P.a = 0) : P.toPoly.natDegree ≤ 2 := by
simpa only [of_a_eq_zero ha] using natDegree_quadratic_le
theorem natDegree_of_a_eq_zero' : (toPoly ⟨0, b, c, d⟩).natDegree ≤ 2 :=
natDegree_of_a_eq_zero rfl
@[simp]
theorem natDegree_of_b_ne_zero (ha : P.a = 0) (hb : P.b ≠ 0) : P.toPoly.natDegree = 2 := by
rw [of_a_eq_zero ha, natDegree_quadratic hb]
@[simp]
theorem natDegree_of_b_ne_zero' (hb : b ≠ 0) : (toPoly ⟨0, b, c, d⟩).natDegree = 2 :=
natDegree_of_b_ne_zero rfl hb
theorem natDegree_of_b_eq_zero (ha : P.a = 0) (hb : P.b = 0) : P.toPoly.natDegree ≤ 1 := by
simpa only [of_b_eq_zero ha hb] using natDegree_linear_le
theorem natDegree_of_b_eq_zero' : (toPoly ⟨0, 0, c, d⟩).natDegree ≤ 1 :=
natDegree_of_b_eq_zero rfl rfl
@[simp]
theorem natDegree_of_c_ne_zero (ha : P.a = 0) (hb : P.b = 0) (hc : P.c ≠ 0) :
P.toPoly.natDegree = 1 := by
rw [of_b_eq_zero ha hb, natDegree_linear hc]
@[simp]
theorem natDegree_of_c_ne_zero' (hc : c ≠ 0) : (toPoly ⟨0, 0, c, d⟩).natDegree = 1 :=
natDegree_of_c_ne_zero rfl rfl hc
@[simp]
theorem natDegree_of_c_eq_zero (ha : P.a = 0) (hb : P.b = 0) (hc : P.c = 0) :
P.toPoly.natDegree = 0 := by
rw [of_c_eq_zero ha hb hc, natDegree_C]
-- @[simp] -- porting note (#10618): simp can prove this
theorem natDegree_of_c_eq_zero' : (toPoly ⟨0, 0, 0, d⟩).natDegree = 0 :=
natDegree_of_c_eq_zero rfl rfl rfl
@[simp]
theorem natDegree_of_zero : (0 : Cubic R).toPoly.natDegree = 0 :=
natDegree_of_c_eq_zero'
end Degree
/-! ### Map across a homomorphism -/
section Map
variable [Semiring S] {φ : R →+* S}
/-- Map a cubic polynomial across a semiring homomorphism. -/
def map (φ : R →+* S) (P : Cubic R) : Cubic S :=
⟨φ P.a, φ P.b, φ P.c, φ P.d⟩
theorem map_toPoly : (map φ P).toPoly = Polynomial.map φ P.toPoly := by
simp only [map, toPoly, map_C, map_X, Polynomial.map_add, Polynomial.map_mul, Polynomial.map_pow]
end Map
end Basic
section Roots
open Multiset
/-! ### Roots over an extension -/
section Extension
variable {P : Cubic R} [CommRing R] [CommRing S] {φ : R →+* S}
/-- The roots of a cubic polynomial. -/
def roots [IsDomain R] (P : Cubic R) : Multiset R :=
P.toPoly.roots
theorem map_roots [IsDomain S] : (map φ P).roots = (Polynomial.map φ P.toPoly).roots := by
rw [roots, map_toPoly]
theorem mem_roots_iff [IsDomain R] (h0 : P.toPoly ≠ 0) (x : R) :
x ∈ P.roots ↔ P.a * x ^ 3 + P.b * x ^ 2 + P.c * x + P.d = 0 := by
rw [roots, mem_roots h0, IsRoot, toPoly]
simp only [eval_C, eval_X, eval_add, eval_mul, eval_pow]
theorem card_roots_le [IsDomain R] [DecidableEq R] : P.roots.toFinset.card ≤ 3 := by
apply (toFinset_card_le P.toPoly.roots).trans
by_cases hP : P.toPoly = 0
· exact (card_roots' P.toPoly).trans (by rw [hP, natDegree_zero]; exact zero_le 3)
· exact WithBot.coe_le_coe.1 ((card_roots hP).trans degree_cubic_le)
end Extension
variable {P : Cubic F} [Field F] [Field K] {φ : F →+* K} {x y z : K}
/-! ### Roots over a splitting field -/
section Split
theorem splits_iff_card_roots (ha : P.a ≠ 0) :
Splits φ P.toPoly ↔ Multiset.card (map φ P).roots = 3 := by
replace ha : (map φ P).a ≠ 0 := (_root_.map_ne_zero φ).mpr ha
nth_rw 1 [← RingHom.id_comp φ]
rw [roots, ← splits_map_iff, ← map_toPoly, Polynomial.splits_iff_card_roots,
← ((degree_eq_iff_natDegree_eq <| ne_zero_of_a_ne_zero ha).1 <| degree_of_a_ne_zero ha : _ = 3)]
theorem splits_iff_roots_eq_three (ha : P.a ≠ 0) :
Splits φ P.toPoly ↔ ∃ x y z : K, (map φ P).roots = {x, y, z} := by
rw [splits_iff_card_roots ha, card_eq_three]
theorem eq_prod_three_roots (ha : P.a ≠ 0) (h3 : (map φ P).roots = {x, y, z}) :
(map φ P).toPoly = C (φ P.a) * (X - C x) * (X - C y) * (X - C z) := by
rw [map_toPoly,
eq_prod_roots_of_splits <|
(splits_iff_roots_eq_three ha).mpr <| Exists.intro x <| Exists.intro y <| Exists.intro z h3,
leadingCoeff_of_a_ne_zero ha, ← map_roots, h3]
change C (φ P.a) * ((X - C x) ::ₘ (X - C y) ::ₘ {X - C z}).prod = _
rw [prod_cons, prod_cons, prod_singleton, mul_assoc, mul_assoc]
theorem eq_sum_three_roots (ha : P.a ≠ 0) (h3 : (map φ P).roots = {x, y, z}) :
map φ P =
⟨φ P.a, φ P.a * -(x + y + z), φ P.a * (x * y + x * z + y * z), φ P.a * -(x * y * z)⟩ := by
apply_fun @toPoly _ _
· rw [eq_prod_three_roots ha h3, C_mul_prod_X_sub_C_eq]
· exact fun P Q ↦ (toPoly_injective P Q).mp
theorem b_eq_three_roots (ha : P.a ≠ 0) (h3 : (map φ P).roots = {x, y, z}) :
φ P.b = φ P.a * -(x + y + z) := by
injection eq_sum_three_roots ha h3
theorem c_eq_three_roots (ha : P.a ≠ 0) (h3 : (map φ P).roots = {x, y, z}) :
φ P.c = φ P.a * (x * y + x * z + y * z) := by
injection eq_sum_three_roots ha h3
theorem d_eq_three_roots (ha : P.a ≠ 0) (h3 : (map φ P).roots = {x, y, z}) :
φ P.d = φ P.a * -(x * y * z) := by
injection eq_sum_three_roots ha h3
end Split
/-! ### Discriminant over a splitting field -/
section Discriminant
/-- The discriminant of a cubic polynomial. -/
def disc {R : Type*} [Ring R] (P : Cubic R) : R :=
P.b ^ 2 * P.c ^ 2 - 4 * P.a * P.c ^ 3 - 4 * P.b ^ 3 * P.d - 27 * P.a ^ 2 * P.d ^ 2 +
18 * P.a * P.b * P.c * P.d
theorem disc_eq_prod_three_roots (ha : P.a ≠ 0) (h3 : (map φ P).roots = {x, y, z}) :
φ P.disc = (φ P.a * φ P.a * (x - y) * (x - z) * (y - z)) ^ 2 := by
simp only [disc, RingHom.map_add, RingHom.map_sub, RingHom.map_mul, map_pow]
-- Porting note: Replaced `simp only [RingHom.map_one, map_bit0, map_bit1]` with f4, f18, f27
have f4 : φ 4 = 4 := map_natCast φ 4
have f18 : φ 18 = 18 := map_natCast φ 18
have f27 : φ 27 = 27 := map_natCast φ 27
rw [f4, f18, f27, b_eq_three_roots ha h3, c_eq_three_roots ha h3, d_eq_three_roots ha h3]
ring1
theorem disc_ne_zero_iff_roots_ne (ha : P.a ≠ 0) (h3 : (map φ P).roots = {x, y, z}) :
P.disc ≠ 0 ↔ x ≠ y ∧ x ≠ z ∧ y ≠ z := by
rw [← _root_.map_ne_zero φ, disc_eq_prod_three_roots ha h3, pow_two]
simp_rw [mul_ne_zero_iff, sub_ne_zero, _root_.map_ne_zero, and_self_iff, and_iff_right ha,
and_assoc]
theorem disc_ne_zero_iff_roots_nodup (ha : P.a ≠ 0) (h3 : (map φ P).roots = {x, y, z}) :
P.disc ≠ 0 ↔ (map φ P).roots.Nodup := by
rw [disc_ne_zero_iff_roots_ne ha h3, h3]
change _ ↔ (x ::ₘ y ::ₘ {z}).Nodup
rw [nodup_cons, nodup_cons, mem_cons, mem_singleton, mem_singleton]
simp only [nodup_singleton]
tauto
theorem card_roots_of_disc_ne_zero [DecidableEq K] (ha : P.a ≠ 0) (h3 : (map φ P).roots = {x, y, z})
(hd : P.disc ≠ 0) : (map φ P).roots.toFinset.card = 3 := by
rw [toFinset_card_of_nodup <| (disc_ne_zero_iff_roots_nodup ha h3).mp hd,
← splits_iff_card_roots ha, splits_iff_roots_eq_three ha]
exact ⟨x, ⟨y, ⟨z, h3⟩⟩⟩
end Discriminant
end Roots
end Cubic
|
Algebra\DirectLimit.lean | /-
Copyright (c) 2019 Kenny Lau, Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Chris Hughes, Jujian Zhang
-/
import Mathlib.Data.Finset.Order
import Mathlib.Algebra.DirectSum.Module
import Mathlib.RingTheory.FreeCommRing
import Mathlib.RingTheory.Ideal.Maps
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.Tactic.SuppressCompilation
/-!
# Direct limit of modules, abelian groups, rings, and fields.
See Atiyah-Macdonald PP.32-33, Matsumura PP.269-270
Generalizes the notion of "union", or "gluing", of incomparable modules over the same ring,
or incomparable abelian groups, or rings, or fields.
It is constructed as a quotient of the free module (for the module case) or quotient of
the free commutative ring (for the ring case) instead of a quotient of the disjoint union
so as to make the operations (addition etc.) "computable".
## Main definitions
* `DirectedSystem f`
* `Module.DirectLimit G f`
* `AddCommGroup.DirectLimit G f`
* `Ring.DirectLimit G f`
-/
suppress_compilation
universe u v v' v'' w u₁
open Submodule
variable {R : Type u} [Ring R]
variable {ι : Type v}
variable [Preorder ι]
variable (G : ι → Type w)
/-- A directed system is a functor from a category (directed poset) to another category. -/
class DirectedSystem (f : ∀ i j, i ≤ j → G i → G j) : Prop where
map_self' : ∀ i x h, f i i h x = x
map_map' : ∀ {i j k} (hij hjk x), f j k hjk (f i j hij x) = f i k (le_trans hij hjk) x
section
variable {G}
variable (f : ∀ i j, i ≤ j → G i → G j) [DirectedSystem G fun i j h => f i j h]
theorem DirectedSystem.map_self i x h : f i i h x = x :=
DirectedSystem.map_self' i x h
theorem DirectedSystem.map_map {i j k} (hij hjk x) :
f j k hjk (f i j hij x) = f i k (le_trans hij hjk) x :=
DirectedSystem.map_map' hij hjk x
end
namespace Module
variable [∀ i, AddCommGroup (G i)] [∀ i, Module R (G i)]
variable {G}
variable (f : ∀ i j, i ≤ j → G i →ₗ[R] G j)
/-- A copy of `DirectedSystem.map_self` specialized to linear maps, as otherwise the
`fun i j h ↦ f i j h` can confuse the simplifier. -/
nonrec theorem DirectedSystem.map_self [DirectedSystem G fun i j h => f i j h] (i x h) :
f i i h x = x :=
DirectedSystem.map_self (fun i j h => f i j h) i x h
/-- A copy of `DirectedSystem.map_map` specialized to linear maps, as otherwise the
`fun i j h ↦ f i j h` can confuse the simplifier. -/
nonrec theorem DirectedSystem.map_map [DirectedSystem G fun i j h => f i j h] {i j k} (hij hjk x) :
f j k hjk (f i j hij x) = f i k (le_trans hij hjk) x :=
DirectedSystem.map_map (fun i j h => f i j h) hij hjk x
variable (G)
/-- The direct limit of a directed system is the modules glued together along the maps. -/
def DirectLimit [DecidableEq ι] : Type max v w :=
DirectSum ι G ⧸
(span R <|
{ a |
∃ (i j : _) (H : i ≤ j) (x : _),
DirectSum.lof R ι G i x - DirectSum.lof R ι G j (f i j H x) = a })
namespace DirectLimit
section Basic
variable [DecidableEq ι]
instance addCommGroup : AddCommGroup (DirectLimit G f) :=
Quotient.addCommGroup _
instance module : Module R (DirectLimit G f) :=
Quotient.module _
instance inhabited : Inhabited (DirectLimit G f) :=
⟨0⟩
instance unique [IsEmpty ι] : Unique (DirectLimit G f) :=
inferInstanceAs <| Unique (Quotient _)
variable (R ι)
/-- The canonical map from a component to the direct limit. -/
def of (i) : G i →ₗ[R] DirectLimit G f :=
(mkQ _).comp <| DirectSum.lof R ι G i
variable {R ι G f}
@[simp]
theorem of_f {i j hij x} : of R ι G f j (f i j hij x) = of R ι G f i x :=
Eq.symm <| (Submodule.Quotient.eq _).2 <| subset_span ⟨i, j, hij, x, rfl⟩
/-- Every element of the direct limit corresponds to some element in
some component of the directed system. -/
theorem exists_of [Nonempty ι] [IsDirected ι (· ≤ ·)] (z : DirectLimit G f) :
∃ i x, of R ι G f i x = z :=
Nonempty.elim (by infer_instance) fun ind : ι =>
Quotient.inductionOn' z fun z =>
DirectSum.induction_on z ⟨ind, 0, LinearMap.map_zero _⟩ (fun i x => ⟨i, x, rfl⟩)
fun p q ⟨i, x, ihx⟩ ⟨j, y, ihy⟩ =>
let ⟨k, hik, hjk⟩ := exists_ge_ge i j
⟨k, f i k hik x + f j k hjk y, by
rw [LinearMap.map_add, of_f, of_f, ihx, ihy]
rfl ⟩
@[elab_as_elim]
protected theorem induction_on [Nonempty ι] [IsDirected ι (· ≤ ·)] {C : DirectLimit G f → Prop}
(z : DirectLimit G f) (ih : ∀ i x, C (of R ι G f i x)) : C z :=
let ⟨i, x, h⟩ := exists_of z
h ▸ ih i x
variable {P : Type u₁} [AddCommGroup P] [Module R P] (g : ∀ i, G i →ₗ[R] P)
variable (Hg : ∀ i j hij x, g j (f i j hij x) = g i x)
variable (R ι G f)
/-- The universal property of the direct limit: maps from the components to another module
that respect the directed system structure (i.e. make some diagram commute) give rise
to a unique map out of the direct limit. -/
def lift : DirectLimit G f →ₗ[R] P :=
liftQ _ (DirectSum.toModule R ι P g)
(span_le.2 fun a ⟨i, j, hij, x, hx⟩ => by
rw [← hx, SetLike.mem_coe, LinearMap.sub_mem_ker_iff, DirectSum.toModule_lof,
DirectSum.toModule_lof, Hg])
variable {R ι G f}
theorem lift_of {i} (x) : lift R ι G f g Hg (of R ι G f i x) = g i x :=
DirectSum.toModule_lof R _ _
theorem lift_unique [IsDirected ι (· ≤ ·)] (F : DirectLimit G f →ₗ[R] P) (x) :
F x =
lift R ι G f (fun i => F.comp <| of R ι G f i)
(fun i j hij x => by rw [LinearMap.comp_apply, of_f]; rfl) x := by
cases isEmpty_or_nonempty ι
· simp_rw [Subsingleton.elim x 0, _root_.map_zero]
· exact DirectLimit.induction_on x fun i x => by rw [lift_of]; rfl
lemma lift_injective [IsDirected ι (· ≤ ·)]
(injective : ∀ i, Function.Injective <| g i) :
Function.Injective (lift R ι G f g Hg) := by
cases isEmpty_or_nonempty ι
· apply Function.injective_of_subsingleton
simp_rw [injective_iff_map_eq_zero] at injective ⊢
intros z hz
induction' z using DirectLimit.induction_on with _ g
rw [lift_of] at hz
rw [injective _ g hz, _root_.map_zero]
section functorial
variable {G' : ι → Type v'} [∀ i, AddCommGroup (G' i)] [∀ i, Module R (G' i)]
variable {f' : ∀ i j, i ≤ j → G' i →ₗ[R] G' j}
variable {G'' : ι → Type v''} [∀ i, AddCommGroup (G'' i)] [∀ i, Module R (G'' i)]
variable {f'' : ∀ i j, i ≤ j → G'' i →ₗ[R] G'' j}
/--
Consider direct limits `lim G` and `lim G'` with direct system `f` and `f'` respectively, any
family of linear maps `gᵢ : Gᵢ ⟶ G'ᵢ` such that `g ∘ f = f' ∘ g` induces a linear map
`lim G ⟶ lim G'`.
-/
def map (g : (i : ι) → G i →ₗ[R] G' i) (hg : ∀ i j h, g j ∘ₗ f i j h = f' i j h ∘ₗ g i) :
DirectLimit G f →ₗ[R] DirectLimit G' f' :=
lift _ _ _ _ (fun i ↦ of _ _ _ _ _ ∘ₗ g i) fun i j h g ↦ by
cases isEmpty_or_nonempty ι
· subsingleton
· have eq1 := LinearMap.congr_fun (hg i j h) g
simp only [LinearMap.coe_comp, Function.comp_apply] at eq1 ⊢
rw [eq1, of_f]
@[simp] lemma map_apply_of (g : (i : ι) → G i →ₗ[R] G' i)
(hg : ∀ i j h, g j ∘ₗ f i j h = f' i j h ∘ₗ g i)
{i : ι} (x : G i) :
map g hg (of _ _ G f _ x) = of R ι G' f' i (g i x) :=
lift_of _ _ _
@[simp] lemma map_id [IsDirected ι (· ≤ ·)] :
map (fun i ↦ LinearMap.id) (fun _ _ _ ↦ rfl) = LinearMap.id (R := R) (M := DirectLimit G f) :=
DFunLike.ext _ _ fun x ↦ (isEmpty_or_nonempty ι).elim (by subsingleton) fun _ ↦
x.induction_on fun i g ↦ by simp
lemma map_comp [IsDirected ι (· ≤ ·)]
(g₁ : (i : ι) → G i →ₗ[R] G' i) (g₂ : (i : ι) → G' i →ₗ[R] G'' i)
(hg₁ : ∀ i j h, g₁ j ∘ₗ f i j h = f' i j h ∘ₗ g₁ i)
(hg₂ : ∀ i j h, g₂ j ∘ₗ f' i j h = f'' i j h ∘ₗ g₂ i) :
(map g₂ hg₂ ∘ₗ map g₁ hg₁ :
DirectLimit G f →ₗ[R] DirectLimit G'' f'') =
(map (fun i ↦ g₂ i ∘ₗ g₁ i) fun i j h ↦ by
rw [LinearMap.comp_assoc, hg₁ i, ← LinearMap.comp_assoc, hg₂ i, LinearMap.comp_assoc] :
DirectLimit G f →ₗ[R] DirectLimit G'' f'') :=
DFunLike.ext _ _ fun x ↦ (isEmpty_or_nonempty ι).elim (by subsingleton) fun _ ↦
x.induction_on fun i g ↦ by simp
open LinearEquiv LinearMap in
/--
Consider direct limits `lim G` and `lim G'` with direct system `f` and `f'` respectively, any
family of equivalences `eᵢ : Gᵢ ≅ G'ᵢ` such that `e ∘ f = f' ∘ e` induces an equivalence
`lim G ≅ lim G'`.
-/
def congr [IsDirected ι (· ≤ ·)]
(e : (i : ι) → G i ≃ₗ[R] G' i) (he : ∀ i j h, e j ∘ₗ f i j h = f' i j h ∘ₗ e i) :
DirectLimit G f ≃ₗ[R] DirectLimit G' f' :=
LinearEquiv.ofLinear (map (e ·) he)
(map (fun i ↦ (e i).symm) fun i j h ↦ by
rw [toLinearMap_symm_comp_eq, ← comp_assoc, he i, comp_assoc, comp_coe, symm_trans_self,
refl_toLinearMap, comp_id])
(by simp [map_comp]) (by simp [map_comp])
lemma congr_apply_of [IsDirected ι (· ≤ ·)]
(e : (i : ι) → G i ≃ₗ[R] G' i) (he : ∀ i j h, e j ∘ₗ f i j h = f' i j h ∘ₗ e i)
{i : ι} (g : G i) :
congr e he (of _ _ G f i g) = of _ _ G' f' i (e i g) :=
map_apply_of _ he _
open LinearEquiv LinearMap in
lemma congr_symm_apply_of [IsDirected ι (· ≤ ·)]
(e : (i : ι) → G i ≃ₗ[R] G' i) (he : ∀ i j h, e j ∘ₗ f i j h = f' i j h ∘ₗ e i)
{i : ι} (g : G' i) :
(congr e he).symm (of _ _ G' f' i g) = of _ _ G f i ((e i).symm g) :=
map_apply_of _ (fun i j h ↦ by
rw [toLinearMap_symm_comp_eq, ← comp_assoc, he i, comp_assoc, comp_coe, symm_trans_self,
refl_toLinearMap, comp_id]) _
end functorial
end Basic
section Totalize
open Classical in
/-- `totalize G f i j` is a linear map from `G i` to `G j`, for *every* `i` and `j`.
If `i ≤ j`, then it is the map `f i j` that comes with the directed system `G`,
and otherwise it is the zero map. -/
noncomputable def totalize (i j) : G i →ₗ[R] G j :=
if h : i ≤ j then f i j h else 0
variable {G f}
theorem totalize_of_le {i j} (h : i ≤ j) : totalize G f i j = f i j h :=
dif_pos h
theorem totalize_of_not_le {i j} (h : ¬i ≤ j) : totalize G f i j = 0 :=
dif_neg h
end Totalize
variable [DecidableEq ι] [DirectedSystem G fun i j h => f i j h]
variable {G f}
theorem toModule_totalize_of_le [∀ i (k : G i), Decidable (k ≠ 0)] {x : DirectSum ι G} {i j : ι}
(hij : i ≤ j) (hx : ∀ k ∈ x.support, k ≤ i) :
DirectSum.toModule R ι (G j) (fun k => totalize G f k j) x =
f i j hij (DirectSum.toModule R ι (G i) (fun k => totalize G f k i) x) := by
rw [← @DFinsupp.sum_single ι G _ _ _ x]
unfold DFinsupp.sum
simp only [map_sum]
refine Finset.sum_congr rfl fun k hk => ?_
rw [DirectSum.single_eq_lof R k (x k), DirectSum.toModule_lof, DirectSum.toModule_lof,
totalize_of_le (hx k hk), totalize_of_le (le_trans (hx k hk) hij), DirectedSystem.map_map]
theorem of.zero_exact_aux [∀ i (k : G i), Decidable (k ≠ 0)] [Nonempty ι] [IsDirected ι (· ≤ ·)]
{x : DirectSum ι G} (H : (Submodule.Quotient.mk x : DirectLimit G f) = (0 : DirectLimit G f)) :
∃ j,
(∀ k ∈ x.support, k ≤ j) ∧
DirectSum.toModule R ι (G j) (fun i => totalize G f i j) x = (0 : G j) :=
Nonempty.elim (by infer_instance) fun ind : ι =>
span_induction ((Quotient.mk_eq_zero _).1 H)
(fun x ⟨i, j, hij, y, hxy⟩ =>
let ⟨k, hik, hjk⟩ := exists_ge_ge i j
⟨k, by
subst hxy
constructor
· intro i0 hi0
rw [DFinsupp.mem_support_iff, DirectSum.sub_apply, ← DirectSum.single_eq_lof, ←
DirectSum.single_eq_lof, DFinsupp.single_apply, DFinsupp.single_apply] at hi0
split_ifs at hi0 with hi hj hj
· rwa [hi] at hik
· rwa [hi] at hik
· rwa [hj] at hjk
exfalso
apply hi0
rw [sub_zero]
simp [LinearMap.map_sub, totalize_of_le, hik, hjk, DirectedSystem.map_map,
DirectSum.apply_eq_component, DirectSum.component.of]⟩)
⟨ind, fun _ h => (Finset.not_mem_empty _ h).elim, LinearMap.map_zero _⟩
(fun x y ⟨i, hi, hxi⟩ ⟨j, hj, hyj⟩ =>
let ⟨k, hik, hjk⟩ := exists_ge_ge i j
⟨k, fun l hl =>
(Finset.mem_union.1 (DFinsupp.support_add hl)).elim (fun hl => le_trans (hi _ hl) hik)
fun hl => le_trans (hj _ hl) hjk, by
-- Porting note: this had been
-- simp [LinearMap.map_add, hxi, hyj, toModule_totalize_of_le hik hi,
-- toModule_totalize_of_le hjk hj]
simp only [map_add]
rw [toModule_totalize_of_le hik hi, toModule_totalize_of_le hjk hj]
simp [hxi, hyj]⟩)
fun a x ⟨i, hi, hxi⟩ =>
⟨i, fun k hk => hi k (DirectSum.support_smul _ _ hk), by simp [LinearMap.map_smul, hxi]⟩
open Classical in
/-- A component that corresponds to zero in the direct limit is already zero in some
bigger module in the directed system. -/
theorem of.zero_exact [IsDirected ι (· ≤ ·)] {i x} (H : of R ι G f i x = 0) :
∃ j hij, f i j hij x = (0 : G j) :=
haveI : Nonempty ι := ⟨i⟩
let ⟨j, hj, hxj⟩ := of.zero_exact_aux H
if hx0 : x = 0 then ⟨i, le_rfl, by simp [hx0]⟩
else
have hij : i ≤ j := hj _ <| by simp [DirectSum.apply_eq_component, hx0]
⟨j, hij, by
-- Porting note: this had been
-- simpa [totalize_of_le hij] using hxj
simp only [DirectSum.toModule_lof] at hxj
rwa [totalize_of_le hij] at hxj⟩
end DirectLimit
end Module
namespace AddCommGroup
variable [∀ i, AddCommGroup (G i)]
/-- The direct limit of a directed system is the abelian groups glued together along the maps. -/
def DirectLimit [DecidableEq ι] (f : ∀ i j, i ≤ j → G i →+ G j) : Type _ :=
@Module.DirectLimit ℤ _ ι _ G _ _ (fun i j hij => (f i j hij).toIntLinearMap) _
namespace DirectLimit
variable (f : ∀ i j, i ≤ j → G i →+ G j)
protected theorem directedSystem [h : DirectedSystem G fun i j h => f i j h] :
DirectedSystem G fun i j hij => (f i j hij).toIntLinearMap :=
h
attribute [local instance] DirectLimit.directedSystem
variable [DecidableEq ι]
instance : AddCommGroup (DirectLimit G f) :=
Module.DirectLimit.addCommGroup G fun i j hij => (f i j hij).toIntLinearMap
instance : Inhabited (DirectLimit G f) :=
⟨0⟩
instance [IsEmpty ι] : Unique (DirectLimit G f) := Module.DirectLimit.unique _ _
/-- The canonical map from a component to the direct limit. -/
def of (i) : G i →+ DirectLimit G f :=
(Module.DirectLimit.of ℤ ι G (fun i j hij => (f i j hij).toIntLinearMap) i).toAddMonoidHom
variable {G f}
@[simp]
theorem of_f {i j} (hij) (x) : of G f j (f i j hij x) = of G f i x :=
Module.DirectLimit.of_f
@[elab_as_elim]
protected theorem induction_on [Nonempty ι] [IsDirected ι (· ≤ ·)] {C : DirectLimit G f → Prop}
(z : DirectLimit G f) (ih : ∀ i x, C (of G f i x)) : C z :=
Module.DirectLimit.induction_on z ih
/-- A component that corresponds to zero in the direct limit is already zero in some
bigger module in the directed system. -/
theorem of.zero_exact [IsDirected ι (· ≤ ·)] [DirectedSystem G fun i j h => f i j h] (i x)
(h : of G f i x = 0) : ∃ j hij, f i j hij x = 0 :=
Module.DirectLimit.of.zero_exact h
variable (P : Type u₁) [AddCommGroup P]
variable (g : ∀ i, G i →+ P)
variable (Hg : ∀ i j hij x, g j (f i j hij x) = g i x)
variable (G f)
/-- The universal property of the direct limit: maps from the components to another abelian group
that respect the directed system structure (i.e. make some diagram commute) give rise
to a unique map out of the direct limit. -/
def lift : DirectLimit G f →+ P :=
(Module.DirectLimit.lift ℤ ι G (fun i j hij => (f i j hij).toIntLinearMap)
(fun i => (g i).toIntLinearMap) Hg).toAddMonoidHom
variable {G f}
@[simp]
theorem lift_of (i x) : lift G f P g Hg (of G f i x) = g i x :=
Module.DirectLimit.lift_of
-- Note: had to make these arguments explicit #8386
(f := (fun i j hij => (f i j hij).toIntLinearMap))
(fun i => (g i).toIntLinearMap)
Hg
x
theorem lift_unique [IsDirected ι (· ≤ ·)] (F : DirectLimit G f →+ P) (x) :
F x = lift G f P (fun i => F.comp (of G f i)) (fun i j hij x => by simp) x := by
cases isEmpty_or_nonempty ι
· simp_rw [Subsingleton.elim x 0, _root_.map_zero]
· exact DirectLimit.induction_on x fun i x => by simp
lemma lift_injective [IsDirected ι (· ≤ ·)]
(injective : ∀ i, Function.Injective <| g i) :
Function.Injective (lift G f P g Hg) := by
cases isEmpty_or_nonempty ι
· apply Function.injective_of_subsingleton
simp_rw [injective_iff_map_eq_zero] at injective ⊢
intros z hz
induction' z using DirectLimit.induction_on with _ g
rw [lift_of] at hz
rw [injective _ g hz, _root_.map_zero]
section functorial
variable {G' : ι → Type v'} [∀ i, AddCommGroup (G' i)]
variable {f' : ∀ i j, i ≤ j → G' i →+ G' j}
variable {G'' : ι → Type v''} [∀ i, AddCommGroup (G'' i)]
variable {f'' : ∀ i j, i ≤ j → G'' i →+ G'' j}
/--
Consider direct limits `lim G` and `lim G'` with direct system `f` and `f'` respectively, any
family of group homomorphisms `gᵢ : Gᵢ ⟶ G'ᵢ` such that `g ∘ f = f' ∘ g` induces a group
homomorphism `lim G ⟶ lim G'`.
-/
def map (g : (i : ι) → G i →+ G' i)
(hg : ∀ i j h, (g j).comp (f i j h) = (f' i j h).comp (g i)) :
DirectLimit G f →+ DirectLimit G' f' :=
lift _ _ _ (fun i ↦ (of _ _ _).comp (g i)) fun i j h g ↦ by
cases isEmpty_or_nonempty ι
· subsingleton
· have eq1 := DFunLike.congr_fun (hg i j h) g
simp only [AddMonoidHom.coe_comp, Function.comp_apply] at eq1 ⊢
rw [eq1, of_f]
@[simp] lemma map_apply_of (g : (i : ι) → G i →+ G' i)
(hg : ∀ i j h, (g j).comp (f i j h) = (f' i j h).comp (g i))
{i : ι} (x : G i) :
map g hg (of G f _ x) = of G' f' i (g i x) :=
lift_of _ _ _ _ _
@[simp] lemma map_id [IsDirected ι (· ≤ ·)] :
map (fun i ↦ AddMonoidHom.id _) (fun _ _ _ ↦ rfl) = AddMonoidHom.id (DirectLimit G f) :=
DFunLike.ext _ _ fun x ↦ (isEmpty_or_nonempty ι).elim (by subsingleton) fun _ ↦
x.induction_on fun i g ↦ by simp
lemma map_comp [IsDirected ι (· ≤ ·)]
(g₁ : (i : ι) → G i →+ G' i) (g₂ : (i : ι) → G' i →+ G'' i)
(hg₁ : ∀ i j h, (g₁ j).comp (f i j h) = (f' i j h).comp (g₁ i))
(hg₂ : ∀ i j h, (g₂ j).comp (f' i j h) = (f'' i j h).comp (g₂ i)) :
((map g₂ hg₂).comp (map g₁ hg₁) :
DirectLimit G f →+ DirectLimit G'' f'') =
(map (fun i ↦ (g₂ i).comp (g₁ i)) fun i j h ↦ by
rw [AddMonoidHom.comp_assoc, hg₁ i, ← AddMonoidHom.comp_assoc, hg₂ i,
AddMonoidHom.comp_assoc] :
DirectLimit G f →+ DirectLimit G'' f'') :=
DFunLike.ext _ _ fun x ↦ (isEmpty_or_nonempty ι).elim (by subsingleton) fun _ ↦
x.induction_on fun i g ↦ by simp
/--
Consider direct limits `lim G` and `lim G'` with direct system `f` and `f'` respectively, any
family of equivalences `eᵢ : Gᵢ ≅ G'ᵢ` such that `e ∘ f = f' ∘ e` induces an equivalence
`lim G ⟶ lim G'`.
-/
def congr [IsDirected ι (· ≤ ·)]
(e : (i : ι) → G i ≃+ G' i)
(he : ∀ i j h, (e j).toAddMonoidHom.comp (f i j h) = (f' i j h).comp (e i)) :
DirectLimit G f ≃+ DirectLimit G' f' :=
AddMonoidHom.toAddEquiv (map (e ·) he)
(map (fun i ↦ (e i).symm) fun i j h ↦ DFunLike.ext _ _ fun x ↦ by
have eq1 := DFunLike.congr_fun (he i j h) ((e i).symm x)
simp only [AddMonoidHom.coe_comp, AddEquiv.coe_toAddMonoidHom, Function.comp_apply,
AddMonoidHom.coe_coe, AddEquiv.apply_symm_apply] at eq1 ⊢
simp [← eq1, of_f])
(by rw [map_comp]; convert map_id <;> aesop)
(by rw [map_comp]; convert map_id <;> aesop)
lemma congr_apply_of [IsDirected ι (· ≤ ·)]
(e : (i : ι) → G i ≃+ G' i)
(he : ∀ i j h, (e j).toAddMonoidHom.comp (f i j h) = (f' i j h).comp (e i))
{i : ι} (g : G i) :
congr e he (of G f i g) = of G' f' i (e i g) :=
map_apply_of _ he _
lemma congr_symm_apply_of [IsDirected ι (· ≤ ·)]
(e : (i : ι) → G i ≃+ G' i)
(he : ∀ i j h, (e j).toAddMonoidHom.comp (f i j h) = (f' i j h).comp (e i))
{i : ι} (g : G' i) :
(congr e he).symm (of G' f' i g) = of G f i ((e i).symm g) := by
simp only [congr, AddMonoidHom.toAddEquiv_symm_apply, map_apply_of, AddMonoidHom.coe_coe]
end functorial
end DirectLimit
end AddCommGroup
namespace Ring
variable [∀ i, CommRing (G i)]
section
variable (f : ∀ i j, i ≤ j → G i → G j)
open FreeCommRing
/-- The direct limit of a directed system is the rings glued together along the maps. -/
def DirectLimit : Type max v w :=
FreeCommRing (Σi, G i) ⧸
Ideal.span
{ a |
(∃ i j H x, of (⟨j, f i j H x⟩ : Σi, G i) - of ⟨i, x⟩ = a) ∨
(∃ i, of (⟨i, 1⟩ : Σi, G i) - 1 = a) ∨
(∃ i x y, of (⟨i, x + y⟩ : Σi, G i) - (of ⟨i, x⟩ + of ⟨i, y⟩) = a) ∨
∃ i x y, of (⟨i, x * y⟩ : Σi, G i) - of ⟨i, x⟩ * of ⟨i, y⟩ = a }
namespace DirectLimit
instance commRing : CommRing (DirectLimit G f) :=
Ideal.Quotient.commRing _
instance ring : Ring (DirectLimit G f) :=
CommRing.toRing
-- Porting note: Added a `Zero` instance to get rid of `0` errors.
instance zero : Zero (DirectLimit G f) := by
unfold DirectLimit
exact ⟨0⟩
instance : Inhabited (DirectLimit G f) :=
⟨0⟩
/-- The canonical map from a component to the direct limit. -/
nonrec def of (i) : G i →+* DirectLimit G f :=
RingHom.mk'
{ toFun := fun x => Ideal.Quotient.mk _ (of (⟨i, x⟩ : Σi, G i))
map_one' := Ideal.Quotient.eq.2 <| subset_span <| Or.inr <| Or.inl ⟨i, rfl⟩
map_mul' := fun x y =>
Ideal.Quotient.eq.2 <| subset_span <| Or.inr <| Or.inr <| Or.inr ⟨i, x, y, rfl⟩ }
fun x y => Ideal.Quotient.eq.2 <| subset_span <| Or.inr <| Or.inr <| Or.inl ⟨i, x, y, rfl⟩
variable {G f}
-- Porting note: the @[simp] attribute would trigger a `simpNF` linter error:
-- failed to synthesize CommMonoidWithZero (Ring.DirectLimit G f)
theorem of_f {i j} (hij) (x) : of G f j (f i j hij x) = of G f i x :=
Ideal.Quotient.eq.2 <| subset_span <| Or.inl ⟨i, j, hij, x, rfl⟩
/-- Every element of the direct limit corresponds to some element in
some component of the directed system. -/
theorem exists_of [Nonempty ι] [IsDirected ι (· ≤ ·)] (z : DirectLimit G f) :
∃ i x, of G f i x = z :=
Nonempty.elim (by infer_instance) fun ind : ι =>
Quotient.inductionOn' z fun x =>
FreeAbelianGroup.induction_on x ⟨ind, 0, (of _ _ ind).map_zero⟩
(fun s =>
Multiset.induction_on s ⟨ind, 1, (of _ _ ind).map_one⟩ fun a s ih =>
let ⟨i, x⟩ := a
let ⟨j, y, hs⟩ := ih
let ⟨k, hik, hjk⟩ := exists_ge_ge i j
⟨k, f i k hik x * f j k hjk y, by
rw [(of G f k).map_mul, of_f, of_f, hs]
/- porting note: In Lean3, from here, this was `by refl`. I have added
the lemma `FreeCommRing.of_cons` to fix this proof. -/
apply congr_arg Quotient.mk''
symm
apply FreeCommRing.of_cons⟩)
(fun s ⟨i, x, ih⟩ => ⟨i, -x, by
rw [(of G _ _).map_neg, ih]
rfl⟩)
fun p q ⟨i, x, ihx⟩ ⟨j, y, ihy⟩ =>
let ⟨k, hik, hjk⟩ := exists_ge_ge i j
⟨k, f i k hik x + f j k hjk y, by rw [(of _ _ _).map_add, of_f, of_f, ihx, ihy]; rfl⟩
section
open Polynomial
variable {f' : ∀ i j, i ≤ j → G i →+* G j}
nonrec theorem Polynomial.exists_of [Nonempty ι] [IsDirected ι (· ≤ ·)]
(q : Polynomial (DirectLimit G fun i j h => f' i j h)) :
∃ i p, Polynomial.map (of G (fun i j h => f' i j h) i) p = q :=
Polynomial.induction_on q
(fun z =>
let ⟨i, x, h⟩ := exists_of z
⟨i, C x, by rw [map_C, h]⟩)
(fun q₁ q₂ ⟨i₁, p₁, ih₁⟩ ⟨i₂, p₂, ih₂⟩ =>
let ⟨i, h1, h2⟩ := exists_ge_ge i₁ i₂
⟨i, p₁.map (f' i₁ i h1) + p₂.map (f' i₂ i h2), by
rw [Polynomial.map_add, map_map, map_map, ← ih₁, ← ih₂]
congr 2 <;> ext x <;> simp_rw [RingHom.comp_apply, of_f]⟩)
fun n z _ =>
let ⟨i, x, h⟩ := exists_of z
⟨i, C x * X ^ (n + 1), by rw [Polynomial.map_mul, map_C, h, Polynomial.map_pow, map_X]⟩
end
@[elab_as_elim]
theorem induction_on [Nonempty ι] [IsDirected ι (· ≤ ·)] {C : DirectLimit G f → Prop}
(z : DirectLimit G f) (ih : ∀ i x, C (of G f i x)) : C z :=
let ⟨i, x, hx⟩ := exists_of z
hx ▸ ih i x
section OfZeroExact
variable (f' : ∀ i j, i ≤ j → G i →+* G j)
variable [DirectedSystem G fun i j h => f' i j h]
variable (G f)
theorem of.zero_exact_aux2 {x : FreeCommRing (Σi, G i)} {s t} [DecidablePred (· ∈ s)]
[DecidablePred (· ∈ t)] (hxs : IsSupported x s) {j k} (hj : ∀ z : Σi, G i, z ∈ s → z.1 ≤ j)
(hk : ∀ z : Σi, G i, z ∈ t → z.1 ≤ k) (hjk : j ≤ k) (hst : s ⊆ t) :
f' j k hjk (lift (fun ix : s => f' ix.1.1 j (hj ix ix.2) ix.1.2) (restriction s x)) =
lift (fun ix : t => f' ix.1.1 k (hk ix ix.2) ix.1.2) (restriction t x) := by
refine Subring.InClosure.recOn hxs ?_ ?_ ?_ ?_
· rw [(restriction _).map_one, (FreeCommRing.lift _).map_one, (f' j k hjk).map_one,
(restriction _).map_one, (FreeCommRing.lift _).map_one]
· -- Porting note: Lean 3 had `(FreeCommRing.lift _).map_neg` but I needed to replace it with
-- `RingHom.map_neg` to get the rewrite to compile
rw [(restriction _).map_neg, (restriction _).map_one, RingHom.map_neg,
(FreeCommRing.lift _).map_one, (f' j k hjk).map_neg, (f' j k hjk).map_one,
-- Porting note: similarly here I give strictly less information
(restriction _).map_neg, (restriction _).map_one, RingHom.map_neg,
(FreeCommRing.lift _).map_one]
· rintro _ ⟨p, hps, rfl⟩ n ih
rw [(restriction _).map_mul, (FreeCommRing.lift _).map_mul, (f' j k hjk).map_mul, ih,
(restriction _).map_mul, (FreeCommRing.lift _).map_mul, restriction_of, dif_pos hps, lift_of,
restriction_of, dif_pos (hst hps), lift_of]
dsimp only
-- Porting note: Lean 3 could get away with far fewer hints for inputs in the line below
have := DirectedSystem.map_map (fun i j h => f' i j h) (hj p hps) hjk
rw [this]
· rintro x y ihx ihy
rw [(restriction _).map_add, (FreeCommRing.lift _).map_add, (f' j k hjk).map_add, ihx, ihy,
(restriction _).map_add, (FreeCommRing.lift _).map_add]
variable {G f f'}
theorem of.zero_exact_aux [Nonempty ι] [IsDirected ι (· ≤ ·)] {x : FreeCommRing (Σi, G i)}
(H : (Ideal.Quotient.mk _ x : DirectLimit G fun i j h => f' i j h)
= (0 : DirectLimit G fun i j h => f' i j h)) :
∃ j s, ∃ H : ∀ k : Σ i, G i, k ∈ s → k.1 ≤ j,
IsSupported x s ∧
∀ [DecidablePred (· ∈ s)],
lift (fun ix : s => f' ix.1.1 j (H ix ix.2) ix.1.2) (restriction s x) = (0 : G j) := by
have := Classical.decEq
refine span_induction (Ideal.Quotient.eq_zero_iff_mem.1 H) ?_ ?_ ?_ ?_
· rintro x (⟨i, j, hij, x, rfl⟩ | ⟨i, rfl⟩ | ⟨i, x, y, rfl⟩ | ⟨i, x, y, rfl⟩)
· refine
⟨j, {⟨i, x⟩, ⟨j, f' i j hij x⟩}, ?_,
isSupported_sub (isSupported_of.2 <| Or.inr (Set.mem_singleton _))
(isSupported_of.2 <| Or.inl rfl), fun [_] => ?_⟩
· rintro k (rfl | ⟨rfl | _⟩)
· exact hij
· rfl
· rw [(restriction _).map_sub, RingHom.map_sub, restriction_of, dif_pos,
restriction_of, dif_pos, lift_of, lift_of]
on_goal 1 =>
dsimp only
have := DirectedSystem.map_map (fun i j h => f' i j h) hij (le_refl j : j ≤ j)
rw [this]
· exact sub_self _
exacts [Or.inl rfl, Or.inr rfl]
· refine ⟨i, {⟨i, 1⟩}, ?_, isSupported_sub (isSupported_of.2 (Set.mem_singleton _))
isSupported_one, fun [_] => ?_⟩
· rintro k (rfl | h)
rfl
-- Porting note: the Lean3 proof contained `rw [restriction_of]`, but this
-- lemma does not seem to work here
· rw [RingHom.map_sub, RingHom.map_sub]
erw [lift_of, dif_pos rfl, RingHom.map_one, lift_of, RingHom.map_one, sub_self]
· refine
⟨i, {⟨i, x + y⟩, ⟨i, x⟩, ⟨i, y⟩}, ?_,
isSupported_sub (isSupported_of.2 <| Or.inl rfl)
(isSupported_add (isSupported_of.2 <| Or.inr <| Or.inl rfl)
(isSupported_of.2 <| Or.inr <| Or.inr (Set.mem_singleton _))),
fun [_] => ?_⟩
· rintro k (rfl | ⟨rfl | ⟨rfl | hk⟩⟩) <;> rfl
· rw [(restriction _).map_sub, (restriction _).map_add, restriction_of, restriction_of,
restriction_of, dif_pos, dif_pos, dif_pos, RingHom.map_sub,
(FreeCommRing.lift _).map_add, lift_of, lift_of, lift_of]
on_goal 1 =>
dsimp only
rw [(f' i i _).map_add]
· exact sub_self _
all_goals tauto
· refine
⟨i, {⟨i, x * y⟩, ⟨i, x⟩, ⟨i, y⟩}, ?_,
isSupported_sub (isSupported_of.2 <| Or.inl rfl)
(isSupported_mul (isSupported_of.2 <| Or.inr <| Or.inl rfl)
(isSupported_of.2 <| Or.inr <| Or.inr (Set.mem_singleton _))), fun [_] => ?_⟩
· rintro k (rfl | ⟨rfl | ⟨rfl | hk⟩⟩) <;> rfl
· rw [(restriction _).map_sub, (restriction _).map_mul, restriction_of, restriction_of,
restriction_of, dif_pos, dif_pos, dif_pos, RingHom.map_sub,
(FreeCommRing.lift _).map_mul, lift_of, lift_of, lift_of]
on_goal 1 =>
dsimp only
rw [(f' i i _).map_mul]
· exact sub_self _
all_goals tauto
-- Porting note: was
--exacts [sub_self _, Or.inl rfl, Or.inr (Or.inr rfl), Or.inr (Or.inl rfl)]
· refine Nonempty.elim (by infer_instance) fun ind : ι => ?_
refine ⟨ind, ∅, fun _ => False.elim, isSupported_zero, fun [_] => ?_⟩
-- Porting note: `RingHom.map_zero` was `(restriction _).map_zero`
rw [RingHom.map_zero, (FreeCommRing.lift _).map_zero]
· intro x y ⟨i, s, hi, hxs, ihs⟩ ⟨j, t, hj, hyt, iht⟩
obtain ⟨k, hik, hjk⟩ := exists_ge_ge i j
have : ∀ z : Σi, G i, z ∈ s ∪ t → z.1 ≤ k := by
rintro z (hz | hz)
· exact le_trans (hi z hz) hik
· exact le_trans (hj z hz) hjk
refine
⟨k, s ∪ t, this,
isSupported_add (isSupported_upwards hxs Set.subset_union_left)
(isSupported_upwards hyt Set.subset_union_right), fun [_] => ?_⟩
-- Porting note: was `(restriction _).map_add`
classical rw [RingHom.map_add, (FreeCommRing.lift _).map_add, ←
of.zero_exact_aux2 G f' hxs hi this hik Set.subset_union_left, ←
of.zero_exact_aux2 G f' hyt hj this hjk Set.subset_union_right, ihs,
(f' i k hik).map_zero, iht, (f' j k hjk).map_zero, zero_add]
· rintro x y ⟨j, t, hj, hyt, iht⟩
rw [smul_eq_mul]
rcases exists_finset_support x with ⟨s, hxs⟩
rcases (s.image Sigma.fst).exists_le with ⟨i, hi⟩
obtain ⟨k, hik, hjk⟩ := exists_ge_ge i j
have : ∀ z : Σi, G i, z ∈ ↑s ∪ t → z.1 ≤ k := by
rintro z (hz | hz)
exacts [(hi z.1 <| Finset.mem_image.2 ⟨z, hz, rfl⟩).trans hik, (hj z hz).trans hjk]
refine
⟨k, ↑s ∪ t, this,
isSupported_mul (isSupported_upwards hxs Set.subset_union_left)
(isSupported_upwards hyt Set.subset_union_right), fun [_] => ?_⟩
-- Porting note: RingHom.map_mul was `(restriction _).map_mul`
classical rw [RingHom.map_mul, (FreeCommRing.lift _).map_mul, ←
of.zero_exact_aux2 G f' hyt hj this hjk Set.subset_union_right, iht,
(f' j k hjk).map_zero, mul_zero]
/-- A component that corresponds to zero in the direct limit is already zero in some
bigger module in the directed system. -/
theorem of.zero_exact [IsDirected ι (· ≤ ·)] {i x} (hix : of G (fun i j h => f' i j h) i x = 0) :
∃ (j : _) (hij : i ≤ j), f' i j hij x = 0 := by
haveI : Nonempty ι := ⟨i⟩
let ⟨j, s, H, hxs, hx⟩ := of.zero_exact_aux hix
have hixs : (⟨i, x⟩ : Σi, G i) ∈ s := isSupported_of.1 hxs
classical specialize @hx _
exact ⟨j, H ⟨i, x⟩ hixs, by classical rw [restriction_of, dif_pos hixs, lift_of] at hx; exact hx⟩
end OfZeroExact
variable (f' : ∀ i j, i ≤ j → G i →+* G j)
/-- If the maps in the directed system are injective, then the canonical maps
from the components to the direct limits are injective. -/
theorem of_injective [IsDirected ι (· ≤ ·)] [DirectedSystem G fun i j h => f' i j h]
(hf : ∀ i j hij, Function.Injective (f' i j hij)) (i) :
Function.Injective (of G (fun i j h => f' i j h) i) := by
suffices ∀ x, of G (fun i j h => f' i j h) i x = 0 → x = 0 by
intro x y hxy
rw [← sub_eq_zero]
apply this
rw [(of G _ i).map_sub, hxy, sub_self]
intro x hx
rcases of.zero_exact hx with ⟨j, hij, hfx⟩
apply hf i j hij
rw [hfx, (f' i j hij).map_zero]
variable (P : Type u₁) [CommRing P]
variable (g : ∀ i, G i →+* P)
variable (Hg : ∀ i j hij x, g j (f i j hij x) = g i x)
open FreeCommRing
variable (G f)
/-- The universal property of the direct limit: maps from the components to another ring
that respect the directed system structure (i.e. make some diagram commute) give rise
to a unique map out of the direct limit.
-/
def lift : DirectLimit G f →+* P :=
Ideal.Quotient.lift _ (FreeCommRing.lift fun x : Σi, G i => g x.1 x.2)
(by
suffices Ideal.span _ ≤
Ideal.comap (FreeCommRing.lift fun x : Σi : ι, G i => g x.fst x.snd) ⊥ by
intro x hx
exact (mem_bot P).1 (this hx)
rw [Ideal.span_le]
intro x hx
rw [SetLike.mem_coe, Ideal.mem_comap, mem_bot]
rcases hx with (⟨i, j, hij, x, rfl⟩ | ⟨i, rfl⟩ | ⟨i, x, y, rfl⟩ | ⟨i, x, y, rfl⟩) <;>
simp only [RingHom.map_sub, lift_of, Hg, RingHom.map_one, RingHom.map_add, RingHom.map_mul,
(g i).map_one, (g i).map_add, (g i).map_mul, sub_self])
variable {G f}
-- Porting note: the @[simp] attribute would trigger a `simpNF` linter error:
-- failed to synthesize CommMonoidWithZero (Ring.DirectLimit G f)
theorem lift_of (i x) : lift G f P g Hg (of G f i x) = g i x :=
FreeCommRing.lift_of _ _
theorem lift_unique [IsDirected ι (· ≤ ·)] (F : DirectLimit G f →+* P) (x) :
F x = lift G f P (fun i => F.comp <| of G f i) (fun i j hij x => by simp [of_f]) x := by
cases isEmpty_or_nonempty ι
· apply DFunLike.congr_fun
apply Ideal.Quotient.ringHom_ext
refine FreeCommRing.hom_ext fun ⟨i, _⟩ ↦ ?_
exact IsEmpty.elim' inferInstance i
· exact DirectLimit.induction_on x fun i x => by simp [lift_of]
lemma lift_injective [Nonempty ι] [IsDirected ι (· ≤ ·)]
(injective : ∀ i, Function.Injective <| g i) :
Function.Injective (lift G f P g Hg) := by
simp_rw [injective_iff_map_eq_zero] at injective ⊢
intros z hz
induction' z using DirectLimit.induction_on with _ g
rw [lift_of] at hz
rw [injective _ g hz, _root_.map_zero]
section functorial
variable {f : ∀ i j, i ≤ j → G i →+* G j}
variable {G' : ι → Type v'} [∀ i, CommRing (G' i)]
variable {f' : ∀ i j, i ≤ j → G' i →+* G' j}
variable {G'' : ι → Type v''} [∀ i, CommRing (G'' i)]
variable {f'' : ∀ i j, i ≤ j → G'' i →+* G'' j}
/--
Consider direct limits `lim G` and `lim G'` with direct system `f` and `f'` respectively, any
family of ring homomorphisms `gᵢ : Gᵢ ⟶ G'ᵢ` such that `g ∘ f = f' ∘ g` induces a ring
homomorphism `lim G ⟶ lim G'`.
-/
def map (g : (i : ι) → G i →+* G' i)
(hg : ∀ i j h, (g j).comp (f i j h) = (f' i j h).comp (g i)) :
DirectLimit G (fun _ _ h ↦ f _ _ h) →+* DirectLimit G' fun _ _ h ↦ f' _ _ h :=
lift _ _ _ (fun i ↦ (of _ _ _).comp (g i)) fun i j h g ↦ by
have eq1 := DFunLike.congr_fun (hg i j h) g
simp only [RingHom.coe_comp, Function.comp_apply] at eq1 ⊢
rw [eq1, of_f]
@[simp] lemma map_apply_of (g : (i : ι) → G i →+* G' i)
(hg : ∀ i j h, (g j).comp (f i j h) = (f' i j h).comp (g i))
{i : ι} (x : G i) :
map g hg (of G _ _ x) = of G' (fun _ _ h ↦ f' _ _ h) i (g i x) :=
lift_of _ _ _ _ _
variable [Nonempty ι]
@[simp] lemma map_id [IsDirected ι (· ≤ ·)] :
map (fun i ↦ RingHom.id _) (fun _ _ _ ↦ rfl) =
RingHom.id (DirectLimit G fun _ _ h ↦ f _ _ h) :=
DFunLike.ext _ _ fun x ↦ x.induction_on fun i g ↦ by simp
lemma map_comp [IsDirected ι (· ≤ ·)]
(g₁ : (i : ι) → G i →+* G' i) (g₂ : (i : ι) → G' i →+* G'' i)
(hg₁ : ∀ i j h, (g₁ j).comp (f i j h) = (f' i j h).comp (g₁ i))
(hg₂ : ∀ i j h, (g₂ j).comp (f' i j h) = (f'' i j h).comp (g₂ i)) :
((map g₂ hg₂).comp (map g₁ hg₁) :
DirectLimit G (fun _ _ h ↦ f _ _ h) →+* DirectLimit G'' fun _ _ h ↦ f'' _ _ h) =
(map (fun i ↦ (g₂ i).comp (g₁ i)) fun i j h ↦ by
rw [RingHom.comp_assoc, hg₁ i, ← RingHom.comp_assoc, hg₂ i, RingHom.comp_assoc] :
DirectLimit G (fun _ _ h ↦ f _ _ h) →+* DirectLimit G'' fun _ _ h ↦ f'' _ _ h) :=
DFunLike.ext _ _ fun x ↦ x.induction_on fun i g ↦ by simp
/--
Consider direct limits `lim G` and `lim G'` with direct system `f` and `f'` respectively, any
family of equivalences `eᵢ : Gᵢ ≅ G'ᵢ` such that `e ∘ f = f' ∘ e` induces an equivalence
`lim G ⟶ lim G'`.
-/
def congr [IsDirected ι (· ≤ ·)]
(e : (i : ι) → G i ≃+* G' i)
(he : ∀ i j h, (e j).toRingHom.comp (f i j h) = (f' i j h).comp (e i)) :
DirectLimit G (fun _ _ h ↦ f _ _ h) ≃+* DirectLimit G' fun _ _ h ↦ f' _ _ h :=
RingEquiv.ofHomInv
(map (e ·) he)
(map (fun i ↦ (e i).symm) fun i j h ↦ DFunLike.ext _ _ fun x ↦ by
have eq1 := DFunLike.congr_fun (he i j h) ((e i).symm x)
simp only [RingEquiv.toRingHom_eq_coe, RingHom.coe_comp, RingHom.coe_coe, Function.comp_apply,
RingEquiv.apply_symm_apply] at eq1 ⊢
simp [← eq1, of_f])
(DFunLike.ext _ _ fun x ↦ x.induction_on <| by simp)
(DFunLike.ext _ _ fun x ↦ x.induction_on <| by simp)
lemma congr_apply_of [IsDirected ι (· ≤ ·)]
(e : (i : ι) → G i ≃+* G' i)
(he : ∀ i j h, (e j).toRingHom.comp (f i j h) = (f' i j h).comp (e i))
{i : ι} (g : G i) :
congr e he (of G _ i g) = of G' (fun _ _ h ↦ f' _ _ h) i (e i g) :=
map_apply_of _ he _
lemma congr_symm_apply_of [IsDirected ι (· ≤ ·)]
(e : (i : ι) → G i ≃+* G' i)
(he : ∀ i j h, (e j).toRingHom.comp (f i j h) = (f' i j h).comp (e i))
{i : ι} (g : G' i) :
(congr e he).symm (of G' _ i g) = of G (fun _ _ h ↦ f _ _ h) i ((e i).symm g) := by
simp only [congr, RingEquiv.ofHomInv_symm_apply, map_apply_of, RingHom.coe_coe]
end functorial
end DirectLimit
end
end Ring
namespace Field
variable [Nonempty ι] [IsDirected ι (· ≤ ·)] [∀ i, Field (G i)]
variable (f : ∀ i j, i ≤ j → G i → G j)
variable (f' : ∀ i j, i ≤ j → G i →+* G j)
namespace DirectLimit
instance nontrivial [DirectedSystem G fun i j h => f' i j h] :
Nontrivial (Ring.DirectLimit G fun i j h => f' i j h) :=
⟨⟨0, 1,
Nonempty.elim (by infer_instance) fun i : ι => by
change (0 : Ring.DirectLimit G fun i j h => f' i j h) ≠ 1
rw [← (Ring.DirectLimit.of _ _ _).map_one]
· intro H; rcases Ring.DirectLimit.of.zero_exact H.symm with ⟨j, hij, hf⟩
rw [(f' i j hij).map_one] at hf
exact one_ne_zero hf⟩⟩
theorem exists_inv {p : Ring.DirectLimit G f} : p ≠ 0 → ∃ y, p * y = 1 :=
Ring.DirectLimit.induction_on p fun i x H =>
⟨Ring.DirectLimit.of G f i x⁻¹, by
erw [← (Ring.DirectLimit.of _ _ _).map_mul,
mul_inv_cancel fun h : x = 0 => H <| by rw [h, (Ring.DirectLimit.of _ _ _).map_zero],
(Ring.DirectLimit.of _ _ _).map_one]⟩
section
open Classical in
/-- Noncomputable multiplicative inverse in a direct limit of fields. -/
noncomputable def inv (p : Ring.DirectLimit G f) : Ring.DirectLimit G f :=
if H : p = 0 then 0 else Classical.choose (DirectLimit.exists_inv G f H)
protected theorem mul_inv_cancel {p : Ring.DirectLimit G f} (hp : p ≠ 0) : p * inv G f p = 1 := by
rw [inv, dif_neg hp, Classical.choose_spec (DirectLimit.exists_inv G f hp)]
protected theorem inv_mul_cancel {p : Ring.DirectLimit G f} (hp : p ≠ 0) : inv G f p * p = 1 := by
rw [_root_.mul_comm, DirectLimit.mul_inv_cancel G f hp]
/-- Noncomputable field structure on the direct limit of fields.
See note [reducible non-instances]. -/
protected noncomputable abbrev field [DirectedSystem G fun i j h => f' i j h] :
Field (Ring.DirectLimit G fun i j h => f' i j h) where
-- This used to include the parent CommRing and Nontrivial instances,
-- but leaving them implicit avoids a very expensive (2-3 minutes!) eta expansion.
inv := inv G fun i j h => f' i j h
mul_inv_cancel := fun p => DirectLimit.mul_inv_cancel G fun i j h => f' i j h
inv_zero := dif_pos rfl
nnqsmul := _
qsmul := _
end
end DirectLimit
end Field
|
Algebra\DualNumber.lean | /-
Copyright (c) 2021 Eric Wieser. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Eric Wieser
-/
import Mathlib.Algebra.TrivSqZeroExt
/-!
# Dual numbers
The dual numbers over `R` are of the form `a + bε`, where `a` and `b` are typically elements of a
commutative ring `R`, and `ε` is a symbol satisfying `ε^2 = 0` that commutes with every other
element. They are a special case of `TrivSqZeroExt R M` with `M = R`.
## Notation
In the `DualNumber` locale:
* `R[ε]` is a shorthand for `DualNumber R`
* `ε` is a shorthand for `DualNumber.eps`
## Main definitions
* `DualNumber`
* `DualNumber.eps`
* `DualNumber.lift`
## Implementation notes
Rather than duplicating the API of `TrivSqZeroExt`, this file reuses the functions there.
## References
* https://en.wikipedia.org/wiki/Dual_number
-/
variable {R A B : Type*}
/-- The type of dual numbers, numbers of the form $a + bε$ where $ε^2 = 0$.
`R[ε]` is notation for `DualNumber R`. -/
abbrev DualNumber (R : Type*) : Type _ :=
TrivSqZeroExt R R
/-- The unit element $ε$ that squares to zero, with notation `ε`. -/
def DualNumber.eps [Zero R] [One R] : DualNumber R :=
TrivSqZeroExt.inr 1
@[inherit_doc]
scoped[DualNumber] notation "ε" => DualNumber.eps
@[inherit_doc]
scoped[DualNumber] postfix:1024 "[ε]" => DualNumber
open DualNumber
namespace DualNumber
open TrivSqZeroExt
@[simp]
theorem fst_eps [Zero R] [One R] : fst ε = (0 : R) :=
fst_inr _ _
@[simp]
theorem snd_eps [Zero R] [One R] : snd ε = (1 : R) :=
snd_inr _ _
/-- A version of `TrivSqZeroExt.snd_mul` with `*` instead of `•`. -/
@[simp]
theorem snd_mul [Semiring R] (x y : R[ε]) : snd (x * y) = fst x * snd y + snd x * fst y :=
TrivSqZeroExt.snd_mul _ _
@[simp]
theorem eps_mul_eps [Semiring R] : (ε * ε : R[ε]) = 0 :=
inr_mul_inr _ _ _
@[simp]
theorem inv_eps [DivisionRing R] : (ε : R[ε])⁻¹ = 0 :=
TrivSqZeroExt.inv_inr 1
@[simp]
theorem inr_eq_smul_eps [MulZeroOneClass R] (r : R) : inr r = (r • ε : R[ε]) :=
ext (mul_zero r).symm (mul_one r).symm
/-- `ε` commutes with every element of the algebra. -/
theorem commute_eps_left [Semiring R] (x : DualNumber R) : Commute ε x := by
ext <;> simp
/-- `ε` commutes with every element of the algebra. -/
theorem commute_eps_right [Semiring R] (x : DualNumber R) : Commute x ε := (commute_eps_left x).symm
variable {A : Type*} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B]
/-- For two `R`-algebra morphisms out of `A[ε]` to agree, it suffices for them to agree on the
elements of `A` and the `A`-multiples of `ε`. -/
@[ext 1100]
nonrec theorem algHom_ext' ⦃f g : A[ε] →ₐ[R] B⦄
(hinl : f.comp (inlAlgHom _ _ _) = g.comp (inlAlgHom _ _ _))
(hinr : f.toLinearMap ∘ₗ (LinearMap.toSpanSingleton A A[ε] ε).restrictScalars R =
g.toLinearMap ∘ₗ (LinearMap.toSpanSingleton A A[ε] ε).restrictScalars R) :
f = g :=
algHom_ext' hinl (by
ext a
show f (inr a) = g (inr a)
simpa only [inr_eq_smul_eps] using DFunLike.congr_fun hinr a)
/-- For two `R`-algebra morphisms out of `R[ε]` to agree, it suffices for them to agree on `ε`. -/
@[ext 1200]
nonrec theorem algHom_ext ⦃f g : R[ε] →ₐ[R] A⦄ (hε : f ε = g ε) : f = g := by
ext
dsimp
simp only [one_smul, hε]
/-- A universal property of the dual numbers, providing a unique `A[ε] →ₐ[R] B` for every map
`f : A →ₐ[R] B` and a choice of element `e : B` which squares to `0` and commutes with the range of
`f`.
This isomorphism is named to match the similar `Complex.lift`.
Note that when `f : R →ₐ[R] B := Algebra.ofId R B`, the commutativity assumption is automatic, and
we are free to choose any element `e : B`. -/
def lift :
{fe : (A →ₐ[R] B) × B // fe.2 * fe.2 = 0 ∧ ∀ a, Commute fe.2 (fe.1 a)} ≃ (A[ε] →ₐ[R] B) := by
refine Equiv.trans ?_ TrivSqZeroExt.liftEquiv
exact {
toFun := fun fe => ⟨
(fe.val.1, MulOpposite.op fe.val.2 • fe.val.1.toLinearMap),
fun x y => show (fe.val.1 x * fe.val.2) * (fe.val.1 y * fe.val.2) = 0 by
rw [(fe.prop.2 _).mul_mul_mul_comm, fe.prop.1, mul_zero],
fun r x => show fe.val.1 (r * x) * fe.val.2 = fe.val.1 r * (fe.val.1 x * fe.val.2) by
rw [map_mul, mul_assoc],
fun r x => show fe.val.1 (x * r) * fe.val.2 = (fe.val.1 x * fe.val.2) * fe.val.1 r by
rw [map_mul, (fe.prop.2 _).right_comm]⟩
invFun := fun fg => ⟨
(fg.val.1, fg.val.2 1),
fg.prop.1 _ _,
fun a => show fg.val.2 1 * fg.val.1 a = fg.val.1 a * fg.val.2 1 by
rw [← fg.prop.2.1, ← fg.prop.2.2, smul_eq_mul, op_smul_eq_mul, mul_one, one_mul]⟩
left_inv := fun fe => Subtype.ext <| Prod.ext rfl <|
show fe.val.1 1 * fe.val.2 = fe.val.2 by
rw [map_one, one_mul]
right_inv := fun fg => Subtype.ext <| Prod.ext rfl <| LinearMap.ext fun x =>
show fg.val.1 x * fg.val.2 1 = fg.val.2 x by
rw [← fg.prop.2.1, smul_eq_mul, mul_one] }
theorem lift_apply_apply (fe : {_fe : (A →ₐ[R] B) × B // _}) (a : A[ε]) :
lift fe a = fe.val.1 a.fst + fe.val.1 a.snd * fe.val.2 := rfl
@[simp] theorem coe_lift_symm_apply (F : A[ε] →ₐ[R] B) :
(lift.symm F).val = (F.comp (inlAlgHom _ _ _), F ε) := rfl
/-- When applied to `inl`, `DualNumber.lift` applies the map `f : A →ₐ[R] B`. -/
@[simp] theorem lift_apply_inl (fe : {fe : (A →ₐ[R] B) × B // _}) (a : A) :
lift fe (inl a : A[ε]) = fe.val.1 a := by
rw [lift_apply_apply, fst_inl, snd_inl, map_zero, zero_mul, add_zero]
/-- Scaling on the left is sent by `DualNumber.lift` to multiplication on the left -/
@[simp] theorem lift_smul (fe : {fe : (A →ₐ[R] B) × B // _}) (a : A) (ad : A[ε]) :
lift fe (a • ad) = fe.val.1 a * lift fe ad := by
rw [← inl_mul_eq_smul, map_mul, lift_apply_inl]
/-- Scaling on the right is sent by `DualNumber.lift` to multiplication on the right -/
@[simp] theorem lift_op_smul (fe : {fe : (A →ₐ[R] B) × B // _}) (a : A) (ad : A[ε]) :
lift fe (MulOpposite.op a • ad) = lift fe ad * fe.val.1 a := by
rw [← mul_inl_eq_op_smul, map_mul, lift_apply_inl]
/-- When applied to `ε`, `DualNumber.lift` produces the element of `B` that squares to 0. -/
@[simp] theorem lift_apply_eps
(fe : {fe : (A →ₐ[R] B) × B // fe.2 * fe.2 = 0 ∧ ∀ a, Commute fe.2 (fe.1 a)}) :
lift fe (ε : A[ε]) = fe.val.2 := by
simp only [lift_apply_apply, fst_eps, map_zero, snd_eps, map_one, one_mul, zero_add]
/-- Lifting `DualNumber.eps` itself gives the identity. -/
@[simp]
theorem lift_inlAlgHom_eps :
lift ⟨(inlAlgHom _ _ _, ε), eps_mul_eps, fun _ => commute_eps_left _⟩ = AlgHom.id R A[ε] :=
lift.apply_symm_apply <| AlgHom.id R A[ε]
/-- Show DualNumber with values x and y as an "x + y*ε" string -/
instance instRepr [Repr R] : Repr (DualNumber R) where
reprPrec f p :=
(if p > 65 then (Std.Format.bracket "(" · ")") else (·)) <|
reprPrec f.fst 65 ++ " + " ++ reprPrec f.snd 70 ++ "*ε"
end DualNumber
|
Algebra\DualQuaternion.lean | /-
Copyright (c) 2023 Eric Wieser. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Eric Wieser
-/
import Mathlib.Algebra.DualNumber
import Mathlib.Algebra.Quaternion
/-!
# Dual quaternions
Similar to the way that rotations in 3D space can be represented by quaternions of unit length,
rigid motions in 3D space can be represented by dual quaternions of unit length.
## Main results
* `Quaternion.dualNumberEquiv`: quaternions over dual numbers or dual
numbers over quaternions are equivalent constructions.
## References
* <https://en.wikipedia.org/wiki/Dual_quaternion>
-/
variable {R : Type*} [CommRing R]
namespace Quaternion
/-- The dual quaternions can be equivalently represented as a quaternion with dual coefficients,
or as a dual number with quaternion coefficients.
See also `Matrix.dualNumberEquiv` for a similar result. -/
def dualNumberEquiv : Quaternion (DualNumber R) ≃ₐ[R] DualNumber (Quaternion R) where
toFun q :=
(⟨q.re.fst, q.imI.fst, q.imJ.fst, q.imK.fst⟩, ⟨q.re.snd, q.imI.snd, q.imJ.snd, q.imK.snd⟩)
invFun d :=
⟨(d.fst.re, d.snd.re), (d.fst.imI, d.snd.imI), (d.fst.imJ, d.snd.imJ), (d.fst.imK, d.snd.imK)⟩
left_inv := fun ⟨⟨r, rε⟩, ⟨i, iε⟩, ⟨j, jε⟩, ⟨k, kε⟩⟩ => rfl
right_inv := fun ⟨⟨r, i, j, k⟩, ⟨rε, iε, jε, kε⟩⟩ => rfl
map_mul' := by
rintro ⟨⟨xr, xrε⟩, ⟨xi, xiε⟩, ⟨xj, xjε⟩, ⟨xk, xkε⟩⟩
rintro ⟨⟨yr, yrε⟩, ⟨yi, yiε⟩, ⟨yj, yjε⟩, ⟨yk, ykε⟩⟩
ext : 1
· rfl
· dsimp
congr 1 <;> simp <;> ring
map_add' := by
rintro ⟨⟨xr, xrε⟩, ⟨xi, xiε⟩, ⟨xj, xjε⟩, ⟨xk, xkε⟩⟩
rintro ⟨⟨yr, yrε⟩, ⟨yi, yiε⟩, ⟨yj, yjε⟩, ⟨yk, ykε⟩⟩
rfl
commutes' r := rfl
/-! Lemmas characterizing `Quaternion.dualNumberEquiv`. -/
-- `simps` can't work on `DualNumber` because it's not a structure
@[simp]
theorem re_fst_dualNumberEquiv (q : Quaternion (DualNumber R)) :
(dualNumberEquiv q).fst.re = q.re.fst :=
rfl
@[simp]
theorem imI_fst_dualNumberEquiv (q : Quaternion (DualNumber R)) :
(dualNumberEquiv q).fst.imI = q.imI.fst :=
rfl
@[simp]
theorem imJ_fst_dualNumberEquiv (q : Quaternion (DualNumber R)) :
(dualNumberEquiv q).fst.imJ = q.imJ.fst :=
rfl
@[simp]
theorem imK_fst_dualNumberEquiv (q : Quaternion (DualNumber R)) :
(dualNumberEquiv q).fst.imK = q.imK.fst :=
rfl
@[simp]
theorem re_snd_dualNumberEquiv (q : Quaternion (DualNumber R)) :
(dualNumberEquiv q).snd.re = q.re.snd :=
rfl
@[simp]
theorem imI_snd_dualNumberEquiv (q : Quaternion (DualNumber R)) :
(dualNumberEquiv q).snd.imI = q.imI.snd :=
rfl
@[simp]
theorem imJ_snd_dualNumberEquiv (q : Quaternion (DualNumber R)) :
(dualNumberEquiv q).snd.imJ = q.imJ.snd :=
rfl
@[simp]
theorem imK_snd_dualNumberEquiv (q : Quaternion (DualNumber R)) :
(dualNumberEquiv q).snd.imK = q.imK.snd :=
rfl
@[simp]
theorem fst_re_dualNumberEquiv_symm (d : DualNumber (Quaternion R)) :
(dualNumberEquiv.symm d).re.fst = d.fst.re :=
rfl
@[simp]
theorem fst_imI_dualNumberEquiv_symm (d : DualNumber (Quaternion R)) :
(dualNumberEquiv.symm d).imI.fst = d.fst.imI :=
rfl
@[simp]
theorem fst_imJ_dualNumberEquiv_symm (d : DualNumber (Quaternion R)) :
(dualNumberEquiv.symm d).imJ.fst = d.fst.imJ :=
rfl
@[simp]
theorem fst_imK_dualNumberEquiv_symm (d : DualNumber (Quaternion R)) :
(dualNumberEquiv.symm d).imK.fst = d.fst.imK :=
rfl
@[simp]
theorem snd_re_dualNumberEquiv_symm (d : DualNumber (Quaternion R)) :
(dualNumberEquiv.symm d).re.snd = d.snd.re :=
rfl
@[simp]
theorem snd_imI_dualNumberEquiv_symm (d : DualNumber (Quaternion R)) :
(dualNumberEquiv.symm d).imI.snd = d.snd.imI :=
rfl
@[simp]
theorem snd_imJ_dualNumberEquiv_symm (d : DualNumber (Quaternion R)) :
(dualNumberEquiv.symm d).imJ.snd = d.snd.imJ :=
rfl
@[simp]
theorem snd_imK_dualNumberEquiv_symm (d : DualNumber (Quaternion R)) :
(dualNumberEquiv.symm d).imK.snd = d.snd.imK :=
rfl
end Quaternion
|
Algebra\Exact.lean | /-
Copyright (c) 2023 Antoine Chambert-Loir. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Antoine Chambert-Loir
-/
import Mathlib.Algebra.Module.Submodule.Range
import Mathlib.LinearAlgebra.Prod
import Mathlib.LinearAlgebra.Quotient
/-! # Exactness of a pair
* For two maps `f : M → N` and `g : N → P`, with `Zero P`,
`Function.Exact f g` says that `Set.range f = Set.preimage g {0}`
* For additive maps `f : M →+ N` and `g : N →+ P`,
`Exact f g` says that `range f = ker g`
* For linear maps `f : M →ₗ[R] N` and `g : N →ₗ[R] P`,
`Exact f g` says that `range f = ker g`
## TODO :
* generalize to `SemilinearMap`, even `SemilinearMapClass`
* add the multiplicative case (`Function.Exact` will become `Function.AddExact`?)
-/
variable {R M M' N N' P P' : Type*}
namespace Function
variable (f : M → N) (g : N → P) (g' : P → P')
/-- The maps `f` and `g` form an exact pair :
`g y = 0` iff `y` belongs to the image of `f` -/
def Exact [Zero P] : Prop := ∀ y, g y = 0 ↔ y ∈ Set.range f
variable {f g}
namespace Exact
lemma apply_apply_eq_zero [Zero P] (h : Exact f g) (x : M) :
g (f x) = 0 := (h _).mpr <| Set.mem_range_self _
lemma comp_eq_zero [Zero P] (h : Exact f g) : g.comp f = 0 :=
funext h.apply_apply_eq_zero
lemma of_comp_of_mem_range [Zero P] (h1 : g ∘ f = 0)
(h2 : ∀ x, g x = 0 → x ∈ Set.range f) : Exact f g :=
fun y => Iff.intro (h2 y) <|
Exists.rec ((forall_apply_eq_imp_iff (p := (g · = 0))).mpr (congrFun h1) y)
lemma comp_injective [Zero P] [Zero P'] (exact : Exact f g)
(inj : Function.Injective g') (h0 : g' 0 = 0) :
Exact f (g' ∘ g) := by
intro x
refine ⟨fun H => exact x |>.mp <| inj <| h0 ▸ H, ?_⟩
intro H
rw [Function.comp_apply, exact x |>.mpr H, h0]
lemma of_comp_eq_zero_of_ker_in_range [Zero P] (hc : g.comp f = 0)
(hr : ∀ y, g y = 0 → y ∈ Set.range f) :
Exact f g :=
fun y ↦ ⟨hr y, fun ⟨x, hx⟩ ↦ hx ▸ congrFun hc x⟩
end Exact
end Function
section AddMonoidHom
variable [AddGroup M] [AddGroup N] [AddGroup P] {f : M →+ N} {g : N →+ P}
namespace AddMonoidHom
open Function
lemma exact_iff :
Exact f g ↔ ker g = range f :=
Iff.symm SetLike.ext_iff
lemma exact_of_comp_eq_zero_of_ker_le_range
(h1 : g.comp f = 0) (h2 : ker g ≤ range f) : Exact f g :=
Exact.of_comp_of_mem_range (congrArg DFunLike.coe h1) h2
lemma exact_of_comp_of_mem_range
(h1 : g.comp f = 0) (h2 : ∀ x, g x = 0 → x ∈ range f) : Exact f g :=
exact_of_comp_eq_zero_of_ker_le_range h1 h2
end AddMonoidHom
namespace Function.Exact
open AddMonoidHom
lemma addMonoidHom_ker_eq (hfg : Exact f g) :
ker g = range f :=
SetLike.ext hfg
lemma addMonoidHom_comp_eq_zero (h : Exact f g) : g.comp f = 0 :=
DFunLike.coe_injective h.comp_eq_zero
section
variable {X₁ X₂ X₃ Y₁ Y₂ Y₃ : Type*} [AddCommMonoid X₁] [AddCommMonoid X₂] [AddCommMonoid X₃]
[AddCommMonoid Y₁] [AddCommMonoid Y₂] [AddCommMonoid Y₃]
(e₁ : X₁ ≃+ Y₁) (e₂ : X₂ ≃+ Y₂) (e₃ : X₃ ≃+ Y₃)
{f₁₂ : X₁ →+ X₂} {f₂₃ : X₂ →+ X₃} {g₁₂ : Y₁ →+ Y₂} {g₂₃ : Y₂ →+ Y₃}
lemma of_ladder_addEquiv_of_exact (comm₁₂ : g₁₂.comp e₁ = AddMonoidHom.comp e₂ f₁₂)
(comm₂₃ : g₂₃.comp e₂ = AddMonoidHom.comp e₃ f₂₃) (H : Exact f₁₂ f₂₃) : Exact g₁₂ g₂₃ := by
have h₁₂ := DFunLike.congr_fun comm₁₂
have h₂₃ := DFunLike.congr_fun comm₂₃
dsimp at h₁₂ h₂₃
apply of_comp_eq_zero_of_ker_in_range
· ext y₁
obtain ⟨x₁, rfl⟩ := e₁.surjective y₁
dsimp
rw [h₁₂, h₂₃, H.apply_apply_eq_zero, map_zero]
· intro y₂ hx₂
obtain ⟨x₂, rfl⟩ := e₂.surjective y₂
obtain ⟨x₁, rfl⟩ := (H x₂).1 (e₃.injective (by rw [← h₂₃, hx₂, map_zero]))
exact ⟨e₁ x₁, by rw [h₁₂]⟩
lemma of_ladder_addEquiv_of_exact' (comm₁₂ : g₁₂.comp e₁ = AddMonoidHom.comp e₂ f₁₂)
(comm₂₃ : g₂₃.comp e₂ = AddMonoidHom.comp e₃ f₂₃) (H : Exact g₁₂ g₂₃) : Exact f₁₂ f₂₃ := by
refine of_ladder_addEquiv_of_exact e₁.symm e₂.symm e₃.symm ?_ ?_ H
· ext y₁
obtain ⟨x₁, rfl⟩ := e₁.surjective y₁
apply e₂.injective
simpa using DFunLike.congr_fun comm₁₂.symm x₁
· ext y₂
obtain ⟨x₂, rfl⟩ := e₂.surjective y₂
apply e₃.injective
simpa using DFunLike.congr_fun comm₂₃.symm x₂
lemma iff_of_ladder_addEquiv (comm₁₂ : g₁₂.comp e₁ = AddMonoidHom.comp e₂ f₁₂)
(comm₂₃ : g₂₃.comp e₂ = AddMonoidHom.comp e₃ f₂₃) : Exact g₁₂ g₂₃ ↔ Exact f₁₂ f₂₃ := by
constructor
· exact of_ladder_addEquiv_of_exact' e₁ e₂ e₃ comm₁₂ comm₂₃
· exact of_ladder_addEquiv_of_exact e₁ e₂ e₃ comm₁₂ comm₂₃
end
end Function.Exact
end AddMonoidHom
section LinearMap
open Function
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid M'] [AddCommMonoid N]
[AddCommMonoid N'] [AddCommMonoid P] [AddCommMonoid P'] [Module R M]
[Module R M'] [Module R N] [Module R N'] [Module R P] [Module R P']
variable {f : M →ₗ[R] N} {g : N →ₗ[R] P}
namespace LinearMap
lemma exact_iff :
Exact f g ↔ LinearMap.ker g = LinearMap.range f :=
Iff.symm SetLike.ext_iff
lemma exact_of_comp_eq_zero_of_ker_le_range
(h1 : g ∘ₗ f = 0) (h2 : ker g ≤ range f) : Exact f g :=
Exact.of_comp_of_mem_range (congrArg DFunLike.coe h1) h2
lemma exact_of_comp_of_mem_range
(h1 : g ∘ₗ f = 0) (h2 : ∀ x, g x = 0 → x ∈ range f) : Exact f g :=
exact_of_comp_eq_zero_of_ker_le_range h1 h2
variable {R M N P : Type*} [CommRing R]
[AddCommGroup M] [AddCommGroup N] [AddCommGroup P] [Module R M] [Module R N] [Module R P]
lemma exact_subtype_mkQ (Q : Submodule R N) :
Exact (Submodule.subtype Q) (Submodule.mkQ Q) := by
rw [exact_iff, Submodule.ker_mkQ, Submodule.range_subtype Q]
lemma exact_map_mkQ_range (f : M →ₗ[R] N) :
Exact f (Submodule.mkQ (range f)) :=
exact_iff.mpr <| Submodule.ker_mkQ _
lemma exact_subtype_ker_map (g : N →ₗ[R] P) :
Exact (Submodule.subtype (ker g)) g :=
exact_iff.mpr <| (Submodule.range_subtype _).symm
end LinearMap
variable (f g) in
lemma LinearEquiv.conj_exact_iff_exact (e : N ≃ₗ[R] N') :
Function.Exact (e ∘ₗ f) (g ∘ₗ (e.symm : N' →ₗ[R] N)) ↔ Exact f g := by
simp_rw [LinearMap.exact_iff, LinearMap.ker_comp, ← e.map_eq_comap, LinearMap.range_comp]
exact (Submodule.map_injective_of_injective e.injective).eq_iff
namespace Function
open LinearMap
lemma Exact.linearMap_ker_eq (hfg : Exact f g) : ker g = range f :=
SetLike.ext hfg
lemma Exact.linearMap_comp_eq_zero (h : Exact f g) : g.comp f = 0 :=
DFunLike.coe_injective h.comp_eq_zero
lemma Surjective.comp_exact_iff_exact {p : M' →ₗ[R] M} (h : Surjective p) :
Exact (f ∘ₗ p) g ↔ Exact f g :=
iff_of_eq <| forall_congr fun x =>
congrArg (g x = 0 ↔ x ∈ ·) (h.range_comp f)
lemma Injective.comp_exact_iff_exact {i : P →ₗ[R] P'} (h : Injective i) :
Exact f (i ∘ₗ g) ↔ Exact f g :=
forall_congr' fun _ => iff_congr (LinearMap.map_eq_zero_iff _ h) Iff.rfl
variable
{f₁₂ : M →ₗ[R] N} {f₂₃ : N →ₗ[R] P} {g₁₂ : M' →ₗ[R] N'}
{g₂₃ : N' →ₗ[R] P'} {e₁ : M ≃ₗ[R] M'} {e₂ : N ≃ₗ[R] N'} {e₃ : P ≃ₗ[R] P'}
lemma Exact.iff_of_ladder_linearEquiv
(h₁₂ : g₁₂ ∘ₗ e₁ = e₂ ∘ₗ f₁₂) (h₂₃ : g₂₃ ∘ₗ e₂ = e₃ ∘ₗ f₂₃) :
Exact g₁₂ g₂₃ ↔ Exact f₁₂ f₂₃ :=
iff_of_ladder_addEquiv e₁.toAddEquiv e₂.toAddEquiv e₃.toAddEquiv
(f₁₂ := f₁₂) (f₂₃ := f₂₃) (g₁₂ := g₁₂) (g₂₃ := g₂₃)
(congr_arg LinearMap.toAddMonoidHom h₁₂) (congr_arg LinearMap.toAddMonoidHom h₂₃)
lemma Exact.of_ladder_linearEquiv_of_exact
(h₁₂ : g₁₂ ∘ₗ e₁ = e₂ ∘ₗ f₁₂) (h₂₃ : g₂₃ ∘ₗ e₂ = e₃ ∘ₗ f₂₃)
(H : Exact f₁₂ f₂₃) : Exact g₁₂ g₂₃ := by
rwa [iff_of_ladder_linearEquiv h₁₂ h₂₃]
end Function
end LinearMap
namespace Function
section split
variable [Semiring R]
variable [AddCommGroup M] [AddCommGroup N] [AddCommGroup P] [Module R M] [Module R N] [Module R P]
variable {f : M →ₗ[R] N} {g : N →ₗ[R] P}
open LinearMap
/-- Given an exact sequence `0 → M → N → P`, giving a section `P → N` is equivalent to giving a
splitting `N ≃ M × P`. -/
noncomputable
def Exact.splitSurjectiveEquiv (h : Function.Exact f g) (hf : Function.Injective f) :
{ l // g ∘ₗ l = .id } ≃
{ e : N ≃ₗ[R] M × P // f = e.symm ∘ₗ inl R M P ∧ g = snd R M P ∘ₗ e } := by
refine
{ toFun := fun l ↦ ⟨(LinearEquiv.ofBijective (f ∘ₗ fst R M P + l.1 ∘ₗ snd R M P) ?_).symm, ?_⟩
invFun := fun e ↦ ⟨e.1.symm ∘ₗ inr R M P, ?_⟩
left_inv := ?_
right_inv := ?_ }
· have h₁ : ∀ x, g (l.1 x) = x := LinearMap.congr_fun l.2
have h₂ : ∀ x, g (f x) = 0 := congr_fun h.comp_eq_zero
constructor
· intros x y e
simp only [add_apply, coe_comp, comp_apply, fst_apply, snd_apply] at e
suffices x.2 = y.2 from Prod.ext (hf (by rwa [this, add_left_inj] at e)) this
simpa [h₁, h₂] using DFunLike.congr_arg g e
· intro x
obtain ⟨y, hy⟩ := (h (x - l.1 (g x))).mp (by simp [h₁, g.map_sub])
exact ⟨⟨y, g x⟩, by simp [hy]⟩
· have h₁ : ∀ x, g (l.1 x) = x := LinearMap.congr_fun l.2
have h₂ : ∀ x, g (f x) = 0 := congr_fun h.comp_eq_zero
constructor
· ext; simp
· rw [LinearEquiv.eq_comp_toLinearMap_symm]
ext <;> simp [h₁, h₂]
· rw [← LinearMap.comp_assoc, (LinearEquiv.eq_comp_toLinearMap_symm _ _).mp e.2.2]; rfl
· intro; ext; simp
· rintro ⟨e, rfl, rfl⟩
ext1
apply LinearEquiv.symm_bijective.injective
ext
apply e.injective
ext <;> simp
/-- Given an exact sequence `M → N → P → 0`, giving a retraction `N → M` is equivalent to giving a
splitting `N ≃ M × P`. -/
noncomputable
def Exact.splitInjectiveEquiv
{R M N P} [Semiring R] [AddCommGroup M] [AddCommGroup N]
[AddCommGroup P] [Module R M] [Module R N] [Module R P] {f : M →ₗ[R] N} {g : N →ₗ[R] P}
(h : Function.Exact f g) (hg : Function.Surjective g) :
{ l // l ∘ₗ f = .id } ≃
{ e : N ≃ₗ[R] M × P // f = e.symm ∘ₗ inl R M P ∧ g = snd R M P ∘ₗ e } := by
refine
{ toFun := fun l ↦ ⟨(LinearEquiv.ofBijective (l.1.prod g) ?_), ?_⟩
invFun := fun e ↦ ⟨fst R M P ∘ₗ e.1, ?_⟩
left_inv := ?_
right_inv := ?_ }
· have h₁ : ∀ x, l.1 (f x) = x := LinearMap.congr_fun l.2
have h₂ : ∀ x, g (f x) = 0 := congr_fun h.comp_eq_zero
constructor
· intros x y e
simp only [prod_apply, Pi.prod, Prod.mk.injEq] at e
obtain ⟨z, hz⟩ := (h (x - y)).mp (by simpa [sub_eq_zero] using e.2)
suffices z = 0 by rw [← sub_eq_zero, ← hz, this, map_zero]
rw [← h₁ z, hz, map_sub, e.1, sub_self]
· rintro ⟨x, y⟩
obtain ⟨y, rfl⟩ := hg y
refine ⟨f x + y - f (l.1 y), by ext <;> simp [h₁, h₂]⟩
· have h₁ : ∀ x, l.1 (f x) = x := LinearMap.congr_fun l.2
have h₂ : ∀ x, g (f x) = 0 := congr_fun h.comp_eq_zero
constructor
· rw [LinearEquiv.eq_toLinearMap_symm_comp]
ext <;> simp [h₁, h₂]
· ext; simp
· rw [LinearMap.comp_assoc, (LinearEquiv.eq_toLinearMap_symm_comp _ _).mp e.2.1]; rfl
· intro; ext; simp
· rintro ⟨e, rfl, rfl⟩
ext x <;> simp
theorem Exact.split_tfae' (h : Function.Exact f g) :
List.TFAE [
Function.Injective f ∧ ∃ l, g ∘ₗ l = LinearMap.id,
Function.Surjective g ∧ ∃ l, l ∘ₗ f = LinearMap.id,
∃ e : N ≃ₗ[R] M × P, f = e.symm ∘ₗ LinearMap.inl R M P ∧ g = LinearMap.snd R M P ∘ₗ e] := by
tfae_have 1 → 3
· rintro ⟨hf, l, hl⟩
exact ⟨_, (h.splitSurjectiveEquiv hf ⟨l, hl⟩).2⟩
tfae_have 2 → 3
· rintro ⟨hg, l, hl⟩
exact ⟨_, (h.splitInjectiveEquiv hg ⟨l, hl⟩).2⟩
tfae_have 3 → 1
· rintro ⟨e, e₁, e₂⟩
have : Function.Injective f := e₁ ▸ e.symm.injective.comp LinearMap.inl_injective
refine ⟨this, ⟨_, ((h.splitSurjectiveEquiv this).symm ⟨e, e₁, e₂⟩).2⟩⟩
tfae_have 3 → 2
· rintro ⟨e, e₁, e₂⟩
have : Function.Surjective g := e₂ ▸ Prod.snd_surjective.comp e.surjective
refine ⟨this, ⟨_, ((h.splitInjectiveEquiv this).symm ⟨e, e₁, e₂⟩).2⟩⟩
tfae_finish
/-- Equivalent characterizations of split exact sequences. Also known as the **Splitting lemma**. -/
theorem Exact.split_tfae
{R M N P} [Semiring R] [AddCommGroup M] [AddCommGroup N]
[AddCommGroup P] [Module R M] [Module R N] [Module R P] {f : M →ₗ[R] N} {g : N →ₗ[R] P}
(h : Function.Exact f g) (hf : Function.Injective f) (hg : Function.Surjective g) :
List.TFAE [
∃ l, g ∘ₗ l = LinearMap.id,
∃ l, l ∘ₗ f = LinearMap.id,
∃ e : N ≃ₗ[R] M × P, f = e.symm ∘ₗ LinearMap.inl R M P ∧ g = LinearMap.snd R M P ∘ₗ e] := by
tfae_have 1 ↔ 3
· simpa using (h.splitSurjectiveEquiv hf).nonempty_congr
tfae_have 2 ↔ 3
· simpa using (h.splitInjectiveEquiv hg).nonempty_congr
tfae_finish
end split
section Prod
variable [Semiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N]
lemma Exact.inr_fst : Function.Exact (LinearMap.inr R M N) (LinearMap.fst R M N) := by
rintro ⟨x, y⟩
simp only [LinearMap.fst_apply, @eq_comm _ x, LinearMap.coe_inr, Set.mem_range, Prod.mk.injEq,
exists_eq_right]
lemma Exact.inl_snd : Function.Exact (LinearMap.inl R M N) (LinearMap.snd R M N) := by
rintro ⟨x, y⟩
simp only [LinearMap.snd_apply, @eq_comm _ y, LinearMap.coe_inl, Set.mem_range, Prod.mk.injEq,
exists_eq_left]
end Prod
section Ring
open LinearMap Submodule
variable [Ring R] [AddCommGroup M] [AddCommGroup N] [AddCommGroup P]
[Module R M] [Module R N] [Module R P]
/-- A necessary and sufficient condition for an exact sequence to descend to a quotient. -/
lemma Exact.exact_mapQ_iff {f : M →ₗ[R] N} {g : N →ₗ[R] P}
(hfg : Exact f g) {p q r} (hpq : p ≤ comap f q) (hqr : q ≤ comap g r) :
Exact (mapQ p q f hpq) (mapQ q r g hqr) ↔ range g ⊓ r ≤ map g q := by
rw [exact_iff, ← (comap_injective_of_surjective (mkQ_surjective _)).eq_iff]
dsimp only [mapQ]
rw [← ker_comp, range_liftQ, liftQ_mkQ, ker_comp, range_comp, comap_map_eq,
ker_mkQ, ker_mkQ, ← hfg.linearMap_ker_eq, sup_comm,
← LE.le.le_iff_eq (sup_le hqr (ker_le_comap g)),
← comap_map_eq, ← map_le_iff_le_comap, map_comap_eq]
end Ring
end Function
|
Algebra\Expr.lean | /-
Copyright (c) 2022 Eric Wieser. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Eric Wieser
-/
import Mathlib.Algebra.Group.ZeroOne
import Qq
/-! # Helpers to invoke functions involving algebra at tactic time
This file provides instances on `x y : Q($α)` such that `x + y = q($x + $y)`.
Porting note: This has been rewritten to use `Qq` instead of `Expr`.
-/
open Qq
/-- Produce a `One` instance for `Q($α)` such that `1 : Q($α)` is `q(1 : $α)`. -/
def Expr.instOne {u : Lean.Level} (α : Q(Type u)) (_ : Q(One $α)) : One Q($α) where
one := q(1 : $α)
/-- Produce a `Zero` instance for `Q($α)` such that `0 : Q($α)` is `q(0 : $α)`. -/
def Expr.instZero {u : Lean.Level} (α : Q(Type u)) (_ : Q(Zero $α)) : Zero Q($α) where
zero := q(0 : $α)
/-- Produce a `Mul` instance for `Q($α)` such that `x * y : Q($α)` is `q($x * $y)`. -/
def Expr.instMul {u : Lean.Level} (α : Q(Type u)) (_ : Q(Mul $α)) : Mul Q($α) where
mul x y := q($x * $y)
/-- Produce an `Add` instance for `Q($α)` such that `x + y : Q($α)` is `q($x + $y)`. -/
def Expr.instAdd {u : Lean.Level} (α : Q(Type u)) (_ : Q(Add $α)) : Add Q($α) where
add x y := q($x + $y)
|
Algebra\Free.lean | /-
Copyright (c) 2019 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Group.Equiv.Basic
import Mathlib.Control.Applicative
import Mathlib.Control.Traversable.Basic
import Mathlib.Data.List.Basic
import Mathlib.Logic.Equiv.Defs
import Mathlib.Tactic.AdaptationNote
/-!
# Free constructions
## Main definitions
* `FreeMagma α`: free magma (structure with binary operation without any axioms) over alphabet `α`,
defined inductively, with traversable instance and decidable equality.
* `MagmaAssocQuotient α`: quotient of a magma `α` by the associativity equivalence relation.
* `FreeSemigroup α`: free semigroup over alphabet `α`, defined as a structure with two fields
`head : α` and `tail : List α` (i.e. nonempty lists), with traversable instance and decidable
equality.
* `FreeMagmaAssocQuotientEquiv α`: isomorphism between `MagmaAssocQuotient (FreeMagma α)` and
`FreeSemigroup α`.
* `FreeMagma.lift`: the universal property of the free magma, expressing its adjointness.
-/
universe u v l
/-- Free nonabelian additive magma over a given alphabet. -/
inductive FreeAddMagma (α : Type u) : Type u
| of : α → FreeAddMagma α
| add : FreeAddMagma α → FreeAddMagma α → FreeAddMagma α
deriving DecidableEq
compile_inductive% FreeAddMagma
/-- Free magma over a given alphabet. -/
@[to_additive]
inductive FreeMagma (α : Type u) : Type u
| of : α → FreeMagma α
| mul : FreeMagma α → FreeMagma α → FreeMagma α
deriving DecidableEq
compile_inductive% FreeMagma
namespace FreeMagma
variable {α : Type u}
@[to_additive]
instance [Inhabited α] : Inhabited (FreeMagma α) := ⟨of default⟩
@[to_additive]
instance : Mul (FreeMagma α) := ⟨FreeMagma.mul⟩
-- Porting note: invalid attribute 'match_pattern', declaration is in an imported module
-- attribute [match_pattern] Mul.mul
@[to_additive (attr := simp)]
theorem mul_eq (x y : FreeMagma α) : mul x y = x * y := rfl
/- Porting note: these lemmas are autogenerated by the inductive definition and due to
the existence of mul_eq not in simp normal form -/
attribute [nolint simpNF] FreeAddMagma.add.sizeOf_spec
attribute [nolint simpNF] FreeMagma.mul.sizeOf_spec
attribute [nolint simpNF] FreeAddMagma.add.injEq
attribute [nolint simpNF] FreeMagma.mul.injEq
/-- Recursor for `FreeMagma` using `x * y` instead of `FreeMagma.mul x y`. -/
@[to_additive (attr := elab_as_elim, induction_eliminator)
"Recursor for `FreeAddMagma` using `x + y` instead of `FreeAddMagma.add x y`."]
def recOnMul {C : FreeMagma α → Sort l} (x) (ih1 : ∀ x, C (of x))
(ih2 : ∀ x y, C x → C y → C (x * y)) : C x :=
FreeMagma.recOn x ih1 ih2
@[to_additive (attr := ext 1100)]
theorem hom_ext {β : Type v} [Mul β] {f g : FreeMagma α →ₙ* β} (h : f ∘ of = g ∘ of) : f = g :=
(DFunLike.ext _ _) fun x ↦ recOnMul x (congr_fun h) <| by intros; simp only [map_mul, *]
end FreeMagma
#adaptation_note /-- around nightly-2024-02-25, we need to write `mul x y` in the second pattern,
instead of `x * y`. --/
/-- Lifts a function `α → β` to a magma homomorphism `FreeMagma α → β` given a magma `β`. -/
def FreeMagma.liftAux {α : Type u} {β : Type v} [Mul β] (f : α → β) : FreeMagma α → β
| FreeMagma.of x => f x
| mul x y => liftAux f x * liftAux f y
/-- Lifts a function `α → β` to an additive magma homomorphism `FreeAddMagma α → β` given
an additive magma `β`. -/
def FreeAddMagma.liftAux {α : Type u} {β : Type v} [Add β] (f : α → β) : FreeAddMagma α → β
| FreeAddMagma.of x => f x
| x + y => liftAux f x + liftAux f y
attribute [to_additive existing] FreeMagma.liftAux
namespace FreeMagma
section lift
variable {α : Type u} {β : Type v} [Mul β] (f : α → β)
/-- The universal property of the free magma expressing its adjointness. -/
@[to_additive (attr := simps symm_apply)
"The universal property of the free additive magma expressing its adjointness."]
def lift : (α → β) ≃ (FreeMagma α →ₙ* β) where
toFun f :=
{ toFun := liftAux f
map_mul' := fun x y ↦ rfl }
invFun F := F ∘ of
left_inv f := rfl
right_inv F := by ext; rfl
@[to_additive (attr := simp)]
theorem lift_of (x) : lift f (of x) = f x := rfl
@[to_additive (attr := simp)]
theorem lift_comp_of : lift f ∘ of = f := rfl
@[to_additive (attr := simp)]
theorem lift_comp_of' (f : FreeMagma α →ₙ* β) : lift (f ∘ of) = f := lift.apply_symm_apply f
end lift
section Map
variable {α : Type u} {β : Type v} (f : α → β)
/-- The unique magma homomorphism `FreeMagma α →ₙ* FreeMagma β` that sends
each `of x` to `of (f x)`. -/
@[to_additive "The unique additive magma homomorphism `FreeAddMagma α → FreeAddMagma β` that sends
each `of x` to `of (f x)`."]
def map (f : α → β) : FreeMagma α →ₙ* FreeMagma β := lift (of ∘ f)
@[to_additive (attr := simp)]
theorem map_of (x) : map f (of x) = of (f x) := rfl
end Map
section Category
variable {α β : Type u}
@[to_additive]
instance : Monad FreeMagma where
pure := of
bind x f := lift f x
/-- Recursor on `FreeMagma` using `pure` instead of `of`. -/
@[to_additive (attr := elab_as_elim) "Recursor on `FreeAddMagma` using `pure` instead of `of`."]
protected def recOnPure {C : FreeMagma α → Sort l} (x) (ih1 : ∀ x, C (pure x))
(ih2 : ∀ x y, C x → C y → C (x * y)) : C x :=
FreeMagma.recOnMul x ih1 ih2
@[to_additive (attr := simp)]
theorem map_pure (f : α → β) (x) : (f <$> pure x : FreeMagma β) = pure (f x) := rfl
@[to_additive (attr := simp)]
theorem map_mul' (f : α → β) (x y : FreeMagma α) : f <$> (x * y) = f <$> x * f <$> y := rfl
@[to_additive (attr := simp)]
theorem pure_bind (f : α → FreeMagma β) (x) : pure x >>= f = f x := rfl
@[to_additive (attr := simp)]
theorem mul_bind (f : α → FreeMagma β) (x y : FreeMagma α) : x * y >>= f = (x >>= f) * (y >>= f) :=
rfl
@[to_additive (attr := simp)]
theorem pure_seq {α β : Type u} {f : α → β} {x : FreeMagma α} : pure f <*> x = f <$> x := rfl
@[to_additive (attr := simp)]
theorem mul_seq {α β : Type u} {f g : FreeMagma (α → β)} {x : FreeMagma α} :
f * g <*> x = (f <*> x) * (g <*> x) := rfl
@[to_additive]
instance instLawfulMonad : LawfulMonad FreeMagma.{u} := LawfulMonad.mk'
(pure_bind := fun f x ↦ rfl)
(bind_assoc := fun x f g ↦ FreeMagma.recOnPure x (fun x ↦ rfl) fun x y ih1 ih2 ↦ by
rw [mul_bind, mul_bind, mul_bind, ih1, ih2])
(id_map := fun x ↦ FreeMagma.recOnPure x (fun _ ↦ rfl) fun x y ih1 ih2 ↦ by
rw [map_mul', ih1, ih2])
end Category
end FreeMagma
#adaptation_note /-- around nightly-2024-02-25, we need to write `mul x y` in the second pattern,
instead of `x * y`. -/
/-- `FreeMagma` is traversable. -/
protected def FreeMagma.traverse {m : Type u → Type u} [Applicative m] {α β : Type u}
(F : α → m β) : FreeMagma α → m (FreeMagma β)
| FreeMagma.of x => FreeMagma.of <$> F x
| mul x y => (· * ·) <$> x.traverse F <*> y.traverse F
/-- `FreeAddMagma` is traversable. -/
protected def FreeAddMagma.traverse {m : Type u → Type u} [Applicative m] {α β : Type u}
(F : α → m β) : FreeAddMagma α → m (FreeAddMagma β)
| FreeAddMagma.of x => FreeAddMagma.of <$> F x
| x + y => (· + ·) <$> x.traverse F <*> y.traverse F
attribute [to_additive existing] FreeMagma.traverse
namespace FreeMagma
variable {α : Type u}
section Category
variable {β : Type u}
@[to_additive]
instance : Traversable FreeMagma := ⟨@FreeMagma.traverse⟩
variable {m : Type u → Type u} [Applicative m] (F : α → m β)
@[to_additive (attr := simp)]
theorem traverse_pure (x) : traverse F (pure x : FreeMagma α) = pure <$> F x := rfl
@[to_additive (attr := simp)]
theorem traverse_pure' : traverse F ∘ pure = fun x ↦ (pure <$> F x : m (FreeMagma β)) := rfl
@[to_additive (attr := simp)]
theorem traverse_mul (x y : FreeMagma α) :
traverse F (x * y) = (· * ·) <$> traverse F x <*> traverse F y := rfl
@[to_additive (attr := simp)]
theorem traverse_mul' :
Function.comp (traverse F) ∘ (HMul.hMul : FreeMagma α → FreeMagma α → FreeMagma α) = fun x y ↦
(· * ·) <$> traverse F x <*> traverse F y := rfl
@[to_additive (attr := simp)]
theorem traverse_eq (x) : FreeMagma.traverse F x = traverse F x := rfl
-- Porting note (#10675): dsimp can not prove this
@[to_additive (attr := simp, nolint simpNF)]
theorem mul_map_seq (x y : FreeMagma α) :
((· * ·) <$> x <*> y : Id (FreeMagma α)) = (x * y : FreeMagma α) := rfl
@[to_additive]
instance : LawfulTraversable FreeMagma.{u} :=
{ instLawfulMonad with
id_traverse := fun x ↦
FreeMagma.recOnPure x (fun x ↦ rfl) fun x y ih1 ih2 ↦ by
rw [traverse_mul, ih1, ih2, mul_map_seq]
comp_traverse := fun f g x ↦
FreeMagma.recOnPure x
(fun x ↦ by simp only [(· ∘ ·), traverse_pure, traverse_pure', functor_norm])
(fun x y ih1 ih2 ↦ by
rw [traverse_mul, ih1, ih2, traverse_mul]
simp [Functor.Comp.map_mk, Functor.map_map, (· ∘ ·), Comp.seq_mk, seq_map_assoc,
map_seq, traverse_mul])
naturality := fun η α β f x ↦
FreeMagma.recOnPure x
(fun x ↦ by simp only [traverse_pure, functor_norm, Function.comp_apply])
(fun x y ih1 ih2 ↦ by simp only [traverse_mul, functor_norm, ih1, ih2])
traverse_eq_map_id := fun f x ↦
FreeMagma.recOnPure x (fun _ ↦ rfl) fun x y ih1 ih2 ↦ by
rw [traverse_mul, ih1, ih2, map_mul', mul_map_seq]; rfl }
end Category
end FreeMagma
-- Porting note: changed String to Lean.Format
#adaptation_note /-- around nightly-2024-02-25, we need to write `mul x y` in the second pattern,
instead of `x * y`. -/
/-- Representation of an element of a free magma. -/
protected def FreeMagma.repr {α : Type u} [Repr α] : FreeMagma α → Lean.Format
| FreeMagma.of x => repr x
| mul x y => "( " ++ x.repr ++ " * " ++ y.repr ++ " )"
/-- Representation of an element of a free additive magma. -/
protected def FreeAddMagma.repr {α : Type u} [Repr α] : FreeAddMagma α → Lean.Format
| FreeAddMagma.of x => repr x
| x + y => "( " ++ x.repr ++ " + " ++ y.repr ++ " )"
attribute [to_additive existing] FreeMagma.repr
@[to_additive]
instance {α : Type u} [Repr α] : Repr (FreeMagma α) := ⟨fun o _ => FreeMagma.repr o⟩
#adaptation_note /-- around nightly-2024-02-25, we need to write `mul x y` in the second pattern,
instead of `x * y`. -/
/-- Length of an element of a free magma. -/
def FreeMagma.length {α : Type u} : FreeMagma α → ℕ
| FreeMagma.of _x => 1
| mul x y => x.length + y.length
/-- Length of an element of a free additive magma. -/
def FreeAddMagma.length {α : Type u} : FreeAddMagma α → ℕ
| FreeAddMagma.of _x => 1
| x + y => x.length + y.length
attribute [to_additive existing (attr := simp)] FreeMagma.length
/-- The length of an element of a free magma is positive. -/
@[to_additive "The length of an element of a free additive magma is positive."]
lemma FreeMagma.length_pos {α : Type u} (x : FreeMagma α) : 0 < x.length :=
match x with
| FreeMagma.of _ => Nat.succ_pos 0
| mul y z => Nat.add_pos_left (length_pos y) z.length
/-- Associativity relations for an additive magma. -/
inductive AddMagma.AssocRel (α : Type u) [Add α] : α → α → Prop
| intro : ∀ x y z, AddMagma.AssocRel α (x + y + z) (x + (y + z))
| left : ∀ w x y z, AddMagma.AssocRel α (w + (x + y + z)) (w + (x + (y + z)))
/-- Associativity relations for a magma. -/
@[to_additive AddMagma.AssocRel "Associativity relations for an additive magma."]
inductive Magma.AssocRel (α : Type u) [Mul α] : α → α → Prop
| intro : ∀ x y z, Magma.AssocRel α (x * y * z) (x * (y * z))
| left : ∀ w x y z, Magma.AssocRel α (w * (x * y * z)) (w * (x * (y * z)))
namespace Magma
/-- Semigroup quotient of a magma. -/
@[to_additive AddMagma.FreeAddSemigroup "Additive semigroup quotient of an additive magma."]
def AssocQuotient (α : Type u) [Mul α] : Type u :=
Quot <| AssocRel α
namespace AssocQuotient
variable {α : Type u} [Mul α]
@[to_additive]
theorem quot_mk_assoc (x y z : α) : Quot.mk (AssocRel α) (x * y * z) = Quot.mk _ (x * (y * z)) :=
Quot.sound (AssocRel.intro _ _ _)
@[to_additive]
theorem quot_mk_assoc_left (x y z w : α) :
Quot.mk (AssocRel α) (x * (y * z * w)) = Quot.mk _ (x * (y * (z * w))) :=
Quot.sound (AssocRel.left _ _ _ _)
@[to_additive]
instance : Semigroup (AssocQuotient α) where
mul x y := by
refine Quot.liftOn₂ x y (fun x y ↦ Quot.mk _ (x * y)) ?_ ?_
· rintro a b₁ b₂ (⟨c, d, e⟩ | ⟨c, d, e, f⟩) <;> simp only
· exact quot_mk_assoc_left _ _ _ _
· rw [← quot_mk_assoc, quot_mk_assoc_left, quot_mk_assoc]
· rintro a₁ a₂ b (⟨c, d, e⟩ | ⟨c, d, e, f⟩) <;> simp only
· simp only [quot_mk_assoc, quot_mk_assoc_left]
· rw [quot_mk_assoc, quot_mk_assoc, quot_mk_assoc_left, quot_mk_assoc_left,
quot_mk_assoc_left, ← quot_mk_assoc c d, ← quot_mk_assoc c d, quot_mk_assoc_left]
mul_assoc x y z :=
Quot.induction_on₃ x y z fun a b c ↦ quot_mk_assoc a b c
/-- Embedding from magma to its free semigroup. -/
@[to_additive "Embedding from additive magma to its free additive semigroup."]
def of : α →ₙ* AssocQuotient α where toFun := Quot.mk _; map_mul' _x _y := rfl
@[to_additive]
instance [Inhabited α] : Inhabited (AssocQuotient α) := ⟨of default⟩
@[to_additive (attr := elab_as_elim, induction_eliminator)]
protected theorem induction_on {C : AssocQuotient α → Prop} (x : AssocQuotient α)
(ih : ∀ x, C (of x)) : C x := Quot.induction_on x ih
section lift
variable {β : Type v} [Semigroup β] (f : α →ₙ* β)
@[to_additive (attr := ext 1100)]
theorem hom_ext {f g : AssocQuotient α →ₙ* β} (h : f.comp of = g.comp of) : f = g :=
(DFunLike.ext _ _) fun x => AssocQuotient.induction_on x <| DFunLike.congr_fun h
/-- Lifts a magma homomorphism `α → β` to a semigroup homomorphism `Magma.AssocQuotient α → β`
given a semigroup `β`. -/
@[to_additive (attr := simps symm_apply) "Lifts an additive magma homomorphism `α → β` to an
additive semigroup homomorphism `AddMagma.AssocQuotient α → β` given an additive semigroup `β`."]
def lift : (α →ₙ* β) ≃ (AssocQuotient α →ₙ* β) where
toFun f :=
{ toFun := fun x ↦
Quot.liftOn x f <| by rintro a b (⟨c, d, e⟩ | ⟨c, d, e, f⟩) <;> simp only [map_mul, mul_assoc]
map_mul' := fun x y ↦ Quot.induction_on₂ x y (map_mul f) }
invFun f := f.comp of
left_inv f := (DFunLike.ext _ _) fun x ↦ rfl
right_inv f := hom_ext <| (DFunLike.ext _ _) fun x ↦ rfl
@[to_additive (attr := simp)]
theorem lift_of (x : α) : lift f (of x) = f x := rfl
@[to_additive (attr := simp)]
theorem lift_comp_of : (lift f).comp of = f := lift.symm_apply_apply f
@[to_additive (attr := simp)]
theorem lift_comp_of' (f : AssocQuotient α →ₙ* β) : lift (f.comp of) = f := lift.apply_symm_apply f
end lift
variable {β : Type v} [Mul β] (f : α →ₙ* β)
/-- From a magma homomorphism `α →ₙ* β` to a semigroup homomorphism
`Magma.AssocQuotient α →ₙ* Magma.AssocQuotient β`. -/
@[to_additive "From an additive magma homomorphism `α → β` to an additive semigroup homomorphism
`AddMagma.AssocQuotient α → AddMagma.AssocQuotient β`."]
def map : AssocQuotient α →ₙ* AssocQuotient β := lift (of.comp f)
@[to_additive (attr := simp)]
theorem map_of (x) : map f (of x) = of (f x) := rfl
end AssocQuotient
end Magma
/-- Free additive semigroup over a given alphabet. -/
structure FreeAddSemigroup (α : Type u) where
/-- The head of the element -/
head : α
/-- The tail of the element -/
tail : List α
compile_inductive% FreeAddSemigroup
/-- Free semigroup over a given alphabet. -/
@[to_additive (attr := ext)]
structure FreeSemigroup (α : Type u) where
/-- The head of the element -/
head : α
/-- The tail of the element -/
tail : List α
compile_inductive% FreeSemigroup
namespace FreeSemigroup
variable {α : Type u}
@[to_additive]
instance : Semigroup (FreeSemigroup α) where
mul L1 L2 := ⟨L1.1, L1.2 ++ L2.1 :: L2.2⟩
mul_assoc _L1 _L2 _L3 := FreeSemigroup.ext rfl <| List.append_assoc _ _ _
@[to_additive (attr := simp)]
theorem head_mul (x y : FreeSemigroup α) : (x * y).1 = x.1 := rfl
@[to_additive (attr := simp)]
theorem tail_mul (x y : FreeSemigroup α) : (x * y).2 = x.2 ++ y.1 :: y.2 := rfl
@[to_additive (attr := simp)]
theorem mk_mul_mk (x y : α) (L1 L2 : List α) : mk x L1 * mk y L2 = mk x (L1 ++ y :: L2) := rfl
/-- The embedding `α → FreeSemigroup α`. -/
@[to_additive (attr := simps) "The embedding `α → FreeAddSemigroup α`."]
def of (x : α) : FreeSemigroup α := ⟨x, []⟩
/-- Length of an element of free semigroup. -/
@[to_additive "Length of an element of free additive semigroup"]
def length (x : FreeSemigroup α) : ℕ := x.tail.length + 1
@[to_additive (attr := simp)]
theorem length_mul (x y : FreeSemigroup α) : (x * y).length = x.length + y.length := by
simp [length, Nat.add_right_comm, List.length, List.length_append]
@[to_additive (attr := simp)]
theorem length_of (x : α) : (of x).length = 1 := rfl
@[to_additive]
instance [Inhabited α] : Inhabited (FreeSemigroup α) := ⟨of default⟩
/-- Recursor for free semigroup using `of` and `*`. -/
@[to_additive (attr := elab_as_elim, induction_eliminator)
"Recursor for free additive semigroup using `of` and `+`."]
protected def recOnMul {C : FreeSemigroup α → Sort l} (x) (ih1 : ∀ x, C (of x))
(ih2 : ∀ x y, C (of x) → C y → C (of x * y)) : C x :=
FreeSemigroup.recOn x fun f s ↦
List.recOn s ih1 (fun hd tl ih f ↦ ih2 f ⟨hd, tl⟩ (ih1 f) (ih hd)) f
@[to_additive (attr := ext 1100)]
theorem hom_ext {β : Type v} [Mul β] {f g : FreeSemigroup α →ₙ* β} (h : f ∘ of = g ∘ of) : f = g :=
(DFunLike.ext _ _) fun x ↦
FreeSemigroup.recOnMul x (congr_fun h) fun x y hx hy ↦ by simp only [map_mul, *]
section lift
variable {β : Type v} [Semigroup β] (f : α → β)
/-- Lifts a function `α → β` to a semigroup homomorphism `FreeSemigroup α → β` given
a semigroup `β`. -/
@[to_additive (attr := simps symm_apply) "Lifts a function `α → β` to an additive semigroup
homomorphism `FreeAddSemigroup α → β` given an additive semigroup `β`."]
def lift : (α → β) ≃ (FreeSemigroup α →ₙ* β) where
toFun f :=
{ toFun := fun x ↦ x.2.foldl (fun a b ↦ a * f b) (f x.1)
map_mul' := fun x y ↦ by
simp [head_mul, tail_mul, ← List.foldl_map, List.foldl_append, List.foldl_cons,
List.foldl_assoc] }
invFun f := f ∘ of
left_inv f := rfl
right_inv f := hom_ext rfl
@[to_additive (attr := simp)]
theorem lift_of (x : α) : lift f (of x) = f x := rfl
@[to_additive (attr := simp)]
theorem lift_comp_of : lift f ∘ of = f := rfl
@[to_additive (attr := simp)]
theorem lift_comp_of' (f : FreeSemigroup α →ₙ* β) : lift (f ∘ of) = f := hom_ext rfl
@[to_additive]
theorem lift_of_mul (x y) : lift f (of x * y) = f x * lift f y := by rw [map_mul, lift_of]
end lift
section Map
variable {β : Type v} (f : α → β)
/-- The unique semigroup homomorphism that sends `of x` to `of (f x)`. -/
@[to_additive "The unique additive semigroup homomorphism that sends `of x` to `of (f x)`."]
def map : FreeSemigroup α →ₙ* FreeSemigroup β :=
lift <| of ∘ f
@[to_additive (attr := simp)]
theorem map_of (x) : map f (of x) = of (f x) := rfl
@[to_additive (attr := simp)]
theorem length_map (x) : (map f x).length = x.length :=
FreeSemigroup.recOnMul x (fun x ↦ rfl) (fun x y hx hy ↦ by simp only [map_mul, length_mul, *])
end Map
section Category
variable {β : Type u}
@[to_additive]
instance : Monad FreeSemigroup where
pure := of
bind x f := lift f x
/-- Recursor that uses `pure` instead of `of`. -/
@[to_additive (attr := elab_as_elim) "Recursor that uses `pure` instead of `of`."]
def recOnPure {C : FreeSemigroup α → Sort l} (x) (ih1 : ∀ x, C (pure x))
(ih2 : ∀ x y, C (pure x) → C y → C (pure x * y)) : C x :=
FreeSemigroup.recOnMul x ih1 ih2
@[to_additive (attr := simp)]
theorem map_pure (f : α → β) (x) : (f <$> pure x : FreeSemigroup β) = pure (f x) := rfl
@[to_additive (attr := simp)]
theorem map_mul' (f : α → β) (x y : FreeSemigroup α) : f <$> (x * y) = f <$> x * f <$> y :=
map_mul (map f) _ _
@[to_additive (attr := simp)]
theorem pure_bind (f : α → FreeSemigroup β) (x) : pure x >>= f = f x := rfl
@[to_additive (attr := simp)]
theorem mul_bind (f : α → FreeSemigroup β) (x y : FreeSemigroup α) :
x * y >>= f = (x >>= f) * (y >>= f) := map_mul (lift f) _ _
@[to_additive (attr := simp)]
theorem pure_seq {f : α → β} {x : FreeSemigroup α} : pure f <*> x = f <$> x := rfl
@[to_additive (attr := simp)]
theorem mul_seq {f g : FreeSemigroup (α → β)} {x : FreeSemigroup α} :
f * g <*> x = (f <*> x) * (g <*> x) := mul_bind _ _ _
@[to_additive]
instance instLawfulMonad : LawfulMonad FreeSemigroup.{u} := LawfulMonad.mk'
(pure_bind := fun _ _ ↦ rfl)
(bind_assoc := fun x g f ↦
recOnPure x (fun x ↦ rfl) fun x y ih1 ih2 ↦ by rw [mul_bind, mul_bind, mul_bind, ih1, ih2])
(id_map := fun x ↦ recOnPure x (fun _ ↦ rfl) fun x y ih1 ih2 ↦ by rw [map_mul', ih1, ih2])
/-- `FreeSemigroup` is traversable. -/
@[to_additive "`FreeAddSemigroup` is traversable."]
protected def traverse {m : Type u → Type u} [Applicative m] {α β : Type u}
(F : α → m β) (x : FreeSemigroup α) : m (FreeSemigroup β) :=
recOnPure x (fun x ↦ pure <$> F x) fun _x _y ihx ihy ↦ (· * ·) <$> ihx <*> ihy
@[to_additive]
instance : Traversable FreeSemigroup := ⟨@FreeSemigroup.traverse⟩
variable {m : Type u → Type u} [Applicative m] (F : α → m β)
@[to_additive (attr := simp)]
theorem traverse_pure (x) : traverse F (pure x : FreeSemigroup α) = pure <$> F x := rfl
@[to_additive (attr := simp)]
theorem traverse_pure' : traverse F ∘ pure = fun x ↦ (pure <$> F x : m (FreeSemigroup β)) := rfl
section
variable [LawfulApplicative m]
@[to_additive (attr := simp)]
theorem traverse_mul (x y : FreeSemigroup α) :
traverse F (x * y) = (· * ·) <$> traverse F x <*> traverse F y :=
let ⟨x, L1⟩ := x
let ⟨y, L2⟩ := y
List.recOn L1 (fun x ↦ rfl)
(fun hd tl ih x ↦ show
(· * ·) <$> pure <$> F x <*> traverse F (mk hd tl * mk y L2) =
(· * ·) <$> ((· * ·) <$> pure <$> F x <*> traverse F (mk hd tl)) <*> traverse F (mk y L2)
by rw [ih]; simp only [(· ∘ ·), (mul_assoc _ _ _).symm, functor_norm])
x
@[to_additive (attr := simp)]
theorem traverse_mul' :
Function.comp (traverse F) ∘ (HMul.hMul : FreeSemigroup α → FreeSemigroup α → FreeSemigroup α) =
fun x y ↦ (· * ·) <$> traverse F x <*> traverse F y :=
funext fun x ↦ funext fun y ↦ traverse_mul F x y
end
@[to_additive (attr := simp)]
theorem traverse_eq (x) : FreeSemigroup.traverse F x = traverse F x := rfl
-- Porting note (#10675): dsimp can not prove this
@[to_additive (attr := simp, nolint simpNF)]
theorem mul_map_seq (x y : FreeSemigroup α) :
((· * ·) <$> x <*> y : Id (FreeSemigroup α)) = (x * y : FreeSemigroup α) := rfl
@[to_additive]
instance : LawfulTraversable FreeSemigroup.{u} :=
{ instLawfulMonad with
id_traverse := fun x ↦
FreeSemigroup.recOnMul x (fun x ↦ rfl) fun x y ih1 ih2 ↦ by
rw [traverse_mul, ih1, ih2, mul_map_seq]
comp_traverse := fun f g x ↦
recOnPure x (fun x ↦ by simp only [traverse_pure, functor_norm, (· ∘ ·)])
fun x y ih1 ih2 ↦ by (rw [traverse_mul, ih1, ih2,
traverse_mul, Functor.Comp.map_mk]; simp only [Function.comp, functor_norm, traverse_mul])
naturality := fun η α β f x ↦
recOnPure x (fun x ↦ by simp only [traverse_pure, functor_norm, Function.comp])
(fun x y ih1 ih2 ↦ by simp only [traverse_mul, functor_norm, ih1, ih2])
traverse_eq_map_id := fun f x ↦
FreeSemigroup.recOnMul x (fun _ ↦ rfl) fun x y ih1 ih2 ↦ by
rw [traverse_mul, ih1, ih2, map_mul', mul_map_seq]; rfl }
end Category
@[to_additive]
instance [DecidableEq α] : DecidableEq (FreeSemigroup α) :=
fun _ _ ↦ decidable_of_iff' _ FreeSemigroup.ext_iff
end FreeSemigroup
namespace FreeMagma
variable {α : Type u} {β : Type v}
/-- The canonical multiplicative morphism from `FreeMagma α` to `FreeSemigroup α`. -/
@[to_additive "The canonical additive morphism from `FreeAddMagma α` to `FreeAddSemigroup α`."]
def toFreeSemigroup : FreeMagma α →ₙ* FreeSemigroup α := FreeMagma.lift FreeSemigroup.of
@[to_additive (attr := simp)]
theorem toFreeSemigroup_of (x : α) : toFreeSemigroup (of x) = FreeSemigroup.of x := rfl
@[to_additive (attr := simp)]
theorem toFreeSemigroup_comp_of : @toFreeSemigroup α ∘ of = FreeSemigroup.of := rfl
@[to_additive]
theorem toFreeSemigroup_comp_map (f : α → β) :
toFreeSemigroup.comp (map f) = (FreeSemigroup.map f).comp toFreeSemigroup := by ext1; rfl
@[to_additive]
theorem toFreeSemigroup_map (f : α → β) (x : FreeMagma α) :
toFreeSemigroup (map f x) = FreeSemigroup.map f (toFreeSemigroup x) :=
DFunLike.congr_fun (toFreeSemigroup_comp_map f) x
@[to_additive (attr := simp)]
theorem length_toFreeSemigroup (x : FreeMagma α) : (toFreeSemigroup x).length = x.length :=
FreeMagma.recOnMul x (fun x ↦ rfl) fun x y hx hy ↦ by
rw [map_mul, FreeSemigroup.length_mul, hx, hy]; rfl
end FreeMagma
/-- Isomorphism between `Magma.AssocQuotient (FreeMagma α)` and `FreeSemigroup α`. -/
@[to_additive "Isomorphism between `AddMagma.AssocQuotient (FreeAddMagma α)` and
`FreeAddSemigroup α`."]
def FreeMagmaAssocQuotientEquiv (α : Type u) :
Magma.AssocQuotient (FreeMagma α) ≃* FreeSemigroup α :=
(Magma.AssocQuotient.lift FreeMagma.toFreeSemigroup).toMulEquiv
(FreeSemigroup.lift (Magma.AssocQuotient.of ∘ FreeMagma.of))
(by ext; rfl)
(by ext1; rfl)
|
Algebra\FreeAlgebra.lean | /-
Copyright (c) 2020 Adam Topaz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Adam Topaz, Eric Wieser
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
import Mathlib.Algebra.MonoidAlgebra.NoZeroDivisors
import Mathlib.RingTheory.Adjoin.Basic
/-!
# Free Algebras
Given a commutative semiring `R`, and a type `X`, we construct the free unital, associative
`R`-algebra on `X`.
## Notation
1. `FreeAlgebra R X` is the free algebra itself. It is endowed with an `R`-algebra structure.
2. `FreeAlgebra.ι R` is the function `X → FreeAlgebra R X`.
3. Given a function `f : X → A` to an R-algebra `A`, `lift R f` is the lift of `f` to an
`R`-algebra morphism `FreeAlgebra R X → A`.
## Theorems
1. `ι_comp_lift` states that the composition `(lift R f) ∘ (ι R)` is identical to `f`.
2. `lift_unique` states that whenever an R-algebra morphism `g : FreeAlgebra R X → A` is
given whose composition with `ι R` is `f`, then one has `g = lift R f`.
3. `hom_ext` is a variant of `lift_unique` in the form of an extensionality theorem.
4. `lift_comp_ι` is a combination of `ι_comp_lift` and `lift_unique`. It states that the lift
of the composition of an algebra morphism with `ι` is the algebra morphism itself.
5. `equivMonoidAlgebraFreeMonoid : FreeAlgebra R X ≃ₐ[R] MonoidAlgebra R (FreeMonoid X)`
6. An inductive principle `induction`.
## Implementation details
We construct the free algebra on `X` as a quotient of an inductive type `FreeAlgebra.Pre` by an
inductively defined relation `FreeAlgebra.Rel`. Explicitly, the construction involves three steps:
1. We construct an inductive type `FreeAlgebra.Pre R X`, the terms of which should be thought
of as representatives for the elements of `FreeAlgebra R X`.
It is the free type with maps from `R` and `X`, and with two binary operations `add` and `mul`.
2. We construct an inductive relation `FreeAlgebra.Rel R X` on `FreeAlgebra.Pre R X`.
This is the smallest relation for which the quotient is an `R`-algebra where addition resp.
multiplication are induced by `add` resp. `mul` from 1., and for which the map from `R` is the
structure map for the algebra.
3. The free algebra `FreeAlgebra R X` is the quotient of `FreeAlgebra.Pre R X` by
the relation `FreeAlgebra.Rel R X`.
-/
variable (R : Type*) [CommSemiring R]
variable (X : Type*)
namespace FreeAlgebra
/-- This inductive type is used to express representatives of the free algebra.
-/
inductive Pre
| of : X → Pre
| ofScalar : R → Pre
| add : Pre → Pre → Pre
| mul : Pre → Pre → Pre
namespace Pre
instance : Inhabited (Pre R X) := ⟨ofScalar 0⟩
-- Note: These instances are only used to simplify the notation.
/-- Coercion from `X` to `Pre R X`. Note: Used for notation only. -/
def hasCoeGenerator : Coe X (Pre R X) := ⟨of⟩
/-- Coercion from `R` to `Pre R X`. Note: Used for notation only. -/
def hasCoeSemiring : Coe R (Pre R X) := ⟨ofScalar⟩
/-- Multiplication in `Pre R X` defined as `Pre.mul`. Note: Used for notation only. -/
def hasMul : Mul (Pre R X) := ⟨mul⟩
/-- Addition in `Pre R X` defined as `Pre.add`. Note: Used for notation only. -/
def hasAdd : Add (Pre R X) := ⟨add⟩
/-- Zero in `Pre R X` defined as the image of `0` from `R`. Note: Used for notation only. -/
def hasZero : Zero (Pre R X) := ⟨ofScalar 0⟩
/-- One in `Pre R X` defined as the image of `1` from `R`. Note: Used for notation only. -/
def hasOne : One (Pre R X) := ⟨ofScalar 1⟩
/-- Scalar multiplication defined as multiplication by the image of elements from `R`.
Note: Used for notation only.
-/
def hasSMul : SMul R (Pre R X) := ⟨fun r m ↦ mul (ofScalar r) m⟩
end Pre
attribute [local instance] Pre.hasCoeGenerator Pre.hasCoeSemiring Pre.hasMul Pre.hasAdd
Pre.hasZero Pre.hasOne Pre.hasSMul
/-- Given a function from `X` to an `R`-algebra `A`, `lift_fun` provides a lift of `f` to a function
from `Pre R X` to `A`. This is mainly used in the construction of `FreeAlgebra.lift`.
-/
-- Porting note: recOn was replaced to preserve computability, see lean4#2049
def liftFun {A : Type*} [Semiring A] [Algebra R A] (f : X → A) :
Pre R X → A
| .of t => f t
| .add a b => liftFun f a + liftFun f b
| .mul a b => liftFun f a * liftFun f b
| .ofScalar c => algebraMap _ _ c
/-- An inductively defined relation on `Pre R X` used to force the initial algebra structure on
the associated quotient.
-/
inductive Rel : Pre R X → Pre R X → Prop
-- force `ofScalar` to be a central semiring morphism
| add_scalar {r s : R} : Rel (↑(r + s)) (↑r + ↑s)
| mul_scalar {r s : R} : Rel (↑(r * s)) (↑r * ↑s)
| central_scalar {r : R} {a : Pre R X} : Rel (r * a) (a * r)
-- commutative additive semigroup
| add_assoc {a b c : Pre R X} : Rel (a + b + c) (a + (b + c))
| add_comm {a b : Pre R X} : Rel (a + b) (b + a)
| zero_add {a : Pre R X} : Rel (0 + a) a
-- multiplicative monoid
| mul_assoc {a b c : Pre R X} : Rel (a * b * c) (a * (b * c))
| one_mul {a : Pre R X} : Rel (1 * a) a
| mul_one {a : Pre R X} : Rel (a * 1) a
-- distributivity
| left_distrib {a b c : Pre R X} : Rel (a * (b + c)) (a * b + a * c)
| right_distrib {a b c : Pre R X} :
Rel ((a + b) * c) (a * c + b * c)
-- other relations needed for semiring
| zero_mul {a : Pre R X} : Rel (0 * a) 0
| mul_zero {a : Pre R X} : Rel (a * 0) 0
-- compatibility
| add_compat_left {a b c : Pre R X} : Rel a b → Rel (a + c) (b + c)
| add_compat_right {a b c : Pre R X} : Rel a b → Rel (c + a) (c + b)
| mul_compat_left {a b c : Pre R X} : Rel a b → Rel (a * c) (b * c)
| mul_compat_right {a b c : Pre R X} : Rel a b → Rel (c * a) (c * b)
end FreeAlgebra
/-- The free algebra for the type `X` over the commutative semiring `R`.
-/
def FreeAlgebra :=
Quot (FreeAlgebra.Rel R X)
namespace FreeAlgebra
attribute [local instance] Pre.hasCoeGenerator Pre.hasCoeSemiring Pre.hasMul Pre.hasAdd
Pre.hasZero Pre.hasOne Pre.hasSMul
/-! Define the basic operations-/
instance instSMul {A} [CommSemiring A] [Algebra R A] : SMul R (FreeAlgebra A X) where
smul r := Quot.map (HMul.hMul (algebraMap R A r : Pre A X)) fun _ _ ↦ Rel.mul_compat_right
instance instZero : Zero (FreeAlgebra R X) where zero := Quot.mk _ 0
instance instOne : One (FreeAlgebra R X) where one := Quot.mk _ 1
instance instAdd : Add (FreeAlgebra R X) where
add := Quot.map₂ HAdd.hAdd (fun _ _ _ ↦ Rel.add_compat_right) fun _ _ _ ↦ Rel.add_compat_left
instance instMul : Mul (FreeAlgebra R X) where
mul := Quot.map₂ HMul.hMul (fun _ _ _ ↦ Rel.mul_compat_right) fun _ _ _ ↦ Rel.mul_compat_left
-- `Quot.mk` is an implementation detail of `FreeAlgebra`, so this lemma is private
private theorem mk_mul (x y : Pre R X) :
Quot.mk (Rel R X) (x * y) = (HMul.hMul (self := instHMul (α := FreeAlgebra R X))
(Quot.mk (Rel R X) x) (Quot.mk (Rel R X) y)) :=
rfl
/-! Build the semiring structure. We do this one piece at a time as this is convenient for proving
the `nsmul` fields. -/
instance instMonoidWithZero : MonoidWithZero (FreeAlgebra R X) where
mul_assoc := by
rintro ⟨⟩ ⟨⟩ ⟨⟩
exact Quot.sound Rel.mul_assoc
one := Quot.mk _ 1
one_mul := by
rintro ⟨⟩
exact Quot.sound Rel.one_mul
mul_one := by
rintro ⟨⟩
exact Quot.sound Rel.mul_one
zero_mul := by
rintro ⟨⟩
exact Quot.sound Rel.zero_mul
mul_zero := by
rintro ⟨⟩
exact Quot.sound Rel.mul_zero
instance instDistrib : Distrib (FreeAlgebra R X) where
left_distrib := by
rintro ⟨⟩ ⟨⟩ ⟨⟩
exact Quot.sound Rel.left_distrib
right_distrib := by
rintro ⟨⟩ ⟨⟩ ⟨⟩
exact Quot.sound Rel.right_distrib
instance instAddCommMonoid : AddCommMonoid (FreeAlgebra R X) where
add_assoc := by
rintro ⟨⟩ ⟨⟩ ⟨⟩
exact Quot.sound Rel.add_assoc
zero_add := by
rintro ⟨⟩
exact Quot.sound Rel.zero_add
add_zero := by
rintro ⟨⟩
change Quot.mk _ _ = _
rw [Quot.sound Rel.add_comm, Quot.sound Rel.zero_add]
add_comm := by
rintro ⟨⟩ ⟨⟩
exact Quot.sound Rel.add_comm
nsmul := (· • ·)
nsmul_zero := by
rintro ⟨⟩
change Quot.mk _ (_ * _) = _
rw [map_zero]
exact Quot.sound Rel.zero_mul
nsmul_succ n := by
rintro ⟨a⟩
dsimp only [HSMul.hSMul, instSMul, Quot.map]
rw [map_add, map_one, mk_mul, mk_mul, ← add_one_mul (_ : FreeAlgebra R X)]
congr 1
exact Quot.sound Rel.add_scalar
instance : Semiring (FreeAlgebra R X) where
__ := instMonoidWithZero R X
__ := instAddCommMonoid R X
__ := instDistrib R X
natCast n := Quot.mk _ (n : R)
natCast_zero := by simp; rfl
natCast_succ n := by simpa using Quot.sound Rel.add_scalar
instance : Inhabited (FreeAlgebra R X) :=
⟨0⟩
instance instAlgebra {A} [CommSemiring A] [Algebra R A] : Algebra R (FreeAlgebra A X) where
toRingHom := ({
toFun := fun r => Quot.mk _ r
map_one' := rfl
map_mul' := fun _ _ => Quot.sound Rel.mul_scalar
map_zero' := rfl
map_add' := fun _ _ => Quot.sound Rel.add_scalar } : A →+* FreeAlgebra A X).comp
(algebraMap R A)
commutes' _ := by
rintro ⟨⟩
exact Quot.sound Rel.central_scalar
smul_def' _ _ := rfl
-- verify there is no diamond at `default` transparency but we will need
-- `reducible_and_instances` which currently fails #10906
variable (S : Type) [CommSemiring S] in
example : (Semiring.toNatAlgebra : Algebra ℕ (FreeAlgebra S X)) = instAlgebra _ _ := rfl
instance {R S A} [CommSemiring R] [CommSemiring S] [CommSemiring A]
[SMul R S] [Algebra R A] [Algebra S A] [IsScalarTower R S A] :
IsScalarTower R S (FreeAlgebra A X) where
smul_assoc r s x := by
change algebraMap S A (r • s) • x = algebraMap R A _ • (algebraMap S A _ • x)
rw [← smul_assoc]
congr
simp only [Algebra.algebraMap_eq_smul_one, smul_eq_mul]
rw [smul_assoc, ← smul_one_mul]
instance {R S A} [CommSemiring R] [CommSemiring S] [CommSemiring A] [Algebra R A] [Algebra S A] :
SMulCommClass R S (FreeAlgebra A X) where
smul_comm r s x := smul_comm (algebraMap R A r) (algebraMap S A s) x
instance {S : Type*} [CommRing S] : Ring (FreeAlgebra S X) :=
Algebra.semiringToRing S
-- verify there is no diamond but we will need
-- `reducible_and_instances` which currently fails #10906
variable (S : Type) [CommRing S] in
example : (Ring.toIntAlgebra _ : Algebra ℤ (FreeAlgebra S X)) = instAlgebra _ _ := rfl
variable {X}
/-- The canonical function `X → FreeAlgebra R X`.
-/
irreducible_def ι : X → FreeAlgebra R X := fun m ↦ Quot.mk _ m
@[simp]
theorem quot_mk_eq_ι (m : X) : Quot.mk (FreeAlgebra.Rel R X) m = ι R m := by rw [ι_def]
variable {A : Type*} [Semiring A] [Algebra R A]
/-- Internal definition used to define `lift` -/
private def liftAux (f : X → A) : FreeAlgebra R X →ₐ[R] A where
toFun a :=
Quot.liftOn a (liftFun _ _ f) fun a b h ↦ by
induction' h
· exact (algebraMap R A).map_add _ _
· exact (algebraMap R A).map_mul _ _
· apply Algebra.commutes
· change _ + _ + _ = _ + (_ + _)
rw [add_assoc]
· change _ + _ = _ + _
rw [add_comm]
· change algebraMap _ _ _ + liftFun R X f _ = liftFun R X f _
simp
· change _ * _ * _ = _ * (_ * _)
rw [mul_assoc]
· change algebraMap _ _ _ * liftFun R X f _ = liftFun R X f _
simp
· change liftFun R X f _ * algebraMap _ _ _ = liftFun R X f _
simp
· change _ * (_ + _) = _ * _ + _ * _
rw [left_distrib]
· change (_ + _) * _ = _ * _ + _ * _
rw [right_distrib]
· change algebraMap _ _ _ * _ = algebraMap _ _ _
simp
· change _ * algebraMap _ _ _ = algebraMap _ _ _
simp
repeat
change liftFun R X f _ + liftFun R X f _ = _
simp only [*]
rfl
repeat
change liftFun R X f _ * liftFun R X f _ = _
simp only [*]
rfl
map_one' := by
change algebraMap _ _ _ = _
simp
map_mul' := by
rintro ⟨⟩ ⟨⟩
rfl
map_zero' := by
dsimp
change algebraMap _ _ _ = _
simp
map_add' := by
rintro ⟨⟩ ⟨⟩
rfl
commutes' := by tauto
/-- Given a function `f : X → A` where `A` is an `R`-algebra, `lift R f` is the unique lift
of `f` to a morphism of `R`-algebras `FreeAlgebra R X → A`.
-/
@[irreducible]
def lift : (X → A) ≃ (FreeAlgebra R X →ₐ[R] A) :=
{ toFun := liftAux R
invFun := fun F ↦ F ∘ ι R
left_inv := fun f ↦ by
ext
simp only [Function.comp_apply, ι_def]
rfl
right_inv := fun F ↦ by
ext t
rcases t with ⟨x⟩
induction x with
| of =>
change ((F : FreeAlgebra R X → A) ∘ ι R) _ = _
simp only [Function.comp_apply, ι_def]
| ofScalar x =>
change algebraMap _ _ x = F (algebraMap _ _ x)
rw [AlgHom.commutes F _]
| add a b ha hb =>
-- Porting note: it is necessary to declare fa and fb explicitly otherwise Lean refuses
-- to consider `Quot.mk (Rel R X) ·` as element of FreeAlgebra R X
let fa : FreeAlgebra R X := Quot.mk (Rel R X) a
let fb : FreeAlgebra R X := Quot.mk (Rel R X) b
change liftAux R (F ∘ ι R) (fa + fb) = F (fa + fb)
rw [map_add, map_add, ha, hb]
| mul a b ha hb =>
let fa : FreeAlgebra R X := Quot.mk (Rel R X) a
let fb : FreeAlgebra R X := Quot.mk (Rel R X) b
change liftAux R (F ∘ ι R) (fa * fb) = F (fa * fb)
rw [map_mul, map_mul, ha, hb] }
@[simp]
theorem liftAux_eq (f : X → A) : liftAux R f = lift R f := by
rw [lift]
rfl
@[simp]
theorem lift_symm_apply (F : FreeAlgebra R X →ₐ[R] A) : (lift R).symm F = F ∘ ι R := by
rw [lift]
rfl
variable {R}
@[simp]
theorem ι_comp_lift (f : X → A) : (lift R f : FreeAlgebra R X → A) ∘ ι R = f := by
ext
rw [Function.comp_apply, ι_def, lift]
rfl
@[simp]
theorem lift_ι_apply (f : X → A) (x) : lift R f (ι R x) = f x := by
rw [ι_def, lift]
rfl
@[simp]
theorem lift_unique (f : X → A) (g : FreeAlgebra R X →ₐ[R] A) :
(g : FreeAlgebra R X → A) ∘ ι R = f ↔ g = lift R f := by
rw [← (lift R).symm_apply_eq, lift]
rfl
/-!
Since we have set the basic definitions as `@[Irreducible]`, from this point onwards one
should only use the universal properties of the free algebra, and consider the actual implementation
as a quotient of an inductive type as completely hidden. -/
-- Marking `FreeAlgebra` irreducible makes `Ring` instances inaccessible on quotients.
-- https://leanprover.zulipchat.com/#narrow/stream/113488-general/topic/algebra.2Esemiring_to_ring.20breaks.20semimodule.20typeclass.20lookup/near/212580241
-- For now, we avoid this by not marking it irreducible.
@[simp]
theorem lift_comp_ι (g : FreeAlgebra R X →ₐ[R] A) :
lift R ((g : FreeAlgebra R X → A) ∘ ι R) = g := by
rw [← lift_symm_apply]
exact (lift R).apply_symm_apply g
/-- See note [partially-applied ext lemmas]. -/
@[ext high]
theorem hom_ext {f g : FreeAlgebra R X →ₐ[R] A}
(w : (f : FreeAlgebra R X → A) ∘ ι R = (g : FreeAlgebra R X → A) ∘ ι R) : f = g := by
rw [← lift_symm_apply, ← lift_symm_apply] at w
exact (lift R).symm.injective w
/-- The free algebra on `X` is "just" the monoid algebra on the free monoid on `X`.
This would be useful when constructing linear maps out of a free algebra,
for example.
-/
noncomputable def equivMonoidAlgebraFreeMonoid :
FreeAlgebra R X ≃ₐ[R] MonoidAlgebra R (FreeMonoid X) :=
AlgEquiv.ofAlgHom (lift R fun x ↦ (MonoidAlgebra.of R (FreeMonoid X)) (FreeMonoid.of x))
((MonoidAlgebra.lift R (FreeMonoid X) (FreeAlgebra R X)) (FreeMonoid.lift (ι R)))
(by
apply MonoidAlgebra.algHom_ext; intro x
refine FreeMonoid.recOn x ?_ ?_
· simp
rfl
· intro x y ih
simp at ih
simp [ih])
(by
ext
simp)
/-- `FreeAlgebra R X` is nontrivial when `R` is. -/
instance [Nontrivial R] : Nontrivial (FreeAlgebra R X) :=
equivMonoidAlgebraFreeMonoid.surjective.nontrivial
/-- `FreeAlgebra R X` has no zero-divisors when `R` has no zero-divisors. -/
instance instNoZeroDivisors [NoZeroDivisors R] : NoZeroDivisors (FreeAlgebra R X) :=
equivMonoidAlgebraFreeMonoid.toMulEquiv.noZeroDivisors
/-- `FreeAlgebra R X` is a domain when `R` is an integral domain. -/
instance instIsDomain {R X} [CommRing R] [IsDomain R] : IsDomain (FreeAlgebra R X) :=
NoZeroDivisors.to_isDomain _
section
/-- The left-inverse of `algebraMap`. -/
def algebraMapInv : FreeAlgebra R X →ₐ[R] R :=
lift R (0 : X → R)
theorem algebraMap_leftInverse :
Function.LeftInverse algebraMapInv (algebraMap R <| FreeAlgebra R X) := fun x ↦ by
simp [algebraMapInv]
@[simp]
theorem algebraMap_inj (x y : R) :
algebraMap R (FreeAlgebra R X) x = algebraMap R (FreeAlgebra R X) y ↔ x = y :=
algebraMap_leftInverse.injective.eq_iff
@[simp]
theorem algebraMap_eq_zero_iff (x : R) : algebraMap R (FreeAlgebra R X) x = 0 ↔ x = 0 :=
map_eq_zero_iff (algebraMap _ _) algebraMap_leftInverse.injective
@[simp]
theorem algebraMap_eq_one_iff (x : R) : algebraMap R (FreeAlgebra R X) x = 1 ↔ x = 1 :=
map_eq_one_iff (algebraMap _ _) algebraMap_leftInverse.injective
-- this proof is copied from the approach in `FreeAbelianGroup.of_injective`
theorem ι_injective [Nontrivial R] : Function.Injective (ι R : X → FreeAlgebra R X) :=
fun x y hoxy ↦
by_contradiction <| by
classical exact fun hxy : x ≠ y ↦
let f : FreeAlgebra R X →ₐ[R] R := lift R fun z ↦ if x = z then (1 : R) else 0
have hfx1 : f (ι R x) = 1 := (lift_ι_apply _ _).trans <| if_pos rfl
have hfy1 : f (ι R y) = 1 := hoxy ▸ hfx1
have hfy0 : f (ι R y) = 0 := (lift_ι_apply _ _).trans <| if_neg hxy
one_ne_zero <| hfy1.symm.trans hfy0
@[simp]
theorem ι_inj [Nontrivial R] (x y : X) : ι R x = ι R y ↔ x = y :=
ι_injective.eq_iff
@[simp]
theorem ι_ne_algebraMap [Nontrivial R] (x : X) (r : R) : ι R x ≠ algebraMap R _ r := fun h ↦ by
let f0 : FreeAlgebra R X →ₐ[R] R := lift R 0
let f1 : FreeAlgebra R X →ₐ[R] R := lift R 1
have hf0 : f0 (ι R x) = 0 := lift_ι_apply _ _
have hf1 : f1 (ι R x) = 1 := lift_ι_apply _ _
rw [h, f0.commutes, Algebra.id.map_eq_self] at hf0
rw [h, f1.commutes, Algebra.id.map_eq_self] at hf1
exact zero_ne_one (hf0.symm.trans hf1)
@[simp]
theorem ι_ne_zero [Nontrivial R] (x : X) : ι R x ≠ 0 :=
ι_ne_algebraMap x 0
@[simp]
theorem ι_ne_one [Nontrivial R] (x : X) : ι R x ≠ 1 :=
ι_ne_algebraMap x 1
end
end FreeAlgebra
/- There is something weird in the above namespace that breaks the typeclass resolution of
`CoeSort` below. Closing it and reopening it fixes it... -/
namespace FreeAlgebra
/-- An induction principle for the free algebra.
If `C` holds for the `algebraMap` of `r : R` into `FreeAlgebra R X`, the `ι` of `x : X`, and is
preserved under addition and muliplication, then it holds for all of `FreeAlgebra R X`.
-/
@[elab_as_elim, induction_eliminator]
theorem induction {C : FreeAlgebra R X → Prop}
(h_grade0 : ∀ r, C (algebraMap R (FreeAlgebra R X) r)) (h_grade1 : ∀ x, C (ι R x))
(h_mul : ∀ a b, C a → C b → C (a * b)) (h_add : ∀ a b, C a → C b → C (a + b))
(a : FreeAlgebra R X) : C a := by
-- the arguments are enough to construct a subalgebra, and a mapping into it from X
let s : Subalgebra R (FreeAlgebra R X) :=
{ carrier := C
mul_mem' := h_mul _ _
add_mem' := h_add _ _
algebraMap_mem' := h_grade0 }
let of : X → s := Subtype.coind (ι R) h_grade1
-- the mapping through the subalgebra is the identity
have of_id : AlgHom.id R (FreeAlgebra R X) = s.val.comp (lift R of) := by
ext
simp [of, Subtype.coind]
-- finding a proof is finding an element of the subalgebra
suffices a = lift R of a by
rw [this]
exact Subtype.prop (lift R of a)
simp [AlgHom.ext_iff] at of_id
exact of_id a
@[simp]
theorem adjoin_range_ι : Algebra.adjoin R (Set.range (ι R : X → FreeAlgebra R X)) = ⊤ := by
set S := Algebra.adjoin R (Set.range (ι R : X → FreeAlgebra R X))
refine top_unique fun x hx => ?_; clear hx
induction x with
| h_grade0 => exact S.algebraMap_mem _
| h_add x y hx hy => exact S.add_mem hx hy
| h_mul x y hx hy => exact S.mul_mem hx hy
| h_grade1 x => exact Algebra.subset_adjoin (Set.mem_range_self _)
variable {A : Type*} [Semiring A] [Algebra R A]
/-- Noncommutative version of `Algebra.adjoin_range_eq_range_aeval`. -/
theorem _root_.Algebra.adjoin_range_eq_range_freeAlgebra_lift (f : X → A) :
Algebra.adjoin R (Set.range f) = (FreeAlgebra.lift R f).range := by
simp only [← Algebra.map_top, ← adjoin_range_ι, AlgHom.map_adjoin, ← Set.range_comp,
(· ∘ ·), lift_ι_apply]
/-- Noncommutative version of `Algebra.adjoin_range_eq_range`. -/
theorem _root_.Algebra.adjoin_eq_range_freeAlgebra_lift (s : Set A) :
Algebra.adjoin R s = (FreeAlgebra.lift R ((↑) : s → A)).range := by
rw [← Algebra.adjoin_range_eq_range_freeAlgebra_lift, Subtype.range_coe]
end FreeAlgebra
|
Algebra\FreeNonUnitalNonAssocAlgebra.lean | /-
Copyright (c) 2021 Oliver Nash. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Oliver Nash
-/
import Mathlib.Algebra.Free
import Mathlib.Algebra.MonoidAlgebra.Basic
/-!
# Free algebras
Given a semiring `R` and a type `X`, we construct the free non-unital, non-associative algebra on
`X` with coefficients in `R`, together with its universal property. The construction is valuable
because it can be used to build free algebras with more structure, e.g., free Lie algebras.
Note that elsewhere we have a construction of the free unital, associative algebra. This is called
`FreeAlgebra`.
## Main definitions
* `FreeNonUnitalNonAssocAlgebra`
* `FreeNonUnitalNonAssocAlgebra.lift`
* `FreeNonUnitalNonAssocAlgebra.of`
## Implementation details
We construct the free algebra as the magma algebra, with coefficients in `R`, of the free magma on
`X`. However we regard this as an implementation detail and thus deliberately omit the lemmas
`of_apply` and `lift_apply`, and we mark `FreeNonUnitalNonAssocAlgebra` and `lift` as
irreducible once we have established the universal property.
## Tags
free algebra, non-unital, non-associative, free magma, magma algebra, universal property,
forgetful functor, adjoint functor
-/
universe u v w
noncomputable section
variable (R : Type u) (X : Type v) [Semiring R]
/-- The free non-unital, non-associative algebra on the type `X` with coefficients in `R`. -/
abbrev FreeNonUnitalNonAssocAlgebra :=
MonoidAlgebra R (FreeMagma X)
namespace FreeNonUnitalNonAssocAlgebra
variable {X}
/-- The embedding of `X` into the free algebra with coefficients in `R`. -/
def of : X → FreeNonUnitalNonAssocAlgebra R X :=
MonoidAlgebra.ofMagma R _ ∘ FreeMagma.of
variable {A : Type w} [NonUnitalNonAssocSemiring A]
variable [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]
/-- The functor `X ↦ FreeNonUnitalNonAssocAlgebra R X` from the category of types to the
category of non-unital, non-associative algebras over `R` is adjoint to the forgetful functor in the
other direction. -/
def lift : (X → A) ≃ (FreeNonUnitalNonAssocAlgebra R X →ₙₐ[R] A) :=
FreeMagma.lift.trans (MonoidAlgebra.liftMagma R)
@[simp]
theorem lift_symm_apply (F : FreeNonUnitalNonAssocAlgebra R X →ₙₐ[R] A) :
(lift R).symm F = F ∘ of R := rfl
@[simp]
theorem of_comp_lift (f : X → A) : lift R f ∘ of R = f :=
(lift R).left_inv f
@[simp]
theorem lift_unique (f : X → A) (F : FreeNonUnitalNonAssocAlgebra R X →ₙₐ[R] A) :
F ∘ of R = f ↔ F = lift R f :=
(lift R).symm_apply_eq
@[simp]
theorem lift_of_apply (f : X → A) (x) : lift R f (of R x) = f x :=
congr_fun (of_comp_lift _ f) x
@[simp]
theorem lift_comp_of (F : FreeNonUnitalNonAssocAlgebra R X →ₙₐ[R] A) : lift R (F ∘ of R) = F :=
(lift R).apply_symm_apply F
@[ext]
theorem hom_ext {F₁ F₂ : FreeNonUnitalNonAssocAlgebra R X →ₙₐ[R] A}
(h : ∀ x, F₁ (of R x) = F₂ (of R x)) : F₁ = F₂ :=
(lift R).symm.injective <| funext h
end FreeNonUnitalNonAssocAlgebra
|
Algebra\GeomSum.lean | /-
Copyright (c) 2019 Neil Strickland. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Neil Strickland
-/
import Mathlib.Algebra.BigOperators.Intervals
import Mathlib.Algebra.BigOperators.Ring
import Mathlib.Algebra.Order.BigOperators.Ring.Finset
import Mathlib.Algebra.Order.Field.Basic
import Mathlib.Algebra.Order.Ring.Abs
import Mathlib.Algebra.Ring.Opposite
import Mathlib.Tactic.Abel
import Mathlib.Algebra.Ring.Regular
/-!
# Partial sums of geometric series
This file determines the values of the geometric series $\sum_{i=0}^{n-1} x^i$ and
$\sum_{i=0}^{n-1} x^i y^{n-1-i}$ and variants thereof. We also provide some bounds on the
"geometric" sum of `a/b^i` where `a b : ℕ`.
## Main statements
* `geom_sum_Ico` proves that $\sum_{i=m}^{n-1} x^i=\frac{x^n-x^m}{x-1}$ in a division ring.
* `geom_sum₂_Ico` proves that $\sum_{i=m}^{n-1} x^iy^{n - 1 - i}=\frac{x^n-y^{n-m}x^m}{x-y}$
in a field.
Several variants are recorded, generalising in particular to the case of a noncommutative ring in
which `x` and `y` commute. Even versions not using division or subtraction, valid in each semiring,
are recorded.
-/
-- Porting note: corrected type in the description of `geom_sum₂_Ico` (in the doc string only).
universe u
variable {α : Type u}
open Finset MulOpposite
section Semiring
variable [Semiring α]
theorem geom_sum_succ {x : α} {n : ℕ} :
∑ i ∈ range (n + 1), x ^ i = (x * ∑ i ∈ range n, x ^ i) + 1 := by
simp only [mul_sum, ← pow_succ', sum_range_succ', pow_zero]
theorem geom_sum_succ' {x : α} {n : ℕ} :
∑ i ∈ range (n + 1), x ^ i = x ^ n + ∑ i ∈ range n, x ^ i :=
(sum_range_succ _ _).trans (add_comm _ _)
theorem geom_sum_zero (x : α) : ∑ i ∈ range 0, x ^ i = 0 :=
rfl
theorem geom_sum_one (x : α) : ∑ i ∈ range 1, x ^ i = 1 := by simp [geom_sum_succ']
@[simp]
theorem geom_sum_two {x : α} : ∑ i ∈ range 2, x ^ i = x + 1 := by simp [geom_sum_succ']
@[simp]
theorem zero_geom_sum : ∀ {n}, ∑ i ∈ range n, (0 : α) ^ i = if n = 0 then 0 else 1
| 0 => by simp
| 1 => by simp
| n + 2 => by
rw [geom_sum_succ']
simp [zero_geom_sum]
theorem one_geom_sum (n : ℕ) : ∑ i ∈ range n, (1 : α) ^ i = n := by simp
-- porting note (#10618): simp can prove this
-- @[simp]
theorem op_geom_sum (x : α) (n : ℕ) : op (∑ i ∈ range n, x ^ i) = ∑ i ∈ range n, op x ^ i := by
simp
-- Porting note: linter suggested to change left hand side
@[simp]
theorem op_geom_sum₂ (x y : α) (n : ℕ) : ∑ i ∈ range n, op y ^ (n - 1 - i) * op x ^ i =
∑ i ∈ range n, op y ^ i * op x ^ (n - 1 - i) := by
rw [← sum_range_reflect]
refine sum_congr rfl fun j j_in => ?_
rw [mem_range, Nat.lt_iff_add_one_le] at j_in
congr
apply tsub_tsub_cancel_of_le
exact le_tsub_of_add_le_right j_in
theorem geom_sum₂_with_one (x : α) (n : ℕ) :
∑ i ∈ range n, x ^ i * 1 ^ (n - 1 - i) = ∑ i ∈ range n, x ^ i :=
sum_congr rfl fun i _ => by rw [one_pow, mul_one]
/-- $x^n-y^n = (x-y) \sum x^ky^{n-1-k}$ reformulated without `-` signs. -/
protected theorem Commute.geom_sum₂_mul_add {x y : α} (h : Commute x y) (n : ℕ) :
(∑ i ∈ range n, (x + y) ^ i * y ^ (n - 1 - i)) * x + y ^ n = (x + y) ^ n := by
let f : ℕ → ℕ → α := fun m i : ℕ => (x + y) ^ i * y ^ (m - 1 - i)
change (∑ i ∈ range n, (f n) i) * x + y ^ n = (x + y) ^ n
induction n with
| zero => rw [range_zero, sum_empty, zero_mul, zero_add, pow_zero, pow_zero]
| succ n ih =>
have f_last : f (n + 1) n = (x + y) ^ n := by
dsimp only [f]
rw [← tsub_add_eq_tsub_tsub, Nat.add_comm, tsub_self, pow_zero, mul_one]
have f_succ : ∀ i, i ∈ range n → f (n + 1) i = y * f n i := fun i hi => by
dsimp only [f]
have : Commute y ((x + y) ^ i) := (h.symm.add_right (Commute.refl y)).pow_right i
rw [← mul_assoc, this.eq, mul_assoc, ← pow_succ' y (n - 1 - i), add_tsub_cancel_right,
← tsub_add_eq_tsub_tsub, add_comm 1 i]
have : i + 1 + (n - (i + 1)) = n := add_tsub_cancel_of_le (mem_range.mp hi)
rw [add_comm (i + 1)] at this
rw [← this, add_tsub_cancel_right, add_comm i 1, ← add_assoc, add_tsub_cancel_right]
rw [pow_succ' (x + y), add_mul, sum_range_succ_comm, add_mul, f_last, add_assoc,
(((Commute.refl x).add_right h).pow_right n).eq, sum_congr rfl f_succ, ← mul_sum,
pow_succ' y, mul_assoc, ← mul_add y, ih]
end Semiring
@[simp]
theorem neg_one_geom_sum [Ring α] {n : ℕ} :
∑ i ∈ range n, (-1 : α) ^ i = if Even n then 0 else 1 := by
induction n with
| zero => simp
| succ k hk =>
simp only [geom_sum_succ', Nat.even_add_one, hk]
split_ifs with h
· rw [h.neg_one_pow, add_zero]
· rw [(Nat.odd_iff_not_even.2 h).neg_one_pow, neg_add_self]
theorem geom_sum₂_self {α : Type*} [CommRing α] (x : α) (n : ℕ) :
∑ i ∈ range n, x ^ i * x ^ (n - 1 - i) = n * x ^ (n - 1) :=
calc
∑ i ∈ Finset.range n, x ^ i * x ^ (n - 1 - i) =
∑ i ∈ Finset.range n, x ^ (i + (n - 1 - i)) := by
simp_rw [← pow_add]
_ = ∑ _i ∈ Finset.range n, x ^ (n - 1) :=
Finset.sum_congr rfl fun i hi =>
congr_arg _ <| add_tsub_cancel_of_le <| Nat.le_sub_one_of_lt <| Finset.mem_range.1 hi
_ = (Finset.range n).card • x ^ (n - 1) := Finset.sum_const _
_ = n * x ^ (n - 1) := by rw [Finset.card_range, nsmul_eq_mul]
/-- $x^n-y^n = (x-y) \sum x^ky^{n-1-k}$ reformulated without `-` signs. -/
theorem geom_sum₂_mul_add [CommSemiring α] (x y : α) (n : ℕ) :
(∑ i ∈ range n, (x + y) ^ i * y ^ (n - 1 - i)) * x + y ^ n = (x + y) ^ n :=
(Commute.all x y).geom_sum₂_mul_add n
theorem geom_sum_mul_add [Semiring α] (x : α) (n : ℕ) :
(∑ i ∈ range n, (x + 1) ^ i) * x + 1 = (x + 1) ^ n := by
have := (Commute.one_right x).geom_sum₂_mul_add n
rw [one_pow, geom_sum₂_with_one] at this
exact this
protected theorem Commute.geom_sum₂_mul [Ring α] {x y : α} (h : Commute x y) (n : ℕ) :
(∑ i ∈ range n, x ^ i * y ^ (n - 1 - i)) * (x - y) = x ^ n - y ^ n := by
have := (h.sub_left (Commute.refl y)).geom_sum₂_mul_add n
rw [sub_add_cancel] at this
rw [← this, add_sub_cancel_right]
theorem Commute.mul_neg_geom_sum₂ [Ring α] {x y : α} (h : Commute x y) (n : ℕ) :
((y - x) * ∑ i ∈ range n, x ^ i * y ^ (n - 1 - i)) = y ^ n - x ^ n := by
apply op_injective
simp only [op_mul, op_sub, op_geom_sum₂, op_pow]
simp [(Commute.op h.symm).geom_sum₂_mul n]
theorem Commute.mul_geom_sum₂ [Ring α] {x y : α} (h : Commute x y) (n : ℕ) :
((x - y) * ∑ i ∈ range n, x ^ i * y ^ (n - 1 - i)) = x ^ n - y ^ n := by
rw [← neg_sub (y ^ n), ← h.mul_neg_geom_sum₂, ← neg_mul, neg_sub]
theorem geom_sum₂_mul [CommRing α] (x y : α) (n : ℕ) :
(∑ i ∈ range n, x ^ i * y ^ (n - 1 - i)) * (x - y) = x ^ n - y ^ n :=
(Commute.all x y).geom_sum₂_mul n
theorem Commute.sub_dvd_pow_sub_pow [Ring α] {x y : α} (h : Commute x y) (n : ℕ) :
x - y ∣ x ^ n - y ^ n :=
Dvd.intro _ <| h.mul_geom_sum₂ _
theorem sub_dvd_pow_sub_pow [CommRing α] (x y : α) (n : ℕ) : x - y ∣ x ^ n - y ^ n :=
(Commute.all x y).sub_dvd_pow_sub_pow n
theorem one_sub_dvd_one_sub_pow [Ring α] (x : α) (n : ℕ) :
1 - x ∣ 1 - x ^ n := by
conv_rhs => rw [← one_pow n]
exact (Commute.one_left x).sub_dvd_pow_sub_pow n
theorem sub_one_dvd_pow_sub_one [Ring α] (x : α) (n : ℕ) :
x - 1 ∣ x ^ n - 1 := by
conv_rhs => rw [← one_pow n]
exact (Commute.one_right x).sub_dvd_pow_sub_pow n
theorem nat_sub_dvd_pow_sub_pow (x y n : ℕ) : x - y ∣ x ^ n - y ^ n := by
rcases le_or_lt y x with h | h
· have : y ^ n ≤ x ^ n := Nat.pow_le_pow_left h _
exact mod_cast sub_dvd_pow_sub_pow (x : ℤ) (↑y) n
· have : x ^ n ≤ y ^ n := Nat.pow_le_pow_left h.le _
exact (Nat.sub_eq_zero_of_le this).symm ▸ dvd_zero (x - y)
theorem Odd.add_dvd_pow_add_pow [CommRing α] (x y : α) {n : ℕ} (h : Odd n) :
x + y ∣ x ^ n + y ^ n := by
have h₁ := geom_sum₂_mul x (-y) n
rw [Odd.neg_pow h y, sub_neg_eq_add, sub_neg_eq_add] at h₁
exact Dvd.intro_left _ h₁
theorem Odd.nat_add_dvd_pow_add_pow (x y : ℕ) {n : ℕ} (h : Odd n) : x + y ∣ x ^ n + y ^ n :=
mod_cast Odd.add_dvd_pow_add_pow (x : ℤ) (↑y) h
theorem geom_sum_mul [Ring α] (x : α) (n : ℕ) : (∑ i ∈ range n, x ^ i) * (x - 1) = x ^ n - 1 := by
have := (Commute.one_right x).geom_sum₂_mul n
rw [one_pow, geom_sum₂_with_one] at this
exact this
theorem mul_geom_sum [Ring α] (x : α) (n : ℕ) : ((x - 1) * ∑ i ∈ range n, x ^ i) = x ^ n - 1 :=
op_injective <| by simpa using geom_sum_mul (op x) n
theorem geom_sum_mul_neg [Ring α] (x : α) (n : ℕ) :
(∑ i ∈ range n, x ^ i) * (1 - x) = 1 - x ^ n := by
have := congr_arg Neg.neg (geom_sum_mul x n)
rw [neg_sub, ← mul_neg, neg_sub] at this
exact this
theorem mul_neg_geom_sum [Ring α] (x : α) (n : ℕ) : ((1 - x) * ∑ i ∈ range n, x ^ i) = 1 - x ^ n :=
op_injective <| by simpa using geom_sum_mul_neg (op x) n
protected theorem Commute.geom_sum₂_comm {α : Type u} [Semiring α] {x y : α} (n : ℕ)
(h : Commute x y) :
∑ i ∈ range n, x ^ i * y ^ (n - 1 - i) = ∑ i ∈ range n, y ^ i * x ^ (n - 1 - i) := by
cases n; · simp
simp only [Nat.succ_eq_add_one, Nat.add_sub_cancel]
rw [← Finset.sum_flip]
refine Finset.sum_congr rfl fun i hi => ?_
simpa [Nat.sub_sub_self (Nat.succ_le_succ_iff.mp (Finset.mem_range.mp hi))] using h.pow_pow _ _
theorem geom_sum₂_comm {α : Type u} [CommSemiring α] (x y : α) (n : ℕ) :
∑ i ∈ range n, x ^ i * y ^ (n - 1 - i) = ∑ i ∈ range n, y ^ i * x ^ (n - 1 - i) :=
(Commute.all x y).geom_sum₂_comm n
protected theorem Commute.geom_sum₂ [DivisionRing α] {x y : α} (h' : Commute x y) (h : x ≠ y)
(n : ℕ) : ∑ i ∈ range n, x ^ i * y ^ (n - 1 - i) = (x ^ n - y ^ n) / (x - y) := by
have : x - y ≠ 0 := by simp_all [sub_eq_iff_eq_add]
rw [← h'.geom_sum₂_mul, mul_div_cancel_right₀ _ this]
theorem geom₂_sum [Field α] {x y : α} (h : x ≠ y) (n : ℕ) :
∑ i ∈ range n, x ^ i * y ^ (n - 1 - i) = (x ^ n - y ^ n) / (x - y) :=
(Commute.all x y).geom_sum₂ h n
theorem geom_sum_eq [DivisionRing α] {x : α} (h : x ≠ 1) (n : ℕ) :
∑ i ∈ range n, x ^ i = (x ^ n - 1) / (x - 1) := by
have : x - 1 ≠ 0 := by simp_all [sub_eq_iff_eq_add]
rw [← geom_sum_mul, mul_div_cancel_right₀ _ this]
protected theorem Commute.mul_geom_sum₂_Ico [Ring α] {x y : α} (h : Commute x y) {m n : ℕ}
(hmn : m ≤ n) :
((x - y) * ∑ i ∈ Finset.Ico m n, x ^ i * y ^ (n - 1 - i)) = x ^ n - x ^ m * y ^ (n - m) := by
rw [sum_Ico_eq_sub _ hmn]
have :
∑ k ∈ range m, x ^ k * y ^ (n - 1 - k) =
∑ k ∈ range m, x ^ k * (y ^ (n - m) * y ^ (m - 1 - k)) := by
refine sum_congr rfl fun j j_in => ?_
rw [← pow_add]
congr
rw [mem_range, Nat.lt_iff_add_one_le, add_comm] at j_in
have h' : n - m + (m - (1 + j)) = n - (1 + j) := tsub_add_tsub_cancel hmn j_in
rw [← tsub_add_eq_tsub_tsub m, h', ← tsub_add_eq_tsub_tsub]
rw [this]
simp_rw [pow_mul_comm y (n - m) _]
simp_rw [← mul_assoc]
rw [← sum_mul, mul_sub, h.mul_geom_sum₂, ← mul_assoc, h.mul_geom_sum₂, sub_mul, ← pow_add,
add_tsub_cancel_of_le hmn, sub_sub_sub_cancel_right (x ^ n) (x ^ m * y ^ (n - m)) (y ^ n)]
protected theorem Commute.geom_sum₂_succ_eq {α : Type u} [Ring α] {x y : α} (h : Commute x y)
{n : ℕ} :
∑ i ∈ range (n + 1), x ^ i * y ^ (n - i) =
x ^ n + y * ∑ i ∈ range n, x ^ i * y ^ (n - 1 - i) := by
simp_rw [mul_sum, sum_range_succ_comm, tsub_self, pow_zero, mul_one, add_right_inj, ← mul_assoc,
(h.symm.pow_right _).eq, mul_assoc, ← pow_succ']
refine sum_congr rfl fun i hi => ?_
suffices n - 1 - i + 1 = n - i by rw [this]
cases' n with n
· exact absurd (List.mem_range.mp hi) i.not_lt_zero
· rw [tsub_add_eq_add_tsub (Nat.le_sub_one_of_lt (List.mem_range.mp hi)),
tsub_add_cancel_of_le (Nat.succ_le_iff.mpr n.succ_pos)]
theorem geom_sum₂_succ_eq {α : Type u} [CommRing α] (x y : α) {n : ℕ} :
∑ i ∈ range (n + 1), x ^ i * y ^ (n - i) =
x ^ n + y * ∑ i ∈ range n, x ^ i * y ^ (n - 1 - i) :=
(Commute.all x y).geom_sum₂_succ_eq
theorem mul_geom_sum₂_Ico [CommRing α] (x y : α) {m n : ℕ} (hmn : m ≤ n) :
((x - y) * ∑ i ∈ Finset.Ico m n, x ^ i * y ^ (n - 1 - i)) = x ^ n - x ^ m * y ^ (n - m) :=
(Commute.all x y).mul_geom_sum₂_Ico hmn
protected theorem Commute.geom_sum₂_Ico_mul [Ring α] {x y : α} (h : Commute x y) {m n : ℕ}
(hmn : m ≤ n) :
(∑ i ∈ Finset.Ico m n, x ^ i * y ^ (n - 1 - i)) * (x - y) = x ^ n - y ^ (n - m) * x ^ m := by
apply op_injective
simp only [op_sub, op_mul, op_pow, op_sum]
have : (∑ k ∈ Ico m n, MulOpposite.op y ^ (n - 1 - k) * MulOpposite.op x ^ k) =
∑ k ∈ Ico m n, MulOpposite.op x ^ k * MulOpposite.op y ^ (n - 1 - k) := by
refine sum_congr rfl fun k _ => ?_
have hp := Commute.pow_pow (Commute.op h.symm) (n - 1 - k) k
simpa [Commute, SemiconjBy] using hp
simp only [this]
-- Porting note: gives deterministic timeout without this intermediate `have`
convert (Commute.op h).mul_geom_sum₂_Ico hmn
theorem geom_sum_Ico_mul [Ring α] (x : α) {m n : ℕ} (hmn : m ≤ n) :
(∑ i ∈ Finset.Ico m n, x ^ i) * (x - 1) = x ^ n - x ^ m := by
rw [sum_Ico_eq_sub _ hmn, sub_mul, geom_sum_mul, geom_sum_mul, sub_sub_sub_cancel_right]
theorem geom_sum_Ico_mul_neg [Ring α] (x : α) {m n : ℕ} (hmn : m ≤ n) :
(∑ i ∈ Finset.Ico m n, x ^ i) * (1 - x) = x ^ m - x ^ n := by
rw [sum_Ico_eq_sub _ hmn, sub_mul, geom_sum_mul_neg, geom_sum_mul_neg, sub_sub_sub_cancel_left]
protected theorem Commute.geom_sum₂_Ico [DivisionRing α] {x y : α} (h : Commute x y) (hxy : x ≠ y)
{m n : ℕ} (hmn : m ≤ n) :
(∑ i ∈ Finset.Ico m n, x ^ i * y ^ (n - 1 - i)) = (x ^ n - y ^ (n - m) * x ^ m) / (x - y) := by
have : x - y ≠ 0 := by simp_all [sub_eq_iff_eq_add]
rw [← h.geom_sum₂_Ico_mul hmn, mul_div_cancel_right₀ _ this]
theorem geom_sum₂_Ico [Field α] {x y : α} (hxy : x ≠ y) {m n : ℕ} (hmn : m ≤ n) :
(∑ i ∈ Finset.Ico m n, x ^ i * y ^ (n - 1 - i)) = (x ^ n - y ^ (n - m) * x ^ m) / (x - y) :=
(Commute.all x y).geom_sum₂_Ico hxy hmn
theorem geom_sum_Ico [DivisionRing α] {x : α} (hx : x ≠ 1) {m n : ℕ} (hmn : m ≤ n) :
∑ i ∈ Finset.Ico m n, x ^ i = (x ^ n - x ^ m) / (x - 1) := by
simp only [sum_Ico_eq_sub _ hmn, geom_sum_eq hx, div_sub_div_same, sub_sub_sub_cancel_right]
theorem geom_sum_Ico' [DivisionRing α] {x : α} (hx : x ≠ 1) {m n : ℕ} (hmn : m ≤ n) :
∑ i ∈ Finset.Ico m n, x ^ i = (x ^ m - x ^ n) / (1 - x) := by
simp only [geom_sum_Ico hx hmn]
convert neg_div_neg_eq (x ^ m - x ^ n) (1 - x) using 2 <;> abel
theorem geom_sum_Ico_le_of_lt_one [LinearOrderedField α] {x : α} (hx : 0 ≤ x) (h'x : x < 1)
{m n : ℕ} : ∑ i ∈ Ico m n, x ^ i ≤ x ^ m / (1 - x) := by
rcases le_or_lt m n with (hmn | hmn)
· rw [geom_sum_Ico' h'x.ne hmn]
apply div_le_div (pow_nonneg hx _) _ (sub_pos.2 h'x) le_rfl
simpa using pow_nonneg hx _
· rw [Ico_eq_empty, sum_empty]
· apply div_nonneg (pow_nonneg hx _)
simpa using h'x.le
· simpa using hmn.le
theorem geom_sum_inv [DivisionRing α] {x : α} (hx1 : x ≠ 1) (hx0 : x ≠ 0) (n : ℕ) :
∑ i ∈ range n, x⁻¹ ^ i = (x - 1)⁻¹ * (x - x⁻¹ ^ n * x) := by
have h₁ : x⁻¹ ≠ 1 := by rwa [inv_eq_one_div, Ne, div_eq_iff_mul_eq hx0, one_mul]
have h₂ : x⁻¹ - 1 ≠ 0 := mt sub_eq_zero.1 h₁
have h₃ : x - 1 ≠ 0 := mt sub_eq_zero.1 hx1
have h₄ : x * (x ^ n)⁻¹ = (x ^ n)⁻¹ * x :=
Nat.recOn n (by simp) fun n h => by
rw [pow_succ', mul_inv_rev, ← mul_assoc, h, mul_assoc, mul_inv_cancel hx0, mul_assoc,
inv_mul_cancel hx0]
rw [geom_sum_eq h₁, div_eq_iff_mul_eq h₂, ← mul_right_inj' h₃, ← mul_assoc, ← mul_assoc,
mul_inv_cancel h₃]
simp [mul_add, add_mul, mul_inv_cancel hx0, mul_assoc, h₄, sub_eq_add_neg, add_comm,
add_left_comm]
rw [add_comm _ (-x), add_assoc, add_assoc _ _ 1]
variable {β : Type*}
-- TODO: for consistency, the next two lemmas should be moved to the root namespace
theorem RingHom.map_geom_sum [Semiring α] [Semiring β] (x : α) (n : ℕ) (f : α →+* β) :
f (∑ i ∈ range n, x ^ i) = ∑ i ∈ range n, f x ^ i := by simp [map_sum f]
theorem RingHom.map_geom_sum₂ [Semiring α] [Semiring β] (x y : α) (n : ℕ) (f : α →+* β) :
f (∑ i ∈ range n, x ^ i * y ^ (n - 1 - i)) = ∑ i ∈ range n, f x ^ i * f y ^ (n - 1 - i) := by
simp [map_sum f]
/-! ### Geometric sum with `ℕ`-division -/
theorem Nat.pred_mul_geom_sum_le (a b n : ℕ) :
((b - 1) * ∑ i ∈ range n.succ, a / b ^ i) ≤ a * b - a / b ^ n :=
calc
((b - 1) * ∑ i ∈ range n.succ, a / b ^ i) =
(∑ i ∈ range n, a / b ^ (i + 1) * b) + a * b - ((∑ i ∈ range n, a / b ^ i) + a / b ^ n) := by
rw [tsub_mul, mul_comm, sum_mul, one_mul, sum_range_succ', sum_range_succ, pow_zero,
Nat.div_one]
_ ≤ (∑ i ∈ range n, a / b ^ i) + a * b - ((∑ i ∈ range n, a / b ^ i) + a / b ^ n) := by
refine tsub_le_tsub_right (add_le_add_right (sum_le_sum fun i _ => ?_) _) _
rw [pow_succ', mul_comm b]
rw [← Nat.div_div_eq_div_mul]
exact Nat.div_mul_le_self _ _
_ = a * b - a / b ^ n := add_tsub_add_eq_tsub_left _ _ _
theorem Nat.geom_sum_le {b : ℕ} (hb : 2 ≤ b) (a n : ℕ) :
∑ i ∈ range n, a / b ^ i ≤ a * b / (b - 1) := by
refine (Nat.le_div_iff_mul_le <| tsub_pos_of_lt hb).2 ?_
cases' n with n
· rw [sum_range_zero, zero_mul]
exact Nat.zero_le _
rw [mul_comm]
exact (Nat.pred_mul_geom_sum_le a b n).trans tsub_le_self
theorem Nat.geom_sum_Ico_le {b : ℕ} (hb : 2 ≤ b) (a n : ℕ) :
∑ i ∈ Ico 1 n, a / b ^ i ≤ a / (b - 1) := by
cases' n with n
· rw [Ico_eq_empty_of_le (zero_le_one' ℕ), sum_empty]
exact Nat.zero_le _
rw [← add_le_add_iff_left a]
calc
(a + ∑ i ∈ Ico 1 n.succ, a / b ^ i) = a / b ^ 0 + ∑ i ∈ Ico 1 n.succ, a / b ^ i := by
rw [pow_zero, Nat.div_one]
_ = ∑ i ∈ range n.succ, a / b ^ i := by
rw [range_eq_Ico, ← Nat.Ico_insert_succ_left (Nat.succ_pos _), sum_insert]
exact fun h => zero_lt_one.not_le (mem_Ico.1 h).1
_ ≤ a * b / (b - 1) := Nat.geom_sum_le hb a _
_ = (a * 1 + a * (b - 1)) / (b - 1) := by
rw [← mul_add, add_tsub_cancel_of_le (one_le_two.trans hb)]
_ = a + a / (b - 1) := by rw [mul_one, Nat.add_mul_div_right _ _ (tsub_pos_of_lt hb), add_comm]
section Order
variable {n : ℕ} {x : α}
theorem geom_sum_pos [StrictOrderedSemiring α] (hx : 0 ≤ x) (hn : n ≠ 0) :
0 < ∑ i ∈ range n, x ^ i :=
sum_pos' (fun k _ => pow_nonneg hx _) ⟨0, mem_range.2 hn.bot_lt, by simp⟩
theorem geom_sum_pos_and_lt_one [StrictOrderedRing α] (hx : x < 0) (hx' : 0 < x + 1) (hn : 1 < n) :
(0 < ∑ i ∈ range n, x ^ i) ∧ ∑ i ∈ range n, x ^ i < 1 := by
refine Nat.le_induction ?_ ?_ n (show 2 ≤ n from hn)
· rw [geom_sum_two]
exact ⟨hx', (add_lt_iff_neg_right _).2 hx⟩
clear hn
intro n _ ihn
rw [geom_sum_succ, add_lt_iff_neg_right, ← neg_lt_iff_pos_add', neg_mul_eq_neg_mul]
exact
⟨mul_lt_one_of_nonneg_of_lt_one_left (neg_nonneg.2 hx.le) (neg_lt_iff_pos_add'.2 hx') ihn.2.le,
mul_neg_of_neg_of_pos hx ihn.1⟩
theorem geom_sum_alternating_of_le_neg_one [StrictOrderedRing α] (hx : x + 1 ≤ 0) (n : ℕ) :
if Even n then (∑ i ∈ range n, x ^ i) ≤ 0 else 1 ≤ ∑ i ∈ range n, x ^ i := by
have hx0 : x ≤ 0 := (le_add_of_nonneg_right zero_le_one).trans hx
induction n with
| zero => simp only [Nat.zero_eq, range_zero, sum_empty, le_refl, ite_true, even_zero]
| succ n ih =>
simp only [Nat.even_add_one, geom_sum_succ]
split_ifs at ih with h
· rw [if_neg (not_not_intro h), le_add_iff_nonneg_left]
exact mul_nonneg_of_nonpos_of_nonpos hx0 ih
· rw [if_pos h]
refine (add_le_add_right ?_ _).trans hx
simpa only [mul_one] using mul_le_mul_of_nonpos_left ih hx0
theorem geom_sum_alternating_of_lt_neg_one [StrictOrderedRing α] (hx : x + 1 < 0) (hn : 1 < n) :
if Even n then (∑ i ∈ range n, x ^ i) < 0 else 1 < ∑ i ∈ range n, x ^ i := by
have hx0 : x < 0 := (le_add_of_nonneg_right zero_le_one).trans_lt hx
refine Nat.le_induction ?_ ?_ n (show 2 ≤ n from hn)
· simp only [geom_sum_two, lt_add_iff_pos_left, ite_true, gt_iff_lt, hx, even_two]
clear hn
intro n _ ihn
simp only [Nat.even_add_one, geom_sum_succ]
by_cases hn' : Even n
· rw [if_pos hn'] at ihn
rw [if_neg, lt_add_iff_pos_left]
· exact mul_pos_of_neg_of_neg hx0 ihn
· exact not_not_intro hn'
· rw [if_neg hn'] at ihn
rw [if_pos]
swap
· exact hn'
have := add_lt_add_right (mul_lt_mul_of_neg_left ihn hx0) 1
rw [mul_one] at this
exact this.trans hx
theorem geom_sum_pos' [LinearOrderedRing α] (hx : 0 < x + 1) (hn : n ≠ 0) :
0 < ∑ i ∈ range n, x ^ i := by
obtain _ | _ | n := n
· cases hn rfl
· simp only [zero_add, range_one, sum_singleton, pow_zero, zero_lt_one]
obtain hx' | hx' := lt_or_le x 0
· exact (geom_sum_pos_and_lt_one hx' hx n.one_lt_succ_succ).1
· exact geom_sum_pos hx' (by simp only [Nat.succ_ne_zero, Ne, not_false_iff])
theorem Odd.geom_sum_pos [LinearOrderedRing α] (h : Odd n) : 0 < ∑ i ∈ range n, x ^ i := by
rcases n with (_ | _ | k)
· exact ((show ¬Odd 0 by decide) h).elim
· simp only [zero_add, range_one, sum_singleton, pow_zero, zero_lt_one]
rw [Nat.odd_iff_not_even] at h
rcases lt_trichotomy (x + 1) 0 with (hx | hx | hx)
· have := geom_sum_alternating_of_lt_neg_one hx k.one_lt_succ_succ
simp only [h, if_false] at this
exact zero_lt_one.trans this
· simp only [eq_neg_of_add_eq_zero_left hx, h, neg_one_geom_sum, if_false, zero_lt_one]
· exact geom_sum_pos' hx k.succ.succ_ne_zero
theorem geom_sum_pos_iff [LinearOrderedRing α] (hn : n ≠ 0) :
(0 < ∑ i ∈ range n, x ^ i) ↔ Odd n ∨ 0 < x + 1 := by
refine ⟨fun h => ?_, ?_⟩
· rw [or_iff_not_imp_left, ← not_le, ← Nat.even_iff_not_odd]
refine fun hn hx => h.not_le ?_
simpa [if_pos hn] using geom_sum_alternating_of_le_neg_one hx n
· rintro (hn | hx')
· exact hn.geom_sum_pos
· exact geom_sum_pos' hx' hn
theorem geom_sum_ne_zero [LinearOrderedRing α] (hx : x ≠ -1) (hn : n ≠ 0) :
∑ i ∈ range n, x ^ i ≠ 0 := by
obtain _ | _ | n := n
· cases hn rfl
· simp only [zero_add, range_one, sum_singleton, pow_zero, ne_eq, one_ne_zero, not_false_eq_true]
rw [Ne, eq_neg_iff_add_eq_zero, ← Ne] at hx
obtain h | h := hx.lt_or_lt
· have := geom_sum_alternating_of_lt_neg_one h n.one_lt_succ_succ
split_ifs at this
· exact this.ne
· exact (zero_lt_one.trans this).ne'
· exact (geom_sum_pos' h n.succ.succ_ne_zero).ne'
theorem geom_sum_eq_zero_iff_neg_one [LinearOrderedRing α] (hn : n ≠ 0) :
∑ i ∈ range n, x ^ i = 0 ↔ x = -1 ∧ Even n := by
refine ⟨fun h => ?_, @fun ⟨h, hn⟩ => by simp only [h, hn, neg_one_geom_sum, if_true]⟩
contrapose! h
have hx := eq_or_ne x (-1)
cases' hx with hx hx
· rw [hx, neg_one_geom_sum]
simp only [h hx, ite_false, ne_eq, one_ne_zero, not_false_eq_true]
· exact geom_sum_ne_zero hx hn
theorem geom_sum_neg_iff [LinearOrderedRing α] (hn : n ≠ 0) :
∑ i ∈ range n, x ^ i < 0 ↔ Even n ∧ x + 1 < 0 := by
rw [← not_iff_not, not_lt, le_iff_lt_or_eq, eq_comm,
or_congr (geom_sum_pos_iff hn) (geom_sum_eq_zero_iff_neg_one hn), Nat.odd_iff_not_even, ←
add_eq_zero_iff_eq_neg, not_and, not_lt, le_iff_lt_or_eq, eq_comm, ← imp_iff_not_or, or_comm,
and_comm, Decidable.and_or_imp, or_comm]
end Order
variable {m n : ℕ} {s : Finset ℕ}
/-- Value of a geometric sum over the naturals. Note: see `geom_sum_mul_add` for a formulation
that avoids division and subtraction. -/
lemma Nat.geomSum_eq (hm : 2 ≤ m) (n : ℕ) :
∑ k ∈ range n, m ^ k = (m ^ n - 1) / (m - 1) := by
refine (Nat.div_eq_of_eq_mul_left (tsub_pos_iff_lt.2 hm) <| tsub_eq_of_eq_add ?_).symm
simpa only [tsub_add_cancel_of_le (one_le_two.trans hm), eq_comm] using geom_sum_mul_add (m - 1) n
/-- If all the elements of a finset of naturals are less than `n`, then the sum of their powers of
`m ≥ 2` is less than `m ^ n`. -/
lemma Nat.geomSum_lt (hm : 2 ≤ m) (hs : ∀ k ∈ s, k < n) : ∑ k ∈ s, m ^ k < m ^ n :=
calc
∑ k ∈ s, m ^ k ≤ ∑ k ∈ range n, m ^ k := sum_le_sum_of_subset fun k hk ↦
mem_range.2 <| hs _ hk
_ = (m ^ n - 1) / (m - 1) := Nat.geomSum_eq hm _
_ ≤ m ^ n - 1 := Nat.div_le_self _ _
_ < m ^ n := tsub_lt_self (by positivity) zero_lt_one
|
Algebra\GradedMonoid.lean | /-
Copyright (c) 2021 Eric Wieser. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Eric Wieser
-/
import Mathlib.Algebra.BigOperators.Group.List
import Mathlib.Algebra.Group.InjSurj
import Mathlib.Data.List.FinRange
import Mathlib.Algebra.Group.Action.Defs
import Mathlib.Data.SetLike.Basic
import Mathlib.Algebra.Group.Submonoid.Operations
import Mathlib.Data.Sigma.Basic
import Lean.Elab.Tactic
/-!
# Additively-graded multiplicative structures
This module provides a set of heterogeneous typeclasses for defining a multiplicative structure
over the sigma type `GradedMonoid A` such that `(*) : A i → A j → A (i + j)`; that is to say, `A`
forms an additively-graded monoid. The typeclasses are:
* `GradedMonoid.GOne A`
* `GradedMonoid.GMul A`
* `GradedMonoid.GMonoid A`
* `GradedMonoid.GCommMonoid A`
These respectively imbue:
* `One (GradedMonoid A)`
* `Mul (GradedMonoid A)`
* `Monoid (GradedMonoid A)`
* `CommMonoid (GradedMonoid A)`
the base type `A 0` with:
* `GradedMonoid.GradeZero.One`
* `GradedMonoid.GradeZero.Mul`
* `GradedMonoid.GradeZero.Monoid`
* `GradedMonoid.GradeZero.CommMonoid`
and the `i`th grade `A i` with `A 0`-actions (`•`) defined as left-multiplication:
* (nothing)
* `GradedMonoid.GradeZero.SMul (A 0)`
* `GradedMonoid.GradeZero.MulAction (A 0)`
* (nothing)
For now, these typeclasses are primarily used in the construction of `DirectSum.Ring` and the rest
of that file.
## Dependent graded products
This also introduces `List.dProd`, which takes the (possibly non-commutative) product of a list
of graded elements of type `A i`. This definition primarily exist to allow `GradedMonoid.mk`
and `DirectSum.of` to be pulled outside a product, such as in `GradedMonoid.mk_list_dProd` and
`DirectSum.of_list_dProd`.
## Internally graded monoids
In addition to the above typeclasses, in the most frequent case when `A` is an indexed collection of
`SetLike` subobjects (such as `AddSubmonoid`s, `AddSubgroup`s, or `Submodule`s), this file
provides the `Prop` typeclasses:
* `SetLike.GradedOne A` (which provides the obvious `GradedMonoid.GOne A` instance)
* `SetLike.GradedMul A` (which provides the obvious `GradedMonoid.GMul A` instance)
* `SetLike.GradedMonoid A` (which provides the obvious `GradedMonoid.GMonoid A` and
`GradedMonoid.GCommMonoid A` instances)
which respectively provide the API lemmas
* `SetLike.one_mem_graded`
* `SetLike.mul_mem_graded`
* `SetLike.pow_mem_graded`, `SetLike.list_prod_map_mem_graded`
Strictly this last class is unnecessary as it has no fields not present in its parents, but it is
included for convenience. Note that there is no need for `SetLike.GradedRing` or similar, as all
the information it would contain is already supplied by `GradedMonoid` when `A` is a collection
of objects satisfying `AddSubmonoidClass` such as `Submodule`s. These constructions are explored
in `Algebra.DirectSum.Internal`.
This file also defines:
* `SetLike.isHomogeneous A` (which says that `a` is homogeneous iff `a ∈ A i` for some `i : ι`)
* `SetLike.homogeneousSubmonoid A`, which is, as the name suggests, the submonoid consisting of
all the homogeneous elements.
## Tags
graded monoid
-/
variable {ι : Type*}
/-- A type alias of sigma types for graded monoids. -/
def GradedMonoid (A : ι → Type*) :=
Sigma A
namespace GradedMonoid
instance {A : ι → Type*} [Inhabited ι] [Inhabited (A default)] : Inhabited (GradedMonoid A) :=
inferInstanceAs <| Inhabited (Sigma _)
/-- Construct an element of a graded monoid. -/
def mk {A : ι → Type*} : ∀ i, A i → GradedMonoid A :=
Sigma.mk
/-! ### Actions -/
section actions
variable {α β} {A : ι → Type*}
/-- If `R` acts on each `A i`, then it acts on `GradedMonoid A` via the `.2` projection. -/
instance [∀ i, SMul α (A i)] : SMul α (GradedMonoid A) where
smul r g := GradedMonoid.mk g.1 (r • g.2)
@[simp] theorem fst_smul [∀ i, SMul α (A i)] (a : α) (x : GradedMonoid A) :
(a • x).fst = x.fst := rfl
@[simp] theorem snd_smul [∀ i, SMul α (A i)] (a : α) (x : GradedMonoid A) :
(a • x).snd = a • x.snd := rfl
theorem smul_mk [∀ i, SMul α (A i)] {i} (c : α) (a : A i) :
c • mk i a = mk i (c • a) :=
rfl
instance [∀ i, SMul α (A i)] [∀ i, SMul β (A i)]
[∀ i, SMulCommClass α β (A i)] :
SMulCommClass α β (GradedMonoid A) where
smul_comm a b g := Sigma.ext rfl <| heq_of_eq <| smul_comm a b g.2
instance [SMul α β] [∀ i, SMul α (A i)] [∀ i, SMul β (A i)]
[∀ i, IsScalarTower α β (A i)] :
IsScalarTower α β (GradedMonoid A) where
smul_assoc a b g := Sigma.ext rfl <| heq_of_eq <| smul_assoc a b g.2
instance [Monoid α] [∀ i, MulAction α (A i)] :
MulAction α (GradedMonoid A) where
one_smul g := Sigma.ext rfl <| heq_of_eq <| one_smul _ g.2
mul_smul r₁ r₂ g := Sigma.ext rfl <| heq_of_eq <| mul_smul r₁ r₂ g.2
end actions
/-! ### Typeclasses -/
section Defs
variable (A : ι → Type*)
/-- A graded version of `One`, which must be of grade 0. -/
class GOne [Zero ι] where
/-- The term `one` of grade 0 -/
one : A 0
/-- `GOne` implies `One (GradedMonoid A)` -/
instance GOne.toOne [Zero ι] [GOne A] : One (GradedMonoid A) :=
⟨⟨_, GOne.one⟩⟩
@[simp] theorem fst_one [Zero ι] [GOne A] : (1 : GradedMonoid A).fst = 0 := rfl
@[simp] theorem snd_one [Zero ι] [GOne A] : (1 : GradedMonoid A).snd = GOne.one := rfl
/-- A graded version of `Mul`. Multiplication combines grades additively, like
`AddMonoidAlgebra`. -/
class GMul [Add ι] where
/-- The homogeneous multiplication map `mul` -/
mul {i j} : A i → A j → A (i + j)
/-- `GMul` implies `Mul (GradedMonoid A)`. -/
instance GMul.toMul [Add ι] [GMul A] : Mul (GradedMonoid A) :=
⟨fun x y : GradedMonoid A => ⟨_, GMul.mul x.snd y.snd⟩⟩
@[simp] theorem fst_mul [Add ι] [GMul A] (x y : GradedMonoid A) :
(x * y).fst = x.fst + y.fst := rfl
@[simp] theorem snd_mul [Add ι] [GMul A] (x y : GradedMonoid A) :
(x * y).snd = GMul.mul x.snd y.snd := rfl
theorem mk_mul_mk [Add ι] [GMul A] {i j} (a : A i) (b : A j) :
mk i a * mk j b = mk (i + j) (GMul.mul a b) :=
rfl
namespace GMonoid
variable {A}
variable [AddMonoid ι] [GMul A] [GOne A]
/-- A default implementation of power on a graded monoid, like `npowRec`.
`GMonoid.gnpow` should be used instead. -/
def gnpowRec : ∀ (n : ℕ) {i}, A i → A (n • i)
| 0, i, _ => cast (congr_arg A (zero_nsmul i).symm) GOne.one
| n + 1, i, a => cast (congr_arg A (succ_nsmul i n).symm) (GMul.mul (gnpowRec _ a) a)
@[simp]
theorem gnpowRec_zero (a : GradedMonoid A) : GradedMonoid.mk _ (gnpowRec 0 a.snd) = 1 :=
Sigma.ext (zero_nsmul _) (heq_of_cast_eq _ rfl).symm
@[simp]
theorem gnpowRec_succ (n : ℕ) (a : GradedMonoid A) :
(GradedMonoid.mk _ <| gnpowRec n.succ a.snd) = ⟨_, gnpowRec n a.snd⟩ * a :=
Sigma.ext (succ_nsmul _ _) (heq_of_cast_eq _ rfl).symm
end GMonoid
/-- A tactic to for use as an optional value for `GMonoid.gnpow_zero'`. -/
macro "apply_gmonoid_gnpowRec_zero_tac" : tactic => `(tactic| apply GMonoid.gnpowRec_zero)
/-- A tactic to for use as an optional value for `GMonoid.gnpow_succ'`. -/
macro "apply_gmonoid_gnpowRec_succ_tac" : tactic => `(tactic| apply GMonoid.gnpowRec_succ)
/-- A graded version of `Monoid`
Like `Monoid.npow`, this has an optional `GMonoid.gnpow` field to allow definitional control of
natural powers of a graded monoid. -/
class GMonoid [AddMonoid ι] extends GMul A, GOne A where
/-- Multiplication by `one` on the left is the identity -/
one_mul (a : GradedMonoid A) : 1 * a = a
/-- Multiplication by `one` on the right is the identity -/
mul_one (a : GradedMonoid A) : a * 1 = a
/-- Multiplication is associative -/
mul_assoc (a b c : GradedMonoid A) : a * b * c = a * (b * c)
/-- Optional field to allow definitional control of natural powers -/
gnpow : ∀ (n : ℕ) {i}, A i → A (n • i) := GMonoid.gnpowRec
/-- The zeroth power will yield 1 -/
gnpow_zero' : ∀ a : GradedMonoid A, GradedMonoid.mk _ (gnpow 0 a.snd) = 1 := by
apply_gmonoid_gnpowRec_zero_tac
/-- Successor powers behave as expected -/
gnpow_succ' :
∀ (n : ℕ) (a : GradedMonoid A),
(GradedMonoid.mk _ <| gnpow n.succ a.snd) = ⟨_, gnpow n a.snd⟩ * a := by
apply_gmonoid_gnpowRec_succ_tac
/-- `GMonoid` implies a `Monoid (GradedMonoid A)`. -/
instance GMonoid.toMonoid [AddMonoid ι] [GMonoid A] : Monoid (GradedMonoid A) where
one := 1
mul := (· * ·)
npow n a := GradedMonoid.mk _ (GMonoid.gnpow n a.snd)
npow_zero a := GMonoid.gnpow_zero' a
npow_succ n a := GMonoid.gnpow_succ' n a
one_mul := GMonoid.one_mul
mul_one := GMonoid.mul_one
mul_assoc := GMonoid.mul_assoc
@[simp] theorem fst_pow [AddMonoid ι] [GMonoid A] (x : GradedMonoid A) (n : ℕ) :
(x ^ n).fst = n • x.fst := rfl
@[simp] theorem snd_pow [AddMonoid ι] [GMonoid A] (x : GradedMonoid A) (n : ℕ) :
(x ^ n).snd = GMonoid.gnpow n x.snd := rfl
theorem mk_pow [AddMonoid ι] [GMonoid A] {i} (a : A i) (n : ℕ) :
mk i a ^ n = mk (n • i) (GMonoid.gnpow _ a) := rfl
/-- A graded version of `CommMonoid`. -/
class GCommMonoid [AddCommMonoid ι] extends GMonoid A where
/-- Multiplication is commutative -/
mul_comm (a : GradedMonoid A) (b : GradedMonoid A) : a * b = b * a
/-- `GCommMonoid` implies a `CommMonoid (GradedMonoid A)`, although this is only used as an
instance locally to define notation in `gmonoid` and similar typeclasses. -/
instance GCommMonoid.toCommMonoid [AddCommMonoid ι] [GCommMonoid A] : CommMonoid (GradedMonoid A) :=
{ GMonoid.toMonoid A with mul_comm := GCommMonoid.mul_comm }
end Defs
/-! ### Instances for `A 0`
The various `g*` instances are enough to promote the `AddCommMonoid (A 0)` structure to various
types of multiplicative structure.
-/
section GradeZero
variable (A : ι → Type*)
section One
variable [Zero ι] [GOne A]
/-- `1 : A 0` is the value provided in `GOne.one`. -/
@[nolint unusedArguments]
instance GradeZero.one : One (A 0) :=
⟨GOne.one⟩
end One
section Mul
variable [AddZeroClass ι] [GMul A]
/-- `(•) : A 0 → A i → A i` is the value provided in `GradedMonoid.GMul.mul`, composed with
an `Eq.rec` to turn `A (0 + i)` into `A i`.
-/
instance GradeZero.smul (i : ι) : SMul (A 0) (A i) where
smul x y := @Eq.rec ι (0+i) (fun a _ => A a) (GMul.mul x y) i (zero_add i)
/-- `(*) : A 0 → A 0 → A 0` is the value provided in `GradedMonoid.GMul.mul`, composed with
an `Eq.rec` to turn `A (0 + 0)` into `A 0`.
-/
instance GradeZero.mul : Mul (A 0) where mul := (· • ·)
variable {A}
@[simp]
theorem mk_zero_smul {i} (a : A 0) (b : A i) : mk _ (a • b) = mk _ a * mk _ b :=
Sigma.ext (zero_add _).symm <| eq_rec_heq _ _
@[simp]
theorem GradeZero.smul_eq_mul (a b : A 0) : a • b = a * b :=
rfl
end Mul
section Monoid
variable [AddMonoid ι] [GMonoid A]
instance : NatPow (A 0) where
pow x n := @Eq.rec ι (n • (0 : ι)) (fun a _ => A a) (GMonoid.gnpow n x) 0 (nsmul_zero n)
variable {A}
@[simp]
theorem mk_zero_pow (a : A 0) (n : ℕ) : mk _ (a ^ n) = mk _ a ^ n :=
Sigma.ext (nsmul_zero n).symm <| eq_rec_heq _ _
variable (A)
/-- The `Monoid` structure derived from `GMonoid A`. -/
instance GradeZero.monoid : Monoid (A 0) :=
Function.Injective.monoid (mk 0) sigma_mk_injective rfl mk_zero_smul mk_zero_pow
end Monoid
section Monoid
variable [AddCommMonoid ι] [GCommMonoid A]
/-- The `CommMonoid` structure derived from `GCommMonoid A`. -/
instance GradeZero.commMonoid : CommMonoid (A 0) :=
Function.Injective.commMonoid (mk 0) sigma_mk_injective rfl mk_zero_smul mk_zero_pow
end Monoid
section MulAction
variable [AddMonoid ι] [GMonoid A]
/-- `GradedMonoid.mk 0` is a `MonoidHom`, using the `GradedMonoid.GradeZero.monoid` structure.
-/
def mkZeroMonoidHom : A 0 →* GradedMonoid A where
toFun := mk 0
map_one' := rfl
map_mul' := mk_zero_smul
/-- Each grade `A i` derives an `A 0`-action structure from `GMonoid A`. -/
instance GradeZero.mulAction {i} : MulAction (A 0) (A i) :=
letI := MulAction.compHom (GradedMonoid A) (mkZeroMonoidHom A)
Function.Injective.mulAction (mk i) sigma_mk_injective mk_zero_smul
end MulAction
end GradeZero
end GradedMonoid
/-! ### Dependent products of graded elements -/
section DProd
variable {α : Type*} {A : ι → Type*} [AddMonoid ι] [GradedMonoid.GMonoid A]
/-- The index used by `List.dProd`. Propositionally this is equal to `(l.map fι).Sum`, but
definitionally it needs to have a different form to avoid introducing `Eq.rec`s in `List.dProd`. -/
def List.dProdIndex (l : List α) (fι : α → ι) : ι :=
l.foldr (fun i b => fι i + b) 0
@[simp]
theorem List.dProdIndex_nil (fι : α → ι) : ([] : List α).dProdIndex fι = 0 :=
rfl
@[simp]
theorem List.dProdIndex_cons (a : α) (l : List α) (fι : α → ι) :
(a :: l).dProdIndex fι = fι a + l.dProdIndex fι :=
rfl
theorem List.dProdIndex_eq_map_sum (l : List α) (fι : α → ι) :
l.dProdIndex fι = (l.map fι).sum := by
match l with
| [] => simp
| head::tail => simp [List.dProdIndex_eq_map_sum tail fι]
/-- A dependent product for graded monoids represented by the indexed family of types `A i`.
This is a dependent version of `(l.map fA).prod`.
For a list `l : List α`, this computes the product of `fA a` over `a`, where each `fA` is of type
`A (fι a)`. -/
def List.dProd (l : List α) (fι : α → ι) (fA : ∀ a, A (fι a)) : A (l.dProdIndex fι) :=
l.foldrRecOn _ _ GradedMonoid.GOne.one fun _ x a _ => GradedMonoid.GMul.mul (fA a) x
@[simp]
theorem List.dProd_nil (fι : α → ι) (fA : ∀ a, A (fι a)) :
(List.nil : List α).dProd fι fA = GradedMonoid.GOne.one :=
rfl
-- the `( : _)` in this lemma statement results in the type on the RHS not being unfolded, which
-- is nicer in the goal view.
@[simp]
theorem List.dProd_cons (fι : α → ι) (fA : ∀ a, A (fι a)) (a : α) (l : List α) :
(a :: l).dProd fι fA = (GradedMonoid.GMul.mul (fA a) (l.dProd fι fA) : _) :=
rfl
theorem GradedMonoid.mk_list_dProd (l : List α) (fι : α → ι) (fA : ∀ a, A (fι a)) :
GradedMonoid.mk _ (l.dProd fι fA) = (l.map fun a => GradedMonoid.mk (fι a) (fA a)).prod := by
match l with
| [] => simp only [List.dProdIndex_nil, List.dProd_nil, List.map_nil, List.prod_nil]; rfl
| head::tail =>
simp [← GradedMonoid.mk_list_dProd tail _ _, GradedMonoid.mk_mul_mk, List.prod_cons]
/-- A variant of `GradedMonoid.mk_list_dProd` for rewriting in the other direction. -/
theorem GradedMonoid.list_prod_map_eq_dProd (l : List α) (f : α → GradedMonoid A) :
(l.map f).prod = GradedMonoid.mk _ (l.dProd (fun i => (f i).1) fun i => (f i).2) := by
rw [GradedMonoid.mk_list_dProd, GradedMonoid.mk]
simp_rw [Sigma.eta]
theorem GradedMonoid.list_prod_ofFn_eq_dProd {n : ℕ} (f : Fin n → GradedMonoid A) :
(List.ofFn f).prod =
GradedMonoid.mk _ ((List.finRange n).dProd (fun i => (f i).1) fun i => (f i).2) := by
rw [List.ofFn_eq_map, GradedMonoid.list_prod_map_eq_dProd]
end DProd
/-! ### Concrete instances -/
section
variable (ι) {R : Type*}
@[simps one]
instance One.gOne [Zero ι] [One R] : GradedMonoid.GOne fun _ : ι => R where one := 1
@[simps mul]
instance Mul.gMul [Add ι] [Mul R] : GradedMonoid.GMul fun _ : ι => R where mul x y := x * y
/-- If all grades are the same type and themselves form a monoid, then there is a trivial grading
structure. -/
@[simps gnpow]
instance Monoid.gMonoid [AddMonoid ι] [Monoid R] : GradedMonoid.GMonoid fun _ : ι => R :=
-- { Mul.gMul ι, One.gOne ι with
{ One.gOne ι with
mul := fun x y => x * y
one_mul := fun _ => Sigma.ext (zero_add _) (heq_of_eq (one_mul _))
mul_one := fun _ => Sigma.ext (add_zero _) (heq_of_eq (mul_one _))
mul_assoc := fun _ _ _ => Sigma.ext (add_assoc _ _ _) (heq_of_eq (mul_assoc _ _ _))
gnpow := fun n _ a => a ^ n
gnpow_zero' := fun _ => Sigma.ext (zero_nsmul _) (heq_of_eq (Monoid.npow_zero _))
gnpow_succ' := fun _ ⟨_, _⟩ => Sigma.ext (succ_nsmul _ _) (heq_of_eq (Monoid.npow_succ _ _)) }
/-- If all grades are the same type and themselves form a commutative monoid, then there is a
trivial grading structure. -/
instance CommMonoid.gCommMonoid [AddCommMonoid ι] [CommMonoid R] :
GradedMonoid.GCommMonoid fun _ : ι => R :=
{ Monoid.gMonoid ι with
mul_comm := fun _ _ => Sigma.ext (add_comm _ _) (heq_of_eq (mul_comm _ _)) }
/-- When all the indexed types are the same, the dependent product is just the regular product. -/
@[simp]
theorem List.dProd_monoid {α} [AddMonoid ι] [Monoid R] (l : List α) (fι : α → ι) (fA : α → R) :
@List.dProd _ _ (fun _ : ι => R) _ _ l fι fA = (l.map fA).prod := by
match l with
| [] =>
rw [List.dProd_nil, List.map_nil, List.prod_nil]
rfl
| head::tail =>
rw [List.dProd_cons, List.map_cons, List.prod_cons, List.dProd_monoid tail _ _]
rfl
end
/-! ### Shorthands for creating instance of the above typeclasses for collections of subobjects -/
section Subobjects
variable {R : Type*}
/-- A version of `GradedMonoid.GOne` for internally graded objects. -/
class SetLike.GradedOne {S : Type*} [SetLike S R] [One R] [Zero ι] (A : ι → S) : Prop where
/-- One has grade zero -/
one_mem : (1 : R) ∈ A 0
theorem SetLike.one_mem_graded {S : Type*} [SetLike S R] [One R] [Zero ι] (A : ι → S)
[SetLike.GradedOne A] : (1 : R) ∈ A 0 :=
SetLike.GradedOne.one_mem
instance SetLike.gOne {S : Type*} [SetLike S R] [One R] [Zero ι] (A : ι → S)
[SetLike.GradedOne A] : GradedMonoid.GOne fun i => A i where
one := ⟨1, SetLike.one_mem_graded _⟩
@[simp]
theorem SetLike.coe_gOne {S : Type*} [SetLike S R] [One R] [Zero ι] (A : ι → S)
[SetLike.GradedOne A] : ↑(@GradedMonoid.GOne.one _ (fun i => A i) _ _) = (1 : R) :=
rfl
/-- A version of `GradedMonoid.ghas_one` for internally graded objects. -/
class SetLike.GradedMul {S : Type*} [SetLike S R] [Mul R] [Add ι] (A : ι → S) : Prop where
/-- Multiplication is homogeneous -/
mul_mem : ∀ ⦃i j⦄ {gi gj}, gi ∈ A i → gj ∈ A j → gi * gj ∈ A (i + j)
theorem SetLike.mul_mem_graded {S : Type*} [SetLike S R] [Mul R] [Add ι] {A : ι → S}
[SetLike.GradedMul A] ⦃i j⦄ {gi gj} (hi : gi ∈ A i) (hj : gj ∈ A j) : gi * gj ∈ A (i + j) :=
SetLike.GradedMul.mul_mem hi hj
instance SetLike.gMul {S : Type*} [SetLike S R] [Mul R] [Add ι] (A : ι → S)
[SetLike.GradedMul A] : GradedMonoid.GMul fun i => A i where
mul := fun a b => ⟨(a * b : R), SetLike.mul_mem_graded a.prop b.prop⟩
/-
Porting note: simpNF linter returns
"Left-hand side does not simplify, when using the simp lemma on itself."
However, simp does indeed solve the following. Possibly related std#71,std#78
example {S : Type*} [SetLike S R] [Mul R] [Add ι] (A : ι → S)
[SetLike.GradedMul A] {i j : ι} (x : A i) (y : A j) :
↑(@GradedMonoid.GMul.mul _ (fun i => A i) _ _ _ _ x y) = (x * y : R) := by simp
-/
@[simp,nolint simpNF]
theorem SetLike.coe_gMul {S : Type*} [SetLike S R] [Mul R] [Add ι] (A : ι → S)
[SetLike.GradedMul A] {i j : ι} (x : A i) (y : A j) :
↑(@GradedMonoid.GMul.mul _ (fun i => A i) _ _ _ _ x y) = (x * y : R) :=
rfl
/-- A version of `GradedMonoid.GMonoid` for internally graded objects. -/
class SetLike.GradedMonoid {S : Type*} [SetLike S R] [Monoid R] [AddMonoid ι] (A : ι → S) extends
SetLike.GradedOne A, SetLike.GradedMul A : Prop
namespace SetLike
variable {S : Type*} [SetLike S R] [Monoid R] [AddMonoid ι]
variable {A : ι → S} [SetLike.GradedMonoid A]
namespace GradeZero
variable (A) in
/-- The submonoid `A 0` of `R`. -/
@[simps]
def submonoid : Submonoid R where
carrier := A 0
mul_mem' ha hb := add_zero (0 : ι) ▸ SetLike.mul_mem_graded ha hb
one_mem' := SetLike.one_mem_graded A
-- TODO: it might be expensive to unify `A` in this instances in practice
/-- The monoid `A 0` inherited from `R` in the presence of `SetLike.GradedMonoid A`. -/
instance instMonoid : Monoid (A 0) := inferInstanceAs <| Monoid (GradeZero.submonoid A)
-- TODO: it might be expensive to unify `A` in this instances in practice
/-- The commutative monoid `A 0` inherited from `R` in the presence of `SetLike.GradedMonoid A`. -/
instance instCommMonoid
{R S : Type*} [SetLike S R] [CommMonoid R]
{A : ι → S} [SetLike.GradedMonoid A] :
CommMonoid (A 0) :=
inferInstanceAs <| CommMonoid (GradeZero.submonoid A)
/-- The linter message "error: SetLike.GradeZero.coe_one.{u_3, u_2, u_1} Left-hand side does
not simplify, when using the simp lemma on itself." is wrong. The LHS does simplify. -/
@[nolint simpNF, simp, norm_cast] theorem coe_one : ↑(1 : A 0) = (1 : R) := rfl
/-- The linter message "error: SetLike.GradeZero.coe_mul.{u_3, u_2, u_1} Left-hand side does
not simplify, when using the simp lemma on itself." is wrong. The LHS does simplify. -/
@[nolint simpNF, simp, norm_cast] theorem coe_mul (a b : A 0) : ↑(a * b) = (↑a * ↑b : R) := rfl
/-- The linter message "error: SetLike.GradeZero.coe_pow.{u_3, u_2, u_1} Left-hand side does
not simplify, when using the simp lemma on itself." is wrong. The LHS does simplify. -/
@[nolint simpNF, simp, norm_cast] theorem coe_pow (a : A 0) (n : ℕ) : ↑(a ^ n) = (↑a : R) ^ n := rfl
end GradeZero
theorem pow_mem_graded (n : ℕ) {r : R} {i : ι} (h : r ∈ A i) : r ^ n ∈ A (n • i) := by
match n with
| 0 =>
rw [pow_zero, zero_nsmul]
exact one_mem_graded _
| n+1 =>
rw [pow_succ', succ_nsmul']
exact mul_mem_graded h (pow_mem_graded n h)
theorem list_prod_map_mem_graded {ι'} (l : List ι') (i : ι' → ι) (r : ι' → R)
(h : ∀ j ∈ l, r j ∈ A (i j)) : (l.map r).prod ∈ A (l.map i).sum := by
match l with
| [] =>
rw [List.map_nil, List.map_nil, List.prod_nil, List.sum_nil]
exact one_mem_graded _
| head::tail =>
rw [List.map_cons, List.map_cons, List.prod_cons, List.sum_cons]
exact
mul_mem_graded (h _ <| List.mem_cons_self _ _)
(list_prod_map_mem_graded tail _ _ fun j hj => h _ <| List.mem_cons_of_mem _ hj)
theorem list_prod_ofFn_mem_graded {n} (i : Fin n → ι) (r : Fin n → R) (h : ∀ j, r j ∈ A (i j)) :
(List.ofFn r).prod ∈ A (List.ofFn i).sum := by
rw [List.ofFn_eq_map, List.ofFn_eq_map]
exact list_prod_map_mem_graded _ _ _ fun _ _ => h _
end SetLike
/-- Build a `GMonoid` instance for a collection of subobjects. -/
instance SetLike.gMonoid {S : Type*} [SetLike S R] [Monoid R] [AddMonoid ι] (A : ι → S)
[SetLike.GradedMonoid A] : GradedMonoid.GMonoid fun i => A i :=
{ SetLike.gOne A,
SetLike.gMul A with
one_mul := fun ⟨_, _, _⟩ => Sigma.subtype_ext (zero_add _) (one_mul _)
mul_one := fun ⟨_, _, _⟩ => Sigma.subtype_ext (add_zero _) (mul_one _)
mul_assoc := fun ⟨_, _, _⟩ ⟨_, _, _⟩ ⟨_, _, _⟩ =>
Sigma.subtype_ext (add_assoc _ _ _) (mul_assoc _ _ _)
gnpow := fun n _ a => ⟨(a:R)^n, SetLike.pow_mem_graded n a.prop⟩
gnpow_zero' := fun _ => Sigma.subtype_ext (zero_nsmul _) (pow_zero _)
gnpow_succ' := fun _ _ => Sigma.subtype_ext (succ_nsmul _ _) (pow_succ _ _) }
/-
Porting note: simpNF linter returns
"Left-hand side does not simplify, when using the simp lemma on itself."
However, simp does indeed solve the following. Possibly related std#71,std#78
example {S : Type*} [SetLike S R] [Monoid R] [AddMonoid ι] (A : ι → S)
[SetLike.GradedMonoid A] {i : ι} (x : A i) (n : ℕ) :
↑(@GradedMonoid.GMonoid.gnpow _ (fun i => A i) _ _ n _ x) = (x:R)^n := by simp
-/
@[simp,nolint simpNF]
theorem SetLike.coe_gnpow {S : Type*} [SetLike S R] [Monoid R] [AddMonoid ι] (A : ι → S)
[SetLike.GradedMonoid A] {i : ι} (x : A i) (n : ℕ) :
↑(@GradedMonoid.GMonoid.gnpow _ (fun i => A i) _ _ n _ x) = (x:R)^n :=
rfl
/-- Build a `GCommMonoid` instance for a collection of subobjects. -/
instance SetLike.gCommMonoid {S : Type*} [SetLike S R] [CommMonoid R] [AddCommMonoid ι] (A : ι → S)
[SetLike.GradedMonoid A] : GradedMonoid.GCommMonoid fun i => A i :=
{ SetLike.gMonoid A with
mul_comm := fun ⟨_, _, _⟩ ⟨_, _, _⟩ => Sigma.subtype_ext (add_comm _ _) (mul_comm _ _) }
section DProd
open SetLike SetLike.GradedMonoid
variable {α S : Type*} [SetLike S R] [Monoid R] [AddMonoid ι]
/-
Porting note: simpNF linter returns
"Left-hand side does not simplify, when using the simp lemma on itself."
However, simp does indeed solve the following. Possibly related std#71,std#78
example (A : ι → S) [SetLike.GradedMonoid A] (fι : α → ι)
(fA : ∀ a, A (fι a)) (l : List α) : ↑(@List.dProd _ _ (fun i => ↥(A i)) _ _ l fι fA)
= (List.prod (l.map fun a => fA a) : R) := by simp
-/
/-- Coercing a dependent product of subtypes is the same as taking the regular product of the
coercions. -/
@[simp,nolint simpNF]
theorem SetLike.coe_list_dProd (A : ι → S) [SetLike.GradedMonoid A] (fι : α → ι)
(fA : ∀ a, A (fι a)) (l : List α) : ↑(@List.dProd _ _ (fun i => ↥(A i)) _ _ l fι fA)
= (List.prod (l.map fun a => fA a) : R) := by
match l with
| [] =>
rw [List.dProd_nil, coe_gOne, List.map_nil, List.prod_nil]
| head::tail =>
rw [List.dProd_cons, coe_gMul, List.map_cons, List.prod_cons,
SetLike.coe_list_dProd _ _ _ tail]
/-- A version of `List.coe_dProd_set_like` with `Subtype.mk`. -/
theorem SetLike.list_dProd_eq (A : ι → S) [SetLike.GradedMonoid A] (fι : α → ι) (fA : ∀ a, A (fι a))
(l : List α) :
(@List.dProd _ _ (fun i => ↥(A i)) _ _ l fι fA) =
⟨List.prod (l.map fun a => fA a),
(l.dProdIndex_eq_map_sum fι).symm ▸
list_prod_map_mem_graded l _ _ fun i _ => (fA i).prop⟩ :=
Subtype.ext <| SetLike.coe_list_dProd _ _ _ _
end DProd
end Subobjects
section HomogeneousElements
variable {R S : Type*} [SetLike S R]
/-- An element `a : R` is said to be homogeneous if there is some `i : ι` such that `a ∈ A i`. -/
def SetLike.Homogeneous (A : ι → S) (a : R) : Prop :=
∃ i, a ∈ A i
@[simp]
theorem SetLike.homogeneous_coe {A : ι → S} {i} (x : A i) : SetLike.Homogeneous A (x : R) :=
⟨i, x.prop⟩
theorem SetLike.homogeneous_one [Zero ι] [One R] (A : ι → S) [SetLike.GradedOne A] :
SetLike.Homogeneous A (1 : R) :=
⟨0, SetLike.one_mem_graded _⟩
theorem SetLike.homogeneous_mul [Add ι] [Mul R] {A : ι → S} [SetLike.GradedMul A] {a b : R} :
SetLike.Homogeneous A a → SetLike.Homogeneous A b → SetLike.Homogeneous A (a * b)
| ⟨i, hi⟩, ⟨j, hj⟩ => ⟨i + j, SetLike.mul_mem_graded hi hj⟩
/-- When `A` is a `SetLike.GradedMonoid A`, then the homogeneous elements forms a submonoid. -/
def SetLike.homogeneousSubmonoid [AddMonoid ι] [Monoid R] (A : ι → S) [SetLike.GradedMonoid A] :
Submonoid R where
carrier := { a | SetLike.Homogeneous A a }
one_mem' := SetLike.homogeneous_one A
mul_mem' a b := SetLike.homogeneous_mul a b
end HomogeneousElements
|
Algebra\GradedMulAction.lean | /-
Copyright (c) 2022 Jujian Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jujian Zhang, Eric Wieser
-/
import Mathlib.Algebra.GradedMonoid
/-!
# Additively-graded multiplicative action structures
This module provides a set of heterogeneous typeclasses for defining a multiplicative structure
over the sigma type `GradedMonoid A` such that `(•) : A i → M j → M (i +ᵥ j)`; that is to say, `A`
has an additively-graded multiplicative action on `M`. The typeclasses are:
* `GradedMonoid.GSMul A M`
* `GradedMonoid.GMulAction A M`
With the `SigmaGraded` locale open, these respectively imbue:
* `SMul (GradedMonoid A) (GradedMonoid M)`
* `MulAction (GradedMonoid A) (GradedMonoid M)`
For now, these typeclasses are primarily used in the construction of `DirectSum.GModule.Module` and
the rest of that file.
## Internally graded multiplicative actions
In addition to the above typeclasses, in the most frequent case when `A` is an indexed collection of
`SetLike` subobjects (such as `AddSubmonoid`s, `AddSubgroup`s, or `Submodule`s), this file
provides the `Prop` typeclasses:
* `SetLike.GradedSMul A M` (which provides the obvious `GradedMonoid.GSMul A` instance)
which provides the API lemma
* `SetLike.graded_smul_mem_graded`
Note that there is no need for `SetLike.graded_mul_action` or similar, as all the information it
would contain is already supplied by `GradedSMul` when the objects within `A` and `M` have
a `MulAction` instance.
## Tags
graded action
-/
variable {ιA ιB ιM : Type*}
namespace GradedMonoid
/-! ### Typeclasses -/
section Defs
variable (A : ιA → Type*) (M : ιM → Type*)
/-- A graded version of `SMul`. Scalar multiplication combines grades additively, i.e.
if `a ∈ A i` and `m ∈ M j`, then `a • b` must be in `M (i + j)`-/
class GSMul [VAdd ιA ιM] where
/-- The homogeneous multiplication map `smul` -/
smul {i j} : A i → M j → M (i +ᵥ j)
/-- A graded version of `Mul.toSMul` -/
instance GMul.toGSMul [Add ιA] [GMul A] : GSMul A A where smul := GMul.mul
instance GSMul.toSMul [VAdd ιA ιM] [GSMul A M] : SMul (GradedMonoid A) (GradedMonoid M) :=
⟨fun x y ↦ ⟨_, GSMul.smul x.snd y.snd⟩⟩
theorem mk_smul_mk [VAdd ιA ιM] [GSMul A M] {i j} (a : A i) (b : M j) :
mk i a • mk j b = mk (i +ᵥ j) (GSMul.smul a b) :=
rfl
/-- A graded version of `MulAction`. -/
class GMulAction [AddMonoid ιA] [VAdd ιA ιM] [GMonoid A] extends GSMul A M where
/-- One is the neutral element for `•` -/
one_smul (b : GradedMonoid M) : (1 : GradedMonoid A) • b = b
/-- Associativity of `•` and `*` -/
mul_smul (a a' : GradedMonoid A) (b : GradedMonoid M) : (a * a') • b = a • a' • b
/-- The graded version of `Monoid.toMulAction`. -/
instance GMonoid.toGMulAction [AddMonoid ιA] [GMonoid A] : GMulAction A A :=
{ GMul.toGSMul _ with
one_smul := GMonoid.one_mul
mul_smul := GMonoid.mul_assoc }
instance GMulAction.toMulAction [AddMonoid ιA] [GMonoid A] [VAdd ιA ιM] [GMulAction A M] :
MulAction (GradedMonoid A) (GradedMonoid M) where
one_smul := GMulAction.one_smul
mul_smul := GMulAction.mul_smul
end Defs
end GradedMonoid
/-! ### Shorthands for creating instance of the above typeclasses for collections of subobjects -/
section Subobjects
variable {R : Type*}
/-- A version of `GradedMonoid.GSMul` for internally graded objects. -/
class SetLike.GradedSMul {S R N M : Type*} [SetLike S R] [SetLike N M] [SMul R M] [VAdd ιA ιB]
(A : ιA → S) (B : ιB → N) : Prop where
/-- Multiplication is homogeneous -/
smul_mem : ∀ ⦃i : ιA⦄ ⦃j : ιB⦄ {ai bj}, ai ∈ A i → bj ∈ B j → ai • bj ∈ B (i +ᵥ j)
instance SetLike.toGSMul {S R N M : Type*} [SetLike S R] [SetLike N M] [SMul R M] [VAdd ιA ιB]
(A : ιA → S) (B : ιB → N) [SetLike.GradedSMul A B] :
GradedMonoid.GSMul (fun i ↦ A i) fun i ↦ B i where
smul a b := ⟨a.1 • b.1, SetLike.GradedSMul.smul_mem a.2 b.2⟩
/-
Porting note: simpNF linter returns
"Left-hand side does not simplify, when using the simp lemma on itself."
However, simp does indeed solve the following. Possibly related std#71,std#78
example {S R N M : Type*} [SetLike S R] [SetLike N M] [SMul R M] [Add ι]
(A : ι → S) (B : ι → N) [SetLike.GradedSMul A B] {i j : ι} (x : A i) (y : B j) :
(@GradedMonoid.GSMul.smul ι (fun i ↦ A i) (fun i ↦ B i) _ _ i j x y : M) = x.1 • y.1 := by simp
-/
@[simp,nolint simpNF]
theorem SetLike.coe_GSMul {S R N M : Type*} [SetLike S R] [SetLike N M] [SMul R M] [VAdd ιA ιB]
(A : ιA → S) (B : ιB → N) [SetLike.GradedSMul A B] {i : ιA} {j : ιB} (x : A i) (y : B j) :
(@GradedMonoid.GSMul.smul ιA ιB (fun i ↦ A i) (fun i ↦ B i) _ _ i j x y : M) = x.1 • y.1 :=
rfl
/-- Internally graded version of `Mul.toSMul`. -/
instance SetLike.GradedMul.toGradedSMul [AddMonoid ιA] [Monoid R] {S : Type*} [SetLike S R]
(A : ιA → S) [SetLike.GradedMonoid A] : SetLike.GradedSMul A A where
smul_mem _ _ _ _ hi hj := SetLike.GradedMonoid.toGradedMul.mul_mem hi hj
end Subobjects
section HomogeneousElements
variable {S R N M : Type*} [SetLike S R] [SetLike N M]
theorem SetLike.Homogeneous.graded_smul [VAdd ιA ιB] [SMul R M] {A : ιA → S} {B : ιB → N}
[SetLike.GradedSMul A B] {a : R} {b : M} :
SetLike.Homogeneous A a → SetLike.Homogeneous B b → SetLike.Homogeneous B (a • b)
| ⟨i, hi⟩, ⟨j, hj⟩ => ⟨i +ᵥ j, SetLike.GradedSMul.smul_mem hi hj⟩
end HomogeneousElements
|
Algebra\HierarchyDesign.lean | /-
Copyright (c) 2021 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Eric Wieser
-/
import Batteries.Util.LibraryNote
/-!
# Documentation of the algebraic hierarchy
A library note giving advice on modifying the algebraic hierarchy.
(It is not intended as a "tour".) This is ported directly from the Lean3 version, so may
refer to files/types that currently only exist in mathlib3.
TODO: Add sections about interactions with topological typeclasses, and order typeclasses.
-/
library_note "the algebraic hierarchy"/-- # The algebraic hierarchy
In any theorem proving environment,
there are difficult decisions surrounding the design of the "algebraic hierarchy".
There is a danger of exponential explosion in the number of gadgets,
especially once interactions between algebraic and order/topological/etc structures are considered.
In mathlib, we try to avoid this by only introducing new algebraic typeclasses either
1. when there is "real mathematics" to be done with them, or
2. when there is a meaningful gain in simplicity by factoring out a common substructure.
(As examples, at this point we don't have `Loop`, or `UnitalMagma`,
but we do have `LieSubmodule` and `TopologicalField`!
We also have `GroupWithZero`, as an exemplar of point 2.)
Generally in mathlib we use the extension mechanism (so `CommRing` extends `Ring`)
rather than mixins (e.g. with separate `Ring` and `CommMul` classes),
in part because of the potential blow-up in term sizes described at
https://www.ralfj.de/blog/2019/05/15/typeclasses-exponential-blowup.html
However there is tension here, as it results in considerable duplication in the API,
particularly in the interaction with order structures.
This library note is not intended as a design document
justifying and explaining the history of mathlib's algebraic hierarchy!
Instead it is intended as a developer's guide, for contributors wanting to extend
(either new leaves, or new intermediate classes) the algebraic hierarchy as it exists.
(Ideally we would have both a tour guide to the existing hierarchy,
and an account of the design choices.
See https://arxiv.org/abs/1910.09336 for an overview of mathlib as a whole,
with some attention to the algebraic hierarchy and
https://leanprover-community.github.io/mathlib-overview.html
for a summary of what is in mathlib today.)
## Instances
When adding a new typeclass `Z` to the algebraic hierarchy
one should attempt to add the following constructions and results,
when applicable:
* Instances transferred elementwise to products, like `Prod.Monoid`.
See `Mathlib.Algebra.Group.Prod` for more examples.
```
instance Prod.Z [Z M] [Z N] : Z (M × N) := ...
```
* Instances transferred elementwise to pi types, like `Pi.Monoid`.
See `Mathlib.Algebra.Group.Pi` for more examples.
```
instance Pi.Z [∀ i, Z <| f i] : Z (Π i : I, f i) := ...
```
* Instances transferred to `MulOpposite M`, like `MulOpposite.Monoid`.
See `Mathlib.Algebra.Opposites` for more examples.
```
instance MulOpposite.Z [Z M] : Z (MulOpposite M) := ...
```
* Instances transferred to `ULift M`, like `ULift.Monoid`.
See `Mathlib.Algebra.Group.ULift` for more examples.
```
instance ULift.Z [Z M] : Z (ULift M) := ...
```
* Definitions for transferring the proof fields of instances along
injective or surjective functions that agree on the data fields,
like `Function.Injective.monoid` and `Function.Surjective.monoid`.
We make these definitions `abbrev`, see note [reducible non-instances].
See `Mathlib.Algebra.Group.InjSurj` for more examples.
```
abbrev Function.Injective.Z [Z M₂] (f : M₁ → M₂) (hf : f.Injective)
(one : f 1 = 1) (mul : ∀ x y, f (x * y) = f x * f y) : Z M₁ := ...
abbrev Function.Surjective.Z [Z M₁] (f : M₁ → M₂) (hf : f.Surjective)
(one : f 1 = 1) (mul : ∀ x y, f (x * y) = f x * f y) : Z M₂ := ...
```
* Instances transferred elementwise to `Finsupp`s, like `Finsupp.semigroup`.
See `Mathlib.Data.Finsupp.Pointwise` for more examples.
```
instance FinSupp.Z [Z β] : Z (α →₀ β) := ...
```
* Instances transferred elementwise to `Set`s, like `Set.monoid`.
See `Mathlib.Algebra.Pointwise` for more examples.
```
instance Set.Z [Z α] : Z (Set α) := ...
```
* Definitions for transferring the entire structure across an equivalence, like `Equiv.monoid`.
See `Mathlib.Data.Equiv.TransferInstance` for more examples. See also the `transport` tactic.
```
def Equiv.Z (e : α ≃ β) [Z β] : Z α := ...
/-- When there is a new notion of `Z`-equiv: -/
def Equiv.ZEquiv (e : α ≃ β) [Z β] : by { letI := Equiv.Z e, exact α ≃Z β } := ...
```
## Subobjects
When a new typeclass `Z` adds new data fields,
you should also create a new `SubZ` `structure` with a `carrier` field.
This can be a lot of work; for now try to closely follow the existing examples
(e.g. `Submonoid`, `Subring`, `Subalgebra`).
We would very much like to provide some automation here, but a prerequisite will be making
all the existing APIs more uniform.
If `Z` extends `Y`, then `SubZ` should usually extend `SubY`.
When `Z` adds only new proof fields to an existing structure `Y`,
you should provide instances transferring
`Z α` to `Z (SubY α)`, like `Submonoid.toCommMonoid`.
Typically this is done using the `Function.Injective.Z` definition mentioned above.
```
instance SubY.toZ [Z α] : Z (SubY α) :=
coe_injective.Z coe ...
```
## Morphisms and equivalences
## Category theory
For many algebraic structures, particularly ones used in representation theory, algebraic geometry,
etc., we also define "bundled" versions, which carry `category` instances.
These bundled versions are usually named by appending `Cat`,
so for example we have `AddCommGrp` as a bundled `AddCommGroup`, and `TopCommRingCat`
(which bundles together `CommRing`, `TopologicalSpace`, and `TopologicalRing`).
These bundled versions have many appealing features:
* a uniform notation for morphisms `X ⟶ Y`
* a uniform notation (and definition) for isomorphisms `X ≅ Y`
* a uniform API for subobjects, via the partial order `Subobject X`
* interoperability with unbundled structures, via coercions to `Type`
(so if `G : AddCommGrp`, you can treat `G` as a type,
and it automatically has an `AddCommGroup` instance)
and lifting maps `AddCommGrp.of G`, when `G` is a type with an `AddCommGroup` instance.
If, for example you do the work of proving that a typeclass `Z` has a good notion of tensor product,
you are strongly encouraged to provide the corresponding `MonoidalCategory` instance
on a bundled version.
This ensures that the API for tensor products is complete, and enables use of general machinery.
Similarly if you prove universal properties, or adjunctions, you are encouraged to state these
using categorical language!
One disadvantage of the bundled approach is that we can only speak of morphisms between
objects living in the same type-theoretic universe.
In practice this is rarely a problem.
# Making a pull request
With so many moving parts, how do you actually go about changing the algebraic hierarchy?
We're still evolving how to handle this, but the current suggestion is:
* If you're adding a new "leaf" class, the requirements are lower,
and an initial PR can just add whatever is immediately needed.
* A new "intermediate" class, especially low down in the hierarchy,
needs to be careful about leaving gaps.
In a perfect world, there would be a group of simultaneous PRs that basically cover everything!
(Or at least an expectation that PRs may not be merged immediately while waiting on other
PRs that fill out the API.)
However "perfect is the enemy of good", and it would also be completely reasonable
to add a TODO list in the main module doc-string for the new class,
briefly listing the parts of the API which still need to be provided.
Hopefully this document makes it easy to assemble this list.
Another alternative to a TODO list in the doc-strings is adding Github issues.
-/
library_note "reducible non-instances"/--
Some definitions that define objects of a class cannot be instances, because they have an
explicit argument that does not occur in the conclusion. An example is `Preorder.lift` that has a
function `f : α → β` as an explicit argument to lift a preorder on `β` to a preorder on `α`.
If these definitions are used to define instances of this class *and* this class is an argument to
some other type-class so that type-class inference will have to unfold these instances to check
for definitional equality, then these definitions should be marked `@[reducible]`.
For example, `Preorder.lift` is used to define `Units.Preorder` and `PartialOrder.lift` is used
to define `Units.PartialOrder`. In some cases it is important that type-class inference can
recognize that `Units.Preorder` and `Units.PartialOrder` give rise to the same `LE` instance.
For example, you might have another class that takes `[LE α]` as an argument, and this argument
sometimes comes from `Units.Preorder` and sometimes from `Units.PartialOrder`.
Therefore, `Preorder.lift` and `PartialOrder.lift` are marked `@[reducible]`.
-/
library_note "implicit instance arguments"/--
There are places where typeclass arguments are specified with implicit `{}` brackets instead of
the usual `[]` brackets. This is done when the instances can be inferred because they are implicit
arguments to the type of one of the other arguments. When they can be inferred from these other
arguments, it is faster to use this method than to use type class inference.
For example, when writing lemmas about `(f : α →+* β)`, it is faster to specify the fact that `α`
and `β` are `Semiring`s as `{rα : Semiring α} {rβ : Semiring β}` rather than the usual
`[Semiring α] [Semiring β]`.
-/
library_note "lower instance priority"/--
Certain instances always apply during type-class resolution. For example, the instance
`AddCommGroup.toAddGroup {α} [AddCommGroup α] : AddGroup α` applies to all type-class
resolution problems of the form `AddGroup _`, and type-class inference will then do an
exhaustive search to find a commutative group. These instances take a long time to fail.
Other instances will only apply if the goal has a certain shape. For example
`Int.instAddGroupInt : AddGroup ℤ` or
`Prod.instAddGroup {α β} [AddGroup α] [AddGroup β] : AddGroup (α × β)`. Usually these instances
will fail quickly, and when they apply, they are almost always the desired instance.
For this reason, we want the instances of the second type (that only apply in specific cases) to
always have higher priority than the instances of the first type (that always apply).
See also [mathlib#1561](https://github.com/leanprover-community/mathlib/issues/1561).
Therefore, if we create an instance that always applies, we set the priority of these instances to
100 (or something similar, which is below the default value of 1000).
-/
|
Algebra\IsPrimePow.lean | /-
Copyright (c) 2022 Bhavik Mehta. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Bhavik Mehta
-/
import Mathlib.Algebra.Associated.Basic
import Mathlib.NumberTheory.Divisors
/-!
# Prime powers
This file deals with prime powers: numbers which are positive integer powers of a single prime.
-/
variable {R : Type*} [CommMonoidWithZero R] (n p : R) (k : ℕ)
/-- `n` is a prime power if there is a prime `p` and a positive natural `k` such that `n` can be
written as `p^k`. -/
def IsPrimePow : Prop :=
∃ (p : R) (k : ℕ), Prime p ∧ 0 < k ∧ p ^ k = n
theorem isPrimePow_def : IsPrimePow n ↔ ∃ (p : R) (k : ℕ), Prime p ∧ 0 < k ∧ p ^ k = n :=
Iff.rfl
/-- An equivalent definition for prime powers: `n` is a prime power iff there is a prime `p` and a
natural `k` such that `n` can be written as `p^(k+1)`. -/
theorem isPrimePow_iff_pow_succ : IsPrimePow n ↔ ∃ (p : R) (k : ℕ), Prime p ∧ p ^ (k + 1) = n :=
(isPrimePow_def _).trans
⟨fun ⟨p, k, hp, hk, hn⟩ => ⟨p, k - 1, hp, by rwa [Nat.sub_add_cancel hk]⟩, fun ⟨p, k, hp, hn⟩ =>
⟨_, _, hp, Nat.succ_pos', hn⟩⟩
theorem not_isPrimePow_zero [NoZeroDivisors R] : ¬IsPrimePow (0 : R) := by
simp only [isPrimePow_def, not_exists, not_and', and_imp]
intro x n _hn hx
rw [pow_eq_zero hx]
simp
theorem IsPrimePow.not_unit {n : R} (h : IsPrimePow n) : ¬IsUnit n :=
let ⟨_p, _k, hp, hk, hn⟩ := h
hn ▸ (isUnit_pow_iff hk.ne').not.mpr hp.not_unit
theorem IsUnit.not_isPrimePow {n : R} (h : IsUnit n) : ¬IsPrimePow n := fun h' => h'.not_unit h
theorem not_isPrimePow_one : ¬IsPrimePow (1 : R) :=
isUnit_one.not_isPrimePow
theorem Prime.isPrimePow {p : R} (hp : Prime p) : IsPrimePow p :=
⟨p, 1, hp, zero_lt_one, by simp⟩
theorem IsPrimePow.pow {n : R} (hn : IsPrimePow n) {k : ℕ} (hk : k ≠ 0) : IsPrimePow (n ^ k) :=
let ⟨p, k', hp, hk', hn⟩ := hn
⟨p, k * k', hp, mul_pos hk.bot_lt hk', by rw [pow_mul', hn]⟩
theorem IsPrimePow.ne_zero [NoZeroDivisors R] {n : R} (h : IsPrimePow n) : n ≠ 0 := fun t =>
not_isPrimePow_zero (t ▸ h)
theorem IsPrimePow.ne_one {n : R} (h : IsPrimePow n) : n ≠ 1 := fun t =>
not_isPrimePow_one (t ▸ h)
section Nat
theorem isPrimePow_nat_iff (n : ℕ) : IsPrimePow n ↔ ∃ p k : ℕ, Nat.Prime p ∧ 0 < k ∧ p ^ k = n := by
simp only [isPrimePow_def, Nat.prime_iff]
theorem Nat.Prime.isPrimePow {p : ℕ} (hp : p.Prime) : IsPrimePow p :=
_root_.Prime.isPrimePow (prime_iff.mp hp)
theorem isPrimePow_nat_iff_bounded (n : ℕ) :
IsPrimePow n ↔ ∃ p : ℕ, p ≤ n ∧ ∃ k : ℕ, k ≤ n ∧ p.Prime ∧ 0 < k ∧ p ^ k = n := by
rw [isPrimePow_nat_iff]
refine Iff.symm ⟨fun ⟨p, _, k, _, hp, hk, hn⟩ => ⟨p, k, hp, hk, hn⟩, ?_⟩
rintro ⟨p, k, hp, hk, rfl⟩
refine ⟨p, ?_, k, (Nat.lt_pow_self hp.one_lt _).le, hp, hk, rfl⟩
conv => { lhs; rw [← (pow_one p)] }
exact Nat.pow_le_pow_right hp.one_lt.le hk
instance {n : ℕ} : Decidable (IsPrimePow n) :=
decidable_of_iff' _ (isPrimePow_nat_iff_bounded n)
theorem IsPrimePow.dvd {n m : ℕ} (hn : IsPrimePow n) (hm : m ∣ n) (hm₁ : m ≠ 1) : IsPrimePow m := by
rw [isPrimePow_nat_iff] at hn ⊢
rcases hn with ⟨p, k, hp, _hk, rfl⟩
obtain ⟨i, hik, rfl⟩ := (Nat.dvd_prime_pow hp).1 hm
refine ⟨p, i, hp, ?_, rfl⟩
apply Nat.pos_of_ne_zero
rintro rfl
simp only [pow_zero, ne_eq, not_true_eq_false] at hm₁
theorem Nat.disjoint_divisors_filter_isPrimePow {a b : ℕ} (hab : a.Coprime b) :
Disjoint (a.divisors.filter IsPrimePow) (b.divisors.filter IsPrimePow) := by
simp only [Finset.disjoint_left, Finset.mem_filter, and_imp, Nat.mem_divisors, not_and]
rintro n han _ha hn hbn _hb -
exact hn.ne_one (Nat.eq_one_of_dvd_coprimes hab han hbn)
theorem IsPrimePow.two_le : ∀ {n : ℕ}, IsPrimePow n → 2 ≤ n
| 0, h => (not_isPrimePow_zero h).elim
| 1, h => (not_isPrimePow_one h).elim
| _n + 2, _ => le_add_self
theorem IsPrimePow.pos {n : ℕ} (hn : IsPrimePow n) : 0 < n :=
pos_of_gt hn.two_le
theorem IsPrimePow.one_lt {n : ℕ} (h : IsPrimePow n) : 1 < n :=
h.two_le
end Nat
|
Algebra\LinearRecurrence.lean | /-
Copyright (c) 2020 Anatole Dedecker. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Anatole Dedecker
-/
import Mathlib.Algebra.Polynomial.Eval
import Mathlib.LinearAlgebra.Dimension.Constructions
/-!
# Linear recurrence
Informally, a "linear recurrence" is an assertion of the form
`∀ n : ℕ, u (n + d) = a 0 * u n + a 1 * u (n+1) + ... + a (d-1) * u (n+d-1)`,
where `u` is a sequence, `d` is the *order* of the recurrence and the `a i`
are its *coefficients*.
In this file, we define the structure `LinearRecurrence` so that
`LinearRecurrence.mk d a` represents the above relation, and we call
a sequence `u` which verifies it a *solution* of the linear recurrence.
We prove a few basic lemmas about this concept, such as :
* the space of solutions is a submodule of `(ℕ → α)` (i.e a vector space if `α`
is a field)
* the function that maps a solution `u` to its first `d` terms builds a `LinearEquiv`
between the solution space and `Fin d → α`, aka `α ^ d`. As a consequence, two
solutions are equal if and only if their first `d` terms are equals.
* a geometric sequence `q ^ n` is solution iff `q` is a root of a particular polynomial,
which we call the *characteristic polynomial* of the recurrence
Of course, although we can inductively generate solutions (cf `mkSol`), the
interesting part would be to determinate closed-forms for the solutions.
This is currently *not implemented*, as we are waiting for definition and
properties of eigenvalues and eigenvectors.
-/
noncomputable section
open Finset
open Polynomial
/-- A "linear recurrence relation" over a commutative semiring is given by its
order `n` and `n` coefficients. -/
structure LinearRecurrence (α : Type*) [CommSemiring α] where
order : ℕ
coeffs : Fin order → α
instance (α : Type*) [CommSemiring α] : Inhabited (LinearRecurrence α) :=
⟨⟨0, default⟩⟩
namespace LinearRecurrence
section CommSemiring
variable {α : Type*} [CommSemiring α] (E : LinearRecurrence α)
/-- We say that a sequence `u` is solution of `LinearRecurrence order coeffs` when we have
`u (n + order) = ∑ i : Fin order, coeffs i * u (n + i)` for any `n`. -/
def IsSolution (u : ℕ → α) :=
∀ n, u (n + E.order) = ∑ i, E.coeffs i * u (n + i)
/-- A solution of a `LinearRecurrence` which satisfies certain initial conditions.
We will prove this is the only such solution. -/
def mkSol (init : Fin E.order → α) : ℕ → α
| n =>
if h : n < E.order then init ⟨n, h⟩
else
∑ k : Fin E.order,
have _ : n - E.order + k < n := by
rw [add_comm, ← add_tsub_assoc_of_le (not_lt.mp h), tsub_lt_iff_left]
· exact add_lt_add_right k.is_lt n
· convert add_le_add (zero_le (k : ℕ)) (not_lt.mp h)
simp only [zero_add]
E.coeffs k * mkSol init (n - E.order + k)
/-- `E.mkSol` indeed gives solutions to `E`. -/
theorem is_sol_mkSol (init : Fin E.order → α) : E.IsSolution (E.mkSol init) := by
intro n
rw [mkSol]
simp
/-- `E.mkSol init`'s first `E.order` terms are `init`. -/
theorem mkSol_eq_init (init : Fin E.order → α) : ∀ n : Fin E.order, E.mkSol init n = init n := by
intro n
rw [mkSol]
simp only [n.is_lt, dif_pos, Fin.mk_val, Fin.eta]
/-- If `u` is a solution to `E` and `init` designates its first `E.order` values,
then `∀ n, u n = E.mkSol init n`. -/
theorem eq_mk_of_is_sol_of_eq_init {u : ℕ → α} {init : Fin E.order → α} (h : E.IsSolution u)
(heq : ∀ n : Fin E.order, u n = init n) : ∀ n, u n = E.mkSol init n := by
intro n
rw [mkSol]
split_ifs with h'
· exact mod_cast heq ⟨n, h'⟩
simp only
rw [← tsub_add_cancel_of_le (le_of_not_lt h'), h (n - E.order)]
congr with k
have : n - E.order + k < n := by
rw [add_comm, ← add_tsub_assoc_of_le (not_lt.mp h'), tsub_lt_iff_left]
· exact add_lt_add_right k.is_lt n
· convert add_le_add (zero_le (k : ℕ)) (not_lt.mp h')
simp only [zero_add]
rw [eq_mk_of_is_sol_of_eq_init h heq (n - E.order + k)]
simp
/-- If `u` is a solution to `E` and `init` designates its first `E.order` values,
then `u = E.mkSol init`. This proves that `E.mkSol init` is the only solution
of `E` whose first `E.order` values are given by `init`. -/
theorem eq_mk_of_is_sol_of_eq_init' {u : ℕ → α} {init : Fin E.order → α} (h : E.IsSolution u)
(heq : ∀ n : Fin E.order, u n = init n) : u = E.mkSol init :=
funext (E.eq_mk_of_is_sol_of_eq_init h heq)
/-- The space of solutions of `E`, as a `Submodule` over `α` of the module `ℕ → α`. -/
def solSpace : Submodule α (ℕ → α) where
carrier := { u | E.IsSolution u }
zero_mem' n := by simp
add_mem' {u v} hu hv n := by simp [mul_add, sum_add_distrib, hu n, hv n]
smul_mem' a u hu n := by simp [hu n, mul_sum]; congr; ext; ac_rfl
/-- Defining property of the solution space : `u` is a solution
iff it belongs to the solution space. -/
theorem is_sol_iff_mem_solSpace (u : ℕ → α) : E.IsSolution u ↔ u ∈ E.solSpace :=
Iff.rfl
/-- The function that maps a solution `u` of `E` to its first
`E.order` terms as a `LinearEquiv`. -/
def toInit : E.solSpace ≃ₗ[α] Fin E.order → α where
toFun u x := (u : ℕ → α) x
map_add' u v := by
ext
simp
map_smul' a u := by
ext
simp
invFun u := ⟨E.mkSol u, E.is_sol_mkSol u⟩
left_inv u := by ext n; symm; apply E.eq_mk_of_is_sol_of_eq_init u.2; intro k; rfl
right_inv u := Function.funext_iff.mpr fun n ↦ E.mkSol_eq_init u n
/-- Two solutions are equal iff they are equal on `range E.order`. -/
theorem sol_eq_of_eq_init (u v : ℕ → α) (hu : E.IsSolution u) (hv : E.IsSolution v) :
u = v ↔ Set.EqOn u v ↑(range E.order) := by
refine Iff.intro (fun h x _ ↦ h ▸ rfl) ?_
intro h
set u' : ↥E.solSpace := ⟨u, hu⟩
set v' : ↥E.solSpace := ⟨v, hv⟩
change u'.val = v'.val
suffices h' : u' = v' from h' ▸ rfl
rw [← E.toInit.toEquiv.apply_eq_iff_eq, LinearEquiv.coe_toEquiv]
ext x
exact mod_cast h (mem_range.mpr x.2)
/-! `E.tupleSucc` maps `![s₀, s₁, ..., sₙ]` to `![s₁, ..., sₙ, ∑ (E.coeffs i) * sᵢ]`,
where `n := E.order`. This operation is quite useful for determining closed-form
solutions of `E`. -/
/-- `E.tupleSucc` maps `![s₀, s₁, ..., sₙ]` to `![s₁, ..., sₙ, ∑ (E.coeffs i) * sᵢ]`,
where `n := E.order`. -/
def tupleSucc : (Fin E.order → α) →ₗ[α] Fin E.order → α where
toFun X i := if h : (i : ℕ) + 1 < E.order then X ⟨i + 1, h⟩ else ∑ i, E.coeffs i * X i
map_add' x y := by
ext i
simp only
split_ifs with h <;> simp [h, mul_add, sum_add_distrib]
map_smul' x y := by
ext i
simp only
split_ifs with h <;> simp [h, mul_sum]
exact sum_congr rfl fun x _ ↦ by ac_rfl
end CommSemiring
section StrongRankCondition
-- note: `StrongRankCondition` is the same as `Nontrivial` on `CommRing`s, but that result,
-- `commRing_strongRankCondition`, is in a much later file.
variable {α : Type*} [CommRing α] [StrongRankCondition α] (E : LinearRecurrence α)
/-- The dimension of `E.solSpace` is `E.order`. -/
theorem solSpace_rank : Module.rank α E.solSpace = E.order :=
letI := nontrivial_of_invariantBasisNumber α
@rank_fin_fun α _ _ E.order ▸ E.toInit.rank_eq
end StrongRankCondition
section CommRing
variable {α : Type*} [CommRing α] (E : LinearRecurrence α)
/-- The characteristic polynomial of `E` is
`X ^ E.order - ∑ i : Fin E.order, (E.coeffs i) * X ^ i`. -/
def charPoly : α[X] :=
Polynomial.monomial E.order 1 - ∑ i : Fin E.order, Polynomial.monomial i (E.coeffs i)
/-- The geometric sequence `q^n` is a solution of `E` iff
`q` is a root of `E`'s characteristic polynomial. -/
theorem geom_sol_iff_root_charPoly (q : α) :
(E.IsSolution fun n ↦ q ^ n) ↔ E.charPoly.IsRoot q := by
rw [charPoly, Polynomial.IsRoot.def, Polynomial.eval]
simp only [Polynomial.eval₂_finset_sum, one_mul, RingHom.id_apply, Polynomial.eval₂_monomial,
Polynomial.eval₂_sub]
constructor
· intro h
simpa [sub_eq_zero] using h 0
· intro h n
simp only [pow_add, sub_eq_zero.mp h, mul_sum]
exact sum_congr rfl fun _ _ ↦ by ring
end CommRing
end LinearRecurrence
|
Algebra\ModEq.lean | /-
Copyright (c) 2023 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Data.Int.ModEq
import Mathlib.GroupTheory.QuotientGroup
/-!
# Equality modulo an element
This file defines equality modulo an element in a commutative group.
## Main definitions
* `a ≡ b [PMOD p]`: `a` and `b` are congruent modulo `p`.
## See also
`SModEq` is a generalisation to arbitrary submodules.
## TODO
Delete `Int.ModEq` in favour of `AddCommGroup.ModEq`. Generalise `SModEq` to `AddSubgroup` and
redefine `AddCommGroup.ModEq` using it. Once this is done, we can rename `AddCommGroup.ModEq`
to `AddSubgroup.ModEq` and multiplicativise it. Longer term, we could generalise to submonoids and
also unify with `Nat.ModEq`.
-/
namespace AddCommGroup
variable {α : Type*}
section AddCommGroup
variable [AddCommGroup α] {p a a₁ a₂ b b₁ b₂ c : α} {n : ℕ} {z : ℤ}
/-- `a ≡ b [PMOD p]` means that `b` is congruent to `a` modulo `p`.
Equivalently (as shown in `Algebra.Order.ToIntervalMod`), `b` does not lie in the open interval
`(a, a + p)` modulo `p`, or `toIcoMod hp a` disagrees with `toIocMod hp a` at `b`, or
`toIcoDiv hp a` disagrees with `toIocDiv hp a` at `b`. -/
def ModEq (p a b : α) : Prop :=
∃ z : ℤ, b - a = z • p
@[inherit_doc]
notation:50 a " ≡ " b " [PMOD " p "]" => ModEq p a b
@[refl, simp]
theorem modEq_refl (a : α) : a ≡ a [PMOD p] :=
⟨0, by simp⟩
theorem modEq_rfl : a ≡ a [PMOD p] :=
modEq_refl _
theorem modEq_comm : a ≡ b [PMOD p] ↔ b ≡ a [PMOD p] :=
(Equiv.neg _).exists_congr_left.trans <| by simp [ModEq, ← neg_eq_iff_eq_neg]
alias ⟨ModEq.symm, _⟩ := modEq_comm
attribute [symm] ModEq.symm
@[trans]
theorem ModEq.trans : a ≡ b [PMOD p] → b ≡ c [PMOD p] → a ≡ c [PMOD p] := fun ⟨m, hm⟩ ⟨n, hn⟩ =>
⟨m + n, by simp [add_smul, ← hm, ← hn]⟩
instance : IsRefl _ (ModEq p) :=
⟨modEq_refl⟩
@[simp]
theorem neg_modEq_neg : -a ≡ -b [PMOD p] ↔ a ≡ b [PMOD p] :=
modEq_comm.trans <| by simp [ModEq, neg_add_eq_sub]
alias ⟨ModEq.of_neg, ModEq.neg⟩ := neg_modEq_neg
@[simp]
theorem modEq_neg : a ≡ b [PMOD -p] ↔ a ≡ b [PMOD p] :=
modEq_comm.trans <| by simp [ModEq, ← neg_eq_iff_eq_neg]
alias ⟨ModEq.of_neg', ModEq.neg'⟩ := modEq_neg
theorem modEq_sub (a b : α) : a ≡ b [PMOD b - a] :=
⟨1, (one_smul _ _).symm⟩
@[simp]
theorem modEq_zero : a ≡ b [PMOD 0] ↔ a = b := by simp [ModEq, sub_eq_zero, eq_comm]
@[simp]
theorem self_modEq_zero : p ≡ 0 [PMOD p] :=
⟨-1, by simp⟩
@[simp]
theorem zsmul_modEq_zero (z : ℤ) : z • p ≡ 0 [PMOD p] :=
⟨-z, by simp⟩
theorem add_zsmul_modEq (z : ℤ) : a + z • p ≡ a [PMOD p] :=
⟨-z, by simp⟩
theorem zsmul_add_modEq (z : ℤ) : z • p + a ≡ a [PMOD p] :=
⟨-z, by simp [← sub_sub]⟩
theorem add_nsmul_modEq (n : ℕ) : a + n • p ≡ a [PMOD p] :=
⟨-n, by simp⟩
theorem nsmul_add_modEq (n : ℕ) : n • p + a ≡ a [PMOD p] :=
⟨-n, by simp [← sub_sub]⟩
namespace ModEq
protected theorem add_zsmul (z : ℤ) : a ≡ b [PMOD p] → a + z • p ≡ b [PMOD p] :=
(add_zsmul_modEq _).trans
protected theorem zsmul_add (z : ℤ) : a ≡ b [PMOD p] → z • p + a ≡ b [PMOD p] :=
(zsmul_add_modEq _).trans
protected theorem add_nsmul (n : ℕ) : a ≡ b [PMOD p] → a + n • p ≡ b [PMOD p] :=
(add_nsmul_modEq _).trans
protected theorem nsmul_add (n : ℕ) : a ≡ b [PMOD p] → n • p + a ≡ b [PMOD p] :=
(nsmul_add_modEq _).trans
protected theorem of_zsmul : a ≡ b [PMOD z • p] → a ≡ b [PMOD p] := fun ⟨m, hm⟩ =>
⟨m * z, by rwa [mul_smul]⟩
protected theorem of_nsmul : a ≡ b [PMOD n • p] → a ≡ b [PMOD p] := fun ⟨m, hm⟩ =>
⟨m * n, by rwa [mul_smul, natCast_zsmul]⟩
protected theorem zsmul : a ≡ b [PMOD p] → z • a ≡ z • b [PMOD z • p] :=
Exists.imp fun m hm => by rw [← smul_sub, hm, smul_comm]
protected theorem nsmul : a ≡ b [PMOD p] → n • a ≡ n • b [PMOD n • p] :=
Exists.imp fun m hm => by rw [← smul_sub, hm, smul_comm]
end ModEq
@[simp]
theorem zsmul_modEq_zsmul [NoZeroSMulDivisors ℤ α] (hn : z ≠ 0) :
z • a ≡ z • b [PMOD z • p] ↔ a ≡ b [PMOD p] :=
exists_congr fun m => by rw [← smul_sub, smul_comm, smul_right_inj hn]
@[simp]
theorem nsmul_modEq_nsmul [NoZeroSMulDivisors ℕ α] (hn : n ≠ 0) :
n • a ≡ n • b [PMOD n • p] ↔ a ≡ b [PMOD p] :=
exists_congr fun m => by rw [← smul_sub, smul_comm, smul_right_inj hn]
alias ⟨ModEq.zsmul_cancel, _⟩ := zsmul_modEq_zsmul
alias ⟨ModEq.nsmul_cancel, _⟩ := nsmul_modEq_nsmul
namespace ModEq
@[simp]
protected theorem add_iff_left :
a₁ ≡ b₁ [PMOD p] → (a₁ + a₂ ≡ b₁ + b₂ [PMOD p] ↔ a₂ ≡ b₂ [PMOD p]) := fun ⟨m, hm⟩ =>
(Equiv.addLeft m).symm.exists_congr_left.trans <| by simp [add_sub_add_comm, hm, add_smul, ModEq]
@[simp]
protected theorem add_iff_right :
a₂ ≡ b₂ [PMOD p] → (a₁ + a₂ ≡ b₁ + b₂ [PMOD p] ↔ a₁ ≡ b₁ [PMOD p]) := fun ⟨m, hm⟩ =>
(Equiv.addRight m).symm.exists_congr_left.trans <| by simp [add_sub_add_comm, hm, add_smul, ModEq]
@[simp]
protected theorem sub_iff_left :
a₁ ≡ b₁ [PMOD p] → (a₁ - a₂ ≡ b₁ - b₂ [PMOD p] ↔ a₂ ≡ b₂ [PMOD p]) := fun ⟨m, hm⟩ =>
(Equiv.subLeft m).symm.exists_congr_left.trans <| by simp [sub_sub_sub_comm, hm, sub_smul, ModEq]
@[simp]
protected theorem sub_iff_right :
a₂ ≡ b₂ [PMOD p] → (a₁ - a₂ ≡ b₁ - b₂ [PMOD p] ↔ a₁ ≡ b₁ [PMOD p]) := fun ⟨m, hm⟩ =>
(Equiv.subRight m).symm.exists_congr_left.trans <| by simp [sub_sub_sub_comm, hm, sub_smul, ModEq]
alias ⟨add_left_cancel, add⟩ := ModEq.add_iff_left
alias ⟨add_right_cancel, _⟩ := ModEq.add_iff_right
alias ⟨sub_left_cancel, sub⟩ := ModEq.sub_iff_left
alias ⟨sub_right_cancel, _⟩ := ModEq.sub_iff_right
-- Porting note: doesn't work
-- attribute [protected] add_left_cancel add_right_cancel add sub_left_cancel sub_right_cancel sub
protected theorem add_left (c : α) (h : a ≡ b [PMOD p]) : c + a ≡ c + b [PMOD p] :=
modEq_rfl.add h
protected theorem sub_left (c : α) (h : a ≡ b [PMOD p]) : c - a ≡ c - b [PMOD p] :=
modEq_rfl.sub h
protected theorem add_right (c : α) (h : a ≡ b [PMOD p]) : a + c ≡ b + c [PMOD p] :=
h.add modEq_rfl
protected theorem sub_right (c : α) (h : a ≡ b [PMOD p]) : a - c ≡ b - c [PMOD p] :=
h.sub modEq_rfl
protected theorem add_left_cancel' (c : α) : c + a ≡ c + b [PMOD p] → a ≡ b [PMOD p] :=
modEq_rfl.add_left_cancel
protected theorem add_right_cancel' (c : α) : a + c ≡ b + c [PMOD p] → a ≡ b [PMOD p] :=
modEq_rfl.add_right_cancel
protected theorem sub_left_cancel' (c : α) : c - a ≡ c - b [PMOD p] → a ≡ b [PMOD p] :=
modEq_rfl.sub_left_cancel
protected theorem sub_right_cancel' (c : α) : a - c ≡ b - c [PMOD p] → a ≡ b [PMOD p] :=
modEq_rfl.sub_right_cancel
end ModEq
theorem modEq_sub_iff_add_modEq' : a ≡ b - c [PMOD p] ↔ c + a ≡ b [PMOD p] := by
simp [ModEq, sub_sub]
theorem modEq_sub_iff_add_modEq : a ≡ b - c [PMOD p] ↔ a + c ≡ b [PMOD p] :=
modEq_sub_iff_add_modEq'.trans <| by rw [add_comm]
theorem sub_modEq_iff_modEq_add' : a - b ≡ c [PMOD p] ↔ a ≡ b + c [PMOD p] :=
modEq_comm.trans <| modEq_sub_iff_add_modEq'.trans modEq_comm
theorem sub_modEq_iff_modEq_add : a - b ≡ c [PMOD p] ↔ a ≡ c + b [PMOD p] :=
modEq_comm.trans <| modEq_sub_iff_add_modEq.trans modEq_comm
@[simp]
theorem sub_modEq_zero : a - b ≡ 0 [PMOD p] ↔ a ≡ b [PMOD p] := by simp [sub_modEq_iff_modEq_add]
@[simp]
theorem add_modEq_left : a + b ≡ a [PMOD p] ↔ b ≡ 0 [PMOD p] := by simp [← modEq_sub_iff_add_modEq']
@[simp]
theorem add_modEq_right : a + b ≡ b [PMOD p] ↔ a ≡ 0 [PMOD p] := by simp [← modEq_sub_iff_add_modEq]
theorem modEq_iff_eq_add_zsmul : a ≡ b [PMOD p] ↔ ∃ z : ℤ, b = a + z • p := by
simp_rw [ModEq, sub_eq_iff_eq_add']
theorem not_modEq_iff_ne_add_zsmul : ¬a ≡ b [PMOD p] ↔ ∀ z : ℤ, b ≠ a + z • p := by
rw [modEq_iff_eq_add_zsmul, not_exists]
theorem modEq_iff_eq_mod_zmultiples : a ≡ b [PMOD p] ↔ (b : α ⧸ AddSubgroup.zmultiples p) = a := by
simp_rw [modEq_iff_eq_add_zsmul, QuotientAddGroup.eq_iff_sub_mem, AddSubgroup.mem_zmultiples_iff,
eq_sub_iff_add_eq', eq_comm]
theorem not_modEq_iff_ne_mod_zmultiples :
¬a ≡ b [PMOD p] ↔ (b : α ⧸ AddSubgroup.zmultiples p) ≠ a :=
modEq_iff_eq_mod_zmultiples.not
end AddCommGroup
@[simp]
theorem modEq_iff_int_modEq {a b z : ℤ} : a ≡ b [PMOD z] ↔ a ≡ b [ZMOD z] := by
simp [ModEq, dvd_iff_exists_eq_mul_left, Int.modEq_iff_dvd]
section AddCommGroupWithOne
variable [AddCommGroupWithOne α] [CharZero α]
@[simp, norm_cast]
theorem intCast_modEq_intCast {a b z : ℤ} : a ≡ b [PMOD (z : α)] ↔ a ≡ b [PMOD z] := by
simp_rw [ModEq, ← Int.cast_mul_eq_zsmul_cast]
norm_cast
@[simp, norm_cast]
lemma intCast_modEq_intCast' {a b : ℤ} {n : ℕ} : a ≡ b [PMOD (n : α)] ↔ a ≡ b [PMOD (n : ℤ)] := by
simpa using intCast_modEq_intCast (α := α) (z := n)
@[simp, norm_cast]
theorem natCast_modEq_natCast {a b n : ℕ} : a ≡ b [PMOD (n : α)] ↔ a ≡ b [MOD n] := by
simp_rw [← Int.natCast_modEq_iff, ← modEq_iff_int_modEq, ← @intCast_modEq_intCast α,
Int.cast_natCast]
alias ⟨ModEq.of_intCast, ModEq.intCast⟩ := intCast_modEq_intCast
alias ⟨_root_.Nat.ModEq.of_natCast, ModEq.natCast⟩ := natCast_modEq_natCast
end AddCommGroupWithOne
section DivisionRing
variable [DivisionRing α] {a b c p : α}
@[simp] lemma div_modEq_div (hc : c ≠ 0) : a / c ≡ b / c [PMOD p] ↔ a ≡ b [PMOD (p * c)] := by
simp [ModEq, ← sub_div, div_eq_iff hc, mul_assoc]
end DivisionRing
end AddCommGroup
|
Algebra\NeZero.lean | /-
Copyright (c) 2021 Eric Rodriguez. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Eric Rodriguez
-/
import Mathlib.Logic.Basic
import Mathlib.Algebra.Group.ZeroOne
import Mathlib.Order.Defs
/-!
# `NeZero` typeclass
We create a typeclass `NeZero n` which carries around the fact that `(n : R) ≠ 0`.
## Main declarations
* `NeZero`: `n ≠ 0` as a typeclass.
-/
variable {R : Type*} [Zero R]
/-- A type-class version of `n ≠ 0`. -/
class NeZero (n : R) : Prop where
/-- The proposition that `n` is not zero. -/
out : n ≠ 0
theorem NeZero.ne (n : R) [h : NeZero n] : n ≠ 0 :=
h.out
theorem NeZero.ne' (n : R) [h : NeZero n] : 0 ≠ n :=
h.out.symm
theorem neZero_iff {n : R} : NeZero n ↔ n ≠ 0 :=
⟨fun h ↦ h.out, NeZero.mk⟩
@[simp] lemma neZero_zero_iff_false {α : Type*} [Zero α] : NeZero (0 : α) ↔ False :=
⟨fun h ↦ h.ne rfl, fun h ↦ h.elim⟩
theorem not_neZero {n : R} : ¬NeZero n ↔ n = 0 := by simp [neZero_iff]
theorem eq_zero_or_neZero (a : R) : a = 0 ∨ NeZero a :=
(eq_or_ne a 0).imp_right NeZero.mk
section
variable {α : Type*} [Zero α]
@[simp] lemma zero_ne_one [One α] [NeZero (1 : α)] : (0 : α) ≠ 1 := NeZero.ne' (1 : α)
@[simp] lemma one_ne_zero [One α] [NeZero (1 : α)] : (1 : α) ≠ 0 := NeZero.ne (1 : α)
lemma ne_zero_of_eq_one [One α] [NeZero (1 : α)] {a : α} (h : a = 1) : a ≠ 0 := h ▸ one_ne_zero
@[field_simps]
lemma two_ne_zero [OfNat α 2] [NeZero (2 : α)] : (2 : α) ≠ 0 := NeZero.ne (2 : α)
@[field_simps]
lemma three_ne_zero [OfNat α 3] [NeZero (3 : α)] : (3 : α) ≠ 0 := NeZero.ne (3 : α)
@[field_simps]
lemma four_ne_zero [OfNat α 4] [NeZero (4 : α)] : (4 : α) ≠ 0 := NeZero.ne (4 : α)
variable (α)
lemma zero_ne_one' [One α] [NeZero (1 : α)] : (0 : α) ≠ 1 := zero_ne_one
lemma one_ne_zero' [One α] [NeZero (1 : α)] : (1 : α) ≠ 0 := one_ne_zero
lemma two_ne_zero' [OfNat α 2] [NeZero (2 : α)] : (2 : α) ≠ 0 := two_ne_zero
lemma three_ne_zero' [OfNat α 3] [NeZero (3 : α)] : (3 : α) ≠ 0 := three_ne_zero
lemma four_ne_zero' [OfNat α 4] [NeZero (4 : α)] : (4 : α) ≠ 0 := four_ne_zero
end
namespace NeZero
variable {M : Type*} {x : M}
instance succ {n : ℕ} : NeZero (n + 1) := ⟨n.succ_ne_zero⟩
theorem of_pos [Preorder M] [Zero M] (h : 0 < x) : NeZero x := ⟨ne_of_gt h⟩
end NeZero
lemma Nat.pos_of_neZero (n : ℕ) [NeZero n] : 0 < n := Nat.pos_of_ne_zero (NeZero.ne _)
|
Algebra\Opposites.lean | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Group.Defs
import Mathlib.Logic.Equiv.Defs
import Mathlib.Logic.Nontrivial.Basic
import Mathlib.Logic.IsEmpty
/-!
# Multiplicative opposite and algebraic operations on it
In this file we define `MulOpposite α = αᵐᵒᵖ` to be the multiplicative opposite of `α`. It inherits
all additive algebraic structures on `α` (in other files), and reverses the order of multipliers in
multiplicative structures, i.e., `op (x * y) = op y * op x`, where `MulOpposite.op` is the
canonical map from `α` to `αᵐᵒᵖ`.
We also define `AddOpposite α = αᵃᵒᵖ` to be the additive opposite of `α`. It inherits all
multiplicative algebraic structures on `α` (in other files), and reverses the order of summands in
additive structures, i.e. `op (x + y) = op y + op x`, where `AddOpposite.op` is the canonical map
from `α` to `αᵃᵒᵖ`.
## Notation
* `αᵐᵒᵖ = MulOpposite α`
* `αᵃᵒᵖ = AddOpposite α`
## Implementation notes
In mathlib3 `αᵐᵒᵖ` was just a type synonym for `α`, marked irreducible after the API
was developed. In mathlib4 we use a structure with one field, because it is not possible
to change the reducibility of a declaration after its definition, and because Lean 4 has
definitional eta reduction for structures (Lean 3 does not).
## Tags
multiplicative opposite, additive opposite
-/
variable {α β : Type*}
open Function
/-- Auxiliary type to implement `MulOpposite` and `AddOpposite`.
It turns out to be convenient to have `MulOpposite α = AddOpposite α` true by definition, in the
same way that it is convenient to have `Additive α = α`; this means that we also get the defeq
`AddOpposite (Additive α) = MulOpposite α`, which is convenient when working with quotients.
This is a compromise between making `MulOpposite α = AddOpposite α = α` (what we had in Lean 3) and
having no defeqs within those three types (which we had as of mathlib4#1036). -/
structure PreOpposite (α : Type*) : Type _ where
/-- The element of `PreOpposite α` that represents `x : α`. -/ op' ::
/-- The element of `α` represented by `x : PreOpposite α`. -/ unop' : α
/-- Multiplicative opposite of a type. This type inherits all additive structures on `α` and
reverses left and right in multiplication. -/
@[to_additive
"Additive opposite of a type. This type inherits all multiplicative structures on `α` and
reverses left and right in addition."]
def MulOpposite (α : Type*) : Type _ := PreOpposite α
/-- Multiplicative opposite of a type. -/
postfix:max "ᵐᵒᵖ" => MulOpposite
/-- Additive opposite of a type. -/
postfix:max "ᵃᵒᵖ" => AddOpposite
namespace MulOpposite
/-- The element of `MulOpposite α` that represents `x : α`. -/
@[to_additive "The element of `αᵃᵒᵖ` that represents `x : α`."]
def op : α → αᵐᵒᵖ :=
PreOpposite.op'
/-- The element of `α` represented by `x : αᵐᵒᵖ`. -/
@[to_additive (attr := pp_nodot) "The element of `α` represented by `x : αᵃᵒᵖ`."]
def unop : αᵐᵒᵖ → α :=
PreOpposite.unop'
@[to_additive (attr := simp)]
theorem unop_op (x : α) : unop (op x) = x := rfl
@[to_additive (attr := simp)]
theorem op_unop (x : αᵐᵒᵖ) : op (unop x) = x :=
rfl
@[to_additive (attr := simp)]
theorem op_comp_unop : (op : α → αᵐᵒᵖ) ∘ unop = id :=
rfl
@[to_additive (attr := simp)]
theorem unop_comp_op : (unop : αᵐᵒᵖ → α) ∘ op = id :=
rfl
/-- A recursor for `MulOpposite`. Use as `induction x`. -/
@[to_additive (attr := simp, elab_as_elim, induction_eliminator, cases_eliminator)
"A recursor for `AddOpposite`. Use as `induction x`."]
protected def rec' {F : αᵐᵒᵖ → Sort*} (h : ∀ X, F (op X)) : ∀ X, F X := fun X ↦ h (unop X)
/-- The canonical bijection between `α` and `αᵐᵒᵖ`. -/
@[to_additive (attr := simps (config := .asFn) apply symm_apply)
"The canonical bijection between `α` and `αᵃᵒᵖ`."]
def opEquiv : α ≃ αᵐᵒᵖ :=
⟨op, unop, unop_op, op_unop⟩
@[to_additive]
theorem op_bijective : Bijective (op : α → αᵐᵒᵖ) :=
opEquiv.bijective
@[to_additive]
theorem unop_bijective : Bijective (unop : αᵐᵒᵖ → α) :=
opEquiv.symm.bijective
@[to_additive]
theorem op_injective : Injective (op : α → αᵐᵒᵖ) :=
op_bijective.injective
@[to_additive]
theorem op_surjective : Surjective (op : α → αᵐᵒᵖ) :=
op_bijective.surjective
@[to_additive]
theorem unop_injective : Injective (unop : αᵐᵒᵖ → α) :=
unop_bijective.injective
@[to_additive]
theorem unop_surjective : Surjective (unop : αᵐᵒᵖ → α) :=
unop_bijective.surjective
@[to_additive (attr := simp)]
theorem op_inj {x y : α} : op x = op y ↔ x = y := iff_of_eq <| PreOpposite.op'.injEq _ _
@[to_additive (attr := simp, nolint simpComm)]
theorem unop_inj {x y : αᵐᵒᵖ} : unop x = unop y ↔ x = y :=
unop_injective.eq_iff
attribute [nolint simpComm] AddOpposite.unop_inj
@[to_additive] instance instNontrivial [Nontrivial α] : Nontrivial αᵐᵒᵖ := op_injective.nontrivial
@[to_additive] instance instInhabited [Inhabited α] : Inhabited αᵐᵒᵖ := ⟨op default⟩
@[to_additive]
instance instSubsingleton [Subsingleton α] : Subsingleton αᵐᵒᵖ := unop_injective.subsingleton
@[to_additive] instance instUnique [Unique α] : Unique αᵐᵒᵖ := Unique.mk' _
@[to_additive] instance instIsEmpty [IsEmpty α] : IsEmpty αᵐᵒᵖ := Function.isEmpty unop
@[to_additive]
instance instDecidableEq [DecidableEq α] : DecidableEq αᵐᵒᵖ := unop_injective.decidableEq
instance instZero [Zero α] : Zero αᵐᵒᵖ where zero := op 0
@[to_additive] instance instOne [One α] : One αᵐᵒᵖ where one := op 1
instance instAdd [Add α] : Add αᵐᵒᵖ where add x y := op (unop x + unop y)
instance instSub [Sub α] : Sub αᵐᵒᵖ where sub x y := op (unop x - unop y)
instance instNeg [Neg α] : Neg αᵐᵒᵖ where neg x := op <| -unop x
instance instInvolutiveNeg [InvolutiveNeg α] : InvolutiveNeg αᵐᵒᵖ where
neg_neg _ := unop_injective <| neg_neg _
@[to_additive] instance instMul [Mul α] : Mul αᵐᵒᵖ where mul x y := op (unop y * unop x)
@[to_additive] instance instInv [Inv α] : Inv αᵐᵒᵖ where inv x := op <| (unop x)⁻¹
@[to_additive]
instance instInvolutiveInv [InvolutiveInv α] : InvolutiveInv αᵐᵒᵖ where
inv_inv _ := unop_injective <| inv_inv _
@[to_additive] instance instSMul [SMul α β] : SMul α βᵐᵒᵖ where smul c x := op (c • unop x)
@[simp] lemma op_zero [Zero α] : op (0 : α) = 0 := rfl
@[simp] lemma unop_zero [Zero α] : unop (0 : αᵐᵒᵖ) = 0 := rfl
@[to_additive (attr := simp)] lemma op_one [One α] : op (1 : α) = 1 := rfl
@[to_additive (attr := simp)] lemma unop_one [One α] : unop (1 : αᵐᵒᵖ) = 1 := rfl
@[simp] lemma op_add [Add α] (x y : α) : op (x + y) = op x + op y := rfl
@[simp] lemma unop_add [Add α] (x y : αᵐᵒᵖ) : unop (x + y) = unop x + unop y := rfl
@[simp] lemma op_neg [Neg α] (x : α) : op (-x) = -op x := rfl
@[simp] lemma unop_neg [Neg α] (x : αᵐᵒᵖ) : unop (-x) = -unop x := rfl
@[to_additive (attr := simp)] lemma op_mul [Mul α] (x y : α) : op (x * y) = op y * op x := rfl
@[to_additive (attr := simp)]
lemma unop_mul [Mul α] (x y : αᵐᵒᵖ) : unop (x * y) = unop y * unop x := rfl
@[to_additive (attr := simp)] lemma op_inv [Inv α] (x : α) : op x⁻¹ = (op x)⁻¹ := rfl
@[to_additive (attr := simp)] lemma unop_inv [Inv α] (x : αᵐᵒᵖ) : unop x⁻¹ = (unop x)⁻¹ := rfl
@[simp] lemma op_sub [Sub α] (x y : α) : op (x - y) = op x - op y := rfl
@[simp] lemma unop_sub [Sub α] (x y : αᵐᵒᵖ) : unop (x - y) = unop x - unop y := rfl
@[to_additive (attr := simp)]
lemma op_smul [SMul α β] (a : α) (b : β) : op (a • b) = a • op b := rfl
@[to_additive (attr := simp)]
lemma unop_smul [SMul α β] (a : α) (b : βᵐᵒᵖ) : unop (a • b) = a • unop b := rfl
@[simp, nolint simpComm]
theorem unop_eq_zero_iff [Zero α] (a : αᵐᵒᵖ) : a.unop = (0 : α) ↔ a = (0 : αᵐᵒᵖ) :=
unop_injective.eq_iff' rfl
@[simp]
theorem op_eq_zero_iff [Zero α] (a : α) : op a = (0 : αᵐᵒᵖ) ↔ a = (0 : α) :=
op_injective.eq_iff' rfl
theorem unop_ne_zero_iff [Zero α] (a : αᵐᵒᵖ) : a.unop ≠ (0 : α) ↔ a ≠ (0 : αᵐᵒᵖ) :=
not_congr <| unop_eq_zero_iff a
theorem op_ne_zero_iff [Zero α] (a : α) : op a ≠ (0 : αᵐᵒᵖ) ↔ a ≠ (0 : α) :=
not_congr <| op_eq_zero_iff a
@[to_additive (attr := simp, nolint simpComm)]
theorem unop_eq_one_iff [One α] (a : αᵐᵒᵖ) : a.unop = 1 ↔ a = 1 :=
unop_injective.eq_iff' rfl
attribute [nolint simpComm] AddOpposite.unop_eq_zero_iff
@[to_additive (attr := simp)]
lemma op_eq_one_iff [One α] (a : α) : op a = 1 ↔ a = 1 := op_injective.eq_iff
end MulOpposite
namespace AddOpposite
instance instOne [One α] : One αᵃᵒᵖ where one := op 1
@[simp] lemma op_one [One α] : op (1 : α) = 1 := rfl
@[simp] lemma unop_one [One α] : unop 1 = (1 : α) := rfl
@[simp] lemma op_eq_one_iff [One α] {a : α} : op a = 1 ↔ a = 1 := op_injective.eq_iff
@[simp] lemma unop_eq_one_iff [One α] {a : αᵃᵒᵖ} : unop a = 1 ↔ a = 1 := unop_injective.eq_iff
attribute [nolint simpComm] unop_eq_one_iff
instance instMul [Mul α] : Mul αᵃᵒᵖ where mul a b := op (unop a * unop b)
@[simp] lemma op_mul [Mul α] (a b : α) : op (a * b) = op a * op b := rfl
@[simp] lemma unop_mul [Mul α] (a b : αᵃᵒᵖ) : unop (a * b) = unop a * unop b := rfl
instance instInv [Inv α] : Inv αᵃᵒᵖ where inv a := op (unop a)⁻¹
instance instInvolutiveInv [InvolutiveInv α] : InvolutiveInv αᵃᵒᵖ where
inv_inv _ := unop_injective <| inv_inv _
@[simp] lemma op_inv [Inv α] (a : α) : op a⁻¹ = (op a)⁻¹ := rfl
@[simp] lemma unop_inv [Inv α] (a : αᵃᵒᵖ) : unop a⁻¹ = (unop a)⁻¹ := rfl
instance instDiv [Div α] : Div αᵃᵒᵖ where div a b := op (unop a / unop b)
@[simp] lemma op_div [Div α] (a b : α) : op (a / b) = op a / op b := rfl
@[simp] lemma unop_div [Div α] (a b : αᵃᵒᵖ) : unop (a / b) = unop a / unop b := rfl
end AddOpposite
|
Algebra\PEmptyInstances.lean | /-
Copyright (c) 2021 Julian Kuelshammer. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Julian Kuelshammer
-/
import Mathlib.Algebra.Group.Defs
import Mathlib.Tactic.ToAdditive
/-!
# Instances on pempty
This file collects facts about algebraic structures on the (universe-polymorphic) empty type, e.g.
that it is a semigroup.
-/
universe u
@[to_additive]
instance SemigroupPEmpty : Semigroup PEmpty.{u + 1} where
mul x _ := by cases x
mul_assoc x y z := by cases x
|
Algebra\Periodic.lean | /-
Copyright (c) 2021 Benjamin Davidson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Benjamin Davidson
-/
import Mathlib.Algebra.Field.Opposite
import Mathlib.Algebra.Group.Subgroup.ZPowers
import Mathlib.Algebra.Group.Submonoid.Membership
import Mathlib.Algebra.Ring.NegOnePow
import Mathlib.Algebra.Order.Archimedean.Basic
import Mathlib.GroupTheory.Coset
/-!
# Periodicity
In this file we define and then prove facts about periodic and antiperiodic functions.
## Main definitions
* `Function.Periodic`: A function `f` is *periodic* if `∀ x, f (x + c) = f x`.
`f` is referred to as periodic with period `c` or `c`-periodic.
* `Function.Antiperiodic`: A function `f` is *antiperiodic* if `∀ x, f (x + c) = -f x`.
`f` is referred to as antiperiodic with antiperiod `c` or `c`-antiperiodic.
Note that any `c`-antiperiodic function will necessarily also be `2 • c`-periodic.
## Tags
period, periodic, periodicity, antiperiodic
-/
variable {α β γ : Type*} {f g : α → β} {c c₁ c₂ x : α}
open Set
namespace Function
/-! ### Periodicity -/
/-- A function `f` is said to be `Periodic` with period `c` if for all `x`, `f (x + c) = f x`. -/
@[simp]
def Periodic [Add α] (f : α → β) (c : α) : Prop :=
∀ x : α, f (x + c) = f x
protected theorem Periodic.funext [Add α] (h : Periodic f c) : (fun x => f (x + c)) = f :=
funext h
protected theorem Periodic.comp [Add α] (h : Periodic f c) (g : β → γ) : Periodic (g ∘ f) c := by
simp_all
theorem Periodic.comp_addHom [Add α] [Add γ] (h : Periodic f c) (g : AddHom γ α) (g_inv : α → γ)
(hg : RightInverse g_inv g) : Periodic (f ∘ g) (g_inv c) := fun x => by
simp only [hg c, h (g x), map_add, comp_apply]
@[to_additive]
protected theorem Periodic.mul [Add α] [Mul β] (hf : Periodic f c) (hg : Periodic g c) :
Periodic (f * g) c := by simp_all
@[to_additive]
protected theorem Periodic.div [Add α] [Div β] (hf : Periodic f c) (hg : Periodic g c) :
Periodic (f / g) c := by simp_all
@[to_additive]
theorem _root_.List.periodic_prod [Add α] [Monoid β] (l : List (α → β))
(hl : ∀ f ∈ l, Periodic f c) : Periodic l.prod c := by
induction' l with g l ih hl
· simp
· rw [List.forall_mem_cons] at hl
simpa only [List.prod_cons] using hl.1.mul (ih hl.2)
@[to_additive]
theorem _root_.Multiset.periodic_prod [Add α] [CommMonoid β] (s : Multiset (α → β))
(hs : ∀ f ∈ s, Periodic f c) : Periodic s.prod c :=
(s.prod_toList ▸ s.toList.periodic_prod) fun f hf => hs f <| Multiset.mem_toList.mp hf
@[to_additive]
theorem _root_.Finset.periodic_prod [Add α] [CommMonoid β] {ι : Type*} {f : ι → α → β}
(s : Finset ι) (hs : ∀ i ∈ s, Periodic (f i) c) : Periodic (∏ i ∈ s, f i) c :=
s.prod_to_list f ▸ (s.toList.map f).periodic_prod (by simpa [-Periodic] )
@[to_additive]
protected theorem Periodic.smul [Add α] [SMul γ β] (h : Periodic f c) (a : γ) :
Periodic (a • f) c := by simp_all
protected theorem Periodic.const_smul [AddMonoid α] [Group γ] [DistribMulAction γ α]
(h : Periodic f c) (a : γ) : Periodic (fun x => f (a • x)) (a⁻¹ • c) := fun x => by
simpa only [smul_add, smul_inv_smul] using h (a • x)
protected theorem Periodic.const_smul₀ [AddCommMonoid α] [DivisionSemiring γ] [Module γ α]
(h : Periodic f c) (a : γ) : Periodic (fun x => f (a • x)) (a⁻¹ • c) := fun x => by
by_cases ha : a = 0
· simp only [ha, zero_smul]
· simpa only [smul_add, smul_inv_smul₀ ha] using h (a • x)
protected theorem Periodic.const_mul [DivisionSemiring α] (h : Periodic f c) (a : α) :
Periodic (fun x => f (a * x)) (a⁻¹ * c) :=
Periodic.const_smul₀ h a
theorem Periodic.const_inv_smul [AddMonoid α] [Group γ] [DistribMulAction γ α] (h : Periodic f c)
(a : γ) : Periodic (fun x => f (a⁻¹ • x)) (a • c) := by
simpa only [inv_inv] using h.const_smul a⁻¹
theorem Periodic.const_inv_smul₀ [AddCommMonoid α] [DivisionSemiring γ] [Module γ α]
(h : Periodic f c) (a : γ) : Periodic (fun x => f (a⁻¹ • x)) (a • c) := by
simpa only [inv_inv] using h.const_smul₀ a⁻¹
theorem Periodic.const_inv_mul [DivisionSemiring α] (h : Periodic f c) (a : α) :
Periodic (fun x => f (a⁻¹ * x)) (a * c) :=
h.const_inv_smul₀ a
theorem Periodic.mul_const [DivisionSemiring α] (h : Periodic f c) (a : α) :
Periodic (fun x => f (x * a)) (c * a⁻¹) :=
h.const_smul₀ (MulOpposite.op a)
theorem Periodic.mul_const' [DivisionSemiring α] (h : Periodic f c) (a : α) :
Periodic (fun x => f (x * a)) (c / a) := by simpa only [div_eq_mul_inv] using h.mul_const a
theorem Periodic.mul_const_inv [DivisionSemiring α] (h : Periodic f c) (a : α) :
Periodic (fun x => f (x * a⁻¹)) (c * a) :=
h.const_inv_smul₀ (MulOpposite.op a)
theorem Periodic.div_const [DivisionSemiring α] (h : Periodic f c) (a : α) :
Periodic (fun x => f (x / a)) (c * a) := by simpa only [div_eq_mul_inv] using h.mul_const_inv a
theorem Periodic.add_period [AddSemigroup α] (h1 : Periodic f c₁) (h2 : Periodic f c₂) :
Periodic f (c₁ + c₂) := by simp_all [← add_assoc]
theorem Periodic.sub_eq [AddGroup α] (h : Periodic f c) (x : α) : f (x - c) = f x := by
simpa only [sub_add_cancel] using (h (x - c)).symm
theorem Periodic.sub_eq' [AddCommGroup α] (h : Periodic f c) : f (c - x) = f (-x) := by
simpa only [sub_eq_neg_add] using h (-x)
protected theorem Periodic.neg [AddGroup α] (h : Periodic f c) : Periodic f (-c) := by
simpa only [sub_eq_add_neg, Periodic] using h.sub_eq
theorem Periodic.sub_period [AddGroup α] (h1 : Periodic f c₁) (h2 : Periodic f c₂) :
Periodic f (c₁ - c₂) := fun x => by
rw [sub_eq_add_neg, ← add_assoc, h2.neg, h1]
theorem Periodic.const_add [AddSemigroup α] (h : Periodic f c) (a : α) :
Periodic (fun x => f (a + x)) c := fun x => by simpa [add_assoc] using h (a + x)
theorem Periodic.add_const [AddCommSemigroup α] (h : Periodic f c) (a : α) :
Periodic (fun x => f (x + a)) c := fun x => by
simpa only [add_right_comm] using h (x + a)
theorem Periodic.const_sub [AddCommGroup α] (h : Periodic f c) (a : α) :
Periodic (fun x => f (a - x)) c := fun x => by
simp only [← sub_sub, h.sub_eq]
theorem Periodic.sub_const [AddCommGroup α] (h : Periodic f c) (a : α) :
Periodic (fun x => f (x - a)) c := by
simpa only [sub_eq_add_neg] using h.add_const (-a)
theorem Periodic.nsmul [AddMonoid α] (h : Periodic f c) (n : ℕ) : Periodic f (n • c) := by
induction n <;> simp_all [add_nsmul, ← add_assoc, zero_nsmul]
theorem Periodic.nat_mul [Semiring α] (h : Periodic f c) (n : ℕ) : Periodic f (n * c) := by
simpa only [nsmul_eq_mul] using h.nsmul n
theorem Periodic.neg_nsmul [AddGroup α] (h : Periodic f c) (n : ℕ) : Periodic f (-(n • c)) :=
(h.nsmul n).neg
theorem Periodic.neg_nat_mul [Ring α] (h : Periodic f c) (n : ℕ) : Periodic f (-(n * c)) :=
(h.nat_mul n).neg
theorem Periodic.sub_nsmul_eq [AddGroup α] (h : Periodic f c) (n : ℕ) : f (x - n • c) = f x := by
simpa only [sub_eq_add_neg] using h.neg_nsmul n x
theorem Periodic.sub_nat_mul_eq [Ring α] (h : Periodic f c) (n : ℕ) : f (x - n * c) = f x := by
simpa only [nsmul_eq_mul] using h.sub_nsmul_eq n
theorem Periodic.nsmul_sub_eq [AddCommGroup α] (h : Periodic f c) (n : ℕ) :
f (n • c - x) = f (-x) :=
(h.nsmul n).sub_eq'
theorem Periodic.nat_mul_sub_eq [Ring α] (h : Periodic f c) (n : ℕ) : f (n * c - x) = f (-x) := by
simpa only [sub_eq_neg_add] using h.nat_mul n (-x)
protected theorem Periodic.zsmul [AddGroup α] (h : Periodic f c) (n : ℤ) : Periodic f (n • c) := by
cases' n with n n
· simpa only [Int.ofNat_eq_coe, natCast_zsmul] using h.nsmul n
· simpa only [negSucc_zsmul] using (h.nsmul (n + 1)).neg
protected theorem Periodic.int_mul [Ring α] (h : Periodic f c) (n : ℤ) : Periodic f (n * c) := by
simpa only [zsmul_eq_mul] using h.zsmul n
theorem Periodic.sub_zsmul_eq [AddGroup α] (h : Periodic f c) (n : ℤ) : f (x - n • c) = f x :=
(h.zsmul n).sub_eq x
theorem Periodic.sub_int_mul_eq [Ring α] (h : Periodic f c) (n : ℤ) : f (x - n * c) = f x :=
(h.int_mul n).sub_eq x
theorem Periodic.zsmul_sub_eq [AddCommGroup α] (h : Periodic f c) (n : ℤ) :
f (n • c - x) = f (-x) :=
(h.zsmul _).sub_eq'
theorem Periodic.int_mul_sub_eq [Ring α] (h : Periodic f c) (n : ℤ) : f (n * c - x) = f (-x) :=
(h.int_mul _).sub_eq'
protected theorem Periodic.eq [AddZeroClass α] (h : Periodic f c) : f c = f 0 := by
simpa only [zero_add] using h 0
protected theorem Periodic.neg_eq [AddGroup α] (h : Periodic f c) : f (-c) = f 0 :=
h.neg.eq
protected theorem Periodic.nsmul_eq [AddMonoid α] (h : Periodic f c) (n : ℕ) : f (n • c) = f 0 :=
(h.nsmul n).eq
theorem Periodic.nat_mul_eq [Semiring α] (h : Periodic f c) (n : ℕ) : f (n * c) = f 0 :=
(h.nat_mul n).eq
theorem Periodic.zsmul_eq [AddGroup α] (h : Periodic f c) (n : ℤ) : f (n • c) = f 0 :=
(h.zsmul n).eq
theorem Periodic.int_mul_eq [Ring α] (h : Periodic f c) (n : ℤ) : f (n * c) = f 0 :=
(h.int_mul n).eq
/-- If a function `f` is `Periodic` with positive period `c`, then for all `x` there exists some
`y ∈ Ico 0 c` such that `f x = f y`. -/
theorem Periodic.exists_mem_Ico₀ [LinearOrderedAddCommGroup α] [Archimedean α] (h : Periodic f c)
(hc : 0 < c) (x) : ∃ y ∈ Ico 0 c, f x = f y :=
let ⟨n, H, _⟩ := existsUnique_zsmul_near_of_pos' hc x
⟨x - n • c, H, (h.sub_zsmul_eq n).symm⟩
/-- If a function `f` is `Periodic` with positive period `c`, then for all `x` there exists some
`y ∈ Ico a (a + c)` such that `f x = f y`. -/
theorem Periodic.exists_mem_Ico [LinearOrderedAddCommGroup α] [Archimedean α] (h : Periodic f c)
(hc : 0 < c) (x a) : ∃ y ∈ Ico a (a + c), f x = f y :=
let ⟨n, H, _⟩ := existsUnique_add_zsmul_mem_Ico hc x a
⟨x + n • c, H, (h.zsmul n x).symm⟩
/-- If a function `f` is `Periodic` with positive period `c`, then for all `x` there exists some
`y ∈ Ioc a (a + c)` such that `f x = f y`. -/
theorem Periodic.exists_mem_Ioc [LinearOrderedAddCommGroup α] [Archimedean α] (h : Periodic f c)
(hc : 0 < c) (x a) : ∃ y ∈ Ioc a (a + c), f x = f y :=
let ⟨n, H, _⟩ := existsUnique_add_zsmul_mem_Ioc hc x a
⟨x + n • c, H, (h.zsmul n x).symm⟩
theorem Periodic.image_Ioc [LinearOrderedAddCommGroup α] [Archimedean α] (h : Periodic f c)
(hc : 0 < c) (a : α) : f '' Ioc a (a + c) = range f :=
(image_subset_range _ _).antisymm <| range_subset_iff.2 fun x =>
let ⟨y, hy, hyx⟩ := h.exists_mem_Ioc hc x a
⟨y, hy, hyx.symm⟩
theorem Periodic.image_Icc [LinearOrderedAddCommGroup α] [Archimedean α] (h : Periodic f c)
(hc : 0 < c) (a : α) : f '' Icc a (a + c) = range f :=
(image_subset_range _ _).antisymm <| h.image_Ioc hc a ▸ image_subset _ Ioc_subset_Icc_self
theorem Periodic.image_uIcc [LinearOrderedAddCommGroup α] [Archimedean α] (h : Periodic f c)
(hc : c ≠ 0) (a : α) : f '' uIcc a (a + c) = range f := by
cases hc.lt_or_lt with
| inl hc =>
rw [uIcc_of_ge (add_le_of_nonpos_right hc.le), ← h.neg.image_Icc (neg_pos.2 hc) (a + c),
add_neg_cancel_right]
| inr hc => rw [uIcc_of_le (le_add_of_nonneg_right hc.le), h.image_Icc hc]
theorem periodic_with_period_zero [AddZeroClass α] (f : α → β) : Periodic f 0 := fun x => by
rw [add_zero]
theorem Periodic.map_vadd_zmultiples [AddCommGroup α] (hf : Periodic f c)
(a : AddSubgroup.zmultiples c) (x : α) : f (a +ᵥ x) = f x := by
rcases a with ⟨_, m, rfl⟩
simp [AddSubgroup.vadd_def, add_comm _ x, hf.zsmul m x]
theorem Periodic.map_vadd_multiples [AddCommMonoid α] (hf : Periodic f c)
(a : AddSubmonoid.multiples c) (x : α) : f (a +ᵥ x) = f x := by
rcases a with ⟨_, m, rfl⟩
simp [AddSubmonoid.vadd_def, add_comm _ x, hf.nsmul m x]
/-- Lift a periodic function to a function from the quotient group. -/
def Periodic.lift [AddGroup α] (h : Periodic f c) (x : α ⧸ AddSubgroup.zmultiples c) : β :=
Quotient.liftOn' x f fun a b h' => by
rw [QuotientAddGroup.leftRel_apply] at h'
obtain ⟨k, hk⟩ := h'
exact (h.zsmul k _).symm.trans (congr_arg f (add_eq_of_eq_neg_add hk))
@[simp]
theorem Periodic.lift_coe [AddGroup α] (h : Periodic f c) (a : α) :
h.lift (a : α ⧸ AddSubgroup.zmultiples c) = f a :=
rfl
/-- A periodic function `f : R → X` on a semiring (or, more generally, `AddZeroClass`)
of non-zero period is not injective. -/
lemma Periodic.not_injective {R X : Type*} [AddZeroClass R] {f : R → X} {c : R}
(hf : Periodic f c) (hc : c ≠ 0) : ¬ Injective f := fun h ↦ hc <| h hf.eq
/-! ### Antiperiodicity -/
/-- A function `f` is said to be `antiperiodic` with antiperiod `c` if for all `x`,
`f (x + c) = -f x`. -/
@[simp]
def Antiperiodic [Add α] [Neg β] (f : α → β) (c : α) : Prop :=
∀ x : α, f (x + c) = -f x
protected theorem Antiperiodic.funext [Add α] [Neg β] (h : Antiperiodic f c) :
(fun x => f (x + c)) = -f :=
funext h
protected theorem Antiperiodic.funext' [Add α] [InvolutiveNeg β] (h : Antiperiodic f c) :
(fun x => -f (x + c)) = f :=
neg_eq_iff_eq_neg.mpr h.funext
/-- If a function is `antiperiodic` with antiperiod `c`, then it is also `Periodic` with period
`2 • c`. -/
protected theorem Antiperiodic.periodic [AddMonoid α] [InvolutiveNeg β]
(h : Antiperiodic f c) : Periodic f (2 • c) := by simp [two_nsmul, ← add_assoc, h _]
/-- If a function is `antiperiodic` with antiperiod `c`, then it is also `Periodic` with period
`2 * c`. -/
protected theorem Antiperiodic.periodic_two_mul [Semiring α] [InvolutiveNeg β]
(h : Antiperiodic f c) : Periodic f (2 * c) := nsmul_eq_mul 2 c ▸ h.periodic
protected theorem Antiperiodic.eq [AddZeroClass α] [Neg β] (h : Antiperiodic f c) : f c = -f 0 := by
simpa only [zero_add] using h 0
theorem Antiperiodic.even_nsmul_periodic [AddMonoid α] [InvolutiveNeg β] (h : Antiperiodic f c)
(n : ℕ) : Periodic f ((2 * n) • c) := mul_nsmul c 2 n ▸ h.periodic.nsmul n
theorem Antiperiodic.nat_even_mul_periodic [Semiring α] [InvolutiveNeg β] (h : Antiperiodic f c)
(n : ℕ) : Periodic f (n * (2 * c)) :=
h.periodic_two_mul.nat_mul n
theorem Antiperiodic.odd_nsmul_antiperiodic [AddMonoid α] [InvolutiveNeg β] (h : Antiperiodic f c)
(n : ℕ) : Antiperiodic f ((2 * n + 1) • c) := fun x => by
rw [add_nsmul, one_nsmul, ← add_assoc, h, h.even_nsmul_periodic]
theorem Antiperiodic.nat_odd_mul_antiperiodic [Semiring α] [InvolutiveNeg β] (h : Antiperiodic f c)
(n : ℕ) : Antiperiodic f (n * (2 * c) + c) := fun x => by
rw [← add_assoc, h, h.nat_even_mul_periodic]
theorem Antiperiodic.even_zsmul_periodic [AddGroup α] [InvolutiveNeg β] (h : Antiperiodic f c)
(n : ℤ) : Periodic f ((2 * n) • c) := by
rw [mul_comm, mul_zsmul, two_zsmul, ← two_nsmul]
exact h.periodic.zsmul n
theorem Antiperiodic.int_even_mul_periodic [Ring α] [InvolutiveNeg β] (h : Antiperiodic f c)
(n : ℤ) : Periodic f (n * (2 * c)) :=
h.periodic_two_mul.int_mul n
theorem Antiperiodic.odd_zsmul_antiperiodic [AddGroup α] [InvolutiveNeg β] (h : Antiperiodic f c)
(n : ℤ) : Antiperiodic f ((2 * n + 1) • c) := by
intro x
rw [add_zsmul, one_zsmul, ← add_assoc, h, h.even_zsmul_periodic]
theorem Antiperiodic.int_odd_mul_antiperiodic [Ring α] [InvolutiveNeg β] (h : Antiperiodic f c)
(n : ℤ) : Antiperiodic f (n * (2 * c) + c) := fun x => by
rw [← add_assoc, h, h.int_even_mul_periodic]
theorem Antiperiodic.sub_eq [AddGroup α] [InvolutiveNeg β] (h : Antiperiodic f c) (x : α) :
f (x - c) = -f x := by simp only [← neg_eq_iff_eq_neg, ← h (x - c), sub_add_cancel]
theorem Antiperiodic.sub_eq' [AddCommGroup α] [Neg β] (h : Antiperiodic f c) :
f (c - x) = -f (-x) := by simpa only [sub_eq_neg_add] using h (-x)
protected theorem Antiperiodic.neg [AddGroup α] [InvolutiveNeg β] (h : Antiperiodic f c) :
Antiperiodic f (-c) := by simpa only [sub_eq_add_neg, Antiperiodic] using h.sub_eq
theorem Antiperiodic.neg_eq [AddGroup α] [InvolutiveNeg β] (h : Antiperiodic f c) :
f (-c) = -f 0 := by
simpa only [zero_add] using h.neg 0
theorem Antiperiodic.nat_mul_eq_of_eq_zero [Semiring α] [NegZeroClass β] (h : Antiperiodic f c)
(hi : f 0 = 0) : ∀ n : ℕ, f (n * c) = 0
| 0 => by rwa [Nat.cast_zero, zero_mul]
| n + 1 => by simp [add_mul, h _, Antiperiodic.nat_mul_eq_of_eq_zero h hi n]
theorem Antiperiodic.int_mul_eq_of_eq_zero [Ring α] [SubtractionMonoid β] (h : Antiperiodic f c)
(hi : f 0 = 0) : ∀ n : ℤ, f (n * c) = 0
| (n : ℕ) => by rw [Int.cast_natCast, h.nat_mul_eq_of_eq_zero hi n]
| .negSucc n => by rw [Int.cast_negSucc, neg_mul, ← mul_neg, h.neg.nat_mul_eq_of_eq_zero hi]
theorem Antiperiodic.add_zsmul_eq [AddGroup α] [AddGroup β] (h : Antiperiodic f c) (n : ℤ) :
f (x + n • c) = (n.negOnePow : ℤ) • f x := by
rcases Int.even_or_odd' n with ⟨k, rfl | rfl⟩
· rw [h.even_zsmul_periodic, Int.negOnePow_two_mul, Units.val_one, one_zsmul]
· rw [h.odd_zsmul_antiperiodic, Int.negOnePow_two_mul_add_one, Units.val_neg,
Units.val_one, neg_zsmul, one_zsmul]
theorem Antiperiodic.sub_zsmul_eq [AddGroup α] [AddGroup β] (h : Antiperiodic f c) (n : ℤ) :
f (x - n • c) = (n.negOnePow : ℤ) • f x := by
simpa only [sub_eq_add_neg, neg_zsmul, Int.negOnePow_neg] using h.add_zsmul_eq (-n)
theorem Antiperiodic.zsmul_sub_eq [AddCommGroup α] [AddGroup β] (h : Antiperiodic f c) (n : ℤ) :
f (n • c - x) = (n.negOnePow : ℤ) • f (-x) := by
rw [sub_eq_add_neg, add_comm]
exact h.add_zsmul_eq n
theorem Antiperiodic.add_int_mul_eq [Ring α] [Ring β] (h : Antiperiodic f c) (n : ℤ) :
f (x + n * c) = (n.negOnePow : ℤ) * f x := by simpa only [zsmul_eq_mul] using h.add_zsmul_eq n
theorem Antiperiodic.sub_int_mul_eq [Ring α] [Ring β] (h : Antiperiodic f c) (n : ℤ) :
f (x - n * c) = (n.negOnePow : ℤ) * f x := by simpa only [zsmul_eq_mul] using h.sub_zsmul_eq n
theorem Antiperiodic.int_mul_sub_eq [Ring α] [Ring β] (h : Antiperiodic f c) (n : ℤ) :
f (n * c - x) = (n.negOnePow : ℤ) * f (-x) := by
simpa only [zsmul_eq_mul] using h.zsmul_sub_eq n
theorem Antiperiodic.add_nsmul_eq [AddMonoid α] [AddGroup β] (h : Antiperiodic f c) (n : ℕ) :
f (x + n • c) = (-1) ^ n • f x := by
rcases Nat.even_or_odd' n with ⟨k, rfl | rfl⟩
· rw [h.even_nsmul_periodic, pow_mul, (by norm_num : (-1) ^ 2 = 1), one_pow, one_zsmul]
· rw [h.odd_nsmul_antiperiodic, pow_add, pow_mul, (by norm_num : (-1) ^ 2 = 1), one_pow,
pow_one, one_mul, neg_zsmul, one_zsmul]
theorem Antiperiodic.sub_nsmul_eq [AddGroup α] [AddGroup β] (h : Antiperiodic f c) (n : ℕ) :
f (x - n • c) = (-1) ^ n • f x := by
simpa only [Int.reduceNeg, natCast_zsmul] using h.sub_zsmul_eq n
theorem Antiperiodic.nsmul_sub_eq [AddCommGroup α] [AddGroup β] (h : Antiperiodic f c) (n : ℕ) :
f (n • c - x) = (-1) ^ n • f (-x) := by
simpa only [Int.reduceNeg, natCast_zsmul] using h.zsmul_sub_eq n
theorem Antiperiodic.add_nat_mul_eq [Semiring α] [Ring β] (h : Antiperiodic f c) (n : ℕ) :
f (x + n * c) = (-1) ^ n * f x := by
simpa only [nsmul_eq_mul, zsmul_eq_mul, Int.cast_pow, Int.cast_neg,
Int.cast_one] using h.add_nsmul_eq n
theorem Antiperiodic.sub_nat_mul_eq [Ring α] [Ring β] (h : Antiperiodic f c) (n : ℕ) :
f (x - n * c) = (-1) ^ n * f x := by
simpa only [nsmul_eq_mul, zsmul_eq_mul, Int.cast_pow, Int.cast_neg,
Int.cast_one] using h.sub_nsmul_eq n
theorem Antiperiodic.nat_mul_sub_eq [Ring α] [Ring β] (h : Antiperiodic f c) (n : ℕ) :
f (n * c - x) = (-1) ^ n * f (-x) := by
simpa only [nsmul_eq_mul, zsmul_eq_mul, Int.cast_pow, Int.cast_neg,
Int.cast_one] using h.nsmul_sub_eq n
theorem Antiperiodic.const_add [AddSemigroup α] [Neg β] (h : Antiperiodic f c) (a : α) :
Antiperiodic (fun x => f (a + x)) c := fun x => by simpa [add_assoc] using h (a + x)
theorem Antiperiodic.add_const [AddCommSemigroup α] [Neg β] (h : Antiperiodic f c) (a : α) :
Antiperiodic (fun x => f (x + a)) c := fun x => by
simpa only [add_right_comm] using h (x + a)
theorem Antiperiodic.const_sub [AddCommGroup α] [InvolutiveNeg β] (h : Antiperiodic f c) (a : α) :
Antiperiodic (fun x => f (a - x)) c := fun x => by
simp only [← sub_sub, h.sub_eq]
theorem Antiperiodic.sub_const [AddCommGroup α] [Neg β] (h : Antiperiodic f c) (a : α) :
Antiperiodic (fun x => f (x - a)) c := by
simpa only [sub_eq_add_neg] using h.add_const (-a)
theorem Antiperiodic.smul [Add α] [Monoid γ] [AddGroup β] [DistribMulAction γ β]
(h : Antiperiodic f c) (a : γ) : Antiperiodic (a • f) c := by simp_all
theorem Antiperiodic.const_smul [AddMonoid α] [Neg β] [Group γ] [DistribMulAction γ α]
(h : Antiperiodic f c) (a : γ) : Antiperiodic (fun x => f (a • x)) (a⁻¹ • c) := fun x => by
simpa only [smul_add, smul_inv_smul] using h (a • x)
theorem Antiperiodic.const_smul₀ [AddCommMonoid α] [Neg β] [DivisionSemiring γ] [Module γ α]
(h : Antiperiodic f c) {a : γ} (ha : a ≠ 0) : Antiperiodic (fun x => f (a • x)) (a⁻¹ • c) :=
fun x => by simpa only [smul_add, smul_inv_smul₀ ha] using h (a • x)
theorem Antiperiodic.const_mul [DivisionSemiring α] [Neg β] (h : Antiperiodic f c) {a : α}
(ha : a ≠ 0) : Antiperiodic (fun x => f (a * x)) (a⁻¹ * c) :=
h.const_smul₀ ha
theorem Antiperiodic.const_inv_smul [AddMonoid α] [Neg β] [Group γ] [DistribMulAction γ α]
(h : Antiperiodic f c) (a : γ) : Antiperiodic (fun x => f (a⁻¹ • x)) (a • c) := by
simpa only [inv_inv] using h.const_smul a⁻¹
theorem Antiperiodic.const_inv_smul₀ [AddCommMonoid α] [Neg β] [DivisionSemiring γ] [Module γ α]
(h : Antiperiodic f c) {a : γ} (ha : a ≠ 0) : Antiperiodic (fun x => f (a⁻¹ • x)) (a • c) := by
simpa only [inv_inv] using h.const_smul₀ (inv_ne_zero ha)
theorem Antiperiodic.const_inv_mul [DivisionSemiring α] [Neg β] (h : Antiperiodic f c) {a : α}
(ha : a ≠ 0) : Antiperiodic (fun x => f (a⁻¹ * x)) (a * c) :=
h.const_inv_smul₀ ha
theorem Antiperiodic.mul_const [DivisionSemiring α] [Neg β] (h : Antiperiodic f c) {a : α}
(ha : a ≠ 0) : Antiperiodic (fun x => f (x * a)) (c * a⁻¹) :=
h.const_smul₀ <| (MulOpposite.op_ne_zero_iff a).mpr ha
theorem Antiperiodic.mul_const' [DivisionSemiring α] [Neg β] (h : Antiperiodic f c) {a : α}
(ha : a ≠ 0) : Antiperiodic (fun x => f (x * a)) (c / a) := by
simpa only [div_eq_mul_inv] using h.mul_const ha
theorem Antiperiodic.mul_const_inv [DivisionSemiring α] [Neg β] (h : Antiperiodic f c) {a : α}
(ha : a ≠ 0) : Antiperiodic (fun x => f (x * a⁻¹)) (c * a) :=
h.const_inv_smul₀ <| (MulOpposite.op_ne_zero_iff a).mpr ha
theorem Antiperiodic.div_inv [DivisionSemiring α] [Neg β] (h : Antiperiodic f c) {a : α}
(ha : a ≠ 0) : Antiperiodic (fun x => f (x / a)) (c * a) := by
simpa only [div_eq_mul_inv] using h.mul_const_inv ha
theorem Antiperiodic.add [AddGroup α] [InvolutiveNeg β] (h1 : Antiperiodic f c₁)
(h2 : Antiperiodic f c₂) : Periodic f (c₁ + c₂) := by simp_all [← add_assoc]
theorem Antiperiodic.sub [AddGroup α] [InvolutiveNeg β] (h1 : Antiperiodic f c₁)
(h2 : Antiperiodic f c₂) : Periodic f (c₁ - c₂) := by
simpa only [sub_eq_add_neg] using h1.add h2.neg
theorem Periodic.add_antiperiod [AddGroup α] [Neg β] (h1 : Periodic f c₁) (h2 : Antiperiodic f c₂) :
Antiperiodic f (c₁ + c₂) := by simp_all [← add_assoc]
theorem Periodic.sub_antiperiod [AddGroup α] [InvolutiveNeg β] (h1 : Periodic f c₁)
(h2 : Antiperiodic f c₂) : Antiperiodic f (c₁ - c₂) := by
simpa only [sub_eq_add_neg] using h1.add_antiperiod h2.neg
theorem Periodic.add_antiperiod_eq [AddGroup α] [Neg β] (h1 : Periodic f c₁)
(h2 : Antiperiodic f c₂) : f (c₁ + c₂) = -f 0 :=
(h1.add_antiperiod h2).eq
theorem Periodic.sub_antiperiod_eq [AddGroup α] [InvolutiveNeg β] (h1 : Periodic f c₁)
(h2 : Antiperiodic f c₂) : f (c₁ - c₂) = -f 0 :=
(h1.sub_antiperiod h2).eq
theorem Antiperiodic.mul [Add α] [Mul β] [HasDistribNeg β] (hf : Antiperiodic f c)
(hg : Antiperiodic g c) : Periodic (f * g) c := by simp_all
theorem Antiperiodic.div [Add α] [DivisionMonoid β] [HasDistribNeg β] (hf : Antiperiodic f c)
(hg : Antiperiodic g c) : Periodic (f / g) c := by simp_all [neg_div_neg_eq]
end Function
theorem Int.fract_periodic (α) [LinearOrderedRing α] [FloorRing α] :
Function.Periodic Int.fract (1 : α) := fun a => mod_cast Int.fract_add_int a 1
|
Algebra\QuadraticDiscriminant.lean | /-
Copyright (c) 2019 Zhouhang Zhou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Zhouhang Zhou
-/
import Mathlib.Order.Filter.AtTopBot
import Mathlib.Tactic.FieldSimp
import Mathlib.Tactic.LinearCombination
import Mathlib.Tactic.Linarith.Frontend
/-!
# Quadratic discriminants and roots of a quadratic
This file defines the discriminant of a quadratic and gives the solution to a quadratic equation.
## Main definition
- `discrim a b c`: the discriminant of a quadratic `a * x * x + b * x + c` is `b * b - 4 * a * c`.
## Main statements
- `quadratic_eq_zero_iff`: roots of a quadratic can be written as
`(-b + s) / (2 * a)` or `(-b - s) / (2 * a)`, where `s` is a square root of the discriminant.
- `quadratic_ne_zero_of_discrim_ne_sq`: if the discriminant has no square root,
then the corresponding quadratic has no root.
- `discrim_le_zero`: if a quadratic is always non-negative, then its discriminant is non-positive.
- `discrim_le_zero_of_nonpos`, `discrim_lt_zero`, `discrim_lt_zero_of_neg`: versions of this
statement with other inequalities.
## Tags
polynomial, quadratic, discriminant, root
-/
open Filter
section Ring
variable {R : Type*}
/-- Discriminant of a quadratic -/
def discrim [Ring R] (a b c : R) : R :=
b ^ 2 - 4 * a * c
@[simp] lemma discrim_neg [Ring R] (a b c : R) : discrim (-a) (-b) (-c) = discrim a b c := by
simp [discrim]
variable [CommRing R] {a b c : R}
lemma discrim_eq_sq_of_quadratic_eq_zero {x : R} (h : a * x * x + b * x + c = 0) :
discrim a b c = (2 * a * x + b) ^ 2 := by
rw [discrim]
linear_combination -4 * a * h
/-- A quadratic has roots if and only if its discriminant equals some square.
-/
theorem quadratic_eq_zero_iff_discrim_eq_sq [NeZero (2 : R)] [NoZeroDivisors R]
(ha : a ≠ 0) (x : R) :
a * x * x + b * x + c = 0 ↔ discrim a b c = (2 * a * x + b) ^ 2 := by
refine ⟨discrim_eq_sq_of_quadratic_eq_zero, fun h ↦ ?_⟩
rw [discrim] at h
have ha : 2 * 2 * a ≠ 0 := mul_ne_zero (mul_ne_zero (NeZero.ne _) (NeZero.ne _)) ha
apply mul_left_cancel₀ ha
linear_combination -h
/-- A quadratic has no root if its discriminant has no square root. -/
theorem quadratic_ne_zero_of_discrim_ne_sq (h : ∀ s : R, discrim a b c ≠ s^2) (x : R) :
a * x * x + b * x + c ≠ 0 :=
mt discrim_eq_sq_of_quadratic_eq_zero (h _)
end Ring
section Field
variable {K : Type*} [Field K] [NeZero (2 : K)] {a b c x : K}
/-- Roots of a quadratic equation. -/
theorem quadratic_eq_zero_iff (ha : a ≠ 0) {s : K} (h : discrim a b c = s * s) (x : K) :
a * x * x + b * x + c = 0 ↔ x = (-b + s) / (2 * a) ∨ x = (-b - s) / (2 * a) := by
rw [quadratic_eq_zero_iff_discrim_eq_sq ha, h, sq, mul_self_eq_mul_self_iff]
field_simp
apply or_congr
· constructor <;> intro h' <;> linear_combination -h'
· constructor <;> intro h' <;> linear_combination h'
/-- A quadratic has roots if its discriminant has square roots -/
theorem exists_quadratic_eq_zero (ha : a ≠ 0) (h : ∃ s, discrim a b c = s * s) :
∃ x, a * x * x + b * x + c = 0 := by
rcases h with ⟨s, hs⟩
use (-b + s) / (2 * a)
rw [quadratic_eq_zero_iff ha hs]
simp
/-- Root of a quadratic when its discriminant equals zero -/
theorem quadratic_eq_zero_iff_of_discrim_eq_zero (ha : a ≠ 0) (h : discrim a b c = 0) (x : K) :
a * x * x + b * x + c = 0 ↔ x = -b / (2 * a) := by
have : discrim a b c = 0 * 0 := by rw [h, mul_zero]
rw [quadratic_eq_zero_iff ha this, add_zero, sub_zero, or_self_iff]
end Field
section LinearOrderedField
variable {K : Type*} [LinearOrderedField K] {a b c : K}
/-- If a polynomial of degree 2 is always nonnegative, then its discriminant is nonpositive -/
theorem discrim_le_zero (h : ∀ x : K, 0 ≤ a * x * x + b * x + c) : discrim a b c ≤ 0 := by
rw [discrim, sq]
obtain ha | rfl | ha : a < 0 ∨ a = 0 ∨ 0 < a := lt_trichotomy a 0
-- if a < 0
· have : Tendsto (fun x => (a * x + b) * x + c) atTop atBot :=
tendsto_atBot_add_const_right _ c
((tendsto_atBot_add_const_right _ b (tendsto_id.const_mul_atTop_of_neg ha)).atBot_mul_atTop
tendsto_id)
rcases (this.eventually (eventually_lt_atBot 0)).exists with ⟨x, hx⟩
exact False.elim ((h x).not_lt <| by rwa [← add_mul])
-- if a = 0
· rcases eq_or_ne b 0 with (rfl | hb)
· simp
· have := h ((-c - 1) / b)
rw [mul_div_cancel₀ _ hb] at this
linarith
-- if a > 0
· have ha' : 0 ≤ 4 * a := mul_nonneg zero_le_four ha.le
convert neg_nonpos.2 (mul_nonneg ha' (h (-b / (2 * a)))) using 1
field_simp
ring
lemma discrim_le_zero_of_nonpos (h : ∀ x : K, a * x * x + b * x + c ≤ 0) : discrim a b c ≤ 0 :=
discrim_neg a b c ▸ discrim_le_zero <| by simpa only [neg_mul, ← neg_add, neg_nonneg]
/-- If a polynomial of degree 2 is always positive, then its discriminant is negative,
at least when the coefficient of the quadratic term is nonzero.
-/
theorem discrim_lt_zero (ha : a ≠ 0) (h : ∀ x : K, 0 < a * x * x + b * x + c) :
discrim a b c < 0 := by
have : ∀ x : K, 0 ≤ a * x * x + b * x + c := fun x => le_of_lt (h x)
refine lt_of_le_of_ne (discrim_le_zero this) fun h' ↦ ?_
have := h (-b / (2 * a))
have : a * (-b / (2 * a)) * (-b / (2 * a)) + b * (-b / (2 * a)) + c = 0 := by
rw [quadratic_eq_zero_iff_of_discrim_eq_zero ha h' (-b / (2 * a))]
linarith
lemma discrim_lt_zero_of_neg (ha : a ≠ 0) (h : ∀ x : K, a * x * x + b * x + c < 0) :
discrim a b c < 0 :=
discrim_neg a b c ▸ discrim_lt_zero (neg_ne_zero.2 ha) <| by
simpa only [neg_mul, ← neg_add, neg_pos]
end LinearOrderedField
|
Algebra\Quandle.lean | /-
Copyright (c) 2020 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import Mathlib.Algebra.Group.Equiv.Basic
import Mathlib.Algebra.Group.Aut
import Mathlib.Data.ZMod.Defs
import Mathlib.Tactic.Ring
/-!
# Racks and Quandles
This file defines racks and quandles, algebraic structures for sets
that bijectively act on themselves with a self-distributivity
property. If `R` is a rack and `act : R → (R ≃ R)` is the self-action,
then the self-distributivity is, equivalently, that
```
act (act x y) = act x * act y * (act x)⁻¹
```
where multiplication is composition in `R ≃ R` as a group.
Quandles are racks such that `act x x = x` for all `x`.
One example of a quandle (not yet in mathlib) is the action of a Lie
algebra on itself, defined by `act x y = Ad (exp x) y`.
Quandles and racks were independently developed by multiple
mathematicians. David Joyce introduced quandles in his thesis
[Joyce1982] to define an algebraic invariant of knot and link
complements that is analogous to the fundamental group of the
exterior, and he showed that the quandle associated to an oriented
knot is invariant up to orientation-reversed mirror image. Racks were
used by Fenn and Rourke for framed codimension-2 knots and
links in [FennRourke1992]. Unital shelves are discussed in [crans2017].
The name "rack" came from wordplay by Conway and Wraith for the "wrack
and ruin" of forgetting everything but the conjugation operation for a
group.
## Main definitions
* `Shelf` is a type with a self-distributive action
* `UnitalShelf` is a shelf with a left and right unit
* `Rack` is a shelf whose action for each element is invertible
* `Quandle` is a rack whose action for an element fixes that element
* `Quandle.conj` defines a quandle of a group acting on itself by conjugation.
* `ShelfHom` is homomorphisms of shelves, racks, and quandles.
* `Rack.EnvelGroup` gives the universal group the rack maps to as a conjugation quandle.
* `Rack.oppositeRack` gives the rack with the action replaced by its inverse.
## Main statements
* `Rack.EnvelGroup` is left adjoint to `Quandle.Conj` (`toEnvelGroup.map`).
The universality statements are `toEnvelGroup.univ` and `toEnvelGroup.univ_uniq`.
## Implementation notes
"Unital racks" are uninteresting (see `Rack.assoc_iff_id`, `UnitalShelf.assoc`), so we do not
define them.
## Notation
The following notation is localized in `quandles`:
* `x ◃ y` is `Shelf.act x y`
* `x ◃⁻¹ y` is `Rack.inv_act x y`
* `S →◃ S'` is `ShelfHom S S'`
Use `open quandles` to use these.
## TODO
* If `g` is the Lie algebra of a Lie group `G`, then `(x ◃ y) = Ad (exp x) x` forms a quandle.
* If `X` is a symmetric space, then each point has a corresponding involution that acts on `X`,
forming a quandle.
* Alexander quandle with `a ◃ b = t * b + (1 - t) * b`, with `a` and `b` elements
of a module over `Z[t,t⁻¹]`.
* If `G` is a group, `H` a subgroup, and `z` in `H`, then there is a quandle `(G/H;z)` defined by
`yH ◃ xH = yzy⁻¹xH`. Every homogeneous quandle (i.e., a quandle `Q` whose automorphism group acts
transitively on `Q` as a set) is isomorphic to such a quandle.
There is a generalization to this arbitrary quandles in [Joyce's paper (Theorem 7.2)][Joyce1982].
## Tags
rack, quandle
-/
open MulOpposite
universe u v
/-- A *Shelf* is a structure with a self-distributive binary operation.
The binary operation is regarded as a left action of the type on itself.
-/
class Shelf (α : Type u) where
/-- The action of the `Shelf` over `α`-/
act : α → α → α
/-- A verification that `act` is self-distributive-/
self_distrib : ∀ {x y z : α}, act x (act y z) = act (act x y) (act x z)
/--
A *unital shelf* is a shelf equipped with an element `1` such that, for all elements `x`,
we have both `x ◃ 1` and `1 ◃ x` equal `x`.
-/
class UnitalShelf (α : Type u) extends Shelf α, One α :=
(one_act : ∀ a : α, act 1 a = a)
(act_one : ∀ a : α, act a 1 = a)
/-- The type of homomorphisms between shelves.
This is also the notion of rack and quandle homomorphisms.
-/
@[ext]
structure ShelfHom (S₁ : Type*) (S₂ : Type*) [Shelf S₁] [Shelf S₂] where
/-- The function under the Shelf Homomorphism -/
toFun : S₁ → S₂
/-- The homomorphism property of a Shelf Homomorphism-/
map_act' : ∀ {x y : S₁}, toFun (Shelf.act x y) = Shelf.act (toFun x) (toFun y)
/-- A *rack* is an automorphic set (a set with an action on itself by
bijections) that is self-distributive. It is a shelf such that each
element's action is invertible.
The notations `x ◃ y` and `x ◃⁻¹ y` denote the action and the
inverse action, respectively, and they are right associative.
-/
class Rack (α : Type u) extends Shelf α where
/-- The inverse actions of the elements -/
invAct : α → α → α
/-- Proof of left inverse -/
left_inv : ∀ x, Function.LeftInverse (invAct x) (act x)
/-- Proof of right inverse -/
right_inv : ∀ x, Function.RightInverse (invAct x) (act x)
/-- Action of a Shelf-/
scoped[Quandles] infixr:65 " ◃ " => Shelf.act
/-- Inverse Action of a Rack-/
scoped[Quandles] infixr:65 " ◃⁻¹ " => Rack.invAct
/-- Shelf Homomorphism-/
scoped[Quandles] infixr:25 " →◃ " => ShelfHom
open Quandles
namespace UnitalShelf
open Shelf
variable {S : Type*} [UnitalShelf S]
/--
A monoid is *graphic* if, for all `x` and `y`, the *graphic identity*
`(x * y) * x = x * y` holds. For a unital shelf, this graphic
identity holds.
-/
lemma act_act_self_eq (x y : S) : (x ◃ y) ◃ x = x ◃ y := by
have h : (x ◃ y) ◃ x = (x ◃ y) ◃ (x ◃ 1) := by rw [act_one]
rw [h, ← Shelf.self_distrib, act_one]
lemma act_idem (x : S) : (x ◃ x) = x := by rw [← act_one x, ← Shelf.self_distrib, act_one]
lemma act_self_act_eq (x y : S) : x ◃ (x ◃ y) = x ◃ y := by
have h : x ◃ (x ◃ y) = (x ◃ 1) ◃ (x ◃ y) := by rw [act_one]
rw [h, ← Shelf.self_distrib, one_act]
/--
The associativity of a unital shelf comes for free.
-/
lemma assoc (x y z : S) : (x ◃ y) ◃ z = x ◃ y ◃ z := by
rw [self_distrib, self_distrib, act_act_self_eq, act_self_act_eq]
end UnitalShelf
namespace Rack
variable {R : Type*} [Rack R]
-- Porting note: No longer a need for `Rack.self_distrib`
export Shelf (self_distrib)
-- porting note, changed name to `act'` to not conflict with `Shelf.act`
/-- A rack acts on itself by equivalences.
-/
def act' (x : R) : R ≃ R where
toFun := Shelf.act x
invFun := invAct x
left_inv := left_inv x
right_inv := right_inv x
@[simp]
theorem act'_apply (x y : R) : act' x y = x ◃ y :=
rfl
@[simp]
theorem act'_symm_apply (x y : R) : (act' x).symm y = x ◃⁻¹ y :=
rfl
@[simp]
theorem invAct_apply (x y : R) : (act' x)⁻¹ y = x ◃⁻¹ y :=
rfl
@[simp]
theorem invAct_act_eq (x y : R) : x ◃⁻¹ x ◃ y = y :=
left_inv x y
@[simp]
theorem act_invAct_eq (x y : R) : x ◃ x ◃⁻¹ y = y :=
right_inv x y
theorem left_cancel (x : R) {y y' : R} : x ◃ y = x ◃ y' ↔ y = y' := by
constructor
· apply (act' x).injective
rintro rfl
rfl
theorem left_cancel_inv (x : R) {y y' : R} : x ◃⁻¹ y = x ◃⁻¹ y' ↔ y = y' := by
constructor
· apply (act' x).symm.injective
rintro rfl
rfl
theorem self_distrib_inv {x y z : R} : x ◃⁻¹ y ◃⁻¹ z = (x ◃⁻¹ y) ◃⁻¹ x ◃⁻¹ z := by
rw [← left_cancel (x ◃⁻¹ y), right_inv, ← left_cancel x, right_inv, self_distrib]
repeat' rw [right_inv]
/-- The *adjoint action* of a rack on itself is `op'`, and the adjoint
action of `x ◃ y` is the conjugate of the action of `y` by the action
of `x`. It is another way to understand the self-distributivity axiom.
This is used in the natural rack homomorphism `toConj` from `R` to
`Conj (R ≃ R)` defined by `op'`.
-/
theorem ad_conj {R : Type*} [Rack R] (x y : R) : act' (x ◃ y) = act' x * act' y * (act' x)⁻¹ := by
rw [eq_mul_inv_iff_mul_eq]; ext z
apply self_distrib.symm
/-- The opposite rack, swapping the roles of `◃` and `◃⁻¹`.
-/
instance oppositeRack : Rack Rᵐᵒᵖ where
act x y := op (invAct (unop x) (unop y))
self_distrib := by
intro x y z
induction x
induction y
induction z
simp only [op_inj, unop_op, op_unop]
rw [self_distrib_inv]
invAct x y := op (Shelf.act (unop x) (unop y))
left_inv := MulOpposite.rec' fun x => MulOpposite.rec' fun y => by simp
right_inv := MulOpposite.rec' fun x => MulOpposite.rec' fun y => by simp
@[simp]
theorem op_act_op_eq {x y : R} : op x ◃ op y = op (x ◃⁻¹ y) :=
rfl
@[simp]
theorem op_invAct_op_eq {x y : R} : op x ◃⁻¹ op y = op (x ◃ y) :=
rfl
@[simp]
theorem self_act_act_eq {x y : R} : (x ◃ x) ◃ y = x ◃ y := by rw [← right_inv x y, ← self_distrib]
@[simp]
theorem self_invAct_invAct_eq {x y : R} : (x ◃⁻¹ x) ◃⁻¹ y = x ◃⁻¹ y := by
have h := @self_act_act_eq _ _ (op x) (op y)
simpa using h
@[simp]
theorem self_act_invAct_eq {x y : R} : (x ◃ x) ◃⁻¹ y = x ◃⁻¹ y := by
rw [← left_cancel (x ◃ x)]
rw [right_inv]
rw [self_act_act_eq]
rw [right_inv]
@[simp]
theorem self_invAct_act_eq {x y : R} : (x ◃⁻¹ x) ◃ y = x ◃ y := by
have h := @self_act_invAct_eq _ _ (op x) (op y)
simpa using h
theorem self_act_eq_iff_eq {x y : R} : x ◃ x = y ◃ y ↔ x = y := by
constructor; swap
· rintro rfl; rfl
intro h
trans (x ◃ x) ◃⁻¹ x ◃ x
· rw [← left_cancel (x ◃ x), right_inv, self_act_act_eq]
· rw [h, ← left_cancel (y ◃ y), right_inv, self_act_act_eq]
theorem self_invAct_eq_iff_eq {x y : R} : x ◃⁻¹ x = y ◃⁻¹ y ↔ x = y := by
have h := @self_act_eq_iff_eq _ _ (op x) (op y)
simpa using h
/-- The map `x ↦ x ◃ x` is a bijection. (This has applications for the
regular isotopy version of the Reidemeister I move for knot diagrams.)
-/
def selfApplyEquiv (R : Type*) [Rack R] : R ≃ R where
toFun x := x ◃ x
invFun x := x ◃⁻¹ x
left_inv x := by simp
right_inv x := by simp
/-- An involutory rack is one for which `Rack.oppositeRack R x` is an involution for every x.
-/
def IsInvolutory (R : Type*) [Rack R] : Prop :=
∀ x : R, Function.Involutive (Shelf.act x)
theorem involutory_invAct_eq_act {R : Type*} [Rack R] (h : IsInvolutory R) (x y : R) :
x ◃⁻¹ y = x ◃ y := by
rw [← left_cancel x, right_inv, h x]
/-- An abelian rack is one for which the mediality axiom holds.
-/
def IsAbelian (R : Type*) [Rack R] : Prop :=
∀ x y z w : R, (x ◃ y) ◃ z ◃ w = (x ◃ z) ◃ y ◃ w
/-- Associative racks are uninteresting.
-/
theorem assoc_iff_id {R : Type*} [Rack R] {x y z : R} : x ◃ y ◃ z = (x ◃ y) ◃ z ↔ x ◃ z = z := by
rw [self_distrib]
rw [left_cancel]
end Rack
namespace ShelfHom
variable {S₁ : Type*} {S₂ : Type*} {S₃ : Type*} [Shelf S₁] [Shelf S₂] [Shelf S₃]
instance : FunLike (S₁ →◃ S₂) S₁ S₂ where
coe := toFun
coe_injective' | ⟨_, _⟩, ⟨_, _⟩, rfl => rfl
@[simp] theorem toFun_eq_coe (f : S₁ →◃ S₂) : f.toFun = f := rfl
@[simp]
theorem map_act (f : S₁ →◃ S₂) {x y : S₁} : f (x ◃ y) = f x ◃ f y :=
map_act' f
/-- The identity homomorphism -/
def id (S : Type*) [Shelf S] : S →◃ S where
toFun := fun x => x
map_act' := by simp
instance inhabited (S : Type*) [Shelf S] : Inhabited (S →◃ S) :=
⟨id S⟩
/-- The composition of shelf homomorphisms -/
def comp (g : S₂ →◃ S₃) (f : S₁ →◃ S₂) : S₁ →◃ S₃ where
toFun := g.toFun ∘ f.toFun
map_act' := by simp
@[simp]
theorem comp_apply (g : S₂ →◃ S₃) (f : S₁ →◃ S₂) (x : S₁) : (g.comp f) x = g (f x) :=
rfl
end ShelfHom
/-- A quandle is a rack such that each automorphism fixes its corresponding element.
-/
class Quandle (α : Type*) extends Rack α where
/-- The fixing property of a Quandle -/
fix : ∀ {x : α}, act x x = x
namespace Quandle
open Rack
variable {Q : Type*} [Quandle Q]
attribute [simp] fix
@[simp]
theorem fix_inv {x : Q} : x ◃⁻¹ x = x := by
rw [← left_cancel x]
simp
instance oppositeQuandle : Quandle Qᵐᵒᵖ where
fix := by
intro x
induction' x
simp
/-- The conjugation quandle of a group. Each element of the group acts by
the corresponding inner automorphism.
-/
-- Porting note: no need for `nolint` and added `reducible`
abbrev Conj (G : Type*) := G
instance Conj.quandle (G : Type*) [Group G] : Quandle (Conj G) where
act x := @MulAut.conj G _ x
self_distrib := by
intro x y z
dsimp only [MulAut.conj_apply]
simp [mul_assoc]
invAct x := (@MulAut.conj G _ x).symm
left_inv x y := by
simp [act', mul_assoc]
right_inv x y := by
simp [act', mul_assoc]
fix := by simp
@[simp]
theorem conj_act_eq_conj {G : Type*} [Group G] (x y : Conj G) :
x ◃ y = ((x : G) * (y : G) * (x : G)⁻¹ : G) :=
rfl
theorem conj_swap {G : Type*} [Group G] (x y : Conj G) : x ◃ y = y ↔ y ◃ x = x := by
dsimp [Conj] at *; constructor
repeat' intro h; conv_rhs => rw [eq_mul_inv_of_mul_eq (eq_mul_inv_of_mul_eq h)]; simp
/-- `Conj` is functorial
-/
def Conj.map {G : Type*} {H : Type*} [Group G] [Group H] (f : G →* H) : Conj G →◃ Conj H where
toFun := f
map_act' := by simp
-- Porting note: I don't think HasLift exists
-- instance {G : Type*} {H : Type*} [Group G] [Group H] : HasLift (G →* H) (Conj G →◃ Conj H)
-- where lift := Conj.map
/-- The dihedral quandle. This is the conjugation quandle of the dihedral group restrict to flips.
Used for Fox n-colorings of knots.
-/
-- Porting note: Removed nolint
def Dihedral (n : ℕ) :=
ZMod n
/-- The operation for the dihedral quandle. It does not need to be an equivalence
because it is an involution (see `dihedralAct.inv`).
-/
def dihedralAct (n : ℕ) (a : ZMod n) : ZMod n → ZMod n := fun b => 2 * a - b
theorem dihedralAct.inv (n : ℕ) (a : ZMod n) : Function.Involutive (dihedralAct n a) := by
intro b
dsimp only [dihedralAct]
simp
instance (n : ℕ) : Quandle (Dihedral n) where
act := dihedralAct n
self_distrib := by
intro x y z
simp only [dihedralAct]
ring_nf
invAct := dihedralAct n
left_inv x := (dihedralAct.inv n x).leftInverse
right_inv x := (dihedralAct.inv n x).rightInverse
fix := by
intro x
simp only [dihedralAct]
ring_nf
end Quandle
namespace Rack
/-- This is the natural rack homomorphism to the conjugation quandle of the group `R ≃ R`
that acts on the rack.
-/
def toConj (R : Type*) [Rack R] : R →◃ Quandle.Conj (R ≃ R) where
toFun := act'
map_act' := by
intro x y
exact ad_conj x y
section EnvelGroup
/-!
### Universal enveloping group of a rack
The universal enveloping group `EnvelGroup R` of a rack `R` is the
universal group such that every rack homomorphism `R →◃ conj G` is
induced by a unique group homomorphism `EnvelGroup R →* G`.
For quandles, Joyce called this group `AdConj R`.
The `EnvelGroup` functor is left adjoint to the `Conj` forgetful
functor, and the way we construct the enveloping group is via a
technique that should work for left adjoints of forgetful functors in
general. It involves thinking a little about 2-categories, but the
payoff is that the map `EnvelGroup R →* G` has a nice description.
Let's think of a group as being a one-object category. The first step
is to define `PreEnvelGroup`, which gives formal expressions for all
the 1-morphisms and includes the unit element, elements of `R`,
multiplication, and inverses. To introduce relations, the second step
is to define `PreEnvelGroupRel'`, which gives formal expressions
for all 2-morphisms between the 1-morphisms. The 2-morphisms include
associativity, multiplication by the unit, multiplication by inverses,
compatibility with multiplication and inverses (`congr_mul` and
`congr_inv`), the axioms for an equivalence relation, and,
importantly, the relationship between conjugation and the rack action
(see `Rack.ad_conj`).
None of this forms a 2-category yet, for example due to lack of
associativity of `trans`. The `PreEnvelGroupRel` relation is a
`Prop`-valued version of `PreEnvelGroupRel'`, and making it
`Prop`-valued essentially introduces enough 3-isomorphisms so that
every pair of compatible 2-morphisms is isomorphic. Now, while
composition in `PreEnvelGroup` does not strictly satisfy the category
axioms, `PreEnvelGroup` and `PreEnvelGroupRel'` do form a weak
2-category.
Since we just want a 1-category, the last step is to quotient
`PreEnvelGroup` by `PreEnvelGroupRel'`, and the result is the
group `EnvelGroup`.
For a homomorphism `f : R →◃ Conj G`, how does
`EnvelGroup.map f : EnvelGroup R →* G` work? Let's think of `G` as
being a 2-category with one object, a 1-morphism per element of `G`,
and a single 2-morphism called `Eq.refl` for each 1-morphism. We
define the map using a "higher `Quotient.lift`" -- not only do we
evaluate elements of `PreEnvelGroup` as expressions in `G` (this is
`toEnvelGroup.mapAux`), but we evaluate elements of
`PreEnvelGroup'` as expressions of 2-morphisms of `G` (this is
`toEnvelGroup.mapAux.well_def`). That is to say,
`toEnvelGroup.mapAux.well_def` recursively evaluates formal
expressions of 2-morphisms as equality proofs in `G`. Now that all
morphisms are accounted for, the map descends to a homomorphism
`EnvelGroup R →* G`.
Note: `Type`-valued relations are not common. The fact it is
`Type`-valued is what makes `toEnvelGroup.mapAux.well_def` have
well-founded recursion.
-/
/-- Free generators of the enveloping group.
-/
inductive PreEnvelGroup (R : Type u) : Type u
| unit : PreEnvelGroup R
| incl (x : R) : PreEnvelGroup R
| mul (a b : PreEnvelGroup R) : PreEnvelGroup R
| inv (a : PreEnvelGroup R) : PreEnvelGroup R
instance PreEnvelGroup.inhabited (R : Type u) : Inhabited (PreEnvelGroup R) :=
⟨PreEnvelGroup.unit⟩
open PreEnvelGroup
/-- Relations for the enveloping group. This is a type-valued relation because
`toEnvelGroup.mapAux.well_def` inducts on it to show `toEnvelGroup.map`
is well-defined. The relation `PreEnvelGroupRel` is the `Prop`-valued version,
which is used to define `EnvelGroup` itself.
-/
inductive PreEnvelGroupRel' (R : Type u) [Rack R] : PreEnvelGroup R → PreEnvelGroup R → Type u
| refl {a : PreEnvelGroup R} : PreEnvelGroupRel' R a a
| symm {a b : PreEnvelGroup R} (hab : PreEnvelGroupRel' R a b) : PreEnvelGroupRel' R b a
| trans {a b c : PreEnvelGroup R} (hab : PreEnvelGroupRel' R a b)
(hbc : PreEnvelGroupRel' R b c) : PreEnvelGroupRel' R a c
| congr_mul {a b a' b' : PreEnvelGroup R} (ha : PreEnvelGroupRel' R a a')
(hb : PreEnvelGroupRel' R b b') : PreEnvelGroupRel' R (mul a b) (mul a' b')
| congr_inv {a a' : PreEnvelGroup R} (ha : PreEnvelGroupRel' R a a') :
PreEnvelGroupRel' R (inv a) (inv a')
| assoc (a b c : PreEnvelGroup R) : PreEnvelGroupRel' R (mul (mul a b) c) (mul a (mul b c))
| one_mul (a : PreEnvelGroup R) : PreEnvelGroupRel' R (mul unit a) a
| mul_one (a : PreEnvelGroup R) : PreEnvelGroupRel' R (mul a unit) a
| mul_left_inv (a : PreEnvelGroup R) : PreEnvelGroupRel' R (mul (inv a) a) unit
| act_incl (x y : R) :
PreEnvelGroupRel' R (mul (mul (incl x) (incl y)) (inv (incl x))) (incl (x ◃ y))
instance PreEnvelGroupRel'.inhabited (R : Type u) [Rack R] :
Inhabited (PreEnvelGroupRel' R unit unit) :=
⟨PreEnvelGroupRel'.refl⟩
/--
The `PreEnvelGroupRel` relation as a `Prop`. Used as the relation for `PreEnvelGroup.setoid`.
-/
inductive PreEnvelGroupRel (R : Type u) [Rack R] : PreEnvelGroup R → PreEnvelGroup R → Prop
| rel {a b : PreEnvelGroup R} (r : PreEnvelGroupRel' R a b) : PreEnvelGroupRel R a b
/-- A quick way to convert a `PreEnvelGroupRel'` to a `PreEnvelGroupRel`.
-/
theorem PreEnvelGroupRel'.rel {R : Type u} [Rack R] {a b : PreEnvelGroup R} :
PreEnvelGroupRel' R a b → PreEnvelGroupRel R a b := PreEnvelGroupRel.rel
@[refl]
theorem PreEnvelGroupRel.refl {R : Type u} [Rack R] {a : PreEnvelGroup R} :
PreEnvelGroupRel R a a :=
PreEnvelGroupRel.rel PreEnvelGroupRel'.refl
@[symm]
theorem PreEnvelGroupRel.symm {R : Type u} [Rack R] {a b : PreEnvelGroup R} :
PreEnvelGroupRel R a b → PreEnvelGroupRel R b a
| ⟨r⟩ => r.symm.rel
@[trans]
theorem PreEnvelGroupRel.trans {R : Type u} [Rack R] {a b c : PreEnvelGroup R} :
PreEnvelGroupRel R a b → PreEnvelGroupRel R b c → PreEnvelGroupRel R a c
| ⟨rab⟩, ⟨rbc⟩ => (rab.trans rbc).rel
instance PreEnvelGroup.setoid (R : Type*) [Rack R] : Setoid (PreEnvelGroup R) where
r := PreEnvelGroupRel R
iseqv := by
constructor
· apply PreEnvelGroupRel.refl
· apply PreEnvelGroupRel.symm
· apply PreEnvelGroupRel.trans
/-- The universal enveloping group for the rack R.
-/
def EnvelGroup (R : Type*) [Rack R] :=
Quotient (PreEnvelGroup.setoid R)
-- Define the `Group` instances in two steps so `inv` can be inferred correctly.
-- TODO: is there a non-invasive way of defining the instance directly?
instance (R : Type*) [Rack R] : DivInvMonoid (EnvelGroup R) where
mul a b :=
Quotient.liftOn₂ a b (fun a b => ⟦PreEnvelGroup.mul a b⟧) fun a b a' b' ⟨ha⟩ ⟨hb⟩ =>
Quotient.sound (PreEnvelGroupRel'.congr_mul ha hb).rel
one := ⟦unit⟧
inv a :=
Quotient.liftOn a (fun a => ⟦PreEnvelGroup.inv a⟧) fun a a' ⟨ha⟩ =>
Quotient.sound (PreEnvelGroupRel'.congr_inv ha).rel
mul_assoc a b c :=
Quotient.inductionOn₃ a b c fun a b c => Quotient.sound (PreEnvelGroupRel'.assoc a b c).rel
one_mul a := Quotient.inductionOn a fun a => Quotient.sound (PreEnvelGroupRel'.one_mul a).rel
mul_one a := Quotient.inductionOn a fun a => Quotient.sound (PreEnvelGroupRel'.mul_one a).rel
instance (R : Type*) [Rack R] : Group (EnvelGroup R) :=
{ mul_left_inv := fun a =>
Quotient.inductionOn a fun a => Quotient.sound (PreEnvelGroupRel'.mul_left_inv a).rel }
instance EnvelGroup.inhabited (R : Type*) [Rack R] : Inhabited (EnvelGroup R) :=
⟨1⟩
/-- The canonical homomorphism from a rack to its enveloping group.
Satisfies universal properties given by `toEnvelGroup.map` and `toEnvelGroup.univ`.
-/
def toEnvelGroup (R : Type*) [Rack R] : R →◃ Quandle.Conj (EnvelGroup R) where
toFun x := ⟦incl x⟧
map_act' := @fun x y => Quotient.sound (PreEnvelGroupRel'.act_incl x y).symm.rel
/-- The preliminary definition of the induced map from the enveloping group.
See `toEnvelGroup.map`.
-/
def toEnvelGroup.mapAux {R : Type*} [Rack R] {G : Type*} [Group G] (f : R →◃ Quandle.Conj G) :
PreEnvelGroup R → G
| .unit => 1
| .incl x => f x
| .mul a b => toEnvelGroup.mapAux f a * toEnvelGroup.mapAux f b
| .inv a => (toEnvelGroup.mapAux f a)⁻¹
namespace toEnvelGroup.mapAux
open PreEnvelGroupRel'
/-- Show that `toEnvelGroup.mapAux` sends equivalent expressions to equal terms.
-/
theorem well_def {R : Type*} [Rack R] {G : Type*} [Group G] (f : R →◃ Quandle.Conj G) :
∀ {a b : PreEnvelGroup R},
PreEnvelGroupRel' R a b → toEnvelGroup.mapAux f a = toEnvelGroup.mapAux f b
| a, _, PreEnvelGroupRel'.refl => rfl
| a, b, PreEnvelGroupRel'.symm h => (well_def f h).symm
| a, b, PreEnvelGroupRel'.trans hac hcb => Eq.trans (well_def f hac) (well_def f hcb)
| _, _, PreEnvelGroupRel'.congr_mul ha hb => by
simp [toEnvelGroup.mapAux, well_def f ha, well_def f hb]
| _, _, congr_inv ha => by simp [toEnvelGroup.mapAux, well_def f ha]
| _, _, assoc a b c => by apply mul_assoc
| _, _, PreEnvelGroupRel'.one_mul a => by simp [toEnvelGroup.mapAux]
| _, _, PreEnvelGroupRel'.mul_one a => by simp [toEnvelGroup.mapAux]
| _, _, PreEnvelGroupRel'.mul_left_inv a => by simp [toEnvelGroup.mapAux]
| _, _, act_incl x y => by simp [toEnvelGroup.mapAux]
end toEnvelGroup.mapAux
/-- Given a map from a rack to a group, lift it to being a map from the enveloping group.
More precisely, the `EnvelGroup` functor is left adjoint to `Quandle.Conj`.
-/
def toEnvelGroup.map {R : Type*} [Rack R] {G : Type*} [Group G] :
(R →◃ Quandle.Conj G) ≃ (EnvelGroup R →* G) where
toFun f :=
{ toFun := fun x =>
Quotient.liftOn x (toEnvelGroup.mapAux f) fun a b ⟨hab⟩ =>
toEnvelGroup.mapAux.well_def f hab
map_one' := by
change Quotient.liftOn ⟦Rack.PreEnvelGroup.unit⟧ (toEnvelGroup.mapAux f) _ = 1
simp only [Quotient.lift_mk, mapAux]
map_mul' := fun x y =>
Quotient.inductionOn₂ x y fun x y => by
simp only [toEnvelGroup.mapAux]
change Quotient.liftOn ⟦mul x y⟧ (toEnvelGroup.mapAux f) _ = _
simp [toEnvelGroup.mapAux] }
invFun F := (Quandle.Conj.map F).comp (toEnvelGroup R)
left_inv f := by ext; rfl
right_inv F :=
MonoidHom.ext fun x =>
Quotient.inductionOn x fun x => by
induction' x with _ x y ih_x ih_y x ih_x
· exact F.map_one.symm
· rfl
· have hm : ⟦x.mul y⟧ = @Mul.mul (EnvelGroup R) _ ⟦x⟧ ⟦y⟧ := rfl
simp only [MonoidHom.coe_mk, OneHom.coe_mk, Quotient.lift_mk]
suffices ∀ x y, F (Mul.mul x y) = F (x) * F (y) by
simp_all only [MonoidHom.coe_mk, OneHom.coe_mk, Quotient.lift_mk, hm]
rw [← ih_x, ← ih_y, mapAux]
exact F.map_mul
· have hm : ⟦x.inv⟧ = @Inv.inv (EnvelGroup R) _ ⟦x⟧ := rfl
rw [hm, F.map_inv, MonoidHom.map_inv, ih_x]
/-- Given a homomorphism from a rack to a group, it factors through the enveloping group.
-/
theorem toEnvelGroup.univ (R : Type*) [Rack R] (G : Type*) [Group G] (f : R →◃ Quandle.Conj G) :
(Quandle.Conj.map (toEnvelGroup.map f)).comp (toEnvelGroup R) = f :=
toEnvelGroup.map.symm_apply_apply f
/-- The homomorphism `toEnvelGroup.map f` is the unique map that fits into the commutative
triangle in `toEnvelGroup.univ`.
-/
theorem toEnvelGroup.univ_uniq (R : Type*) [Rack R] (G : Type*) [Group G]
(f : R →◃ Quandle.Conj G) (g : EnvelGroup R →* G)
(h : f = (Quandle.Conj.map g).comp (toEnvelGroup R)) : g = toEnvelGroup.map f :=
h.symm ▸ (toEnvelGroup.map.apply_symm_apply g).symm
/-- The induced group homomorphism from the enveloping group into bijections of the rack,
using `Rack.toConj`. Satisfies the property `envelAction_prop`.
This gives the rack `R` the structure of an augmented rack over `EnvelGroup R`.
-/
def envelAction {R : Type*} [Rack R] : EnvelGroup R →* R ≃ R :=
toEnvelGroup.map (toConj R)
@[simp]
theorem envelAction_prop {R : Type*} [Rack R] (x y : R) :
envelAction (toEnvelGroup R x) y = x ◃ y :=
rfl
end EnvelGroup
end Rack
|
Algebra\Quaternion.lean | /-
Copyright (c) 2020 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov
-/
import Mathlib.Algebra.Algebra.Equiv
import Mathlib.LinearAlgebra.Dimension.StrongRankCondition
import Mathlib.LinearAlgebra.FreeModule.Basic
import Mathlib.LinearAlgebra.FreeModule.Finite.Basic
import Mathlib.SetTheory.Cardinal.Ordinal
/-!
# Quaternions
In this file we define quaternions `ℍ[R]` over a commutative ring `R`, and define some
algebraic structures on `ℍ[R]`.
## Main definitions
* `QuaternionAlgebra R a b`, `ℍ[R, a, b]` :
[quaternion algebra](https://en.wikipedia.org/wiki/Quaternion_algebra) with coefficients `a`, `b`
* `Quaternion R`, `ℍ[R]` : the space of quaternions, a.k.a. `QuaternionAlgebra R (-1) (-1)`;
* `Quaternion.normSq` : square of the norm of a quaternion;
We also define the following algebraic structures on `ℍ[R]`:
* `Ring ℍ[R, a, b]`, `StarRing ℍ[R, a, b]`, and `Algebra R ℍ[R, a, b]` : for any commutative ring
`R`;
* `Ring ℍ[R]`, `StarRing ℍ[R]`, and `Algebra R ℍ[R]` : for any commutative ring `R`;
* `IsDomain ℍ[R]` : for a linear ordered commutative ring `R`;
* `DivisionRing ℍ[R]` : for a linear ordered field `R`.
## Notation
The following notation is available with `open Quaternion` or `open scoped Quaternion`.
* `ℍ[R, c₁, c₂]` : `QuaternionAlgebra R c₁ c₂`
* `ℍ[R]` : quaternions over `R`.
## Implementation notes
We define quaternions over any ring `R`, not just `ℝ` to be able to deal with, e.g., integer
or rational quaternions without using real numbers. In particular, all definitions in this file
are computable.
## Tags
quaternion
-/
/-- Quaternion algebra over a type with fixed coefficients $a=i^2$ and $b=j^2$.
Implemented as a structure with four fields: `re`, `imI`, `imJ`, and `imK`. -/
@[ext]
structure QuaternionAlgebra (R : Type*) (a b : R) where
/-- Real part of a quaternion. -/
re : R
imI : R
imJ : R
imK : R
@[inherit_doc]
scoped[Quaternion] notation "ℍ[" R "," a "," b "]" => QuaternionAlgebra R a b
open Quaternion
namespace QuaternionAlgebra
/-- The equivalence between a quaternion algebra over `R` and `R × R × R × R`. -/
@[simps]
def equivProd {R : Type*} (c₁ c₂ : R) : ℍ[R,c₁,c₂] ≃ R × R × R × R where
toFun a := ⟨a.1, a.2, a.3, a.4⟩
invFun a := ⟨a.1, a.2.1, a.2.2.1, a.2.2.2⟩
left_inv _ := rfl
right_inv _ := rfl
/-- The equivalence between a quaternion algebra over `R` and `Fin 4 → R`. -/
@[simps symm_apply]
def equivTuple {R : Type*} (c₁ c₂ : R) : ℍ[R,c₁,c₂] ≃ (Fin 4 → R) where
toFun a := ![a.1, a.2, a.3, a.4]
invFun a := ⟨a 0, a 1, a 2, a 3⟩
left_inv _ := rfl
right_inv f := by ext ⟨_, _ | _ | _ | _ | _ | ⟨⟩⟩ <;> rfl
@[simp]
theorem equivTuple_apply {R : Type*} (c₁ c₂ : R) (x : ℍ[R,c₁,c₂]) :
equivTuple c₁ c₂ x = ![x.re, x.imI, x.imJ, x.imK] :=
rfl
@[simp]
theorem mk.eta {R : Type*} {c₁ c₂} (a : ℍ[R,c₁,c₂]) : mk a.1 a.2 a.3 a.4 = a := rfl
variable {S T R : Type*} {c₁ c₂ : R} (r x y z : R) (a b c : ℍ[R,c₁,c₂])
instance [Subsingleton R] : Subsingleton ℍ[R, c₁, c₂] := (equivTuple c₁ c₂).subsingleton
instance [Nontrivial R] : Nontrivial ℍ[R, c₁, c₂] := (equivTuple c₁ c₂).surjective.nontrivial
section Zero
variable [Zero R]
/-- The imaginary part of a quaternion. -/
def im (x : ℍ[R,c₁,c₂]) : ℍ[R,c₁,c₂] :=
⟨0, x.imI, x.imJ, x.imK⟩
@[simp]
theorem im_re : a.im.re = 0 :=
rfl
@[simp]
theorem im_imI : a.im.imI = a.imI :=
rfl
@[simp]
theorem im_imJ : a.im.imJ = a.imJ :=
rfl
@[simp]
theorem im_imK : a.im.imK = a.imK :=
rfl
@[simp]
theorem im_idem : a.im.im = a.im :=
rfl
/-- Coercion `R → ℍ[R,c₁,c₂]`. -/
@[coe] def coe (x : R) : ℍ[R,c₁,c₂] := ⟨x, 0, 0, 0⟩
instance : CoeTC R ℍ[R,c₁,c₂] := ⟨coe⟩
@[simp, norm_cast]
theorem coe_re : (x : ℍ[R,c₁,c₂]).re = x := rfl
@[simp, norm_cast]
theorem coe_imI : (x : ℍ[R,c₁,c₂]).imI = 0 := rfl
@[simp, norm_cast]
theorem coe_imJ : (x : ℍ[R,c₁,c₂]).imJ = 0 := rfl
@[simp, norm_cast]
theorem coe_imK : (x : ℍ[R,c₁,c₂]).imK = 0 := rfl
theorem coe_injective : Function.Injective (coe : R → ℍ[R,c₁,c₂]) := fun _ _ h => congr_arg re h
@[simp]
theorem coe_inj {x y : R} : (x : ℍ[R,c₁,c₂]) = y ↔ x = y :=
coe_injective.eq_iff
-- Porting note: removed `simps`, added simp lemmas manually
instance : Zero ℍ[R,c₁,c₂] := ⟨⟨0, 0, 0, 0⟩⟩
@[simp] theorem zero_re : (0 : ℍ[R,c₁,c₂]).re = 0 := rfl
@[simp] theorem zero_imI : (0 : ℍ[R,c₁,c₂]).imI = 0 := rfl
@[simp] theorem zero_imJ : (0 : ℍ[R,c₁,c₂]).imJ = 0 := rfl
@[simp] theorem zero_imK : (0 : ℍ[R,c₁,c₂]).imK = 0 := rfl
@[simp] theorem zero_im : (0 : ℍ[R,c₁,c₂]).im = 0 := rfl
@[simp, norm_cast]
theorem coe_zero : ((0 : R) : ℍ[R,c₁,c₂]) = 0 := rfl
instance : Inhabited ℍ[R,c₁,c₂] := ⟨0⟩
section One
variable [One R]
-- Porting note: removed `simps`, added simp lemmas manually
instance : One ℍ[R,c₁,c₂] := ⟨⟨1, 0, 0, 0⟩⟩
@[simp] theorem one_re : (1 : ℍ[R,c₁,c₂]).re = 1 := rfl
@[simp] theorem one_imI : (1 : ℍ[R,c₁,c₂]).imI = 0 := rfl
@[simp] theorem one_imJ : (1 : ℍ[R,c₁,c₂]).imJ = 0 := rfl
@[simp] theorem one_imK : (1 : ℍ[R,c₁,c₂]).imK = 0 := rfl
@[simp] theorem one_im : (1 : ℍ[R,c₁,c₂]).im = 0 := rfl
@[simp, norm_cast]
theorem coe_one : ((1 : R) : ℍ[R,c₁,c₂]) = 1 := rfl
end One
end Zero
section Add
variable [Add R]
-- Porting note: removed `simps`, added simp lemmas manually
instance : Add ℍ[R,c₁,c₂] :=
⟨fun a b => ⟨a.1 + b.1, a.2 + b.2, a.3 + b.3, a.4 + b.4⟩⟩
@[simp] theorem add_re : (a + b).re = a.re + b.re := rfl
@[simp] theorem add_imI : (a + b).imI = a.imI + b.imI := rfl
@[simp] theorem add_imJ : (a + b).imJ = a.imJ + b.imJ := rfl
@[simp] theorem add_imK : (a + b).imK = a.imK + b.imK := rfl
@[simp]
theorem mk_add_mk (a₁ a₂ a₃ a₄ b₁ b₂ b₃ b₄ : R) :
(mk a₁ a₂ a₃ a₄ : ℍ[R,c₁,c₂]) + mk b₁ b₂ b₃ b₄ = mk (a₁ + b₁) (a₂ + b₂) (a₃ + b₃) (a₄ + b₄) :=
rfl
end Add
section AddZeroClass
variable [AddZeroClass R]
@[simp] theorem add_im : (a + b).im = a.im + b.im :=
QuaternionAlgebra.ext (zero_add _).symm rfl rfl rfl
@[simp, norm_cast]
theorem coe_add : ((x + y : R) : ℍ[R,c₁,c₂]) = x + y := by ext <;> simp
end AddZeroClass
section Neg
variable [Neg R]
-- Porting note: removed `simps`, added simp lemmas manually
instance : Neg ℍ[R,c₁,c₂] := ⟨fun a => ⟨-a.1, -a.2, -a.3, -a.4⟩⟩
@[simp] theorem neg_re : (-a).re = -a.re := rfl
@[simp] theorem neg_imI : (-a).imI = -a.imI := rfl
@[simp] theorem neg_imJ : (-a).imJ = -a.imJ := rfl
@[simp] theorem neg_imK : (-a).imK = -a.imK := rfl
@[simp]
theorem neg_mk (a₁ a₂ a₃ a₄ : R) : -(mk a₁ a₂ a₃ a₄ : ℍ[R,c₁,c₂]) = ⟨-a₁, -a₂, -a₃, -a₄⟩ :=
rfl
end Neg
section AddGroup
variable [AddGroup R]
@[simp] theorem neg_im : (-a).im = -a.im :=
QuaternionAlgebra.ext neg_zero.symm rfl rfl rfl
@[simp, norm_cast]
theorem coe_neg : ((-x : R) : ℍ[R,c₁,c₂]) = -x := by ext <;> simp
instance : Sub ℍ[R,c₁,c₂] :=
⟨fun a b => ⟨a.1 - b.1, a.2 - b.2, a.3 - b.3, a.4 - b.4⟩⟩
@[simp] theorem sub_re : (a - b).re = a.re - b.re := rfl
@[simp] theorem sub_imI : (a - b).imI = a.imI - b.imI := rfl
@[simp] theorem sub_imJ : (a - b).imJ = a.imJ - b.imJ := rfl
@[simp] theorem sub_imK : (a - b).imK = a.imK - b.imK := rfl
@[simp] theorem sub_im : (a - b).im = a.im - b.im :=
QuaternionAlgebra.ext (sub_zero _).symm rfl rfl rfl
@[simp]
theorem mk_sub_mk (a₁ a₂ a₃ a₄ b₁ b₂ b₃ b₄ : R) :
(mk a₁ a₂ a₃ a₄ : ℍ[R,c₁,c₂]) - mk b₁ b₂ b₃ b₄ = mk (a₁ - b₁) (a₂ - b₂) (a₃ - b₃) (a₄ - b₄) :=
rfl
@[simp, norm_cast]
theorem coe_im : (x : ℍ[R,c₁,c₂]).im = 0 :=
rfl
@[simp]
theorem re_add_im : ↑a.re + a.im = a :=
QuaternionAlgebra.ext (add_zero _) (zero_add _) (zero_add _) (zero_add _)
@[simp]
theorem sub_self_im : a - a.im = a.re :=
QuaternionAlgebra.ext (sub_zero _) (sub_self _) (sub_self _) (sub_self _)
@[simp]
theorem sub_self_re : a - a.re = a.im :=
QuaternionAlgebra.ext (sub_self _) (sub_zero _) (sub_zero _) (sub_zero _)
end AddGroup
section Ring
variable [Ring R]
/-- Multiplication is given by
* `1 * x = x * 1 = x`;
* `i * i = c₁`;
* `j * j = c₂`;
* `i * j = k`, `j * i = -k`;
* `k * k = -c₁ * c₂`;
* `i * k = c₁ * j`, `k * i = -c₁ * j`;
* `j * k = -c₂ * i`, `k * j = c₂ * i`. -/
instance : Mul ℍ[R,c₁,c₂] :=
⟨fun a b =>
⟨a.1 * b.1 + c₁ * a.2 * b.2 + c₂ * a.3 * b.3 - c₁ * c₂ * a.4 * b.4,
a.1 * b.2 + a.2 * b.1 - c₂ * a.3 * b.4 + c₂ * a.4 * b.3,
a.1 * b.3 + c₁ * a.2 * b.4 + a.3 * b.1 - c₁ * a.4 * b.2,
a.1 * b.4 + a.2 * b.3 - a.3 * b.2 + a.4 * b.1⟩⟩
@[simp]
theorem mul_re : (a * b).re = a.1 * b.1 + c₁ * a.2 * b.2 + c₂ * a.3 * b.3 - c₁ * c₂ * a.4 * b.4 :=
rfl
@[simp]
theorem mul_imI : (a * b).imI = a.1 * b.2 + a.2 * b.1 - c₂ * a.3 * b.4 + c₂ * a.4 * b.3 := rfl
@[simp]
theorem mul_imJ : (a * b).imJ = a.1 * b.3 + c₁ * a.2 * b.4 + a.3 * b.1 - c₁ * a.4 * b.2 := rfl
@[simp] theorem mul_imK : (a * b).imK = a.1 * b.4 + a.2 * b.3 - a.3 * b.2 + a.4 * b.1 := rfl
@[simp]
theorem mk_mul_mk (a₁ a₂ a₃ a₄ b₁ b₂ b₃ b₄ : R) :
(mk a₁ a₂ a₃ a₄ : ℍ[R,c₁,c₂]) * mk b₁ b₂ b₃ b₄ =
⟨a₁ * b₁ + c₁ * a₂ * b₂ + c₂ * a₃ * b₃ - c₁ * c₂ * a₄ * b₄,
a₁ * b₂ + a₂ * b₁ - c₂ * a₃ * b₄ + c₂ * a₄ * b₃,
a₁ * b₃ + c₁ * a₂ * b₄ + a₃ * b₁ - c₁ * a₄ * b₂, a₁ * b₄ + a₂ * b₃ - a₃ * b₂ + a₄ * b₁⟩ :=
rfl
end Ring
section SMul
variable [SMul S R] [SMul T R] (s : S)
instance : SMul S ℍ[R,c₁,c₂] where smul s a := ⟨s • a.1, s • a.2, s • a.3, s • a.4⟩
instance [SMul S T] [IsScalarTower S T R] : IsScalarTower S T ℍ[R,c₁,c₂] where
smul_assoc s t x := by ext <;> exact smul_assoc _ _ _
instance [SMulCommClass S T R] : SMulCommClass S T ℍ[R,c₁,c₂] where
smul_comm s t x := by ext <;> exact smul_comm _ _ _
@[simp] theorem smul_re : (s • a).re = s • a.re := rfl
@[simp] theorem smul_imI : (s • a).imI = s • a.imI := rfl
@[simp] theorem smul_imJ : (s • a).imJ = s • a.imJ := rfl
@[simp] theorem smul_imK : (s • a).imK = s • a.imK := rfl
@[simp] theorem smul_im {S} [CommRing R] [SMulZeroClass S R] (s : S) : (s • a).im = s • a.im :=
QuaternionAlgebra.ext (smul_zero s).symm rfl rfl rfl
@[simp]
theorem smul_mk (re im_i im_j im_k : R) :
s • (⟨re, im_i, im_j, im_k⟩ : ℍ[R,c₁,c₂]) = ⟨s • re, s • im_i, s • im_j, s • im_k⟩ :=
rfl
end SMul
@[simp, norm_cast]
theorem coe_smul [Zero R] [SMulZeroClass S R] (s : S) (r : R) :
(↑(s • r) : ℍ[R,c₁,c₂]) = s • (r : ℍ[R,c₁,c₂]) :=
QuaternionAlgebra.ext rfl (smul_zero s).symm (smul_zero s).symm (smul_zero s).symm
instance [AddCommGroup R] : AddCommGroup ℍ[R,c₁,c₂] :=
(equivProd c₁ c₂).injective.addCommGroup _ rfl (fun _ _ ↦ rfl) (fun _ ↦ rfl) (fun _ _ ↦ rfl)
(fun _ _ ↦ rfl) (fun _ _ ↦ rfl)
section AddCommGroupWithOne
variable [AddCommGroupWithOne R]
instance : AddCommGroupWithOne ℍ[R,c₁,c₂] where
natCast n := ((n : R) : ℍ[R,c₁,c₂])
natCast_zero := by simp
natCast_succ := by simp
intCast n := ((n : R) : ℍ[R,c₁,c₂])
intCast_ofNat _ := congr_arg coe (Int.cast_natCast _)
intCast_negSucc n := by
change coe _ = -coe _
rw [Int.cast_negSucc, coe_neg]
@[simp, norm_cast]
theorem natCast_re (n : ℕ) : (n : ℍ[R,c₁,c₂]).re = n :=
rfl
@[deprecated (since := "2024-04-17")]
alias nat_cast_re := natCast_re
@[simp, norm_cast]
theorem natCast_imI (n : ℕ) : (n : ℍ[R,c₁,c₂]).imI = 0 :=
rfl
@[deprecated (since := "2024-04-17")]
alias nat_cast_imI := natCast_imI
@[simp, norm_cast]
theorem natCast_imJ (n : ℕ) : (n : ℍ[R,c₁,c₂]).imJ = 0 :=
rfl
@[deprecated (since := "2024-04-17")]
alias nat_cast_imJ := natCast_imJ
@[simp, norm_cast]
theorem natCast_imK (n : ℕ) : (n : ℍ[R,c₁,c₂]).imK = 0 :=
rfl
@[deprecated (since := "2024-04-17")]
alias nat_cast_imK := natCast_imK
@[simp, norm_cast]
theorem natCast_im (n : ℕ) : (n : ℍ[R,c₁,c₂]).im = 0 :=
rfl
@[deprecated (since := "2024-04-17")]
alias nat_cast_im := natCast_im
@[norm_cast]
theorem coe_natCast (n : ℕ) : ↑(n : R) = (n : ℍ[R,c₁,c₂]) :=
rfl
@[deprecated (since := "2024-04-17")]
alias coe_nat_cast := coe_natCast
@[simp, norm_cast]
theorem intCast_re (z : ℤ) : (z : ℍ[R,c₁,c₂]).re = z :=
rfl
@[deprecated (since := "2024-04-17")]
alias int_cast_re := intCast_re
@[simp, norm_cast]
theorem intCast_imI (z : ℤ) : (z : ℍ[R,c₁,c₂]).imI = 0 :=
rfl
@[deprecated (since := "2024-04-17")]
alias int_cast_imI := intCast_imI
@[simp, norm_cast]
theorem intCast_imJ (z : ℤ) : (z : ℍ[R,c₁,c₂]).imJ = 0 :=
rfl
@[deprecated (since := "2024-04-17")]
alias int_cast_imJ := intCast_imJ
@[simp, norm_cast]
theorem intCast_imK (z : ℤ) : (z : ℍ[R,c₁,c₂]).imK = 0 :=
rfl
@[deprecated (since := "2024-04-17")]
alias int_cast_imK := intCast_imK
@[simp, norm_cast]
theorem intCast_im (z : ℤ) : (z : ℍ[R,c₁,c₂]).im = 0 :=
rfl
@[deprecated (since := "2024-04-17")]
alias int_cast_im := intCast_im
@[norm_cast]
theorem coe_intCast (z : ℤ) : ↑(z : R) = (z : ℍ[R,c₁,c₂]) :=
rfl
@[deprecated (since := "2024-04-17")]
alias coe_int_cast := coe_intCast
end AddCommGroupWithOne
-- For the remainder of the file we assume `CommRing R`.
variable [CommRing R]
instance instRing : Ring ℍ[R,c₁,c₂] where
__ := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂])
left_distrib _ _ _ := by ext <;> simp <;> ring
right_distrib _ _ _ := by ext <;> simp <;> ring
zero_mul _ := by ext <;> simp
mul_zero _ := by ext <;> simp
mul_assoc _ _ _ := by ext <;> simp <;> ring
one_mul _ := by ext <;> simp
mul_one _ := by ext <;> simp
@[norm_cast, simp]
theorem coe_mul : ((x * y : R) : ℍ[R,c₁,c₂]) = x * y := by ext <;> simp
-- TODO: add weaker `MulAction`, `DistribMulAction`, and `Module` instances (and repeat them
-- for `ℍ[R]`)
instance [CommSemiring S] [Algebra S R] : Algebra S ℍ[R,c₁,c₂] where
smul := (· • ·)
toFun s := coe (algebraMap S R s)
map_one' := by simp only [map_one, coe_one]
map_zero' := by simp only [map_zero, coe_zero]
map_mul' x y := by simp only [map_mul, coe_mul]
map_add' x y := by simp only [map_add, coe_add]
smul_def' s x := by ext <;> simp [Algebra.smul_def]
commutes' s x := by ext <;> simp [Algebra.commutes]
theorem algebraMap_eq (r : R) : algebraMap R ℍ[R,c₁,c₂] r = ⟨r, 0, 0, 0⟩ :=
rfl
theorem algebraMap_injective : (algebraMap R ℍ[R,c₁,c₂] : _ → _).Injective :=
fun _ _ ↦ by simp [algebraMap_eq]
instance [NoZeroDivisors R] : NoZeroSMulDivisors R ℍ[R,c₁,c₂] := ⟨by
rintro t ⟨a, b, c, d⟩ h
rw [or_iff_not_imp_left]
intro ht
simpa [QuaternionAlgebra.ext_iff, ht] using h⟩
section
variable (c₁ c₂)
/-- `QuaternionAlgebra.re` as a `LinearMap`-/
@[simps]
def reₗ : ℍ[R,c₁,c₂] →ₗ[R] R where
toFun := re
map_add' _ _ := rfl
map_smul' _ _ := rfl
/-- `QuaternionAlgebra.imI` as a `LinearMap`-/
@[simps]
def imIₗ : ℍ[R,c₁,c₂] →ₗ[R] R where
toFun := imI
map_add' _ _ := rfl
map_smul' _ _ := rfl
/-- `QuaternionAlgebra.imJ` as a `LinearMap`-/
@[simps]
def imJₗ : ℍ[R,c₁,c₂] →ₗ[R] R where
toFun := imJ
map_add' _ _ := rfl
map_smul' _ _ := rfl
/-- `QuaternionAlgebra.imK` as a `LinearMap`-/
@[simps]
def imKₗ : ℍ[R,c₁,c₂] →ₗ[R] R where
toFun := imK
map_add' _ _ := rfl
map_smul' _ _ := rfl
/-- `QuaternionAlgebra.equivTuple` as a linear equivalence. -/
def linearEquivTuple : ℍ[R,c₁,c₂] ≃ₗ[R] Fin 4 → R :=
LinearEquiv.symm -- proofs are not `rfl` in the forward direction
{ (equivTuple c₁ c₂).symm with
toFun := (equivTuple c₁ c₂).symm
invFun := equivTuple c₁ c₂
map_add' := fun _ _ => rfl
map_smul' := fun _ _ => rfl }
@[simp]
theorem coe_linearEquivTuple : ⇑(linearEquivTuple c₁ c₂) = equivTuple c₁ c₂ :=
rfl
@[simp]
theorem coe_linearEquivTuple_symm : ⇑(linearEquivTuple c₁ c₂).symm = (equivTuple c₁ c₂).symm :=
rfl
/-- `ℍ[R, c₁, c₂]` has a basis over `R` given by `1`, `i`, `j`, and `k`. -/
noncomputable def basisOneIJK : Basis (Fin 4) R ℍ[R,c₁,c₂] :=
.ofEquivFun <| linearEquivTuple c₁ c₂
@[simp]
theorem coe_basisOneIJK_repr (q : ℍ[R,c₁,c₂]) :
⇑((basisOneIJK c₁ c₂).repr q) = ![q.re, q.imI, q.imJ, q.imK] :=
rfl
instance : Module.Finite R ℍ[R,c₁,c₂] := .of_basis (basisOneIJK c₁ c₂)
instance : Module.Free R ℍ[R,c₁,c₂] := .of_basis (basisOneIJK c₁ c₂)
theorem rank_eq_four [StrongRankCondition R] : Module.rank R ℍ[R,c₁,c₂] = 4 := by
rw [rank_eq_card_basis (basisOneIJK c₁ c₂), Fintype.card_fin]
norm_num
theorem finrank_eq_four [StrongRankCondition R] : FiniteDimensional.finrank R ℍ[R,c₁,c₂] = 4 := by
rw [FiniteDimensional.finrank, rank_eq_four, Cardinal.toNat_ofNat]
/-- There is a natural equivalence when swapping the coefficients of a quaternion algebra. -/
@[simps]
def swapEquiv : ℍ[R,c₁,c₂] ≃ₐ[R] ℍ[R, c₂, c₁] where
toFun t := ⟨t.1, t.3, t.2, -t.4⟩
invFun t := ⟨t.1, t.3, t.2, -t.4⟩
left_inv _ := by simp
right_inv _ := by simp
map_mul' _ _ := by
ext
<;> simp only [mul_re, mul_imJ, mul_imI, add_left_inj, mul_imK, neg_mul, neg_add_rev,
neg_sub, mk_mul_mk, mul_neg, neg_neg, sub_neg_eq_add]
<;> ring
map_add' _ _ := by ext <;> simp [add_comm]
commutes' _ := by simp [algebraMap_eq]
end
@[norm_cast, simp]
theorem coe_sub : ((x - y : R) : ℍ[R,c₁,c₂]) = x - y :=
(algebraMap R ℍ[R,c₁,c₂]).map_sub x y
@[norm_cast, simp]
theorem coe_pow (n : ℕ) : (↑(x ^ n) : ℍ[R,c₁,c₂]) = (x : ℍ[R,c₁,c₂]) ^ n :=
(algebraMap R ℍ[R,c₁,c₂]).map_pow x n
theorem coe_commutes : ↑r * a = a * r :=
Algebra.commutes r a
theorem coe_commute : Commute (↑r) a :=
coe_commutes r a
theorem coe_mul_eq_smul : ↑r * a = r • a :=
(Algebra.smul_def r a).symm
theorem mul_coe_eq_smul : a * r = r • a := by rw [← coe_commutes, coe_mul_eq_smul]
@[norm_cast, simp]
theorem coe_algebraMap : ⇑(algebraMap R ℍ[R,c₁,c₂]) = coe :=
rfl
theorem smul_coe : x • (y : ℍ[R,c₁,c₂]) = ↑(x * y) := by rw [coe_mul, coe_mul_eq_smul]
/-- Quaternion conjugate. -/
instance instStarQuaternionAlgebra : Star ℍ[R,c₁,c₂] where star a := ⟨a.1, -a.2, -a.3, -a.4⟩
@[simp] theorem re_star : (star a).re = a.re := rfl
@[simp]
theorem imI_star : (star a).imI = -a.imI :=
rfl
@[simp]
theorem imJ_star : (star a).imJ = -a.imJ :=
rfl
@[simp]
theorem imK_star : (star a).imK = -a.imK :=
rfl
@[simp]
theorem im_star : (star a).im = -a.im :=
QuaternionAlgebra.ext neg_zero.symm rfl rfl rfl
@[simp]
theorem star_mk (a₁ a₂ a₃ a₄ : R) : star (mk a₁ a₂ a₃ a₄ : ℍ[R,c₁,c₂]) = ⟨a₁, -a₂, -a₃, -a₄⟩ :=
rfl
instance instStarRing : StarRing ℍ[R,c₁,c₂] where
star_involutive x := by simp [Star.star]
star_add a b := by ext <;> simp [add_comm]
star_mul a b := by ext <;> simp <;> ring
theorem self_add_star' : a + star a = ↑(2 * a.re) := by ext <;> simp [two_mul]
theorem self_add_star : a + star a = 2 * a.re := by simp only [self_add_star', two_mul, coe_add]
theorem star_add_self' : star a + a = ↑(2 * a.re) := by rw [add_comm, self_add_star']
theorem star_add_self : star a + a = 2 * a.re := by rw [add_comm, self_add_star]
theorem star_eq_two_re_sub : star a = ↑(2 * a.re) - a :=
eq_sub_iff_add_eq.2 a.star_add_self'
instance : IsStarNormal a :=
⟨by
rw [a.star_eq_two_re_sub]
exact (coe_commute (2 * a.re) a).sub_left (Commute.refl a)⟩
@[simp, norm_cast]
theorem star_coe : star (x : ℍ[R,c₁,c₂]) = x := by ext <;> simp
@[simp] theorem star_im : star a.im = -a.im := im_star _
@[simp]
theorem star_smul [Monoid S] [DistribMulAction S R] (s : S) (a : ℍ[R,c₁,c₂]) :
star (s • a) = s • star a :=
QuaternionAlgebra.ext rfl (smul_neg _ _).symm (smul_neg _ _).symm (smul_neg _ _).symm
theorem eq_re_of_eq_coe {a : ℍ[R,c₁,c₂]} {x : R} (h : a = x) : a = a.re := by rw [h, coe_re]
theorem eq_re_iff_mem_range_coe {a : ℍ[R,c₁,c₂]} :
a = a.re ↔ a ∈ Set.range (coe : R → ℍ[R,c₁,c₂]) :=
⟨fun h => ⟨a.re, h.symm⟩, fun ⟨_, h⟩ => eq_re_of_eq_coe h.symm⟩
section CharZero
variable [NoZeroDivisors R] [CharZero R]
@[simp]
theorem star_eq_self {c₁ c₂ : R} {a : ℍ[R,c₁,c₂]} : star a = a ↔ a = a.re := by
simp [QuaternionAlgebra.ext_iff, neg_eq_iff_add_eq_zero, add_self_eq_zero]
theorem star_eq_neg {c₁ c₂ : R} {a : ℍ[R,c₁,c₂]} : star a = -a ↔ a.re = 0 := by
simp [QuaternionAlgebra.ext_iff, eq_neg_iff_add_eq_zero]
end CharZero
-- Can't use `rw ← star_eq_self` in the proof without additional assumptions
theorem star_mul_eq_coe : star a * a = (star a * a).re := by ext <;> simp <;> ring
theorem mul_star_eq_coe : a * star a = (a * star a).re := by
rw [← star_comm_self']
exact a.star_mul_eq_coe
open MulOpposite
/-- Quaternion conjugate as an `AlgEquiv` to the opposite ring. -/
def starAe : ℍ[R,c₁,c₂] ≃ₐ[R] ℍ[R,c₁,c₂]ᵐᵒᵖ :=
{ starAddEquiv.trans opAddEquiv with
toFun := op ∘ star
invFun := star ∘ unop
map_mul' := fun x y => by simp
commutes' := fun r => by simp }
@[simp]
theorem coe_starAe : ⇑(starAe : ℍ[R,c₁,c₂] ≃ₐ[R] _) = op ∘ star :=
rfl
end QuaternionAlgebra
/-- Space of quaternions over a type. Implemented as a structure with four fields:
`re`, `im_i`, `im_j`, and `im_k`. -/
def Quaternion (R : Type*) [One R] [Neg R] :=
QuaternionAlgebra R (-1) (-1)
scoped[Quaternion] notation "ℍ[" R "]" => Quaternion R
/-- The equivalence between the quaternions over `R` and `R × R × R × R`. -/
@[simps!]
def Quaternion.equivProd (R : Type*) [One R] [Neg R] : ℍ[R] ≃ R × R × R × R :=
QuaternionAlgebra.equivProd _ _
/-- The equivalence between the quaternions over `R` and `Fin 4 → R`. -/
@[simps! symm_apply]
def Quaternion.equivTuple (R : Type*) [One R] [Neg R] : ℍ[R] ≃ (Fin 4 → R) :=
QuaternionAlgebra.equivTuple _ _
@[simp]
theorem Quaternion.equivTuple_apply (R : Type*) [One R] [Neg R] (x : ℍ[R]) :
Quaternion.equivTuple R x = ![x.re, x.imI, x.imJ, x.imK] :=
rfl
instance {R : Type*} [One R] [Neg R] [Subsingleton R] : Subsingleton ℍ[R] :=
inferInstanceAs (Subsingleton <| ℍ[R, -1, -1])
instance {R : Type*} [One R] [Neg R] [Nontrivial R] : Nontrivial ℍ[R] :=
inferInstanceAs (Nontrivial <| ℍ[R, -1, -1])
namespace Quaternion
variable {S T R : Type*} [CommRing R] (r x y z : R) (a b c : ℍ[R])
export QuaternionAlgebra (re imI imJ imK)
/-- Coercion `R → ℍ[R]`. -/
@[coe] def coe : R → ℍ[R] := QuaternionAlgebra.coe
instance : CoeTC R ℍ[R] := ⟨coe⟩
instance instRing : Ring ℍ[R] := QuaternionAlgebra.instRing
instance : Inhabited ℍ[R] := inferInstanceAs <| Inhabited ℍ[R,-1,-1]
instance [SMul S R] : SMul S ℍ[R] := inferInstanceAs <| SMul S ℍ[R,-1,-1]
instance [SMul S T] [SMul S R] [SMul T R] [IsScalarTower S T R] : IsScalarTower S T ℍ[R] :=
inferInstanceAs <| IsScalarTower S T ℍ[R,-1,-1]
instance [SMul S R] [SMul T R] [SMulCommClass S T R] : SMulCommClass S T ℍ[R] :=
inferInstanceAs <| SMulCommClass S T ℍ[R,-1,-1]
protected instance algebra [CommSemiring S] [Algebra S R] : Algebra S ℍ[R] :=
inferInstanceAs <| Algebra S ℍ[R,-1,-1]
-- Porting note: added shortcut
instance : Star ℍ[R] := QuaternionAlgebra.instStarQuaternionAlgebra
instance : StarRing ℍ[R] := QuaternionAlgebra.instStarRing
instance : IsStarNormal a := inferInstanceAs <| IsStarNormal (R := ℍ[R,-1,-1]) a
@[ext]
theorem ext : a.re = b.re → a.imI = b.imI → a.imJ = b.imJ → a.imK = b.imK → a = b :=
QuaternionAlgebra.ext
/-- The imaginary part of a quaternion. -/
nonrec def im (x : ℍ[R]) : ℍ[R] := x.im
@[simp] theorem im_re : a.im.re = 0 := rfl
@[simp] theorem im_imI : a.im.imI = a.imI := rfl
@[simp] theorem im_imJ : a.im.imJ = a.imJ := rfl
@[simp] theorem im_imK : a.im.imK = a.imK := rfl
@[simp] theorem im_idem : a.im.im = a.im := rfl
@[simp] nonrec theorem re_add_im : ↑a.re + a.im = a := a.re_add_im
@[simp] nonrec theorem sub_self_im : a - a.im = a.re := a.sub_self_im
@[simp] nonrec theorem sub_self_re : a - ↑a.re = a.im := a.sub_self_re
@[simp, norm_cast]
theorem coe_re : (x : ℍ[R]).re = x := rfl
@[simp, norm_cast]
theorem coe_imI : (x : ℍ[R]).imI = 0 := rfl
@[simp, norm_cast]
theorem coe_imJ : (x : ℍ[R]).imJ = 0 := rfl
@[simp, norm_cast]
theorem coe_imK : (x : ℍ[R]).imK = 0 := rfl
@[simp, norm_cast]
theorem coe_im : (x : ℍ[R]).im = 0 := rfl
@[simp] theorem zero_re : (0 : ℍ[R]).re = 0 := rfl
@[simp] theorem zero_imI : (0 : ℍ[R]).imI = 0 := rfl
@[simp] theorem zero_imJ : (0 : ℍ[R]).imJ = 0 := rfl
@[simp] theorem zero_imK : (0 : ℍ[R]).imK = 0 := rfl
@[simp] theorem zero_im : (0 : ℍ[R]).im = 0 := rfl
@[simp, norm_cast]
theorem coe_zero : ((0 : R) : ℍ[R]) = 0 := rfl
@[simp] theorem one_re : (1 : ℍ[R]).re = 1 := rfl
@[simp] theorem one_imI : (1 : ℍ[R]).imI = 0 := rfl
@[simp] theorem one_imJ : (1 : ℍ[R]).imJ = 0 := rfl
@[simp] theorem one_imK : (1 : ℍ[R]).imK = 0 := rfl
@[simp] theorem one_im : (1 : ℍ[R]).im = 0 := rfl
@[simp, norm_cast]
theorem coe_one : ((1 : R) : ℍ[R]) = 1 := rfl
@[simp] theorem add_re : (a + b).re = a.re + b.re := rfl
@[simp] theorem add_imI : (a + b).imI = a.imI + b.imI := rfl
@[simp] theorem add_imJ : (a + b).imJ = a.imJ + b.imJ := rfl
@[simp] theorem add_imK : (a + b).imK = a.imK + b.imK := rfl
@[simp] nonrec theorem add_im : (a + b).im = a.im + b.im := a.add_im b
@[simp, norm_cast]
theorem coe_add : ((x + y : R) : ℍ[R]) = x + y :=
QuaternionAlgebra.coe_add x y
@[simp] theorem neg_re : (-a).re = -a.re := rfl
@[simp] theorem neg_imI : (-a).imI = -a.imI := rfl
@[simp] theorem neg_imJ : (-a).imJ = -a.imJ := rfl
@[simp] theorem neg_imK : (-a).imK = -a.imK := rfl
@[simp] nonrec theorem neg_im : (-a).im = -a.im := a.neg_im
@[simp, norm_cast]
theorem coe_neg : ((-x : R) : ℍ[R]) = -x :=
QuaternionAlgebra.coe_neg x
@[simp] theorem sub_re : (a - b).re = a.re - b.re := rfl
@[simp] theorem sub_imI : (a - b).imI = a.imI - b.imI := rfl
@[simp] theorem sub_imJ : (a - b).imJ = a.imJ - b.imJ := rfl
@[simp] theorem sub_imK : (a - b).imK = a.imK - b.imK := rfl
@[simp] nonrec theorem sub_im : (a - b).im = a.im - b.im := a.sub_im b
@[simp, norm_cast]
theorem coe_sub : ((x - y : R) : ℍ[R]) = x - y :=
QuaternionAlgebra.coe_sub x y
@[simp]
theorem mul_re : (a * b).re = a.re * b.re - a.imI * b.imI - a.imJ * b.imJ - a.imK * b.imK :=
(QuaternionAlgebra.mul_re a b).trans <| by simp only [one_mul, neg_mul, sub_eq_add_neg, neg_neg]
@[simp]
theorem mul_imI : (a * b).imI = a.re * b.imI + a.imI * b.re + a.imJ * b.imK - a.imK * b.imJ :=
(QuaternionAlgebra.mul_imI a b).trans <| by simp only [one_mul, neg_mul, sub_eq_add_neg, neg_neg]
@[simp]
theorem mul_imJ : (a * b).imJ = a.re * b.imJ - a.imI * b.imK + a.imJ * b.re + a.imK * b.imI :=
(QuaternionAlgebra.mul_imJ a b).trans <| by simp only [one_mul, neg_mul, sub_eq_add_neg, neg_neg]
@[simp]
theorem mul_imK : (a * b).imK = a.re * b.imK + a.imI * b.imJ - a.imJ * b.imI + a.imK * b.re :=
(QuaternionAlgebra.mul_imK a b).trans <| by simp only [one_mul, neg_mul, sub_eq_add_neg, neg_neg]
@[simp, norm_cast]
theorem coe_mul : ((x * y : R) : ℍ[R]) = x * y := QuaternionAlgebra.coe_mul x y
@[norm_cast, simp]
theorem coe_pow (n : ℕ) : (↑(x ^ n) : ℍ[R]) = (x : ℍ[R]) ^ n :=
QuaternionAlgebra.coe_pow x n
@[simp, norm_cast]
theorem natCast_re (n : ℕ) : (n : ℍ[R]).re = n := rfl
@[deprecated (since := "2024-04-17")]
alias nat_cast_re := natCast_re
@[simp, norm_cast]
theorem natCast_imI (n : ℕ) : (n : ℍ[R]).imI = 0 := rfl
@[deprecated (since := "2024-04-17")]
alias nat_cast_imI := natCast_imI
@[simp, norm_cast]
theorem natCast_imJ (n : ℕ) : (n : ℍ[R]).imJ = 0 := rfl
@[deprecated (since := "2024-04-17")]
alias nat_cast_imJ := natCast_imJ
@[simp, norm_cast]
theorem natCast_imK (n : ℕ) : (n : ℍ[R]).imK = 0 := rfl
@[deprecated (since := "2024-04-17")]
alias nat_cast_imK := natCast_imK
@[simp, norm_cast]
theorem natCast_im (n : ℕ) : (n : ℍ[R]).im = 0 := rfl
@[deprecated (since := "2024-04-17")]
alias nat_cast_im := natCast_im
@[norm_cast]
theorem coe_natCast (n : ℕ) : ↑(n : R) = (n : ℍ[R]) := rfl
@[deprecated (since := "2024-04-17")]
alias coe_nat_cast := coe_natCast
@[simp, norm_cast]
theorem intCast_re (z : ℤ) : (z : ℍ[R]).re = z := rfl
@[deprecated (since := "2024-04-17")]
alias int_cast_re := intCast_re
@[simp, norm_cast]
theorem intCast_imI (z : ℤ) : (z : ℍ[R]).imI = 0 := rfl
@[deprecated (since := "2024-04-17")]
alias int_cast_imI := intCast_imI
@[simp, norm_cast]
theorem intCast_imJ (z : ℤ) : (z : ℍ[R]).imJ = 0 := rfl
@[deprecated (since := "2024-04-17")]
alias int_cast_imJ := intCast_imJ
@[simp, norm_cast]
theorem intCast_imK (z : ℤ) : (z : ℍ[R]).imK = 0 := rfl
@[deprecated (since := "2024-04-17")]
alias int_cast_imK := intCast_imK
@[simp, norm_cast]
theorem intCast_im (z : ℤ) : (z : ℍ[R]).im = 0 := rfl
@[deprecated (since := "2024-04-17")]
alias int_cast_im := intCast_im
@[norm_cast]
theorem coe_intCast (z : ℤ) : ↑(z : R) = (z : ℍ[R]) := rfl
@[deprecated (since := "2024-04-17")]
alias coe_int_cast := coe_intCast
theorem coe_injective : Function.Injective (coe : R → ℍ[R]) :=
QuaternionAlgebra.coe_injective
@[simp]
theorem coe_inj {x y : R} : (x : ℍ[R]) = y ↔ x = y :=
coe_injective.eq_iff
@[simp]
theorem smul_re [SMul S R] (s : S) : (s • a).re = s • a.re :=
rfl
@[simp] theorem smul_imI [SMul S R] (s : S) : (s • a).imI = s • a.imI := rfl
@[simp] theorem smul_imJ [SMul S R] (s : S) : (s • a).imJ = s • a.imJ := rfl
@[simp] theorem smul_imK [SMul S R] (s : S) : (s • a).imK = s • a.imK := rfl
@[simp]
nonrec theorem smul_im [SMulZeroClass S R] (s : S) : (s • a).im = s • a.im :=
a.smul_im s
@[simp, norm_cast]
theorem coe_smul [SMulZeroClass S R] (s : S) (r : R) : (↑(s • r) : ℍ[R]) = s • (r : ℍ[R]) :=
QuaternionAlgebra.coe_smul _ _
theorem coe_commutes : ↑r * a = a * r :=
QuaternionAlgebra.coe_commutes r a
theorem coe_commute : Commute (↑r) a :=
QuaternionAlgebra.coe_commute r a
theorem coe_mul_eq_smul : ↑r * a = r • a :=
QuaternionAlgebra.coe_mul_eq_smul r a
theorem mul_coe_eq_smul : a * r = r • a :=
QuaternionAlgebra.mul_coe_eq_smul r a
@[simp]
theorem algebraMap_def : ⇑(algebraMap R ℍ[R]) = coe :=
rfl
theorem algebraMap_injective : (algebraMap R ℍ[R] : _ → _).Injective :=
QuaternionAlgebra.algebraMap_injective
theorem smul_coe : x • (y : ℍ[R]) = ↑(x * y) :=
QuaternionAlgebra.smul_coe x y
instance : Module.Finite R ℍ[R] := inferInstanceAs <| Module.Finite R ℍ[R,-1,-1]
instance : Module.Free R ℍ[R] := inferInstanceAs <| Module.Free R ℍ[R,-1,-1]
theorem rank_eq_four [StrongRankCondition R] : Module.rank R ℍ[R] = 4 :=
QuaternionAlgebra.rank_eq_four _ _
theorem finrank_eq_four [StrongRankCondition R] : FiniteDimensional.finrank R ℍ[R] = 4 :=
QuaternionAlgebra.finrank_eq_four _ _
@[simp] theorem star_re : (star a).re = a.re := rfl
@[simp] theorem star_imI : (star a).imI = -a.imI := rfl
@[simp] theorem star_imJ : (star a).imJ = -a.imJ := rfl
@[simp] theorem star_imK : (star a).imK = -a.imK := rfl
@[simp] theorem star_im : (star a).im = -a.im := a.im_star
nonrec theorem self_add_star' : a + star a = ↑(2 * a.re) :=
a.self_add_star'
nonrec theorem self_add_star : a + star a = 2 * a.re :=
a.self_add_star
nonrec theorem star_add_self' : star a + a = ↑(2 * a.re) :=
a.star_add_self'
nonrec theorem star_add_self : star a + a = 2 * a.re :=
a.star_add_self
nonrec theorem star_eq_two_re_sub : star a = ↑(2 * a.re) - a :=
a.star_eq_two_re_sub
@[simp, norm_cast]
theorem star_coe : star (x : ℍ[R]) = x :=
QuaternionAlgebra.star_coe x
@[simp]
theorem im_star : star a.im = -a.im :=
QuaternionAlgebra.im_star _
@[simp]
theorem star_smul [Monoid S] [DistribMulAction S R] (s : S) (a : ℍ[R]) :
star (s • a) = s • star a :=
QuaternionAlgebra.star_smul _ _
theorem eq_re_of_eq_coe {a : ℍ[R]} {x : R} (h : a = x) : a = a.re :=
QuaternionAlgebra.eq_re_of_eq_coe h
theorem eq_re_iff_mem_range_coe {a : ℍ[R]} : a = a.re ↔ a ∈ Set.range (coe : R → ℍ[R]) :=
QuaternionAlgebra.eq_re_iff_mem_range_coe
section CharZero
variable [NoZeroDivisors R] [CharZero R]
@[simp]
theorem star_eq_self {a : ℍ[R]} : star a = a ↔ a = a.re :=
QuaternionAlgebra.star_eq_self
@[simp]
theorem star_eq_neg {a : ℍ[R]} : star a = -a ↔ a.re = 0 :=
QuaternionAlgebra.star_eq_neg
end CharZero
nonrec theorem star_mul_eq_coe : star a * a = (star a * a).re :=
a.star_mul_eq_coe
nonrec theorem mul_star_eq_coe : a * star a = (a * star a).re :=
a.mul_star_eq_coe
open MulOpposite
/-- Quaternion conjugate as an `AlgEquiv` to the opposite ring. -/
def starAe : ℍ[R] ≃ₐ[R] ℍ[R]ᵐᵒᵖ :=
QuaternionAlgebra.starAe
@[simp]
theorem coe_starAe : ⇑(starAe : ℍ[R] ≃ₐ[R] ℍ[R]ᵐᵒᵖ) = op ∘ star :=
rfl
/-- Square of the norm. -/
def normSq : ℍ[R] →*₀ R where
toFun a := (a * star a).re
map_zero' := by simp only [star_zero, zero_mul, zero_re]
map_one' := by simp only [star_one, one_mul, one_re]
map_mul' x y := coe_injective <| by
conv_lhs => rw [← mul_star_eq_coe, star_mul, mul_assoc, ← mul_assoc y, y.mul_star_eq_coe,
coe_commutes, ← mul_assoc, x.mul_star_eq_coe, ← coe_mul]
theorem normSq_def : normSq a = (a * star a).re := rfl
theorem normSq_def' : normSq a = a.1 ^ 2 + a.2 ^ 2 + a.3 ^ 2 + a.4 ^ 2 := by
simp only [normSq_def, sq, mul_neg, sub_neg_eq_add, mul_re, star_re, star_imI, star_imJ,
star_imK]
theorem normSq_coe : normSq (x : ℍ[R]) = x ^ 2 := by
rw [normSq_def, star_coe, ← coe_mul, coe_re, sq]
@[simp]
theorem normSq_star : normSq (star a) = normSq a := by simp [normSq_def']
@[norm_cast]
theorem normSq_natCast (n : ℕ) : normSq (n : ℍ[R]) = (n : R) ^ 2 := by
rw [← coe_natCast, normSq_coe]
@[deprecated (since := "2024-04-17")]
alias normSq_nat_cast := normSq_natCast
@[norm_cast]
theorem normSq_intCast (z : ℤ) : normSq (z : ℍ[R]) = (z : R) ^ 2 := by
rw [← coe_intCast, normSq_coe]
@[deprecated (since := "2024-04-17")]
alias normSq_int_cast := normSq_intCast
@[simp]
theorem normSq_neg : normSq (-a) = normSq a := by simp only [normSq_def, star_neg, neg_mul_neg]
theorem self_mul_star : a * star a = normSq a := by rw [mul_star_eq_coe, normSq_def]
theorem star_mul_self : star a * a = normSq a := by rw [star_comm_self, self_mul_star]
theorem im_sq : a.im ^ 2 = -normSq a.im := by
simp_rw [sq, ← star_mul_self, im_star, neg_mul, neg_neg]
theorem coe_normSq_add : normSq (a + b) = normSq a + a * star b + b * star a + normSq b := by
simp only [star_add, ← self_mul_star, mul_add, add_mul, add_assoc, add_left_comm]
theorem normSq_smul (r : R) (q : ℍ[R]) : normSq (r • q) = r ^ 2 * normSq q := by
simp only [normSq_def', smul_re, smul_imI, smul_imJ, smul_imK, mul_pow, mul_add, smul_eq_mul]
theorem normSq_add (a b : ℍ[R]) : normSq (a + b) = normSq a + normSq b + 2 * (a * star b).re :=
calc
normSq (a + b) = normSq a + (a * star b).re + ((b * star a).re + normSq b) := by
simp_rw [normSq_def, star_add, add_mul, mul_add, add_re]
_ = normSq a + normSq b + ((a * star b).re + (b * star a).re) := by abel
_ = normSq a + normSq b + 2 * (a * star b).re := by
rw [← add_re, ← star_mul_star a b, self_add_star', coe_re]
end Quaternion
namespace Quaternion
variable {R : Type*}
section LinearOrderedCommRing
variable [LinearOrderedCommRing R] {a : ℍ[R]}
@[simp]
theorem normSq_eq_zero : normSq a = 0 ↔ a = 0 := by
refine ⟨fun h => ?_, fun h => h.symm ▸ normSq.map_zero⟩
rw [normSq_def', add_eq_zero_iff', add_eq_zero_iff', add_eq_zero_iff'] at h
· exact ext a 0 (pow_eq_zero h.1.1.1) (pow_eq_zero h.1.1.2) (pow_eq_zero h.1.2) (pow_eq_zero h.2)
all_goals apply_rules [sq_nonneg, add_nonneg]
theorem normSq_ne_zero : normSq a ≠ 0 ↔ a ≠ 0 := normSq_eq_zero.not
@[simp]
theorem normSq_nonneg : 0 ≤ normSq a := by
rw [normSq_def']
apply_rules [sq_nonneg, add_nonneg]
@[simp]
theorem normSq_le_zero : normSq a ≤ 0 ↔ a = 0 :=
normSq_nonneg.le_iff_eq.trans normSq_eq_zero
instance instNontrivial : Nontrivial ℍ[R] where
exists_pair_ne := ⟨0, 1, mt (congr_arg re) zero_ne_one⟩
instance : NoZeroDivisors ℍ[R] where
eq_zero_or_eq_zero_of_mul_eq_zero {a b} hab :=
have : normSq a * normSq b = 0 := by rwa [← map_mul, normSq_eq_zero]
(eq_zero_or_eq_zero_of_mul_eq_zero this).imp normSq_eq_zero.1 normSq_eq_zero.1
instance : IsDomain ℍ[R] := NoZeroDivisors.to_isDomain _
theorem sq_eq_normSq : a ^ 2 = normSq a ↔ a = a.re := by
rw [← star_eq_self, ← star_mul_self, sq, mul_eq_mul_right_iff, eq_comm]
exact or_iff_left_of_imp fun ha ↦ ha.symm ▸ star_zero _
theorem sq_eq_neg_normSq : a ^ 2 = -normSq a ↔ a.re = 0 := by
simp_rw [← star_eq_neg]
obtain rfl | hq0 := eq_or_ne a 0
· simp
· rw [← star_mul_self, ← mul_neg, ← neg_sq, sq, mul_left_inj' (neg_ne_zero.mpr hq0), eq_comm]
end LinearOrderedCommRing
section Field
variable [LinearOrderedField R] (a b : ℍ[R])
@[simps (config := .lemmasOnly)]
instance instInv : Inv ℍ[R] :=
⟨fun a => (normSq a)⁻¹ • star a⟩
instance instGroupWithZero : GroupWithZero ℍ[R] :=
{ Quaternion.instNontrivial,
(by infer_instance : MonoidWithZero ℍ[R]) with
inv := Inv.inv
inv_zero := by rw [instInv_inv, star_zero, smul_zero]
mul_inv_cancel := fun a ha => by
-- Porting note: the aliased definition confuse TC search
letI : Semiring ℍ[R] := inferInstanceAs (Semiring ℍ[R,-1,-1])
rw [instInv_inv, Algebra.mul_smul_comm (normSq a)⁻¹ a (star a), self_mul_star, smul_coe,
inv_mul_cancel (normSq_ne_zero.2 ha), coe_one] }
@[norm_cast, simp]
theorem coe_inv (x : R) : ((x⁻¹ : R) : ℍ[R]) = (↑x)⁻¹ :=
map_inv₀ (algebraMap R ℍ[R]) _
@[norm_cast, simp]
theorem coe_div (x y : R) : ((x / y : R) : ℍ[R]) = x / y :=
map_div₀ (algebraMap R ℍ[R]) x y
@[norm_cast, simp]
theorem coe_zpow (x : R) (z : ℤ) : ((x ^ z : R) : ℍ[R]) = (x : ℍ[R]) ^ z :=
map_zpow₀ (algebraMap R ℍ[R]) x z
instance instNNRatCast : NNRatCast ℍ[R] where nnratCast q := (q : R)
instance instRatCast : RatCast ℍ[R] where ratCast q := (q : R)
@[simp, norm_cast] lemma re_nnratCast (q : ℚ≥0) : (q : ℍ[R]).re = q := rfl
@[simp, norm_cast] lemma im_nnratCast (q : ℚ≥0) : (q : ℍ[R]).im = 0 := rfl
@[simp, norm_cast] lemma imI_nnratCast (q : ℚ≥0) : (q : ℍ[R]).imI = 0 := rfl
@[simp, norm_cast] lemma imJ_nnratCast (q : ℚ≥0) : (q : ℍ[R]).imJ = 0 := rfl
@[simp, norm_cast] lemma imK_nnratCast (q : ℚ≥0) : (q : ℍ[R]).imK = 0 := rfl
@[simp, norm_cast] lemma ratCast_re (q : ℚ) : (q : ℍ[R]).re = q := rfl
@[simp, norm_cast] lemma ratCast_im (q : ℚ) : (q : ℍ[R]).im = 0 := rfl
@[simp, norm_cast] lemma ratCast_imI (q : ℚ) : (q : ℍ[R]).imI = 0 := rfl
@[simp, norm_cast] lemma ratCast_imJ (q : ℚ) : (q : ℍ[R]).imJ = 0 := rfl
@[simp, norm_cast] lemma ratCast_imK (q : ℚ) : (q : ℍ[R]).imK = 0 := rfl
@[deprecated (since := "2024-04-17")]
alias rat_cast_imI := ratCast_imI
@[deprecated (since := "2024-04-17")]
alias rat_cast_imJ := ratCast_imJ
@[deprecated (since := "2024-04-17")]
alias rat_cast_imK := ratCast_imK
@[norm_cast] lemma coe_nnratCast (q : ℚ≥0) : ↑(q : R) = (q : ℍ[R]) := rfl
@[norm_cast] lemma coe_ratCast (q : ℚ) : ↑(q : R) = (q : ℍ[R]) := rfl
@[deprecated (since := "2024-04-17")]
alias coe_rat_cast := coe_ratCast
instance instDivisionRing : DivisionRing ℍ[R] where
__ := Quaternion.instGroupWithZero
__ := Quaternion.instRing
nnqsmul := (· • ·)
qsmul := (· • ·)
nnratCast_def q := by rw [← coe_nnratCast, NNRat.cast_def, coe_div, coe_natCast, coe_natCast]
ratCast_def q := by rw [← coe_ratCast, Rat.cast_def, coe_div, coe_intCast, coe_natCast]
nnqsmul_def q x := by rw [← coe_nnratCast, coe_mul_eq_smul]; ext <;> exact NNRat.smul_def _ _
qsmul_def q x := by rw [← coe_ratCast, coe_mul_eq_smul]; ext <;> exact Rat.smul_def _ _
--@[simp] Porting note (#10618): `simp` can prove it
theorem normSq_inv : normSq a⁻¹ = (normSq a)⁻¹ :=
map_inv₀ normSq _
--@[simp] Porting note (#10618): `simp` can prove it
theorem normSq_div : normSq (a / b) = normSq a / normSq b :=
map_div₀ normSq a b
--@[simp] Porting note (#10618): `simp` can prove it
theorem normSq_zpow (z : ℤ) : normSq (a ^ z) = normSq a ^ z :=
map_zpow₀ normSq a z
@[norm_cast]
theorem normSq_ratCast (q : ℚ) : normSq (q : ℍ[R]) = (q : ℍ[R]) ^ 2 := by
rw [← coe_ratCast, normSq_coe, coe_pow]
@[deprecated (since := "2024-04-17")]
alias normSq_rat_cast := normSq_ratCast
end Field
end Quaternion
namespace Cardinal
open Quaternion
section QuaternionAlgebra
variable {R : Type*} (c₁ c₂ : R)
private theorem pow_four [Infinite R] : #R ^ 4 = #R :=
power_nat_eq (aleph0_le_mk R) <| by decide
/-- The cardinality of a quaternion algebra, as a type. -/
theorem mk_quaternionAlgebra : #(ℍ[R,c₁,c₂]) = #R ^ 4 := by
rw [mk_congr (QuaternionAlgebra.equivProd c₁ c₂)]
simp only [mk_prod, lift_id]
ring
@[simp]
theorem mk_quaternionAlgebra_of_infinite [Infinite R] : #(ℍ[R,c₁,c₂]) = #R := by
rw [mk_quaternionAlgebra, pow_four]
/-- The cardinality of a quaternion algebra, as a set. -/
theorem mk_univ_quaternionAlgebra : #(Set.univ : Set ℍ[R,c₁,c₂]) = #R ^ 4 := by
rw [mk_univ, mk_quaternionAlgebra]
--@[simp] Porting note (#10618): `simp` can prove it
theorem mk_univ_quaternionAlgebra_of_infinite [Infinite R] :
#(Set.univ : Set ℍ[R,c₁,c₂]) = #R := by rw [mk_univ_quaternionAlgebra, pow_four]
/-- Show the quaternion ⟨w, x, y, z⟩ as a string "{ re := w, imI := x, imJ := y, imK := z }".
For the typical case of quaternions over ℝ, each component will show as a Cauchy sequence due to
the way Real numbers are represented.
-/
instance [Repr R] {a b : R} : Repr ℍ[R, a, b] where
reprPrec q _ :=
s!"\{ re := {repr q.re}, imI := {repr q.imI}, imJ := {repr q.imJ}, imK := {repr q.imK} }"
end QuaternionAlgebra
section Quaternion
variable (R : Type*) [One R] [Neg R]
/-- The cardinality of the quaternions, as a type. -/
@[simp]
theorem mk_quaternion : #(ℍ[R]) = #R ^ 4 :=
mk_quaternionAlgebra _ _
--@[simp] Porting note: LHS can be simplified to `#R^4`
theorem mk_quaternion_of_infinite [Infinite R] : #(ℍ[R]) = #R :=
mk_quaternionAlgebra_of_infinite _ _
/-- The cardinality of the quaternions, as a set. -/
--@[simp] Porting note (#10618): `simp` can prove it
theorem mk_univ_quaternion : #(Set.univ : Set ℍ[R]) = #R ^ 4 :=
mk_univ_quaternionAlgebra _ _
--@[simp] Porting note: LHS can be simplified to `#R^4`
theorem mk_univ_quaternion_of_infinite [Infinite R] : #(Set.univ : Set ℍ[R]) = #R :=
mk_univ_quaternionAlgebra_of_infinite _ _
end Quaternion
end Cardinal
|
Algebra\QuaternionBasis.lean | /-
Copyright (c) 2021 Eric Wieser. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Eric Wieser
-/
import Mathlib.Algebra.Quaternion
import Mathlib.Tactic.Ring
/-!
# Basis on a quaternion-like algebra
## Main definitions
* `QuaternionAlgebra.Basis A c₁ c₂`: a basis for a subspace of an `R`-algebra `A` that has the
same algebra structure as `ℍ[R,c₁,c₂]`.
* `QuaternionAlgebra.Basis.self R`: the canonical basis for `ℍ[R,c₁,c₂]`.
* `QuaternionAlgebra.Basis.compHom b f`: transform a basis `b` by an AlgHom `f`.
* `QuaternionAlgebra.lift`: Define an `AlgHom` out of `ℍ[R,c₁,c₂]` by its action on the basis
elements `i`, `j`, and `k`. In essence, this is a universal property. Analogous to `Complex.lift`,
but takes a bundled `QuaternionAlgebra.Basis` instead of just a `Subtype` as the amount of
data / proves is non-negligible.
-/
open Quaternion
namespace QuaternionAlgebra
/-- A quaternion basis contains the information both sufficient and necessary to construct an
`R`-algebra homomorphism from `ℍ[R,c₁,c₂]` to `A`; or equivalently, a surjective
`R`-algebra homomorphism from `ℍ[R,c₁,c₂]` to an `R`-subalgebra of `A`.
Note that for definitional convenience, `k` is provided as a field even though `i_mul_j` fully
determines it. -/
structure Basis {R : Type*} (A : Type*) [CommRing R] [Ring A] [Algebra R A] (c₁ c₂ : R) where
(i j k : A)
i_mul_i : i * i = c₁ • (1 : A)
j_mul_j : j * j = c₂ • (1 : A)
i_mul_j : i * j = k
j_mul_i : j * i = -k
variable {R : Type*} {A B : Type*} [CommRing R] [Ring A] [Ring B] [Algebra R A] [Algebra R B]
variable {c₁ c₂ : R}
namespace Basis
/-- Since `k` is redundant, it is not necessary to show `q₁.k = q₂.k` when showing `q₁ = q₂`. -/
@[ext]
protected theorem ext ⦃q₁ q₂ : Basis A c₁ c₂⦄ (hi : q₁.i = q₂.i) (hj : q₁.j = q₂.j) : q₁ = q₂ := by
cases q₁; rename_i q₁_i_mul_j _
cases q₂; rename_i q₂_i_mul_j _
congr
rw [← q₁_i_mul_j, ← q₂_i_mul_j]
congr
variable (R)
/-- There is a natural quaternionic basis for the `QuaternionAlgebra`. -/
@[simps i j k]
protected def self : Basis ℍ[R,c₁,c₂] c₁ c₂ where
i := ⟨0, 1, 0, 0⟩
i_mul_i := by ext <;> simp
j := ⟨0, 0, 1, 0⟩
j_mul_j := by ext <;> simp
k := ⟨0, 0, 0, 1⟩
i_mul_j := by ext <;> simp
j_mul_i := by ext <;> simp
variable {R}
instance : Inhabited (Basis ℍ[R,c₁,c₂] c₁ c₂) :=
⟨Basis.self R⟩
variable (q : Basis A c₁ c₂)
attribute [simp] i_mul_i j_mul_j i_mul_j j_mul_i
@[simp]
theorem i_mul_k : q.i * q.k = c₁ • q.j := by
rw [← i_mul_j, ← mul_assoc, i_mul_i, smul_mul_assoc, one_mul]
@[simp]
theorem k_mul_i : q.k * q.i = -c₁ • q.j := by
rw [← i_mul_j, mul_assoc, j_mul_i, mul_neg, i_mul_k, neg_smul]
@[simp]
theorem k_mul_j : q.k * q.j = c₂ • q.i := by
rw [← i_mul_j, mul_assoc, j_mul_j, mul_smul_comm, mul_one]
@[simp]
theorem j_mul_k : q.j * q.k = -c₂ • q.i := by
rw [← i_mul_j, ← mul_assoc, j_mul_i, neg_mul, k_mul_j, neg_smul]
@[simp]
theorem k_mul_k : q.k * q.k = -((c₁ * c₂) • (1 : A)) := by
rw [← i_mul_j, mul_assoc, ← mul_assoc q.j _ _, j_mul_i, ← i_mul_j, ← mul_assoc, mul_neg, ←
mul_assoc, i_mul_i, smul_mul_assoc, one_mul, neg_mul, smul_mul_assoc, j_mul_j, smul_smul]
/-- Intermediate result used to define `QuaternionAlgebra.Basis.liftHom`. -/
def lift (x : ℍ[R,c₁,c₂]) : A :=
algebraMap R _ x.re + x.imI • q.i + x.imJ • q.j + x.imK • q.k
theorem lift_zero : q.lift (0 : ℍ[R,c₁,c₂]) = 0 := by simp [lift]
theorem lift_one : q.lift (1 : ℍ[R,c₁,c₂]) = 1 := by simp [lift]
theorem lift_add (x y : ℍ[R,c₁,c₂]) : q.lift (x + y) = q.lift x + q.lift y := by
simp only [lift, add_re, map_add, add_imI, add_smul, add_imJ, add_imK]
abel
theorem lift_mul (x y : ℍ[R,c₁,c₂]) : q.lift (x * y) = q.lift x * q.lift y := by
simp only [lift, Algebra.algebraMap_eq_smul_one]
simp_rw [add_mul, mul_add, smul_mul_assoc, mul_smul_comm, one_mul, mul_one, smul_smul]
simp only [i_mul_i, j_mul_j, i_mul_j, j_mul_i, i_mul_k, k_mul_i, k_mul_j, j_mul_k, k_mul_k]
simp only [smul_smul, smul_neg, sub_eq_add_neg, add_smul, ← add_assoc, mul_neg, neg_smul]
simp only [mul_right_comm _ _ (c₁ * c₂), mul_comm _ (c₁ * c₂)]
simp only [mul_comm _ c₁, mul_right_comm _ _ c₁]
simp only [mul_comm _ c₂, mul_right_comm _ _ c₂]
simp only [← mul_comm c₁ c₂, ← mul_assoc]
simp only [mul_re, sub_eq_add_neg, add_smul, neg_smul, mul_imI, ← add_assoc, mul_imJ, mul_imK]
abel
theorem lift_smul (r : R) (x : ℍ[R,c₁,c₂]) : q.lift (r • x) = r • q.lift x := by
simp [lift, mul_smul, ← Algebra.smul_def]
/-- A `QuaternionAlgebra.Basis` implies an `AlgHom` from the quaternions. -/
@[simps!]
def liftHom : ℍ[R,c₁,c₂] →ₐ[R] A :=
AlgHom.mk'
{ toFun := q.lift
map_zero' := q.lift_zero
map_one' := q.lift_one
map_add' := q.lift_add
map_mul' := q.lift_mul } q.lift_smul
/-- Transform a `QuaternionAlgebra.Basis` through an `AlgHom`. -/
@[simps i j k]
def compHom (F : A →ₐ[R] B) : Basis B c₁ c₂ where
i := F q.i
i_mul_i := by rw [← map_mul, q.i_mul_i, map_smul, map_one]
j := F q.j
j_mul_j := by rw [← map_mul, q.j_mul_j, map_smul, map_one]
k := F q.k
i_mul_j := by rw [← map_mul, q.i_mul_j]
j_mul_i := by rw [← map_mul, q.j_mul_i, map_neg]
end Basis
/-- A quaternionic basis on `A` is equivalent to a map from the quaternion algebra to `A`. -/
@[simps]
def lift : Basis A c₁ c₂ ≃ (ℍ[R,c₁,c₂] →ₐ[R] A) where
toFun := Basis.liftHom
invFun := (Basis.self R).compHom
left_inv q := by ext <;> simp [Basis.lift]
right_inv F := by
ext
dsimp [Basis.lift]
rw [← F.commutes]
simp only [← F.commutes, ← map_smul, ← map_add, mk_add_mk, smul_mk, smul_zero,
algebraMap_eq]
congr <;> simp
/-- Two `R`-algebra morphisms from a quaternion algebra are equal if they agree on `i` and `j`. -/
@[ext]
theorem hom_ext ⦃f g : ℍ[R,c₁,c₂] →ₐ[R] A⦄
(hi : f (Basis.self R).i = g (Basis.self R).i) (hj : f (Basis.self R).j = g (Basis.self R).j) :
f = g :=
lift.symm.injective <| Basis.ext hi hj
end QuaternionAlgebra
namespace Quaternion
variable {R A : Type*} [CommRing R] [Ring A] [Algebra R A]
open QuaternionAlgebra (Basis)
/-- Two `R`-algebra morphisms from the quaternions are equal if they agree on `i` and `j`. -/
@[ext]
theorem hom_ext ⦃f g : ℍ[R] →ₐ[R] A⦄
(hi : f (Basis.self R).i = g (Basis.self R).i) (hj : f (Basis.self R).j = g (Basis.self R).j) :
f = g :=
QuaternionAlgebra.hom_ext hi hj
end Quaternion
|
Algebra\Quotient.lean | /-
Copyright (c) 2021 Anne Baanen. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Anne Baanen
-/
import Mathlib.Tactic.Common
/-!
# Algebraic quotients
This file defines notation for algebraic quotients, e.g. quotient groups `G ⧸ H`,
quotient modules `M ⧸ N` and ideal quotients `R ⧸ I`.
The actual quotient structures are defined in the following files:
* quotient group: `Mathlib/GroupTheory/QuotientGroup.lean`
* quotient module: `Mathlib/LinearAlgebra/Quotient.lean`
* quotient ring: `Mathlib/RingTheory/Ideal/Quotient.lean`
## Notations
The following notation is introduced:
* `G ⧸ H` stands for the quotient of the type `G` by some term `H`
(for example, `H` can be a normal subgroup of `G`).
To implement this notation for other quotients, you should provide a `HasQuotient` instance.
Note that since `G` can usually be inferred from `H`, `_ ⧸ H` can also be used,
but this is less readable.
## Tags
quotient, group quotient, quotient group, module quotient, quotient module, ring quotient,
ideal quotient, quotient ring
-/
universe u v
/-- `HasQuotient A B` is a notation typeclass that allows us to write `A ⧸ b` for `b : B`.
This allows the usual notation for quotients of algebraic structures,
such as groups, modules and rings.
`A` is a parameter, despite being unused in the definition below, so it appears in the notation.
-/
class HasQuotient (A : outParam <| Type u) (B : Type v) where
/-- auxiliary quotient function, the one used will have `A` explicit -/
quotient' : B → Type max u v
-- Will be provided by e.g. `Ideal.Quotient.inhabited`
/-- `HasQuotient.Quotient A b` (with notation `A ⧸ b`) is the quotient
of the type `A` by `b`.
This differs from `HasQuotient.quotient'` in that the `A` argument is
explicit, which is necessary to make Lean show the notation in the
goal state.
-/
abbrev HasQuotient.Quotient (A : outParam <| Type u) {B : Type v}
[HasQuotient A B] (b : B) : Type max u v :=
HasQuotient.quotient' b
/-- Quotient notation based on the `HasQuotient` typeclass -/
notation:35 G " ⧸ " H:34 => HasQuotient.Quotient G H
|
Algebra\RingQuot.lean | /-
Copyright (c) 2020 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison
-/
import Mathlib.Algebra.Algebra.Hom
import Mathlib.RingTheory.Ideal.Quotient
/-!
# Quotients of non-commutative rings
Unfortunately, ideals have only been developed in the commutative case as `Ideal`,
and it's not immediately clear how one should formalise ideals in the non-commutative case.
In this file, we directly define the quotient of a semiring by any relation,
by building a bigger relation that represents the ideal generated by that relation.
We prove the universal properties of the quotient, and recommend avoiding relying on the actual
definition, which is made irreducible for this purpose.
Since everything runs in parallel for quotients of `R`-algebras, we do that case at the same time.
-/
assert_not_exists Star.star
universe uR uS uT uA u₄
variable {R : Type uR} [Semiring R]
variable {S : Type uS} [CommSemiring S]
variable {T : Type uT}
variable {A : Type uA} [Semiring A] [Algebra S A]
namespace RingCon
instance (c : RingCon A) : Algebra S c.Quotient where
smul := (· • ·)
toRingHom := c.mk'.comp (algebraMap S A)
commutes' _ := Quotient.ind' fun _ ↦ congr_arg Quotient.mk'' <| Algebra.commutes _ _
smul_def' _ := Quotient.ind' fun _ ↦ congr_arg Quotient.mk'' <| Algebra.smul_def _ _
@[simp, norm_cast]
theorem coe_algebraMap (c : RingCon A) (s : S) :
(algebraMap S A s : c.Quotient) = algebraMap S _ s :=
rfl
end RingCon
namespace RingQuot
/-- Given an arbitrary relation `r` on a ring, we strengthen it to a relation `Rel r`,
such that the equivalence relation generated by `Rel r` has `x ~ y` if and only if
`x - y` is in the ideal generated by elements `a - b` such that `r a b`.
-/
inductive Rel (r : R → R → Prop) : R → R → Prop
| of ⦃x y : R⦄ (h : r x y) : Rel r x y
| add_left ⦃a b c⦄ : Rel r a b → Rel r (a + c) (b + c)
| mul_left ⦃a b c⦄ : Rel r a b → Rel r (a * c) (b * c)
| mul_right ⦃a b c⦄ : Rel r b c → Rel r (a * b) (a * c)
theorem Rel.add_right {r : R → R → Prop} ⦃a b c : R⦄ (h : Rel r b c) : Rel r (a + b) (a + c) := by
rw [add_comm a b, add_comm a c]
exact Rel.add_left h
theorem Rel.neg {R : Type uR} [Ring R] {r : R → R → Prop} ⦃a b : R⦄ (h : Rel r a b) :
Rel r (-a) (-b) := by simp only [neg_eq_neg_one_mul a, neg_eq_neg_one_mul b, Rel.mul_right h]
theorem Rel.sub_left {R : Type uR} [Ring R] {r : R → R → Prop} ⦃a b c : R⦄ (h : Rel r a b) :
Rel r (a - c) (b - c) := by simp only [sub_eq_add_neg, h.add_left]
theorem Rel.sub_right {R : Type uR} [Ring R] {r : R → R → Prop} ⦃a b c : R⦄ (h : Rel r b c) :
Rel r (a - b) (a - c) := by simp only [sub_eq_add_neg, h.neg.add_right]
theorem Rel.smul {r : A → A → Prop} (k : S) ⦃a b : A⦄ (h : Rel r a b) : Rel r (k • a) (k • b) := by
simp only [Algebra.smul_def, Rel.mul_right h]
/-- `EqvGen (RingQuot.Rel r)` is a ring congruence. -/
def ringCon (r : R → R → Prop) : RingCon R where
r := EqvGen (Rel r)
iseqv := EqvGen.is_equivalence _
add' {a b c d} hab hcd := by
induction hab generalizing c d with
| rel _ _ hab =>
refine (EqvGen.rel _ _ hab.add_left).trans _ _ _ ?_
induction hcd with
| rel _ _ hcd => exact EqvGen.rel _ _ hcd.add_right
| refl => exact EqvGen.refl _
| symm _ _ _ h => exact h.symm _ _
| trans _ _ _ _ _ h h' => exact h.trans _ _ _ h'
| refl => induction hcd with
| rel _ _ hcd => exact EqvGen.rel _ _ hcd.add_right
| refl => exact EqvGen.refl _
| symm _ _ _ h => exact h.symm _ _
| trans _ _ _ _ _ h h' => exact h.trans _ _ _ h'
| symm x y _ hxy => exact (hxy hcd.symm).symm
| trans x y z _ _ h h' => exact (h hcd).trans _ _ _ (h' <| EqvGen.refl _)
mul' {a b c d} hab hcd := by
induction hab generalizing c d with
| rel _ _ hab =>
refine (EqvGen.rel _ _ hab.mul_left).trans _ _ _ ?_
induction hcd with
| rel _ _ hcd => exact EqvGen.rel _ _ hcd.mul_right
| refl => exact EqvGen.refl _
| symm _ _ _ h => exact h.symm _ _
| trans _ _ _ _ _ h h' => exact h.trans _ _ _ h'
| refl => induction hcd with
| rel _ _ hcd => exact EqvGen.rel _ _ hcd.mul_right
| refl => exact EqvGen.refl _
| symm _ _ _ h => exact h.symm _ _
| trans _ _ _ _ _ h h' => exact h.trans _ _ _ h'
| symm x y _ hxy => exact (hxy hcd.symm).symm
| trans x y z _ _ h h' => exact (h hcd).trans _ _ _ (h' <| EqvGen.refl _)
theorem eqvGen_rel_eq (r : R → R → Prop) : EqvGen (Rel r) = RingConGen.Rel r := by
ext x₁ x₂
constructor
· intro h
induction h with
| rel _ _ h => induction h with
| of => exact RingConGen.Rel.of _ _ ‹_›
| add_left _ h => exact h.add (RingConGen.Rel.refl _)
| mul_left _ h => exact h.mul (RingConGen.Rel.refl _)
| mul_right _ h => exact (RingConGen.Rel.refl _).mul h
| refl => exact RingConGen.Rel.refl _
| symm => exact RingConGen.Rel.symm ‹_›
| trans => exact RingConGen.Rel.trans ‹_› ‹_›
· intro h
induction h with
| of => exact EqvGen.rel _ _ (Rel.of ‹_›)
| refl => exact (RingQuot.ringCon r).refl _
| symm => exact (RingQuot.ringCon r).symm ‹_›
| trans => exact (RingQuot.ringCon r).trans ‹_› ‹_›
| add => exact (RingQuot.ringCon r).add ‹_› ‹_›
| mul => exact (RingQuot.ringCon r).mul ‹_› ‹_›
end RingQuot
/-- The quotient of a ring by an arbitrary relation. -/
structure RingQuot (r : R → R → Prop) where
toQuot : Quot (RingQuot.Rel r)
namespace RingQuot
variable (r : R → R → Prop)
-- can't be irreducible, causes diamonds in ℕ-algebras
private def natCast (n : ℕ) : RingQuot r :=
⟨Quot.mk _ n⟩
private irreducible_def zero : RingQuot r :=
⟨Quot.mk _ 0⟩
private irreducible_def one : RingQuot r :=
⟨Quot.mk _ 1⟩
private irreducible_def add : RingQuot r → RingQuot r → RingQuot r
| ⟨a⟩, ⟨b⟩ => ⟨Quot.map₂ (· + ·) Rel.add_right Rel.add_left a b⟩
private irreducible_def mul : RingQuot r → RingQuot r → RingQuot r
| ⟨a⟩, ⟨b⟩ => ⟨Quot.map₂ (· * ·) Rel.mul_right Rel.mul_left a b⟩
private irreducible_def neg {R : Type uR} [Ring R] (r : R → R → Prop) : RingQuot r → RingQuot r
| ⟨a⟩ => ⟨Quot.map (fun a ↦ -a) Rel.neg a⟩
private irreducible_def sub {R : Type uR} [Ring R] (r : R → R → Prop) :
RingQuot r → RingQuot r → RingQuot r
| ⟨a⟩, ⟨b⟩ => ⟨Quot.map₂ Sub.sub Rel.sub_right Rel.sub_left a b⟩
private irreducible_def npow (n : ℕ) : RingQuot r → RingQuot r
| ⟨a⟩ =>
⟨Quot.lift (fun a ↦ Quot.mk (RingQuot.Rel r) (a ^ n))
(fun a b (h : Rel r a b) ↦ by
-- note we can't define a `Rel.pow` as `Rel` isn't reflexive so `Rel r 1 1` isn't true
dsimp only
induction n with
| zero => rw [pow_zero, pow_zero]
| succ n ih =>
rw [pow_succ, pow_succ]
-- Porting note:
-- `simpa [mul_def] using congr_arg₂ (fun x y ↦ mul r ⟨x⟩ ⟨y⟩) (Quot.sound h) ih`
-- mysteriously doesn't work
have := congr_arg₂ (fun x y ↦ mul r ⟨x⟩ ⟨y⟩) ih (Quot.sound h)
dsimp only at this
simp? [mul_def] at this says simp only [mul_def, Quot.map₂_mk, mk.injEq] at this
exact this)
a⟩
-- note: this cannot be irreducible, as otherwise diamonds don't commute.
private def smul [Algebra S R] (n : S) : RingQuot r → RingQuot r
| ⟨a⟩ => ⟨Quot.map (fun a ↦ n • a) (Rel.smul n) a⟩
instance : NatCast (RingQuot r) :=
⟨natCast r⟩
instance : Zero (RingQuot r) :=
⟨zero r⟩
instance : One (RingQuot r) :=
⟨one r⟩
instance : Add (RingQuot r) :=
⟨add r⟩
instance : Mul (RingQuot r) :=
⟨mul r⟩
instance : NatPow (RingQuot r) :=
⟨fun x n ↦ npow r n x⟩
instance {R : Type uR} [Ring R] (r : R → R → Prop) : Neg (RingQuot r) :=
⟨neg r⟩
instance {R : Type uR} [Ring R] (r : R → R → Prop) : Sub (RingQuot r) :=
⟨sub r⟩
instance [Algebra S R] : SMul S (RingQuot r) :=
⟨smul r⟩
theorem zero_quot : (⟨Quot.mk _ 0⟩ : RingQuot r) = 0 :=
show _ = zero r by rw [zero_def]
theorem one_quot : (⟨Quot.mk _ 1⟩ : RingQuot r) = 1 :=
show _ = one r by rw [one_def]
theorem add_quot {a b} : (⟨Quot.mk _ a⟩ + ⟨Quot.mk _ b⟩ : RingQuot r) = ⟨Quot.mk _ (a + b)⟩ := by
show add r _ _ = _
rw [add_def]
rfl
theorem mul_quot {a b} : (⟨Quot.mk _ a⟩ * ⟨Quot.mk _ b⟩ : RingQuot r) = ⟨Quot.mk _ (a * b)⟩ := by
show mul r _ _ = _
rw [mul_def]
rfl
theorem pow_quot {a} {n : ℕ} : (⟨Quot.mk _ a⟩ ^ n : RingQuot r) = ⟨Quot.mk _ (a ^ n)⟩ := by
show npow r _ _ = _
rw [npow_def]
theorem neg_quot {R : Type uR} [Ring R] (r : R → R → Prop) {a} :
(-⟨Quot.mk _ a⟩ : RingQuot r) = ⟨Quot.mk _ (-a)⟩ := by
show neg r _ = _
rw [neg_def]
rfl
theorem sub_quot {R : Type uR} [Ring R] (r : R → R → Prop) {a b} :
(⟨Quot.mk _ a⟩ - ⟨Quot.mk _ b⟩ : RingQuot r) = ⟨Quot.mk _ (a - b)⟩ := by
show sub r _ _ = _
rw [sub_def]
rfl
theorem smul_quot [Algebra S R] {n : S} {a : R} :
(n • ⟨Quot.mk _ a⟩ : RingQuot r) = ⟨Quot.mk _ (n • a)⟩ := by
show smul r _ _ = _
rw [smul]
rfl
instance instIsScalarTower [CommSemiring T] [SMul S T] [Algebra S R] [Algebra T R]
[IsScalarTower S T R] : IsScalarTower S T (RingQuot r) :=
⟨fun s t ⟨a⟩ => Quot.inductionOn a fun a' => by simp only [RingQuot.smul_quot, smul_assoc]⟩
instance instSMulCommClass [CommSemiring T] [Algebra S R] [Algebra T R] [SMulCommClass S T R] :
SMulCommClass S T (RingQuot r) :=
⟨fun s t ⟨a⟩ => Quot.inductionOn a fun a' => by simp only [RingQuot.smul_quot, smul_comm]⟩
instance instAddCommMonoid (r : R → R → Prop) : AddCommMonoid (RingQuot r) where
add := (· + ·)
zero := 0
add_assoc := by
rintro ⟨⟨⟩⟩ ⟨⟨⟩⟩ ⟨⟨⟩⟩
simp only [add_quot, add_assoc]
zero_add := by
rintro ⟨⟨⟩⟩
simp [add_quot, ← zero_quot, zero_add]
add_zero := by
rintro ⟨⟨⟩⟩
simp only [add_quot, ← zero_quot, add_zero]
add_comm := by
rintro ⟨⟨⟩⟩ ⟨⟨⟩⟩
simp only [add_quot, add_comm]
nsmul := (· • ·)
nsmul_zero := by
rintro ⟨⟨⟩⟩
simp only [smul_quot, zero_smul, zero_quot]
nsmul_succ := by
rintro n ⟨⟨⟩⟩
simp only [smul_quot, nsmul_eq_mul, Nat.cast_add, Nat.cast_one, add_mul, one_mul,
add_comm, add_quot]
instance instMonoidWithZero (r : R → R → Prop) : MonoidWithZero (RingQuot r) where
mul_assoc := by
rintro ⟨⟨⟩⟩ ⟨⟨⟩⟩ ⟨⟨⟩⟩
simp only [mul_quot, mul_assoc]
one_mul := by
rintro ⟨⟨⟩⟩
simp only [mul_quot, ← one_quot, one_mul]
mul_one := by
rintro ⟨⟨⟩⟩
simp only [mul_quot, ← one_quot, mul_one]
zero_mul := by
rintro ⟨⟨⟩⟩
simp only [mul_quot, ← zero_quot, zero_mul]
mul_zero := by
rintro ⟨⟨⟩⟩
simp only [mul_quot, ← zero_quot, mul_zero]
npow n x := x ^ n
npow_zero := by
rintro ⟨⟨⟩⟩
simp only [pow_quot, ← one_quot, pow_zero]
npow_succ := by
rintro n ⟨⟨⟩⟩
simp only [pow_quot, mul_quot, pow_succ]
instance instSemiring (r : R → R → Prop) : Semiring (RingQuot r) where
natCast := natCast r
natCast_zero := by simp [Nat.cast, natCast, ← zero_quot]
natCast_succ := by simp [Nat.cast, natCast, ← one_quot, add_quot]
left_distrib := by
rintro ⟨⟨⟩⟩ ⟨⟨⟩⟩ ⟨⟨⟩⟩
simp only [mul_quot, add_quot, left_distrib]
right_distrib := by
rintro ⟨⟨⟩⟩ ⟨⟨⟩⟩ ⟨⟨⟩⟩
simp only [mul_quot, add_quot, right_distrib]
nsmul := (· • ·)
nsmul_zero := by
rintro ⟨⟨⟩⟩
simp only [smul_quot, zero_smul, zero_quot]
nsmul_succ := by
rintro n ⟨⟨⟩⟩
simp only [smul_quot, nsmul_eq_mul, Nat.cast_add, Nat.cast_one, add_mul, one_mul,
add_comm, add_quot]
__ := instAddCommMonoid r
__ := instMonoidWithZero r
-- can't be irreducible, causes diamonds in ℤ-algebras
private def intCast {R : Type uR} [Ring R] (r : R → R → Prop) (z : ℤ) : RingQuot r :=
⟨Quot.mk _ z⟩
instance instRing {R : Type uR} [Ring R] (r : R → R → Prop) : Ring (RingQuot r) :=
{ RingQuot.instSemiring r with
neg := Neg.neg
add_left_neg := by
rintro ⟨⟨⟩⟩
simp [neg_quot, add_quot, ← zero_quot]
sub := Sub.sub
sub_eq_add_neg := by
rintro ⟨⟨⟩⟩ ⟨⟨⟩⟩
simp [neg_quot, sub_quot, add_quot, sub_eq_add_neg]
zsmul := (· • ·)
zsmul_zero' := by
rintro ⟨⟨⟩⟩
simp [smul_quot, ← zero_quot]
zsmul_succ' := by
rintro n ⟨⟨⟩⟩
simp [smul_quot, add_quot, add_mul, add_comm]
zsmul_neg' := by
rintro n ⟨⟨⟩⟩
simp [smul_quot, neg_quot, add_mul]
intCast := intCast r
intCast_ofNat := fun n => congrArg RingQuot.mk <| by
exact congrArg (Quot.mk _) (Int.cast_natCast _)
intCast_negSucc := fun n => congrArg RingQuot.mk <| by
simp_rw [neg_def]
exact congrArg (Quot.mk _) (Int.cast_negSucc n) }
instance instCommSemiring {R : Type uR} [CommSemiring R] (r : R → R → Prop) :
CommSemiring (RingQuot r) :=
{ RingQuot.instSemiring r with
mul_comm := by
rintro ⟨⟨⟩⟩ ⟨⟨⟩⟩
simp [mul_quot, mul_comm] }
instance {R : Type uR} [CommRing R] (r : R → R → Prop) : CommRing (RingQuot r) :=
{ RingQuot.instCommSemiring r, RingQuot.instRing r with }
instance instInhabited (r : R → R → Prop) : Inhabited (RingQuot r) :=
⟨0⟩
instance instAlgebra [Algebra S R] (r : R → R → Prop) : Algebra S (RingQuot r) where
smul := (· • ·)
toFun r := ⟨Quot.mk _ (algebraMap S R r)⟩
map_one' := by simp [← one_quot]
map_mul' := by simp [mul_quot]
map_zero' := by simp [← zero_quot]
map_add' := by simp [add_quot]
commutes' r := by
rintro ⟨⟨a⟩⟩
simp [Algebra.commutes, mul_quot]
smul_def' r := by
rintro ⟨⟨a⟩⟩
simp [smul_quot, Algebra.smul_def, mul_quot]
/-- The quotient map from a ring to its quotient, as a homomorphism of rings.
-/
irreducible_def mkRingHom (r : R → R → Prop) : R →+* RingQuot r :=
{ toFun := fun x ↦ ⟨Quot.mk _ x⟩
map_one' := by simp [← one_quot]
map_mul' := by simp [mul_quot]
map_zero' := by simp [← zero_quot]
map_add' := by simp [add_quot] }
theorem mkRingHom_rel {r : R → R → Prop} {x y : R} (w : r x y) : mkRingHom r x = mkRingHom r y := by
simp [mkRingHom_def, Quot.sound (Rel.of w)]
theorem mkRingHom_surjective (r : R → R → Prop) : Function.Surjective (mkRingHom r) := by
simp only [mkRingHom_def, RingHom.coe_mk, MonoidHom.coe_mk, OneHom.coe_mk]
rintro ⟨⟨⟩⟩
simp
@[ext 1100]
theorem ringQuot_ext [Semiring T] {r : R → R → Prop} (f g : RingQuot r →+* T)
(w : f.comp (mkRingHom r) = g.comp (mkRingHom r)) : f = g := by
ext x
rcases mkRingHom_surjective r x with ⟨x, rfl⟩
exact (RingHom.congr_fun w x : _)
variable [Semiring T]
irreducible_def preLift {r : R → R → Prop} {f : R →+* T} (h : ∀ ⦃x y⦄, r x y → f x = f y) :
RingQuot r →+* T :=
{ toFun := fun x ↦ Quot.lift f
(by
rintro _ _ r
induction r with
| of r => exact h r
| add_left _ r' => rw [map_add, map_add, r']
| mul_left _ r' => rw [map_mul, map_mul, r']
| mul_right _ r' => rw [map_mul, map_mul, r'])
x.toQuot
map_zero' := by simp only [← zero_quot, f.map_zero]
map_add' := by
rintro ⟨⟨x⟩⟩ ⟨⟨y⟩⟩
simp only [add_quot, f.map_add x y]
map_one' := by simp only [← one_quot, f.map_one]
map_mul' := by
rintro ⟨⟨x⟩⟩ ⟨⟨y⟩⟩
simp only [mul_quot, f.map_mul x y] }
/-- Any ring homomorphism `f : R →+* T` which respects a relation `r : R → R → Prop`
factors uniquely through a morphism `RingQuot r →+* T`.
-/
irreducible_def lift {r : R → R → Prop} :
{ f : R →+* T // ∀ ⦃x y⦄, r x y → f x = f y } ≃ (RingQuot r →+* T) :=
{ toFun := fun f ↦ preLift f.prop
invFun := fun F ↦ ⟨F.comp (mkRingHom r), fun x y h ↦ congr_arg F (mkRingHom_rel h)⟩
left_inv := fun f ↦ by
ext
simp only [preLift_def, mkRingHom_def, RingHom.coe_comp, RingHom.coe_mk, MonoidHom.coe_mk,
OneHom.coe_mk, Function.comp_apply]
right_inv := fun F ↦ by
simp only [preLift_def]
ext
simp only [mkRingHom_def, RingHom.coe_comp, RingHom.coe_mk, MonoidHom.coe_mk, OneHom.coe_mk,
Function.comp_apply, forall_const] }
@[simp]
theorem lift_mkRingHom_apply (f : R →+* T) {r : R → R → Prop} (w : ∀ ⦃x y⦄, r x y → f x = f y) (x) :
lift ⟨f, w⟩ (mkRingHom r x) = f x := by
simp_rw [lift_def, preLift_def, mkRingHom_def]
rfl
-- note this is essentially `lift.symm_apply_eq.mp h`
theorem lift_unique (f : R →+* T) {r : R → R → Prop} (w : ∀ ⦃x y⦄, r x y → f x = f y)
(g : RingQuot r →+* T) (h : g.comp (mkRingHom r) = f) : g = lift ⟨f, w⟩ := by
ext
simp [h]
theorem eq_lift_comp_mkRingHom {r : R → R → Prop} (f : RingQuot r →+* T) :
f = lift ⟨f.comp (mkRingHom r), fun x y h ↦ congr_arg f (mkRingHom_rel h)⟩ := by
conv_lhs => rw [← lift.apply_symm_apply f]
rw [lift_def]
rfl
section CommRing
/-!
We now verify that in the case of a commutative ring, the `RingQuot` construction
agrees with the quotient by the appropriate ideal.
-/
variable {B : Type uR} [CommRing B]
/-- The universal ring homomorphism from `RingQuot r` to `B ⧸ Ideal.ofRel r`. -/
def ringQuotToIdealQuotient (r : B → B → Prop) : RingQuot r →+* B ⧸ Ideal.ofRel r :=
lift ⟨Ideal.Quotient.mk (Ideal.ofRel r),
fun x y h ↦ Ideal.Quotient.eq.2 <| Submodule.mem_sInf.mpr
fun _ w ↦ w ⟨x, y, h, sub_add_cancel x y⟩⟩
@[simp]
theorem ringQuotToIdealQuotient_apply (r : B → B → Prop) (x : B) :
ringQuotToIdealQuotient r (mkRingHom r x) = Ideal.Quotient.mk (Ideal.ofRel r) x := by
simp_rw [ringQuotToIdealQuotient, lift_def, preLift_def, mkRingHom_def]
rfl
/-- The universal ring homomorphism from `B ⧸ Ideal.ofRel r` to `RingQuot r`. -/
def idealQuotientToRingQuot (r : B → B → Prop) : B ⧸ Ideal.ofRel r →+* RingQuot r :=
Ideal.Quotient.lift (Ideal.ofRel r) (mkRingHom r)
(by
refine fun x h ↦ Submodule.span_induction h ?_ ?_ ?_ ?_
· rintro y ⟨a, b, h, su⟩
symm at su
rw [← sub_eq_iff_eq_add] at su
rw [← su, RingHom.map_sub, mkRingHom_rel h, sub_self]
· simp
· intro a b ha hb
simp [ha, hb]
· intro a x hx
simp [hx])
@[simp]
theorem idealQuotientToRingQuot_apply (r : B → B → Prop) (x : B) :
idealQuotientToRingQuot r (Ideal.Quotient.mk _ x) = mkRingHom r x :=
rfl
/-- The ring equivalence between `RingQuot r` and `(Ideal.ofRel r).quotient`
-/
def ringQuotEquivIdealQuotient (r : B → B → Prop) : RingQuot r ≃+* B ⧸ Ideal.ofRel r :=
RingEquiv.ofHomInv (ringQuotToIdealQuotient r) (idealQuotientToRingQuot r)
(by
ext x
simp_rw [ringQuotToIdealQuotient, lift_def, preLift_def, mkRingHom_def]
change mkRingHom r x = _
rw [mkRingHom_def]
rfl)
(by
ext x
simp_rw [ringQuotToIdealQuotient, lift_def, preLift_def, mkRingHom_def]
change Quot.lift _ _ ((mkRingHom r) x).toQuot = _
rw [mkRingHom_def]
rfl)
end CommRing
section Algebra
variable (S)
/-- The quotient map from an `S`-algebra to its quotient, as a homomorphism of `S`-algebras.
-/
irreducible_def mkAlgHom (s : A → A → Prop) : A →ₐ[S] RingQuot s :=
{ mkRingHom s with
commutes' := fun _ ↦ by simp [mkRingHom_def]; rfl }
@[simp]
theorem mkAlgHom_coe (s : A → A → Prop) : (mkAlgHom S s : A →+* RingQuot s) = mkRingHom s := by
simp_rw [mkAlgHom_def, mkRingHom_def]
rfl
theorem mkAlgHom_rel {s : A → A → Prop} {x y : A} (w : s x y) :
mkAlgHom S s x = mkAlgHom S s y := by
simp [mkAlgHom_def, mkRingHom_def, Quot.sound (Rel.of w)]
theorem mkAlgHom_surjective (s : A → A → Prop) : Function.Surjective (mkAlgHom S s) := by
suffices Function.Surjective fun x ↦ (⟨.mk (Rel s) x⟩ : RingQuot s) by
simpa [mkAlgHom_def, mkRingHom_def]
rintro ⟨⟨a⟩⟩
use a
variable {B : Type u₄} [Semiring B] [Algebra S B]
@[ext 1100]
theorem ringQuot_ext' {s : A → A → Prop} (f g : RingQuot s →ₐ[S] B)
(w : f.comp (mkAlgHom S s) = g.comp (mkAlgHom S s)) : f = g := by
ext x
rcases mkAlgHom_surjective S s x with ⟨x, rfl⟩
exact AlgHom.congr_fun w x
irreducible_def preLiftAlgHom {s : A → A → Prop} {f : A →ₐ[S] B}
(h : ∀ ⦃x y⦄, s x y → f x = f y) : RingQuot s →ₐ[S] B :=
{ toFun := fun x ↦ Quot.lift f
(by
rintro _ _ r
induction r with
| of r => exact h r
| add_left _ r' => simp only [map_add, r']
| mul_left _ r' => simp only [map_mul, r']
| mul_right _ r' => simp only [map_mul, r'])
x.toQuot
map_zero' := by simp only [← zero_quot, map_zero]
map_add' := by
rintro ⟨⟨x⟩⟩ ⟨⟨y⟩⟩
simp only [add_quot, map_add _ x y]
map_one' := by simp only [← one_quot, map_one]
map_mul' := by
rintro ⟨⟨x⟩⟩ ⟨⟨y⟩⟩
simp only [mul_quot, map_mul _ x y]
commutes' := by
rintro x
simp [← one_quot, smul_quot, Algebra.algebraMap_eq_smul_one] }
/-- Any `S`-algebra homomorphism `f : A →ₐ[S] B` which respects a relation `s : A → A → Prop`
factors uniquely through a morphism `RingQuot s →ₐ[S] B`.
-/
irreducible_def liftAlgHom {s : A → A → Prop} :
{ f : A →ₐ[S] B // ∀ ⦃x y⦄, s x y → f x = f y } ≃ (RingQuot s →ₐ[S] B) :=
{ toFun := fun f' ↦ preLiftAlgHom _ f'.prop
invFun := fun F ↦ ⟨F.comp (mkAlgHom S s), fun _ _ h ↦ congr_arg F (mkAlgHom_rel S h)⟩
left_inv := fun f ↦ by
ext
simp only [preLiftAlgHom_def, mkAlgHom_def, mkRingHom_def, RingHom.toMonoidHom_eq_coe,
RingHom.coe_monoidHom_mk, AlgHom.coe_comp, AlgHom.coe_mk, RingHom.coe_mk,
MonoidHom.coe_mk, OneHom.coe_mk, Function.comp_apply]
right_inv := fun F ↦ by
ext
simp only [preLiftAlgHom_def, mkAlgHom_def, mkRingHom_def, RingHom.toMonoidHom_eq_coe,
RingHom.coe_monoidHom_mk, AlgHom.coe_comp, AlgHom.coe_mk, RingHom.coe_mk,
MonoidHom.coe_mk, OneHom.coe_mk, Function.comp_apply] }
@[simp]
theorem liftAlgHom_mkAlgHom_apply (f : A →ₐ[S] B) {s : A → A → Prop}
(w : ∀ ⦃x y⦄, s x y → f x = f y) (x) : (liftAlgHom S ⟨f, w⟩) ((mkAlgHom S s) x) = f x := by
simp_rw [liftAlgHom_def, preLiftAlgHom_def, mkAlgHom_def, mkRingHom_def]
rfl
-- note this is essentially `(liftAlgHom S).symm_apply_eq.mp h`
theorem liftAlgHom_unique (f : A →ₐ[S] B) {s : A → A → Prop} (w : ∀ ⦃x y⦄, s x y → f x = f y)
(g : RingQuot s →ₐ[S] B) (h : g.comp (mkAlgHom S s) = f) : g = liftAlgHom S ⟨f, w⟩ := by
ext
simp [h]
theorem eq_liftAlgHom_comp_mkAlgHom {s : A → A → Prop} (f : RingQuot s →ₐ[S] B) :
f = liftAlgHom S ⟨f.comp (mkAlgHom S s), fun x y h ↦ congr_arg f (mkAlgHom_rel S h)⟩ := by
conv_lhs => rw [← (liftAlgHom S).apply_symm_apply f]
rw [liftAlgHom]
rfl
end Algebra
end RingQuot
|
Algebra\SMulWithZero.lean | /-
Copyright (c) 2021 Damiano Testa. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Damiano Testa
-/
import Mathlib.Algebra.Group.Action.Opposite
import Mathlib.Algebra.Group.Action.Prod
import Mathlib.Algebra.GroupWithZero.Action.Defs
import Mathlib.Algebra.GroupWithZero.Opposite
import Mathlib.Algebra.GroupWithZero.Prod
import Mathlib.Algebra.Ring.Defs
/-!
# Introduce `SMulWithZero`
In analogy with the usual monoid action on a Type `M`, we introduce an action of a
`MonoidWithZero` on a Type with `0`.
In particular, for Types `R` and `M`, both containing `0`, we define `SMulWithZero R M` to
be the typeclass where the products `r • 0` and `0 • m` vanish for all `r : R` and all `m : M`.
Moreover, in the case in which `R` is a `MonoidWithZero`, we introduce the typeclass
`MulActionWithZero R M`, mimicking group actions and having an absorbing `0` in `R`.
Thus, the action is required to be compatible with
* the unit of the monoid, acting as the identity;
* the zero of the `MonoidWithZero`, acting as zero;
* associativity of the monoid.
We also add an `instance`:
* any `MonoidWithZero` has a `MulActionWithZero R R` acting on itself.
## Main declarations
* `smulMonoidWithZeroHom`: Scalar multiplication bundled as a morphism of monoids with zero.
-/
variable {R R' M M' : Type*}
section Zero
variable (R M)
/-- `SMulWithZero` is a class consisting of a Type `R` with `0 ∈ R` and a scalar multiplication
of `R` on a Type `M` with `0`, such that the equality `r • m = 0` holds if at least one among `r`
or `m` equals `0`. -/
class SMulWithZero [Zero R] [Zero M] extends SMulZeroClass R M where
/-- Scalar multiplication by the scalar `0` is `0`. -/
zero_smul : ∀ m : M, (0 : R) • m = 0
instance MulZeroClass.toSMulWithZero [MulZeroClass R] : SMulWithZero R R where
smul := (· * ·)
smul_zero := mul_zero
zero_smul := zero_mul
/-- Like `MulZeroClass.toSMulWithZero`, but multiplies on the right. -/
instance MulZeroClass.toOppositeSMulWithZero [MulZeroClass R] : SMulWithZero Rᵐᵒᵖ R where
smul := (· • ·)
smul_zero _ := zero_mul _
zero_smul := mul_zero
variable {M} [Zero R] [Zero M] [SMulWithZero R M]
@[simp]
theorem zero_smul (m : M) : (0 : R) • m = 0 :=
SMulWithZero.zero_smul m
variable {R} {a : R} {b : M}
lemma smul_eq_zero_of_left (h : a = 0) (b : M) : a • b = 0 := h.symm ▸ zero_smul _ b
lemma left_ne_zero_of_smul : a • b ≠ 0 → a ≠ 0 := mt fun h ↦ smul_eq_zero_of_left h b
variable [Zero R'] [Zero M'] [SMul R M']
/-- Pullback a `SMulWithZero` structure along an injective zero-preserving homomorphism.
See note [reducible non-instances]. -/
protected abbrev Function.Injective.smulWithZero (f : ZeroHom M' M) (hf : Function.Injective f)
(smul : ∀ (a : R) (b), f (a • b) = a • f b) :
SMulWithZero R M' where
smul := (· • ·)
zero_smul a := hf <| by simp [smul]
smul_zero a := hf <| by simp [smul]
/-- Pushforward a `SMulWithZero` structure along a surjective zero-preserving homomorphism.
See note [reducible non-instances]. -/
protected abbrev Function.Surjective.smulWithZero (f : ZeroHom M M') (hf : Function.Surjective f)
(smul : ∀ (a : R) (b), f (a • b) = a • f b) :
SMulWithZero R M' where
smul := (· • ·)
zero_smul m := by
rcases hf m with ⟨x, rfl⟩
simp [← smul]
smul_zero c := by rw [← f.map_zero, ← smul, smul_zero]
variable (M)
/-- Compose a `SMulWithZero` with a `ZeroHom`, with action `f r' • m` -/
def SMulWithZero.compHom (f : ZeroHom R' R) : SMulWithZero R' M where
smul := (f · • ·)
smul_zero m := smul_zero (f m)
zero_smul m := by show (f 0) • m = 0; rw [map_zero, zero_smul]
end Zero
instance AddMonoid.natSMulWithZero [AddMonoid M] : SMulWithZero ℕ M where
smul_zero := _root_.nsmul_zero
zero_smul := zero_nsmul
instance AddGroup.intSMulWithZero [AddGroup M] : SMulWithZero ℤ M where
smul_zero := zsmul_zero
zero_smul := zero_zsmul
section MonoidWithZero
variable [MonoidWithZero R] [MonoidWithZero R'] [Zero M]
variable (R M)
/-- An action of a monoid with zero `R` on a Type `M`, also with `0`, extends `MulAction` and
is compatible with `0` (both in `R` and in `M`), with `1 ∈ R`, and with associativity of
multiplication on the monoid `M`. -/
class MulActionWithZero extends MulAction R M where
-- these fields are copied from `SMulWithZero`, as `extends` behaves poorly
/-- Scalar multiplication by any element send `0` to `0`. -/
smul_zero : ∀ r : R, r • (0 : M) = 0
/-- Scalar multiplication by the scalar `0` is `0`. -/
zero_smul : ∀ m : M, (0 : R) • m = 0
-- see Note [lower instance priority]
instance (priority := 100) MulActionWithZero.toSMulWithZero [m : MulActionWithZero R M] :
SMulWithZero R M :=
{ m with }
/-- See also `Semiring.toModule` -/
instance MonoidWithZero.toMulActionWithZero : MulActionWithZero R R :=
{ MulZeroClass.toSMulWithZero R, Monoid.toMulAction R with }
/-- Like `MonoidWithZero.toMulActionWithZero`, but multiplies on the right. See also
`Semiring.toOppositeModule` -/
instance MonoidWithZero.toOppositeMulActionWithZero : MulActionWithZero Rᵐᵒᵖ R :=
{ MulZeroClass.toOppositeSMulWithZero R, Monoid.toOppositeMulAction with }
protected lemma MulActionWithZero.subsingleton
[MulActionWithZero R M] [Subsingleton R] : Subsingleton M :=
⟨fun x y => by
rw [← one_smul R x, ← one_smul R y, Subsingleton.elim (1 : R) 0, zero_smul, zero_smul]⟩
protected lemma MulActionWithZero.nontrivial
[MulActionWithZero R M] [Nontrivial M] : Nontrivial R :=
(subsingleton_or_nontrivial R).resolve_left fun _ =>
not_subsingleton M <| MulActionWithZero.subsingleton R M
variable {R M}
variable [MulActionWithZero R M] [Zero M'] [SMul R M'] (p : Prop) [Decidable p]
lemma ite_zero_smul (a : R) (b : M) : (if p then a else 0 : R) • b = if p then a • b else 0 := by
rw [ite_smul, zero_smul]
lemma boole_smul (a : M) : (if p then 1 else 0 : R) • a = if p then a else 0 := by simp
lemma Pi.single_apply_smul {ι : Type*} [DecidableEq ι] (x : M) (i j : ι) :
(Pi.single i 1 : ι → R) j • x = (Pi.single i x : ι → M) j := by
rw [single_apply, ite_smul, one_smul, zero_smul, single_apply]
/-- Pullback a `MulActionWithZero` structure along an injective zero-preserving homomorphism.
See note [reducible non-instances]. -/
protected abbrev Function.Injective.mulActionWithZero (f : ZeroHom M' M) (hf : Function.Injective f)
(smul : ∀ (a : R) (b), f (a • b) = a • f b) : MulActionWithZero R M' :=
{ hf.mulAction f smul, hf.smulWithZero f smul with }
/-- Pushforward a `MulActionWithZero` structure along a surjective zero-preserving homomorphism.
See note [reducible non-instances]. -/
protected abbrev Function.Surjective.mulActionWithZero (f : ZeroHom M M')
(hf : Function.Surjective f) (smul : ∀ (a : R) (b), f (a • b) = a • f b) :
MulActionWithZero R M' :=
{ hf.mulAction f smul, hf.smulWithZero f smul with }
variable (M)
/-- Compose a `MulActionWithZero` with a `MonoidWithZeroHom`, with action `f r' • m` -/
def MulActionWithZero.compHom (f : R' →*₀ R) : MulActionWithZero R' M :=
{ SMulWithZero.compHom M f.toZeroHom with
mul_smul := fun r s m => by show f (r * s) • m = (f r) • (f s) • m; simp [mul_smul]
one_smul := fun m => by show (f 1) • m = m; simp }
end MonoidWithZero
section GroupWithZero
variable {α β : Type*} [GroupWithZero α] [GroupWithZero β] [MulActionWithZero α β]
theorem smul_inv₀ [SMulCommClass α β β] [IsScalarTower α β β] (c : α) (x : β) :
(c • x)⁻¹ = c⁻¹ • x⁻¹ := by
obtain rfl | hc := eq_or_ne c 0
· simp only [inv_zero, zero_smul]
obtain rfl | hx := eq_or_ne x 0
· simp only [inv_zero, smul_zero]
· refine inv_eq_of_mul_eq_one_left ?_
rw [smul_mul_smul, inv_mul_cancel hc, inv_mul_cancel hx, one_smul]
end GroupWithZero
/-- Scalar multiplication as a monoid homomorphism with zero. -/
@[simps]
def smulMonoidWithZeroHom {α β : Type*} [MonoidWithZero α] [MulZeroOneClass β]
[MulActionWithZero α β] [IsScalarTower α β β] [SMulCommClass α β β] : α × β →*₀ β :=
{ smulMonoidHom with map_zero' := smul_zero _ }
-- This instance seems a bit incongruous in this file, but `#find_home!` told me to put it here.
instance NonUnitalNonAssocSemiring.toDistribSMul [NonUnitalNonAssocSemiring R] :
DistribSMul R R where
smul_add := mul_add
|
Algebra\Symmetrized.lean | /-
Copyright (c) 2021 Christopher Hoskin. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Christopher Hoskin
-/
import Mathlib.Algebra.Jordan.Basic
import Mathlib.Algebra.Module.Defs
/-!
# Symmetrized algebra
A commutative multiplication on a real or complex space can be constructed from any multiplication
by "symmetrization" i.e
$$
a \circ b = \frac{1}{2}(ab + ba)
$$
We provide the symmetrized version of a type `α` as `SymAlg α`, with notation `αˢʸᵐ`.
## Implementation notes
The approach taken here is inspired by `Mathlib/Algebra/Opposites.lean`. We use Oxford Spellings
(IETF en-GB-oxendict).
## References
* [Hanche-Olsen and Størmer, Jordan Operator Algebras][hancheolsenstormer1984]
-/
open Function
/-- The symmetrized algebra has the same underlying space as the original algebra.
-/
def SymAlg (α : Type*) : Type _ :=
α
postfix:max "ˢʸᵐ" => SymAlg
namespace SymAlg
variable {α : Type*}
/-- The element of `SymAlg α` that represents `a : α`. -/
@[match_pattern]
def sym : α ≃ αˢʸᵐ :=
Equiv.refl _
/-- The element of `α` represented by `x : αˢʸᵐ`. -/
-- Porting note (kmill): `pp_nodot` has no affect here
-- unless RFC lean4#1910 leads to dot notation for CoeFun
@[pp_nodot]
def unsym : αˢʸᵐ ≃ α :=
Equiv.refl _
@[simp]
theorem unsym_sym (a : α) : unsym (sym a) = a :=
rfl
@[simp]
theorem sym_unsym (a : α) : sym (unsym a) = a :=
rfl
@[simp]
theorem sym_comp_unsym : (sym : α → αˢʸᵐ) ∘ unsym = id :=
rfl
@[simp]
theorem unsym_comp_sym : (unsym : αˢʸᵐ → α) ∘ sym = id :=
rfl
@[simp]
theorem sym_symm : (@sym α).symm = unsym :=
rfl
@[simp]
theorem unsym_symm : (@unsym α).symm = sym :=
rfl
theorem sym_bijective : Bijective (sym : α → αˢʸᵐ) :=
sym.bijective
theorem unsym_bijective : Bijective (unsym : αˢʸᵐ → α) :=
unsym.symm.bijective
theorem sym_injective : Injective (sym : α → αˢʸᵐ) :=
sym.injective
theorem sym_surjective : Surjective (sym : α → αˢʸᵐ) :=
sym.surjective
theorem unsym_injective : Injective (unsym : αˢʸᵐ → α) :=
unsym.injective
theorem unsym_surjective : Surjective (unsym : αˢʸᵐ → α) :=
unsym.surjective
-- Porting note (#10618): @[simp] can prove this
theorem sym_inj {a b : α} : sym a = sym b ↔ a = b :=
sym_injective.eq_iff
-- Porting note (#10618): @[simp] can prove this
theorem unsym_inj {a b : αˢʸᵐ} : unsym a = unsym b ↔ a = b :=
unsym_injective.eq_iff
instance [Nontrivial α] : Nontrivial αˢʸᵐ :=
sym_injective.nontrivial
instance [Inhabited α] : Inhabited αˢʸᵐ :=
⟨sym default⟩
instance [Subsingleton α] : Subsingleton αˢʸᵐ :=
unsym_injective.subsingleton
instance [Unique α] : Unique αˢʸᵐ :=
Unique.mk' _
instance [IsEmpty α] : IsEmpty αˢʸᵐ :=
Function.isEmpty unsym
@[to_additive]
instance [One α] : One αˢʸᵐ where one := sym 1
instance [Add α] : Add αˢʸᵐ where add a b := sym (unsym a + unsym b)
instance [Sub α] : Sub αˢʸᵐ where sub a b := sym (unsym a - unsym b)
instance [Neg α] : Neg αˢʸᵐ where neg a := sym (-unsym a)
-- Introduce the symmetrized multiplication
instance [Add α] [Mul α] [One α] [OfNat α 2] [Invertible (2 : α)] : Mul αˢʸᵐ where
mul a b := sym (⅟ 2 * (unsym a * unsym b + unsym b * unsym a))
@[to_additive existing]
instance [Inv α] : Inv αˢʸᵐ where inv a := sym <| (unsym a)⁻¹
instance (R : Type*) [SMul R α] : SMul R αˢʸᵐ where smul r a := sym (r • unsym a)
@[to_additive (attr := simp)]
theorem sym_one [One α] : sym (1 : α) = 1 :=
rfl
@[to_additive (attr := simp)]
theorem unsym_one [One α] : unsym (1 : αˢʸᵐ) = 1 :=
rfl
@[simp]
theorem sym_add [Add α] (a b : α) : sym (a + b) = sym a + sym b :=
rfl
@[simp]
theorem unsym_add [Add α] (a b : αˢʸᵐ) : unsym (a + b) = unsym a + unsym b :=
rfl
@[simp]
theorem sym_sub [Sub α] (a b : α) : sym (a - b) = sym a - sym b :=
rfl
@[simp]
theorem unsym_sub [Sub α] (a b : αˢʸᵐ) : unsym (a - b) = unsym a - unsym b :=
rfl
@[simp]
theorem sym_neg [Neg α] (a : α) : sym (-a) = -sym a :=
rfl
@[simp]
theorem unsym_neg [Neg α] (a : αˢʸᵐ) : unsym (-a) = -unsym a :=
rfl
theorem mul_def [Add α] [Mul α] [One α] [OfNat α 2] [Invertible (2 : α)] (a b : αˢʸᵐ) :
a * b = sym (⅟ 2 * (unsym a * unsym b + unsym b * unsym a)) := rfl
theorem unsym_mul [Mul α] [Add α] [One α] [OfNat α 2] [Invertible (2 : α)] (a b : αˢʸᵐ) :
unsym (a * b) = ⅟ 2 * (unsym a * unsym b + unsym b * unsym a) := rfl
theorem sym_mul_sym [Mul α] [Add α] [One α] [OfNat α 2] [Invertible (2 : α)] (a b : α) :
sym a * sym b = sym (⅟ 2 * (a * b + b * a)) :=
rfl
set_option linter.existingAttributeWarning false in
@[simp, to_additive existing]
theorem sym_inv [Inv α] (a : α) : sym a⁻¹ = (sym a)⁻¹ :=
rfl
set_option linter.existingAttributeWarning false in
@[simp, to_additive existing]
theorem unsym_inv [Inv α] (a : αˢʸᵐ) : unsym a⁻¹ = (unsym a)⁻¹ :=
rfl
@[simp]
theorem sym_smul {R : Type*} [SMul R α] (c : R) (a : α) : sym (c • a) = c • sym a :=
rfl
@[simp]
theorem unsym_smul {R : Type*} [SMul R α] (c : R) (a : αˢʸᵐ) : unsym (c • a) = c • unsym a :=
rfl
@[to_additive (attr := simp)]
theorem unsym_eq_one_iff [One α] (a : αˢʸᵐ) : unsym a = 1 ↔ a = 1 :=
unsym_injective.eq_iff' rfl
@[to_additive (attr := simp)]
theorem sym_eq_one_iff [One α] (a : α) : sym a = 1 ↔ a = 1 :=
sym_injective.eq_iff' rfl
@[to_additive]
theorem unsym_ne_one_iff [One α] (a : αˢʸᵐ) : unsym a ≠ (1 : α) ↔ a ≠ (1 : αˢʸᵐ) :=
not_congr <| unsym_eq_one_iff a
@[to_additive]
theorem sym_ne_one_iff [One α] (a : α) : sym a ≠ (1 : αˢʸᵐ) ↔ a ≠ (1 : α) :=
not_congr <| sym_eq_one_iff a
instance addCommSemigroup [AddCommSemigroup α] : AddCommSemigroup αˢʸᵐ :=
unsym_injective.addCommSemigroup _ unsym_add
instance addMonoid [AddMonoid α] : AddMonoid αˢʸᵐ :=
unsym_injective.addMonoid _ unsym_zero unsym_add fun _ _ => rfl
instance addGroup [AddGroup α] : AddGroup αˢʸᵐ :=
unsym_injective.addGroup _ unsym_zero unsym_add unsym_neg unsym_sub (fun _ _ => rfl) fun _ _ =>
rfl
instance addCommMonoid [AddCommMonoid α] : AddCommMonoid αˢʸᵐ :=
{ SymAlg.addCommSemigroup, SymAlg.addMonoid with }
instance addCommGroup [AddCommGroup α] : AddCommGroup αˢʸᵐ :=
{ SymAlg.addCommMonoid, SymAlg.addGroup with }
instance {R : Type*} [Semiring R] [AddCommMonoid α] [Module R α] : Module R αˢʸᵐ :=
Function.Injective.module R ⟨⟨unsym, unsym_zero⟩, unsym_add⟩ unsym_injective unsym_smul
instance [Mul α] [AddMonoidWithOne α] [Invertible (2 : α)] (a : α) [Invertible a] :
Invertible (sym a) where
invOf := sym (⅟ a)
invOf_mul_self := by
rw [sym_mul_sym, mul_invOf_self, invOf_mul_self, one_add_one_eq_two, invOf_mul_self, sym_one]
mul_invOf_self := by
rw [sym_mul_sym, mul_invOf_self, invOf_mul_self, one_add_one_eq_two, invOf_mul_self, sym_one]
@[simp]
theorem invOf_sym [Mul α] [AddMonoidWithOne α] [Invertible (2 : α)] (a : α) [Invertible a] :
⅟ (sym a) = sym (⅟ a) :=
rfl
instance nonAssocSemiring [Semiring α] [Invertible (2 : α)] : NonAssocSemiring αˢʸᵐ :=
{ SymAlg.addCommMonoid with
one := 1
mul := (· * ·)
zero_mul := fun _ => by
rw [mul_def, unsym_zero, zero_mul, mul_zero, add_zero,
mul_zero, sym_zero]
mul_zero := fun _ => by
rw [mul_def, unsym_zero, zero_mul, mul_zero, add_zero,
mul_zero, sym_zero]
mul_one := fun _ => by
rw [mul_def, unsym_one, mul_one, one_mul, ← two_mul, invOf_mul_self_assoc, sym_unsym]
one_mul := fun _ => by
rw [mul_def, unsym_one, mul_one, one_mul, ← two_mul, invOf_mul_self_assoc, sym_unsym]
left_distrib := fun a b c => by
-- Porting note: rewrote previous proof which used `match` in a way that seems unsupported.
rw [mul_def, mul_def, mul_def, ← sym_add, ← mul_add, unsym_add, add_mul]
congr 2
rw [mul_add]
abel
right_distrib := fun a b c => by
-- Porting note: rewrote previous proof which used `match` in a way that seems unsupported.
rw [mul_def, mul_def, mul_def, ← sym_add, ← mul_add, unsym_add, add_mul]
congr 2
rw [mul_add]
abel }
/-- The symmetrization of a real (unital, associative) algebra is a non-associative ring. -/
instance [Ring α] [Invertible (2 : α)] : NonAssocRing αˢʸᵐ :=
{ SymAlg.nonAssocSemiring, SymAlg.addCommGroup with }
/-! The squaring operation coincides for both multiplications -/
theorem unsym_mul_self [Semiring α] [Invertible (2 : α)] (a : αˢʸᵐ) :
unsym (a * a) = unsym a * unsym a := by rw [mul_def, unsym_sym, ← two_mul, invOf_mul_self_assoc]
theorem sym_mul_self [Semiring α] [Invertible (2 : α)] (a : α) : sym (a * a) = sym a * sym a := by
rw [sym_mul_sym, ← two_mul, invOf_mul_self_assoc]
theorem mul_comm [Mul α] [AddCommSemigroup α] [One α] [OfNat α 2] [Invertible (2 : α)]
(a b : αˢʸᵐ) :
a * b = b * a := by rw [mul_def, mul_def, add_comm]
instance [Ring α] [Invertible (2 : α)] : CommMagma αˢʸᵐ where
mul_comm := SymAlg.mul_comm
instance [Ring α] [Invertible (2 : α)] : IsCommJordan αˢʸᵐ where
lmul_comm_rmul_rmul a b := by
have commute_half_left := fun a : α => by
-- Porting note: mathlib3 used `bit0_left`
have := (Commute.one_left a).add_left (Commute.one_left a)
rw [one_add_one_eq_two] at this
exact this.invOf_left.eq
-- Porting note: introduced `calc` block to make more robust
calc a * b * (a * a)
_ = sym (⅟2 * ⅟2 * (unsym a * unsym b * unsym (a * a) +
unsym b * unsym a * unsym (a * a) +
unsym (a * a) * unsym a * unsym b +
unsym (a * a) * unsym b * unsym a)) := ?_
_ = sym (⅟ 2 * (unsym a *
unsym (sym (⅟ 2 * (unsym b * unsym (a * a) + unsym (a * a) * unsym b))) +
unsym (sym (⅟ 2 * (unsym b * unsym (a * a) + unsym (a * a) * unsym b))) * unsym a)) := ?_
_ = a * (b * (a * a)) := ?_
-- Rearrange LHS
· rw [mul_def, mul_def a b, unsym_sym, ← mul_assoc, ← commute_half_left (unsym (a * a)),
mul_assoc, mul_assoc, ← mul_add, ← mul_assoc, add_mul, mul_add (unsym (a * a)),
← add_assoc, ← mul_assoc, ← mul_assoc]
· rw [unsym_sym, sym_inj, ← mul_assoc, ← commute_half_left (unsym a), mul_assoc (⅟ 2) (unsym a),
mul_assoc (⅟ 2) _ (unsym a), ← mul_add, ← mul_assoc]
conv_rhs => rw [mul_add (unsym a)]
rw [add_mul, ← add_assoc, ← mul_assoc, ← mul_assoc]
rw [unsym_mul_self]
rw [← mul_assoc, ← mul_assoc, ← mul_assoc, ← mul_assoc, ← sub_eq_zero, ← mul_sub]
convert mul_zero (⅟ (2 : α) * ⅟ (2 : α))
rw [add_sub_add_right_eq_sub, add_assoc, add_assoc, add_sub_add_left_eq_sub, add_comm,
add_sub_add_right_eq_sub, sub_eq_zero]
-- Rearrange RHS
· rw [← mul_def, ← mul_def]
end SymAlg
|
Algebra\TrivSqZeroExt.lean | /-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Eric Wieser
-/
import Mathlib.Algebra.Algebra.Defs
import Mathlib.GroupTheory.GroupAction.BigOperators
import Mathlib.LinearAlgebra.Prod
/-!
# Trivial Square-Zero Extension
Given a ring `R` together with an `(R, R)`-bimodule `M`, the trivial square-zero extension of `M`
over `R` is defined to be the `R`-algebra `R ⊕ M` with multiplication given by
`(r₁ + m₁) * (r₂ + m₂) = r₁ r₂ + r₁ m₂ + m₁ r₂`.
It is a square-zero extension because `M^2 = 0`.
Note that expressing this requires bimodules; we write these in general for a
not-necessarily-commutative `R` as:
```lean
variable {R M : Type*} [Semiring R] [AddCommMonoid M]
variable [Module R M] [Module Rᵐᵒᵖ M] [SMulCommClass R Rᵐᵒᵖ M]
```
If we instead work with a commutative `R'` acting symmetrically on `M`, we write
```lean
variable {R' M : Type*} [CommSemiring R'] [AddCommMonoid M]
variable [Module R' M] [Module R'ᵐᵒᵖ M] [IsCentralScalar R' M]
```
noting that in this context `IsCentralScalar R' M` implies `SMulCommClass R' R'ᵐᵒᵖ M`.
Many of the later results in this file are only stated for the commutative `R'` for simplicity.
## Main definitions
* `TrivSqZeroExt.inl`, `TrivSqZeroExt.inr`: the canonical inclusions into
`TrivSqZeroExt R M`.
* `TrivSqZeroExt.fst`, `TrivSqZeroExt.snd`: the canonical projections from
`TrivSqZeroExt R M`.
* `triv_sq_zero_ext.algebra`: the associated `R`-algebra structure.
* `TrivSqZeroExt.lift`: the universal property of the trivial square-zero extension; algebra
morphisms `TrivSqZeroExt R M →ₐ[S] A` are uniquely defined by an algebra morphism `f : R →ₐ[S] A`
on `R` and a linear map `g : M →ₗ[S] A` on `M` such that:
* `g x * g y = 0`: the elements of `M` continue to square to zero.
* `g (r •> x) = f r * g x` and `g (x <• r) = g x * f r`: left and right actions are preserved by
`g`.
* `TrivSqZeroExt.lift`: the universal property of the trivial square-zero extension; algebra
morphisms `TrivSqZeroExt R M →ₐ[R] A` are uniquely defined by linear maps `M →ₗ[R] A` for
which the product of any two elements in the range is zero.
-/
universe u v w
/-- "Trivial Square-Zero Extension".
Given a module `M` over a ring `R`, the trivial square-zero extension of `M` over `R` is defined
to be the `R`-algebra `R × M` with multiplication given by
`(r₁ + m₁) * (r₂ + m₂) = r₁ r₂ + r₁ m₂ + r₂ m₁`.
It is a square-zero extension because `M^2 = 0`.
-/
def TrivSqZeroExt (R : Type u) (M : Type v) :=
R × M
local notation "tsze" => TrivSqZeroExt
open scoped RightActions
namespace TrivSqZeroExt
open MulOpposite
section Basic
variable {R : Type u} {M : Type v}
/-- The canonical inclusion `R → TrivSqZeroExt R M`. -/
def inl [Zero M] (r : R) : tsze R M :=
(r, 0)
/-- The canonical inclusion `M → TrivSqZeroExt R M`. -/
def inr [Zero R] (m : M) : tsze R M :=
(0, m)
/-- The canonical projection `TrivSqZeroExt R M → R`. -/
def fst (x : tsze R M) : R :=
x.1
/-- The canonical projection `TrivSqZeroExt R M → M`. -/
def snd (x : tsze R M) : M :=
x.2
@[simp]
theorem fst_mk (r : R) (m : M) : fst (r, m) = r :=
rfl
@[simp]
theorem snd_mk (r : R) (m : M) : snd (r, m) = m :=
rfl
@[ext]
theorem ext {x y : tsze R M} (h1 : x.fst = y.fst) (h2 : x.snd = y.snd) : x = y :=
Prod.ext h1 h2
section
variable (M)
@[simp]
theorem fst_inl [Zero M] (r : R) : (inl r : tsze R M).fst = r :=
rfl
@[simp]
theorem snd_inl [Zero M] (r : R) : (inl r : tsze R M).snd = 0 :=
rfl
@[simp]
theorem fst_comp_inl [Zero M] : fst ∘ (inl : R → tsze R M) = id :=
rfl
@[simp]
theorem snd_comp_inl [Zero M] : snd ∘ (inl : R → tsze R M) = 0 :=
rfl
end
section
variable (R)
@[simp]
theorem fst_inr [Zero R] (m : M) : (inr m : tsze R M).fst = 0 :=
rfl
@[simp]
theorem snd_inr [Zero R] (m : M) : (inr m : tsze R M).snd = m :=
rfl
@[simp]
theorem fst_comp_inr [Zero R] : fst ∘ (inr : M → tsze R M) = 0 :=
rfl
@[simp]
theorem snd_comp_inr [Zero R] : snd ∘ (inr : M → tsze R M) = id :=
rfl
end
theorem inl_injective [Zero M] : Function.Injective (inl : R → tsze R M) :=
Function.LeftInverse.injective <| fst_inl _
theorem inr_injective [Zero R] : Function.Injective (inr : M → tsze R M) :=
Function.LeftInverse.injective <| snd_inr _
end Basic
/-! ### Structures inherited from `Prod`
Additive operators and scalar multiplication operate elementwise. -/
section Additive
variable {T : Type*} {S : Type*} {R : Type u} {M : Type v}
instance inhabited [Inhabited R] [Inhabited M] : Inhabited (tsze R M) :=
instInhabitedProd
instance zero [Zero R] [Zero M] : Zero (tsze R M) :=
Prod.instZero
instance add [Add R] [Add M] : Add (tsze R M) :=
Prod.instAdd
instance sub [Sub R] [Sub M] : Sub (tsze R M) :=
Prod.instSub
instance neg [Neg R] [Neg M] : Neg (tsze R M) :=
Prod.instNeg
instance addSemigroup [AddSemigroup R] [AddSemigroup M] : AddSemigroup (tsze R M) :=
Prod.instAddSemigroup
instance addZeroClass [AddZeroClass R] [AddZeroClass M] : AddZeroClass (tsze R M) :=
Prod.instAddZeroClass
instance addMonoid [AddMonoid R] [AddMonoid M] : AddMonoid (tsze R M) :=
Prod.instAddMonoid
instance addGroup [AddGroup R] [AddGroup M] : AddGroup (tsze R M) :=
Prod.instAddGroup
instance addCommSemigroup [AddCommSemigroup R] [AddCommSemigroup M] : AddCommSemigroup (tsze R M) :=
Prod.instAddCommSemigroup
instance addCommMonoid [AddCommMonoid R] [AddCommMonoid M] : AddCommMonoid (tsze R M) :=
Prod.instAddCommMonoid
instance addCommGroup [AddCommGroup R] [AddCommGroup M] : AddCommGroup (tsze R M) :=
Prod.instAddCommGroup
instance smul [SMul S R] [SMul S M] : SMul S (tsze R M) :=
Prod.smul
instance isScalarTower [SMul T R] [SMul T M] [SMul S R] [SMul S M] [SMul T S]
[IsScalarTower T S R] [IsScalarTower T S M] : IsScalarTower T S (tsze R M) :=
Prod.isScalarTower
instance smulCommClass [SMul T R] [SMul T M] [SMul S R] [SMul S M]
[SMulCommClass T S R] [SMulCommClass T S M] : SMulCommClass T S (tsze R M) :=
Prod.smulCommClass
instance isCentralScalar [SMul S R] [SMul S M] [SMul Sᵐᵒᵖ R] [SMul Sᵐᵒᵖ M] [IsCentralScalar S R]
[IsCentralScalar S M] : IsCentralScalar S (tsze R M) :=
Prod.isCentralScalar
instance mulAction [Monoid S] [MulAction S R] [MulAction S M] : MulAction S (tsze R M) :=
Prod.mulAction
instance distribMulAction [Monoid S] [AddMonoid R] [AddMonoid M]
[DistribMulAction S R] [DistribMulAction S M] : DistribMulAction S (tsze R M) :=
Prod.distribMulAction
instance module [Semiring S] [AddCommMonoid R] [AddCommMonoid M] [Module S R] [Module S M] :
Module S (tsze R M) :=
Prod.instModule
@[simp]
theorem fst_zero [Zero R] [Zero M] : (0 : tsze R M).fst = 0 :=
rfl
@[simp]
theorem snd_zero [Zero R] [Zero M] : (0 : tsze R M).snd = 0 :=
rfl
@[simp]
theorem fst_add [Add R] [Add M] (x₁ x₂ : tsze R M) : (x₁ + x₂).fst = x₁.fst + x₂.fst :=
rfl
@[simp]
theorem snd_add [Add R] [Add M] (x₁ x₂ : tsze R M) : (x₁ + x₂).snd = x₁.snd + x₂.snd :=
rfl
@[simp]
theorem fst_neg [Neg R] [Neg M] (x : tsze R M) : (-x).fst = -x.fst :=
rfl
@[simp]
theorem snd_neg [Neg R] [Neg M] (x : tsze R M) : (-x).snd = -x.snd :=
rfl
@[simp]
theorem fst_sub [Sub R] [Sub M] (x₁ x₂ : tsze R M) : (x₁ - x₂).fst = x₁.fst - x₂.fst :=
rfl
@[simp]
theorem snd_sub [Sub R] [Sub M] (x₁ x₂ : tsze R M) : (x₁ - x₂).snd = x₁.snd - x₂.snd :=
rfl
@[simp]
theorem fst_smul [SMul S R] [SMul S M] (s : S) (x : tsze R M) : (s • x).fst = s • x.fst :=
rfl
@[simp]
theorem snd_smul [SMul S R] [SMul S M] (s : S) (x : tsze R M) : (s • x).snd = s • x.snd :=
rfl
theorem fst_sum {ι} [AddCommMonoid R] [AddCommMonoid M] (s : Finset ι) (f : ι → tsze R M) :
(∑ i ∈ s, f i).fst = ∑ i ∈ s, (f i).fst :=
Prod.fst_sum
theorem snd_sum {ι} [AddCommMonoid R] [AddCommMonoid M] (s : Finset ι) (f : ι → tsze R M) :
(∑ i ∈ s, f i).snd = ∑ i ∈ s, (f i).snd :=
Prod.snd_sum
section
variable (M)
@[simp]
theorem inl_zero [Zero R] [Zero M] : (inl 0 : tsze R M) = 0 :=
rfl
@[simp]
theorem inl_add [Add R] [AddZeroClass M] (r₁ r₂ : R) :
(inl (r₁ + r₂) : tsze R M) = inl r₁ + inl r₂ :=
ext rfl (add_zero 0).symm
@[simp]
theorem inl_neg [Neg R] [SubNegZeroMonoid M] (r : R) : (inl (-r) : tsze R M) = -inl r :=
ext rfl neg_zero.symm
@[simp]
theorem inl_sub [Sub R] [SubNegZeroMonoid M] (r₁ r₂ : R) :
(inl (r₁ - r₂) : tsze R M) = inl r₁ - inl r₂ :=
ext rfl (sub_zero _).symm
@[simp]
theorem inl_smul [Monoid S] [AddMonoid M] [SMul S R] [DistribMulAction S M] (s : S) (r : R) :
(inl (s • r) : tsze R M) = s • inl r :=
ext rfl (smul_zero s).symm
theorem inl_sum {ι} [AddCommMonoid R] [AddCommMonoid M] (s : Finset ι) (f : ι → R) :
(inl (∑ i ∈ s, f i) : tsze R M) = ∑ i ∈ s, inl (f i) :=
map_sum (LinearMap.inl ℕ _ _) _ _
end
section
variable (R)
@[simp]
theorem inr_zero [Zero R] [Zero M] : (inr 0 : tsze R M) = 0 :=
rfl
@[simp]
theorem inr_add [AddZeroClass R] [AddZeroClass M] (m₁ m₂ : M) :
(inr (m₁ + m₂) : tsze R M) = inr m₁ + inr m₂ :=
ext (add_zero 0).symm rfl
@[simp]
theorem inr_neg [SubNegZeroMonoid R] [Neg M] (m : M) : (inr (-m) : tsze R M) = -inr m :=
ext neg_zero.symm rfl
@[simp]
theorem inr_sub [SubNegZeroMonoid R] [Sub M] (m₁ m₂ : M) :
(inr (m₁ - m₂) : tsze R M) = inr m₁ - inr m₂ :=
ext (sub_zero _).symm rfl
@[simp]
theorem inr_smul [Zero R] [Zero S] [SMulWithZero S R] [SMul S M] (r : S) (m : M) :
(inr (r • m) : tsze R M) = r • inr m :=
ext (smul_zero _).symm rfl
theorem inr_sum {ι} [AddCommMonoid R] [AddCommMonoid M] (s : Finset ι) (f : ι → M) :
(inr (∑ i ∈ s, f i) : tsze R M) = ∑ i ∈ s, inr (f i) :=
map_sum (LinearMap.inr ℕ _ _) _ _
end
theorem inl_fst_add_inr_snd_eq [AddZeroClass R] [AddZeroClass M] (x : tsze R M) :
inl x.fst + inr x.snd = x :=
ext (add_zero x.1) (zero_add x.2)
/-- To show a property hold on all `TrivSqZeroExt R M` it suffices to show it holds
on terms of the form `inl r + inr m`. -/
@[elab_as_elim, induction_eliminator, cases_eliminator]
theorem ind {R M} [AddZeroClass R] [AddZeroClass M] {P : TrivSqZeroExt R M → Prop}
(inl_add_inr : ∀ r m, P (inl r + inr m)) (x) : P x :=
inl_fst_add_inr_snd_eq x ▸ inl_add_inr x.1 x.2
/-- This cannot be marked `@[ext]` as it ends up being used instead of `LinearMap.prod_ext` when
working with `R × M`. -/
theorem linearMap_ext {N} [Semiring S] [AddCommMonoid R] [AddCommMonoid M] [AddCommMonoid N]
[Module S R] [Module S M] [Module S N] ⦃f g : tsze R M →ₗ[S] N⦄
(hl : ∀ r, f (inl r) = g (inl r)) (hr : ∀ m, f (inr m) = g (inr m)) : f = g :=
LinearMap.prod_ext (LinearMap.ext hl) (LinearMap.ext hr)
variable (R M)
/-- The canonical `R`-linear inclusion `M → TrivSqZeroExt R M`. -/
@[simps apply]
def inrHom [Semiring R] [AddCommMonoid M] [Module R M] : M →ₗ[R] tsze R M :=
{ LinearMap.inr R R M with toFun := inr }
/-- The canonical `R`-linear projection `TrivSqZeroExt R M → M`. -/
@[simps apply]
def sndHom [Semiring R] [AddCommMonoid M] [Module R M] : tsze R M →ₗ[R] M :=
{ LinearMap.snd _ _ _ with toFun := snd }
end Additive
/-! ### Multiplicative structure -/
section Mul
variable {R : Type u} {M : Type v}
instance one [One R] [Zero M] : One (tsze R M) :=
⟨(1, 0)⟩
instance mul [Mul R] [Add M] [SMul R M] [SMul Rᵐᵒᵖ M] : Mul (tsze R M) :=
⟨fun x y => (x.1 * y.1, x.1 •> y.2 + x.2 <• y.1)⟩
@[simp]
theorem fst_one [One R] [Zero M] : (1 : tsze R M).fst = 1 :=
rfl
@[simp]
theorem snd_one [One R] [Zero M] : (1 : tsze R M).snd = 0 :=
rfl
@[simp]
theorem fst_mul [Mul R] [Add M] [SMul R M] [SMul Rᵐᵒᵖ M] (x₁ x₂ : tsze R M) :
(x₁ * x₂).fst = x₁.fst * x₂.fst :=
rfl
@[simp]
theorem snd_mul [Mul R] [Add M] [SMul R M] [SMul Rᵐᵒᵖ M] (x₁ x₂ : tsze R M) :
(x₁ * x₂).snd = x₁.fst •> x₂.snd + x₁.snd <• x₂.fst :=
rfl
section
variable (M)
@[simp]
theorem inl_one [One R] [Zero M] : (inl 1 : tsze R M) = 1 :=
rfl
@[simp]
theorem inl_mul [Monoid R] [AddMonoid M] [DistribMulAction R M] [DistribMulAction Rᵐᵒᵖ M]
(r₁ r₂ : R) : (inl (r₁ * r₂) : tsze R M) = inl r₁ * inl r₂ :=
ext rfl <| show (0 : M) = r₁ •> (0 : M) + (0 : M) <• r₂ by rw [smul_zero, zero_add, smul_zero]
theorem inl_mul_inl [Monoid R] [AddMonoid M] [DistribMulAction R M] [DistribMulAction Rᵐᵒᵖ M]
(r₁ r₂ : R) : (inl r₁ * inl r₂ : tsze R M) = inl (r₁ * r₂) :=
(inl_mul M r₁ r₂).symm
end
section
variable (R)
@[simp]
theorem inr_mul_inr [Semiring R] [AddCommMonoid M] [Module R M] [Module Rᵐᵒᵖ M] (m₁ m₂ : M) :
(inr m₁ * inr m₂ : tsze R M) = 0 :=
ext (mul_zero _) <|
show (0 : R) •> m₂ + m₁ <• (0 : R) = 0 by rw [zero_smul, zero_add, op_zero, zero_smul]
end
theorem inl_mul_inr [Semiring R] [AddCommMonoid M] [Module R M] [Module Rᵐᵒᵖ M] (r : R) (m : M) :
(inl r * inr m : tsze R M) = inr (r • m) :=
ext (mul_zero r) <|
show r • m + (0 : Rᵐᵒᵖ) • (0 : M) = r • m by rw [smul_zero, add_zero]
theorem inr_mul_inl [Semiring R] [AddCommMonoid M] [Module R M] [Module Rᵐᵒᵖ M] (r : R) (m : M) :
(inr m * inl r : tsze R M) = inr (m <• r) :=
ext (zero_mul r) <|
show (0 : R) •> (0 : M) + m <• r = m <• r by rw [smul_zero, zero_add]
theorem inl_mul_eq_smul [Semiring R] [AddCommMonoid M] [Module R M] [Module Rᵐᵒᵖ M]
(r : R) (x : tsze R M) :
inl r * x = r •> x :=
ext rfl (by dsimp; rw [smul_zero, add_zero])
theorem mul_inl_eq_op_smul [Semiring R] [AddCommMonoid M] [Module R M] [Module Rᵐᵒᵖ M]
(x : tsze R M) (r : R) :
x * inl r = x <• r :=
ext rfl (by dsimp; rw [smul_zero, zero_add])
instance mulOneClass [Monoid R] [AddMonoid M] [DistribMulAction R M] [DistribMulAction Rᵐᵒᵖ M] :
MulOneClass (tsze R M) :=
{ TrivSqZeroExt.one, TrivSqZeroExt.mul with
one_mul := fun x =>
ext (one_mul x.1) <|
show (1 : R) •> x.2 + (0 : M) <• x.1 = x.2 by rw [one_smul, smul_zero, add_zero]
mul_one := fun x =>
ext (mul_one x.1) <|
show x.1 • (0 : M) + x.2 <• (1 : R) = x.2 by rw [smul_zero, zero_add, op_one, one_smul] }
instance addMonoidWithOne [AddMonoidWithOne R] [AddMonoid M] : AddMonoidWithOne (tsze R M) :=
{ TrivSqZeroExt.addMonoid, TrivSqZeroExt.one with
natCast := fun n => inl n
natCast_zero := by simp [Nat.cast]
natCast_succ := fun _ => by ext <;> simp [Nat.cast] }
@[simp]
theorem fst_natCast [AddMonoidWithOne R] [AddMonoid M] (n : ℕ) : (n : tsze R M).fst = n :=
rfl
@[deprecated (since := "2024-04-17")]
alias fst_nat_cast := fst_natCast
@[simp]
theorem snd_natCast [AddMonoidWithOne R] [AddMonoid M] (n : ℕ) : (n : tsze R M).snd = 0 :=
rfl
@[deprecated (since := "2024-04-17")]
alias snd_nat_cast := snd_natCast
@[simp]
theorem inl_natCast [AddMonoidWithOne R] [AddMonoid M] (n : ℕ) : (inl n : tsze R M) = n :=
rfl
@[deprecated (since := "2024-04-17")]
alias inl_nat_cast := inl_natCast
instance addGroupWithOne [AddGroupWithOne R] [AddGroup M] : AddGroupWithOne (tsze R M) :=
{ TrivSqZeroExt.addGroup, TrivSqZeroExt.addMonoidWithOne with
intCast := fun z => inl z
intCast_ofNat := fun _n => ext (Int.cast_natCast _) rfl
intCast_negSucc := fun _n => ext (Int.cast_negSucc _) neg_zero.symm }
@[simp]
theorem fst_intCast [AddGroupWithOne R] [AddGroup M] (z : ℤ) : (z : tsze R M).fst = z :=
rfl
@[deprecated (since := "2024-04-17")]
alias fst_int_cast := fst_intCast
@[simp]
theorem snd_intCast [AddGroupWithOne R] [AddGroup M] (z : ℤ) : (z : tsze R M).snd = 0 :=
rfl
@[deprecated (since := "2024-04-17")]
alias snd_int_cast := snd_intCast
@[simp]
theorem inl_intCast [AddGroupWithOne R] [AddGroup M] (z : ℤ) : (inl z : tsze R M) = z :=
rfl
@[deprecated (since := "2024-04-17")]
alias inl_int_cast := inl_intCast
instance nonAssocSemiring [Semiring R] [AddCommMonoid M] [Module R M] [Module Rᵐᵒᵖ M] :
NonAssocSemiring (tsze R M) :=
{ TrivSqZeroExt.addMonoidWithOne, TrivSqZeroExt.mulOneClass, TrivSqZeroExt.addCommMonoid with
zero_mul := fun x =>
ext (zero_mul x.1) <|
show (0 : R) •> x.2 + (0 : M) <• x.1 = 0 by rw [zero_smul, zero_add, smul_zero]
mul_zero := fun x =>
ext (mul_zero x.1) <|
show x.1 • (0 : M) + (0 : Rᵐᵒᵖ) • x.2 = 0 by rw [smul_zero, zero_add, zero_smul]
left_distrib := fun x₁ x₂ x₃ =>
ext (mul_add x₁.1 x₂.1 x₃.1) <|
show
x₁.1 •> (x₂.2 + x₃.2) + x₁.2 <• (x₂.1 + x₃.1) =
x₁.1 •> x₂.2 + x₁.2 <• x₂.1 + (x₁.1 •> x₃.2 + x₁.2 <• x₃.1)
by simp_rw [smul_add, MulOpposite.op_add, add_smul, add_add_add_comm]
right_distrib := fun x₁ x₂ x₃ =>
ext (add_mul x₁.1 x₂.1 x₃.1) <|
show
(x₁.1 + x₂.1) •> x₃.2 + (x₁.2 + x₂.2) <• x₃.1 =
x₁.1 •> x₃.2 + x₁.2 <• x₃.1 + (x₂.1 •> x₃.2 + x₂.2 <• x₃.1)
by simp_rw [add_smul, smul_add, add_add_add_comm] }
instance nonAssocRing [Ring R] [AddCommGroup M] [Module R M] [Module Rᵐᵒᵖ M] :
NonAssocRing (tsze R M) :=
{ TrivSqZeroExt.addGroupWithOne, TrivSqZeroExt.nonAssocSemiring with }
/-- In the general non-commutative case, the power operator is
$$\begin{align}
(r + m)^n &= r^n + r^{n-1}m + r^{n-2}mr + \cdots + rmr^{n-2} + mr^{n-1} \\
& =r^n + \sum_{i = 0}^{n - 1} r^{(n - 1) - i} m r^{i}
\end{align}$$
In the commutative case this becomes the simpler $(r + m)^n = r^n + nr^{n-1}m$.
-/
instance [Monoid R] [AddMonoid M] [DistribMulAction R M] [DistribMulAction Rᵐᵒᵖ M] :
Pow (tsze R M) ℕ :=
⟨fun x n =>
⟨x.fst ^ n, ((List.range n).map fun i => x.fst ^ (n.pred - i) •> x.snd <• x.fst ^ i).sum⟩⟩
@[simp]
theorem fst_pow [Monoid R] [AddMonoid M] [DistribMulAction R M] [DistribMulAction Rᵐᵒᵖ M]
(x : tsze R M) (n : ℕ) : fst (x ^ n) = x.fst ^ n :=
rfl
theorem snd_pow_eq_sum [Monoid R] [AddMonoid M] [DistribMulAction R M] [DistribMulAction Rᵐᵒᵖ M]
(x : tsze R M) (n : ℕ) :
snd (x ^ n) = ((List.range n).map fun i => x.fst ^ (n.pred - i) •> x.snd <• x.fst ^ i).sum :=
rfl
theorem snd_pow_of_smul_comm [Monoid R] [AddMonoid M] [DistribMulAction R M]
[DistribMulAction Rᵐᵒᵖ M] [SMulCommClass R Rᵐᵒᵖ M] (x : tsze R M) (n : ℕ)
(h : x.snd <• x.fst = x.fst •> x.snd) : snd (x ^ n) = n • x.fst ^ n.pred •> x.snd := by
simp_rw [snd_pow_eq_sum, ← smul_comm (_ : R) (_ : Rᵐᵒᵖ), aux, smul_smul, ← pow_add]
match n with
| 0 => rw [Nat.pred_zero, pow_zero, List.range_zero, zero_smul, List.map_nil, List.sum_nil]
| (Nat.succ n) =>
simp_rw [Nat.pred_succ]
refine (List.sum_eq_card_nsmul _ (x.fst ^ n • x.snd) ?_).trans ?_
· rintro m hm
simp_rw [List.mem_map, List.mem_range] at hm
obtain ⟨i, hi, rfl⟩ := hm
rw [Nat.sub_add_cancel (Nat.lt_succ_iff.mp hi)]
· rw [List.length_map, List.length_range]
where
aux : ∀ n : ℕ, x.snd <• x.fst ^ n = x.fst ^ n •> x.snd := by
intro n
induction' n with n ih
· simp
· rw [pow_succ, op_mul, mul_smul, mul_smul, ← h, smul_comm (_ : R) (op x.fst) x.snd, ih]
theorem snd_pow_of_smul_comm' [Monoid R] [AddMonoid M] [DistribMulAction R M]
[DistribMulAction Rᵐᵒᵖ M] [SMulCommClass R Rᵐᵒᵖ M] (x : tsze R M) (n : ℕ)
(h : x.snd <• x.fst = x.fst •> x.snd) : snd (x ^ n) = n • (x.snd <• x.fst ^ n.pred) := by
rw [snd_pow_of_smul_comm _ _ h, snd_pow_of_smul_comm.aux _ h]
@[simp]
theorem snd_pow [CommMonoid R] [AddMonoid M] [DistribMulAction R M] [DistribMulAction Rᵐᵒᵖ M]
[IsCentralScalar R M] (x : tsze R M) (n : ℕ) : snd (x ^ n) = n • x.fst ^ n.pred • x.snd :=
snd_pow_of_smul_comm _ _ (op_smul_eq_smul _ _)
@[simp]
theorem inl_pow [Monoid R] [AddMonoid M] [DistribMulAction R M] [DistribMulAction Rᵐᵒᵖ M] (r : R)
(n : ℕ) : (inl r ^ n : tsze R M) = inl (r ^ n) :=
ext rfl <| by simp [snd_pow_eq_sum, List.map_const']
instance monoid [Monoid R] [AddMonoid M] [DistribMulAction R M] [DistribMulAction Rᵐᵒᵖ M]
[SMulCommClass R Rᵐᵒᵖ M] : Monoid (tsze R M) :=
{ TrivSqZeroExt.mulOneClass with
mul_assoc := fun x y z =>
ext (mul_assoc x.1 y.1 z.1) <|
show
(x.1 * y.1) •> z.2 + (x.1 •> y.2 + x.2 <• y.1) <• z.1 =
x.1 •> (y.1 •> z.2 + y.2 <• z.1) + x.2 <• (y.1 * z.1)
by simp_rw [smul_add, ← mul_smul, add_assoc, smul_comm, op_mul]
npow := fun n x => x ^ n
npow_zero := fun x => ext (pow_zero x.fst) (by simp [snd_pow_eq_sum])
npow_succ := fun n x =>
ext (pow_succ _ _)
(by
simp_rw [snd_mul, snd_pow_eq_sum, Nat.pred_succ]
cases n
· simp [List.range_succ]
rw [List.sum_range_succ']
simp only [pow_zero, op_one, Nat.sub_zero, one_smul, Nat.succ_sub_succ_eq_sub, fst_pow,
Nat.pred_succ, List.smul_sum, List.map_map, Function.comp]
simp_rw [← smul_comm (_ : R) (_ : Rᵐᵒᵖ), smul_smul, pow_succ]
rfl) }
theorem fst_list_prod [Monoid R] [AddMonoid M] [DistribMulAction R M] [DistribMulAction Rᵐᵒᵖ M]
[SMulCommClass R Rᵐᵒᵖ M] (l : List (tsze R M)) : l.prod.fst = (l.map fst).prod :=
map_list_prod ({ toFun := fst, map_one' := fst_one, map_mul' := fst_mul } : tsze R M →* R) _
instance semiring [Semiring R] [AddCommMonoid M]
[Module R M] [Module Rᵐᵒᵖ M] [SMulCommClass R Rᵐᵒᵖ M] : Semiring (tsze R M) :=
{ TrivSqZeroExt.monoid, TrivSqZeroExt.nonAssocSemiring with }
/-- The second element of a product $\prod_{i=0}^n (r_i + m_i)$ is a sum of terms of the form
$r_0\cdots r_{i-1}m_ir_{i+1}\cdots r_n$. -/
theorem snd_list_prod [Semiring R] [AddCommMonoid M] [Module R M] [Module Rᵐᵒᵖ M]
[SMulCommClass R Rᵐᵒᵖ M] (l : List (tsze R M)) :
l.prod.snd =
(l.enum.map fun x : ℕ × tsze R M =>
((l.map fst).take x.1).prod •> x.snd.snd <• ((l.map fst).drop x.1.succ).prod).sum := by
induction' l with x xs ih
· simp
· rw [List.enum_cons, ← List.map_fst_add_enum_eq_enumFrom]
simp_rw [List.map_cons, List.map_map, Function.comp, Prod.map_snd, Prod.map_fst, id,
List.take_zero, List.take_cons, List.prod_nil, List.prod_cons, snd_mul, one_smul, List.drop,
mul_smul, List.sum_cons, fst_list_prod, ih, List.smul_sum, List.map_map,
← smul_comm (_ : R) (_ : Rᵐᵒᵖ)]
exact add_comm _ _
instance ring [Ring R] [AddCommGroup M] [Module R M] [Module Rᵐᵒᵖ M] [SMulCommClass R Rᵐᵒᵖ M] :
Ring (tsze R M) :=
{ TrivSqZeroExt.semiring, TrivSqZeroExt.nonAssocRing with }
instance commMonoid [CommMonoid R] [AddCommMonoid M] [DistribMulAction R M]
[DistribMulAction Rᵐᵒᵖ M] [IsCentralScalar R M] : CommMonoid (tsze R M) :=
{ TrivSqZeroExt.monoid with
mul_comm := fun x₁ x₂ =>
ext (mul_comm x₁.1 x₂.1) <|
show x₁.1 •> x₂.2 + x₁.2 <• x₂.1 = x₂.1 •> x₁.2 + x₂.2 <• x₁.1 by
rw [op_smul_eq_smul, op_smul_eq_smul, add_comm] }
instance commSemiring [CommSemiring R] [AddCommMonoid M] [Module R M] [Module Rᵐᵒᵖ M]
[IsCentralScalar R M] : CommSemiring (tsze R M) :=
{ TrivSqZeroExt.commMonoid, TrivSqZeroExt.nonAssocSemiring with }
instance commRing [CommRing R] [AddCommGroup M] [Module R M] [Module Rᵐᵒᵖ M] [IsCentralScalar R M] :
CommRing (tsze R M) :=
{ TrivSqZeroExt.nonAssocRing, TrivSqZeroExt.commSemiring with }
variable (R M)
/-- The canonical inclusion of rings `R → TrivSqZeroExt R M`. -/
@[simps apply]
def inlHom [Semiring R] [AddCommMonoid M] [Module R M] [Module Rᵐᵒᵖ M] : R →+* tsze R M where
toFun := inl
map_one' := inl_one M
map_mul' := inl_mul M
map_zero' := inl_zero M
map_add' := inl_add M
end Mul
section Inv
variable {R : Type u} {M : Type v}
variable [Neg M] [Inv R] [SMul Rᵐᵒᵖ M] [SMul R M]
/-- Inversion of the trivial-square-zero extension, sending $r + m$ to $r^{-1} - r^{-1}mr^{-1}$. -/
instance instInv : Inv (tsze R M) :=
⟨fun b => (b.1⁻¹, -(b.1⁻¹ •> b.2 <• b.1⁻¹))⟩
@[simp] theorem fst_inv (x : tsze R M) : fst x⁻¹ = (fst x)⁻¹ :=
rfl
@[simp] theorem snd_inv (x : tsze R M) : snd x⁻¹ = -((fst x)⁻¹ •> snd x <• (fst x)⁻¹) :=
rfl
end Inv
section DivisionSemiring
variable {R : Type u} {M : Type v}
variable [DivisionSemiring R] [AddCommGroup M] [Module Rᵐᵒᵖ M] [Module R M]
protected theorem inv_inl (r : R) :
(inl r)⁻¹ = (inl (r⁻¹ : R) : tsze R M) := by
ext
· rw [fst_inv, fst_inl, fst_inl]
· rw [snd_inv, fst_inl, snd_inl, snd_inl, smul_zero, smul_zero, neg_zero]
@[simp]
theorem inv_inr (m : M) : (inr m)⁻¹ = (0 : tsze R M) := by
ext
· rw [fst_inv, fst_inr, fst_zero, inv_zero]
· rw [snd_inv, snd_inr, fst_inr, inv_zero, op_zero, zero_smul, snd_zero, neg_zero]
@[simp]
protected theorem inv_zero : (0 : tsze R M)⁻¹ = (0 : tsze R M) := by
rw [← inl_zero, TrivSqZeroExt.inv_inl, inv_zero]
@[simp]
protected theorem inv_one : (1 : tsze R M)⁻¹ = (1 : tsze R M) := by
rw [← inl_one, TrivSqZeroExt.inv_inl, inv_one]
protected theorem inv_mul_cancel {x : tsze R M} (hx : fst x ≠ 0) : x⁻¹ * x = 1 := by
ext
· rw [fst_mul, fst_inv, inv_mul_cancel hx, fst_one]
· rw [snd_mul, snd_inv, snd_one, smul_neg, op_smul_op_smul, inv_mul_cancel hx, op_one, one_smul,
fst_inv, add_right_neg]
variable [SMulCommClass R Rᵐᵒᵖ M]
protected theorem mul_inv_cancel {x : tsze R M} (hx : fst x ≠ 0) : x * x⁻¹ = 1 := by
ext
· rw [fst_mul, fst_inv, fst_one, mul_inv_cancel hx]
· rw [snd_mul, snd_inv, snd_one, smul_neg, smul_comm, smul_smul, mul_inv_cancel hx, one_smul,
fst_inv, add_left_neg]
protected theorem mul_inv_rev (a b : tsze R M) :
(a * b)⁻¹ = b⁻¹ * a⁻¹ := by
ext
· rw [fst_inv, fst_mul, fst_mul, mul_inv_rev, fst_inv, fst_inv]
· simp only [snd_inv, snd_mul, fst_mul, fst_inv]
simp only [neg_smul, smul_neg, smul_add]
simp_rw [mul_inv_rev, smul_comm (_ : R), op_smul_op_smul, smul_smul, add_comm, neg_add]
obtain ha0 | ha := eq_or_ne (fst a) 0
· simp [ha0]
obtain hb0 | hb := eq_or_ne (fst b) 0
· simp [hb0]
rw [inv_mul_cancel_right₀ ha, mul_inv_cancel_left₀ hb]
protected theorem inv_inv {x : tsze R M} (hx : fst x ≠ 0) : x⁻¹⁻¹ = x :=
-- adapted from `Matrix.nonsing_inv_nonsing_inv`
calc
x⁻¹⁻¹ = 1 * x⁻¹⁻¹ := by rw [one_mul]
_ = x * x⁻¹ * x⁻¹⁻¹ := by rw [TrivSqZeroExt.mul_inv_cancel hx]
_ = x := by
rw [mul_assoc, TrivSqZeroExt.mul_inv_cancel, mul_one]
rw [fst_inv]
apply inv_ne_zero hx
end DivisionSemiring
section DivisionRing
variable {R : Type u} {M : Type v}
variable [DivisionRing R] [AddCommGroup M] [Module Rᵐᵒᵖ M] [Module R M]
protected theorem inv_neg {x : tsze R M} : (-x)⁻¹ = -(x⁻¹) := by
ext <;> simp [inv_neg]
end DivisionRing
section Algebra
variable (S : Type*) (R R' : Type u) (M : Type v)
variable [CommSemiring S] [Semiring R] [CommSemiring R'] [AddCommMonoid M]
variable [Algebra S R] [Algebra S R'] [Module S M]
variable [Module R M] [Module Rᵐᵒᵖ M] [SMulCommClass R Rᵐᵒᵖ M]
variable [IsScalarTower S R M] [IsScalarTower S Rᵐᵒᵖ M]
variable [Module R' M] [Module R'ᵐᵒᵖ M] [IsCentralScalar R' M] [IsScalarTower S R' M]
instance algebra' : Algebra S (tsze R M) :=
{ (TrivSqZeroExt.inlHom R M).comp (algebraMap S R) with
smul := (· • ·)
commutes' := fun s x =>
ext (Algebra.commutes _ _) <|
show algebraMap S R s •> x.snd + (0 : M) <• x.fst
= x.fst •> (0 : M) + x.snd <• algebraMap S R s by
rw [smul_zero, smul_zero, add_zero, zero_add]
rw [Algebra.algebraMap_eq_smul_one, MulOpposite.op_smul, op_one, smul_assoc,
one_smul, smul_assoc, one_smul]
smul_def' := fun s x =>
ext (Algebra.smul_def _ _) <|
show s • x.snd = algebraMap S R s •> x.snd + (0 : M) <• x.fst by
rw [smul_zero, add_zero, algebraMap_smul] }
-- shortcut instance for the common case
instance : Algebra R' (tsze R' M) :=
TrivSqZeroExt.algebra' _ _ _
theorem algebraMap_eq_inl : ⇑(algebraMap R' (tsze R' M)) = inl :=
rfl
theorem algebraMap_eq_inlHom : algebraMap R' (tsze R' M) = inlHom R' M :=
rfl
theorem algebraMap_eq_inl' (s : S) : algebraMap S (tsze R M) s = inl (algebraMap S R s) :=
rfl
/-- The canonical `S`-algebra projection `TrivSqZeroExt R M → R`. -/
@[simps]
def fstHom : tsze R M →ₐ[S] R where
toFun := fst
map_one' := fst_one
map_mul' := fst_mul
map_zero' := fst_zero (M := M)
map_add' := fst_add
commutes' _r := fst_inl M _
/-- The canonical `S`-algebra inclusion `R → TrivSqZeroExt R M`. -/
@[simps]
def inlAlgHom : R →ₐ[S] tsze R M where
toFun := inl
map_one' := inl_one _
map_mul' := inl_mul _
map_zero' := inl_zero (M := M)
map_add' := inl_add _
commutes' _r := (algebraMap_eq_inl' _ _ _ _).symm
variable {R R' S M}
theorem algHom_ext {A} [Semiring A] [Algebra R' A] ⦃f g : tsze R' M →ₐ[R'] A⦄
(h : ∀ m, f (inr m) = g (inr m)) : f = g :=
AlgHom.toLinearMap_injective <|
linearMap_ext (fun _r => (f.commutes _).trans (g.commutes _).symm) h
@[ext]
theorem algHom_ext' {A} [Semiring A] [Algebra S A] ⦃f g : tsze R M →ₐ[S] A⦄
(hinl : f.comp (inlAlgHom S R M) = g.comp (inlAlgHom S R M))
(hinr : f.toLinearMap.comp (inrHom R M |>.restrictScalars S) =
g.toLinearMap.comp (inrHom R M |>.restrictScalars S)) : f = g :=
AlgHom.toLinearMap_injective <|
linearMap_ext (AlgHom.congr_fun hinl) (LinearMap.congr_fun hinr)
variable {A : Type*} [Semiring A] [Algebra S A] [Algebra R' A]
/--
Assemble an algebra morphism `TrivSqZeroExt R M →ₐ[S] A` from separate morphisms on `R` and `M`.
Namely, we require that for an algebra morphism `f : R →ₐ[S] A` and a linear map `g : M →ₗ[S] A`,
we have:
* `g x * g y = 0`: the elements of `M` continue to square to zero.
* `g (r •> x) = f r * g x` and `g (x <• r) = g x * f r`: scalar multiplication on the left and
right is sent to left- and right- multiplication by the image under `f`.
See `TrivSqZeroExt.liftEquiv` for this as an equiv; namely that any such algebra morphism can be
factored in this way.
When `R` is commutative, this can be invoked with `f = Algebra.ofId R A`, which satisfies `hfg` and
`hgf`. This version is captured as an equiv by `TrivSqZeroExt.liftEquivOfComm`. -/
def lift (f : R →ₐ[S] A) (g : M →ₗ[S] A)
(hg : ∀ x y, g x * g y = 0)
(hfg : ∀ r x, g (r •> x) = f r * g x)
(hgf : ∀ r x, g (x <• r) = g x * f r) : tsze R M →ₐ[S] A :=
AlgHom.ofLinearMap
((f.comp <| fstHom S R M).toLinearMap + g ∘ₗ (sndHom R M |>.restrictScalars S))
(show f 1 + g (0 : M) = 1 by rw [map_zero, map_one, add_zero])
(TrivSqZeroExt.ind fun r₁ m₁ =>
TrivSqZeroExt.ind fun r₂ m₂ => by
dsimp
simp only [add_zero, zero_add, add_mul, mul_add, smul_mul_smul, hg, smul_zero,
op_smul_eq_smul]
rw [← map_mul, LinearMap.map_add, add_comm (g _), add_assoc, hfg, hgf])
theorem lift_def (f : R →ₐ[S] A) (g : M →ₗ[S] A)
(hg : ∀ x y, g x * g y = 0)
(hfg : ∀ r x, g (r • x) = f r * g x)
(hgf : ∀ r x, g (op r • x) = g x * f r) (x : tsze R M) :
lift f g hg hfg hgf x = f x.fst + g x.snd :=
rfl
@[simp]
theorem lift_apply_inl (f : R →ₐ[S] A) (g : M →ₗ[S] A)
(hg : ∀ x y, g x * g y = 0)
(hfg : ∀ r x, g (r •> x) = f r * g x)
(hgf : ∀ r x, g (x <• r) = g x * f r)
(r : R) :
lift f g hg hfg hgf (inl r) = f r :=
show f r + g 0 = f r by rw [map_zero, add_zero]
@[simp]
theorem lift_apply_inr (f : R →ₐ[S] A) (g : M →ₗ[S] A)
(hg : ∀ x y, g x * g y = 0)
(hfg : ∀ r x, g (r •> x) = f r * g x)
(hgf : ∀ r x, g (x <• r) = g x * f r)
(m : M) :
lift f g hg hfg hgf (inr m) = g m :=
show f 0 + g m = g m by rw [map_zero, zero_add]
@[simp]
theorem lift_comp_inlHom (f : R →ₐ[S] A) (g : M →ₗ[S] A)
(hg : ∀ x y, g x * g y = 0)
(hfg : ∀ r x, g (r •> x) = f r * g x)
(hgf : ∀ r x, g (x <• r) = g x * f r) :
(lift f g hg hfg hgf).comp (inlAlgHom S R M) = f :=
AlgHom.ext <| lift_apply_inl f g hg hfg hgf
@[simp]
theorem lift_comp_inrHom (f : R →ₐ[S] A) (g : M →ₗ[S] A)
(hg : ∀ x y, g x * g y = 0)
(hfg : ∀ r x, g (r •> x) = f r * g x)
(hgf : ∀ r x, g (x <• r) = g x * f r) :
(lift f g hg hfg hgf).toLinearMap.comp (inrHom R M |>.restrictScalars S) = g :=
LinearMap.ext <| lift_apply_inr f g hg hfg hgf
/-- When applied to `inr` and `inl` themselves, `lift` is the identity. -/
@[simp]
theorem lift_inlAlgHom_inrHom :
lift (inlAlgHom _ _ _) (inrHom R M |>.restrictScalars S)
(inr_mul_inr R) (fun _ _ => (inl_mul_inr _ _).symm) (fun _ _ => (inr_mul_inl _ _).symm) =
AlgHom.id S (tsze R M) :=
algHom_ext' (lift_comp_inlHom _ _ _ _ _) (lift_comp_inrHom _ _ _ _ _)
/-- A universal property of the trivial square-zero extension, providing a unique
`TrivSqZeroExt R M →ₐ[R] A` for every pair of maps `f : R →ₐ[S] A` and `g : M →ₗ[S] A`,
where the range of `g` has no non-zero products, and scaling the input to `g` on the left or right
amounts to a corresponding multiplication by `f` in the output.
This isomorphism is named to match the very similar `Complex.lift`. -/
@[simps! apply symm_apply_coe]
def liftEquiv :
{fg : (R →ₐ[S] A) × (M →ₗ[S] A) //
(∀ x y, fg.2 x * fg.2 y = 0) ∧
(∀ r x, fg.2 (r •> x) = fg.1 r * fg.2 x) ∧
(∀ r x, fg.2 (x <• r) = fg.2 x * fg.1 r)} ≃ (tsze R M →ₐ[S] A) where
toFun fg := lift fg.val.1 fg.val.2 fg.prop.1 fg.prop.2.1 fg.prop.2.2
invFun F :=
⟨(F.comp (inlAlgHom _ _ _), F.toLinearMap ∘ₗ (inrHom _ _ |>.restrictScalars _)),
(fun _x _y =>
(map_mul F _ _).symm.trans <| (F.congr_arg <| inr_mul_inr _ _ _).trans (map_zero F)),
(fun _r _x => (F.congr_arg (inl_mul_inr _ _).symm).trans (map_mul F _ _)),
(fun _r _x => (F.congr_arg (inr_mul_inl _ _).symm).trans (map_mul F _ _))⟩
left_inv _f := Subtype.ext <| Prod.ext (lift_comp_inlHom _ _ _ _ _) (lift_comp_inrHom _ _ _ _ _)
right_inv _F := algHom_ext' (lift_comp_inlHom _ _ _ _ _) (lift_comp_inrHom _ _ _ _ _)
/-- A simplified version of `TrivSqZeroExt.liftEquiv` for the commutative case. -/
@[simps! apply symm_apply_coe]
def liftEquivOfComm :
{ f : M →ₗ[R'] A // ∀ x y, f x * f y = 0 } ≃ (tsze R' M →ₐ[R'] A) := by
refine Equiv.trans ?_ liftEquiv
exact {
toFun := fun f => ⟨(Algebra.ofId _ _, f.val), f.prop,
fun r x => by simp [Algebra.smul_def, Algebra.ofId_apply],
fun r x => by simp [Algebra.smul_def, Algebra.ofId_apply, Algebra.commutes]⟩
invFun := fun fg => ⟨fg.val.2, fg.prop.1⟩
left_inv := fun f => rfl
right_inv := fun fg => Subtype.ext <|
Prod.ext (AlgHom.toLinearMap_injective <| LinearMap.ext_ring <| by simp)
rfl }
section map
variable {N P : Type*} [AddCommMonoid N] [Module R' N] [Module R'ᵐᵒᵖ N] [IsCentralScalar R' N]
[AddCommMonoid P] [Module R' P] [Module R'ᵐᵒᵖ P] [IsCentralScalar R' P]
/-- Functoriality of `TrivSqZeroExt` when the ring is commutative: a linear map
`f : M →ₗ[R'] N` induces a morphism of `R'`-algebras from `TrivSqZeroExt R' M` to
`TrivSqZeroExt R' N`.
Note that we cannot neatly state the non-commutative case, as we do not have morphisms of bimodules.
-/
def map (f : M →ₗ[R'] N) : TrivSqZeroExt R' M →ₐ[R'] TrivSqZeroExt R' N :=
liftEquivOfComm ⟨inrHom R' N ∘ₗ f, fun _ _ => inr_mul_inr _ _ _⟩
@[simp]
theorem map_inl (f : M →ₗ[R'] N) (r : R') : map f (inl r) = inl r := by
rw [map, liftEquivOfComm_apply, lift_apply_inl, Algebra.ofId_apply, algebraMap_eq_inl]
@[simp]
theorem map_inr (f : M →ₗ[R'] N) (x : M) : map f (inr x) = inr (f x) := by
rw [map, liftEquivOfComm_apply, lift_apply_inr, LinearMap.comp_apply, inrHom_apply]
@[simp]
theorem fst_map (f : M →ₗ[R'] N) (x : TrivSqZeroExt R' M) : fst (map f x) = fst x := by
simp [map, lift_def, Algebra.ofId_apply, algebraMap_eq_inl]
@[simp]
theorem snd_map (f : M →ₗ[R'] N) (x : TrivSqZeroExt R' M) : snd (map f x) = f (snd x) := by
simp [map, lift_def, Algebra.ofId_apply, algebraMap_eq_inl]
@[simp]
theorem map_comp_inlAlgHom (f : M →ₗ[R'] N) :
(map f).comp (inlAlgHom R' R' M) = inlAlgHom R' R' N :=
AlgHom.ext <| map_inl _
@[simp]
theorem map_comp_inrHom (f : M →ₗ[R'] N) :
(map f).toLinearMap ∘ₗ inrHom R' M = inrHom R' N ∘ₗ f :=
LinearMap.ext <| map_inr _
@[simp]
theorem fstHom_comp_map (f : M →ₗ[R'] N) :
(fstHom R' R' N).comp (map f) = fstHom R' R' M :=
AlgHom.ext <| fst_map _
@[simp]
theorem sndHom_comp_map (f : M →ₗ[R'] N) :
sndHom R' N ∘ₗ (map f).toLinearMap = f ∘ₗ sndHom R' M :=
LinearMap.ext <| snd_map _
@[simp]
theorem map_id : map (LinearMap.id : M →ₗ[R'] M) = AlgHom.id R' _ := by
apply algHom_ext
simp only [map_inr, LinearMap.id_coe, id_eq, AlgHom.coe_id, forall_const]
theorem map_comp_map (f : M →ₗ[R'] N) (g : N →ₗ[R'] P) :
map (g.comp f) = (map g).comp (map f) := by
apply algHom_ext
simp only [map_inr, LinearMap.coe_comp, Function.comp_apply, AlgHom.coe_comp, forall_const]
end map
end Algebra
end TrivSqZeroExt
|
Algebra\AddConstMap\Basic.lean | /-
Copyright (c) 2024 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov
-/
import Mathlib.Algebra.Group.Action.Pi
import Mathlib.Algebra.GroupPower.IterateHom
import Mathlib.Algebra.Module.Defs
import Mathlib.Algebra.Order.Archimedean.Basic
import Mathlib.Algebra.Order.Group.Instances
import Mathlib.Logic.Function.Iterate
/-!
# Maps (semi)conjugating a shift to a shift
Denote by $S^1$ the unit circle `UnitAddCircle`.
A common way to study a self-map $f\colon S^1\to S^1$ of degree `1`
is to lift it to a map $\tilde f\colon \mathbb R\to \mathbb R$
such that $\tilde f(x + 1) = \tilde f(x)+1$ for all `x`.
In this file we define a structure and a typeclass
for bundled maps satisfying `f (x + a) = f x + b`.
We use parameters `a` and `b` instead of `1` to accomodate for two use cases:
- maps between circles of different lengths;
- self-maps $f\colon S^1\to S^1$ of degree other than one,
including orientation-reversing maps.
-/
open Function Set
/-- A bundled map `f : G → H` such that `f (x + a) = f x + b` for all `x`.
One can think about `f` as a lift to `G` of a map between two `AddCircle`s. -/
structure AddConstMap (G H : Type*) [Add G] [Add H] (a : G) (b : H) where
/-- The underlying function of an `AddConstMap`.
Use automatic coercion to function instead. -/
protected toFun : G → H
/-- An `AddConstMap` satisfies `f (x + a) = f x + b`. Use `map_add_const` instead. -/
map_add_const' (x : G) : toFun (x + a) = toFun x + b
@[inherit_doc]
scoped [AddConstMap] notation:25 G " →+c[" a ", " b "] " H => AddConstMap G H a b
/-- Typeclass for maps satisfying `f (x + a) = f x + b`.
Note that `a` and `b` are `outParam`s,
so one should not add instances like
`[AddConstMapClass F G H a b] : AddConstMapClass F G H (-a) (-b)`. -/
class AddConstMapClass (F : Type*) (G H : outParam Type*) [Add G] [Add H]
(a : outParam G) (b : outParam H) [FunLike F G H] : Prop where
/-- A map of `AddConstMapClass` class semiconjugates shift by `a` to the shift by `b`:
`∀ x, f (x + a) = f x + b`. -/
map_add_const (f : F) (x : G) : f (x + a) = f x + b
namespace AddConstMapClass
/-!
### Properties of `AddConstMapClass` maps
In this section we prove properties like `f (x + n • a) = f x + n • b`.
-/
scoped [AddConstMapClass] attribute [simp] map_add_const
variable {F G H : Type*} [FunLike F G H] {a : G} {b : H}
protected theorem semiconj [Add G] [Add H] [AddConstMapClass F G H a b] (f : F) :
Semiconj f (· + a) (· + b) :=
map_add_const f
@[scoped simp]
theorem map_add_nsmul [AddMonoid G] [AddMonoid H] [AddConstMapClass F G H a b]
(f : F) (x : G) (n : ℕ) : f (x + n • a) = f x + n • b := by
simpa using (AddConstMapClass.semiconj f).iterate_right n x
@[scoped simp]
theorem map_add_nat' [AddMonoidWithOne G] [AddMonoid H] [AddConstMapClass F G H 1 b]
(f : F) (x : G) (n : ℕ) : f (x + n) = f x + n • b := by simp [← map_add_nsmul]
theorem map_add_one [AddMonoidWithOne G] [Add H] [AddConstMapClass F G H 1 b]
(f : F) (x : G) : f (x + 1) = f x + b := map_add_const f x
@[scoped simp]
theorem map_add_ofNat' [AddMonoidWithOne G] [AddMonoid H] [AddConstMapClass F G H 1 b]
(f : F) (x : G) (n : ℕ) [n.AtLeastTwo] :
f (x + no_index (OfNat.ofNat n)) = f x + (OfNat.ofNat n : ℕ) • b :=
map_add_nat' f x n
theorem map_add_nat [AddMonoidWithOne G] [AddMonoidWithOne H] [AddConstMapClass F G H 1 1]
(f : F) (x : G) (n : ℕ) : f (x + n) = f x + n := by simp
theorem map_add_ofNat [AddMonoidWithOne G] [AddMonoidWithOne H] [AddConstMapClass F G H 1 1]
(f : F) (x : G) (n : ℕ) [n.AtLeastTwo] :
f (x + OfNat.ofNat n) = f x + OfNat.ofNat n := map_add_nat f x n
@[scoped simp]
theorem map_const [AddZeroClass G] [Add H] [AddConstMapClass F G H a b] (f : F) :
f a = f 0 + b := by
simpa using map_add_const f 0
theorem map_one [AddZeroClass G] [One G] [Add H] [AddConstMapClass F G H 1 b] (f : F) :
f 1 = f 0 + b :=
map_const f
@[scoped simp]
theorem map_nsmul_const [AddMonoid G] [AddMonoid H] [AddConstMapClass F G H a b]
(f : F) (n : ℕ) : f (n • a) = f 0 + n • b := by
simpa using map_add_nsmul f 0 n
@[scoped simp]
theorem map_nat' [AddMonoidWithOne G] [AddMonoid H] [AddConstMapClass F G H 1 b]
(f : F) (n : ℕ) : f n = f 0 + n • b := by
simpa using map_add_nat' f 0 n
theorem map_ofNat' [AddMonoidWithOne G] [AddMonoid H] [AddConstMapClass F G H 1 b]
(f : F) (n : ℕ) [n.AtLeastTwo] :
f (OfNat.ofNat n) = f 0 + (OfNat.ofNat n : ℕ) • b :=
map_nat' f n
theorem map_nat [AddMonoidWithOne G] [AddMonoidWithOne H] [AddConstMapClass F G H 1 1]
(f : F) (n : ℕ) : f n = f 0 + n := by simp
theorem map_ofNat [AddMonoidWithOne G] [AddMonoidWithOne H] [AddConstMapClass F G H 1 1]
(f : F) (n : ℕ) [n.AtLeastTwo] :
f (OfNat.ofNat n) = f 0 + OfNat.ofNat n := map_nat f n
@[scoped simp]
theorem map_const_add [AddCommSemigroup G] [Add H] [AddConstMapClass F G H a b]
(f : F) (x : G) : f (a + x) = f x + b := by
rw [add_comm, map_add_const]
theorem map_one_add [AddCommMonoidWithOne G] [Add H] [AddConstMapClass F G H 1 b]
(f : F) (x : G) : f (1 + x) = f x + b := map_const_add f x
@[scoped simp]
theorem map_nsmul_add [AddCommMonoid G] [AddMonoid H] [AddConstMapClass F G H a b]
(f : F) (n : ℕ) (x : G) : f (n • a + x) = f x + n • b := by
rw [add_comm, map_add_nsmul]
@[scoped simp]
theorem map_nat_add' [AddCommMonoidWithOne G] [AddMonoid H] [AddConstMapClass F G H 1 b]
(f : F) (n : ℕ) (x : G) : f (↑n + x) = f x + n • b := by
simpa using map_nsmul_add f n x
theorem map_ofNat_add' [AddCommMonoidWithOne G] [AddMonoid H] [AddConstMapClass F G H 1 b]
(f : F) (n : ℕ) [n.AtLeastTwo] (x : G) :
f (OfNat.ofNat n + x) = f x + OfNat.ofNat n • b :=
map_nat_add' f n x
theorem map_nat_add [AddCommMonoidWithOne G] [AddMonoidWithOne H] [AddConstMapClass F G H 1 1]
(f : F) (n : ℕ) (x : G) : f (↑n + x) = f x + n := by simp
theorem map_ofNat_add [AddCommMonoidWithOne G] [AddMonoidWithOne H] [AddConstMapClass F G H 1 1]
(f : F) (n : ℕ) [n.AtLeastTwo] (x : G) :
f (OfNat.ofNat n + x) = f x + OfNat.ofNat n :=
map_nat_add f n x
@[scoped simp]
theorem map_sub_nsmul [AddGroup G] [AddGroup H] [AddConstMapClass F G H a b]
(f : F) (x : G) (n : ℕ) : f (x - n • a) = f x - n • b := by
conv_rhs => rw [← sub_add_cancel x (n • a), map_add_nsmul, add_sub_cancel_right]
@[scoped simp]
theorem map_sub_const [AddGroup G] [AddGroup H] [AddConstMapClass F G H a b]
(f : F) (x : G) : f (x - a) = f x - b := by
simpa using map_sub_nsmul f x 1
theorem map_sub_one [AddGroup G] [One G] [AddGroup H] [AddConstMapClass F G H 1 b]
(f : F) (x : G) : f (x - 1) = f x - b :=
map_sub_const f x
@[scoped simp]
theorem map_sub_nat' [AddGroupWithOne G] [AddGroup H] [AddConstMapClass F G H 1 b]
(f : F) (x : G) (n : ℕ) : f (x - n) = f x - n • b := by
simpa using map_sub_nsmul f x n
@[scoped simp]
theorem map_sub_ofNat' [AddGroupWithOne G] [AddGroup H] [AddConstMapClass F G H 1 b]
(f : F) (x : G) (n : ℕ) [n.AtLeastTwo] :
f (x - no_index (OfNat.ofNat n)) = f x - OfNat.ofNat n • b :=
map_sub_nat' f x n
@[scoped simp]
theorem map_add_zsmul [AddGroup G] [AddGroup H] [AddConstMapClass F G H a b]
(f : F) (x : G) : ∀ n : ℤ, f (x + n • a) = f x + n • b
| (n : ℕ) => by simp
| .negSucc n => by simp [← sub_eq_add_neg]
@[scoped simp]
theorem map_zsmul_const [AddGroup G] [AddGroup H] [AddConstMapClass F G H a b]
(f : F) (n : ℤ) : f (n • a) = f 0 + n • b := by
simpa using map_add_zsmul f 0 n
@[scoped simp]
theorem map_add_int' [AddGroupWithOne G] [AddGroup H] [AddConstMapClass F G H 1 b]
(f : F) (x : G) (n : ℤ) : f (x + n) = f x + n • b := by
rw [← map_add_zsmul f x n, zsmul_one]
theorem map_add_int [AddGroupWithOne G] [AddGroupWithOne H] [AddConstMapClass F G H 1 1]
(f : F) (x : G) (n : ℤ) : f (x + n) = f x + n := by simp
@[scoped simp]
theorem map_sub_zsmul [AddGroup G] [AddGroup H] [AddConstMapClass F G H a b]
(f : F) (x : G) (n : ℤ) : f (x - n • a) = f x - n • b := by
simpa [sub_eq_add_neg] using map_add_zsmul f x (-n)
@[scoped simp]
theorem map_sub_int' [AddGroupWithOne G] [AddGroup H] [AddConstMapClass F G H 1 b]
(f : F) (x : G) (n : ℤ) : f (x - n) = f x - n • b := by
rw [← map_sub_zsmul, zsmul_one]
theorem map_sub_int [AddGroupWithOne G] [AddGroupWithOne H] [AddConstMapClass F G H 1 1]
(f : F) (x : G) (n : ℤ) : f (x - n) = f x - n := by simp
@[scoped simp]
theorem map_zsmul_add [AddCommGroup G] [AddGroup H] [AddConstMapClass F G H a b]
(f : F) (n : ℤ) (x : G) : f (n • a + x) = f x + n • b := by
rw [add_comm, map_add_zsmul]
@[scoped simp]
theorem map_int_add' [AddCommGroupWithOne G] [AddGroup H] [AddConstMapClass F G H 1 b]
(f : F) (n : ℤ) (x : G) : f (↑n + x) = f x + n • b := by
rw [← map_zsmul_add, zsmul_one]
theorem map_int_add [AddCommGroupWithOne G] [AddGroupWithOne H] [AddConstMapClass F G H 1 1]
(f : F) (n : ℤ) (x : G) : f (↑n + x) = f x + n := by simp
theorem map_fract {R : Type*} [LinearOrderedRing R] [FloorRing R] [AddGroup H]
[FunLike F R H] [AddConstMapClass F R H 1 b] (f : F) (x : R) :
f (Int.fract x) = f x - ⌊x⌋ • b :=
map_sub_int' ..
/-- Auxiliary lemmas for the "monotonicity on a fundamental interval implies monotonicity" lemmas.
We formulate it for any relation so that the proof works both for `Monotone` and `StrictMono`. -/
protected theorem rel_map_of_Icc [LinearOrderedAddCommGroup G] [Archimedean G] [AddGroup H]
[AddConstMapClass F G H a b] {f : F} {R : H → H → Prop} [IsTrans H R]
[hR : CovariantClass H H (fun x y ↦ y + x) R] (ha : 0 < a) {l : G}
(hf : ∀ x ∈ Icc l (l + a), ∀ y ∈ Icc l (l + a), x < y → R (f x) (f y)) :
((· < ·) ⇒ R) f f := fun x y hxy ↦ by
replace hR := hR.elim
have ha' : 0 ≤ a := ha.le
-- Shift both points by `m • a` so that `l ≤ x < l + a`
wlog hx : x ∈ Ico l (l + a) generalizing x y
· rcases existsUnique_sub_zsmul_mem_Ico ha x l with ⟨m, hm, -⟩
suffices R (f (x - m • a)) (f (y - m • a)) by simpa using hR (m • b) this
exact this _ _ (by simpa) hm
· -- Now find `n` such that `l + n • a < y ≤ l + (n + 1) • a`
rcases existsUnique_sub_zsmul_mem_Ioc ha y l with ⟨n, hny, -⟩
rcases lt_trichotomy n 0 with hn | rfl | hn
· -- Since `l ≤ x ≤ y`, the case `n < 0` is impossible
refine absurd ?_ hxy.not_le
calc
y ≤ l + a + n • a := sub_le_iff_le_add.1 hny.2
_ = l + (n + 1) • a := by rw [add_comm n, add_smul, one_smul, add_assoc]
_ ≤ l + 0 • a := add_le_add_left (zsmul_le_zsmul ha.le (by omega)) _
_ ≤ x := by simpa using hx.1
· -- If `n = 0`, then `l < y ≤ l + a`, hence we can apply the assumption
exact hf x (Ico_subset_Icc_self hx) y (by simpa using Ioc_subset_Icc_self hny) hxy
· -- In the remaining case `0 < n` we use transitivity.
-- If `R = (· < ·)`, then the proof looks like
-- `f x < f (l + a) ≤ f (l + n • a) < f y`
trans f (l + (1 : ℤ) • a)
· rw [one_zsmul]
exact hf x (Ico_subset_Icc_self hx) (l + a) (by simpa) hx.2
have hy : R (f (l + n • a)) (f y) := by
rw [← sub_add_cancel y (n • a), map_add_zsmul, map_add_zsmul]
refine hR _ <| hf _ ?_ _ (Ioc_subset_Icc_self hny) hny.1; simpa
rw [← Int.add_one_le_iff, zero_add] at hn
rcases hn.eq_or_lt with rfl | hn; · assumption
trans f (l + n • a)
· refine Int.rel_of_forall_rel_succ_of_lt R (f := (f <| l + · • a)) (fun k ↦ ?_) hn
simp_rw [add_comm k 1, add_zsmul, ← add_assoc, one_zsmul, map_add_zsmul]
refine hR (k • b) (hf _ ?_ _ ?_ ?_) <;> simpa
· assumption
theorem monotone_iff_Icc [LinearOrderedAddCommGroup G] [Archimedean G] [OrderedAddCommGroup H]
[AddConstMapClass F G H a b] {f : F} (ha : 0 < a) (l : G) :
Monotone f ↔ MonotoneOn f (Icc l (l + a)) :=
⟨(Monotone.monotoneOn · _), fun hf ↦ monotone_iff_forall_lt.2 <|
AddConstMapClass.rel_map_of_Icc ha fun _x hx _y hy hxy ↦ hf hx hy hxy.le⟩
theorem antitone_iff_Icc [LinearOrderedAddCommGroup G] [Archimedean G] [OrderedAddCommGroup H]
[AddConstMapClass F G H a b] {f : F} (ha : 0 < a) (l : G) :
Antitone f ↔ AntitoneOn f (Icc l (l + a)) :=
monotone_iff_Icc (H := Hᵒᵈ) ha l
theorem strictMono_iff_Icc [LinearOrderedAddCommGroup G] [Archimedean G] [OrderedAddCommGroup H]
[AddConstMapClass F G H a b] {f : F} (ha : 0 < a) (l : G) :
StrictMono f ↔ StrictMonoOn f (Icc l (l + a)) :=
⟨(StrictMono.strictMonoOn · _), AddConstMapClass.rel_map_of_Icc ha⟩
theorem strictAnti_iff_Icc [LinearOrderedAddCommGroup G] [Archimedean G] [OrderedAddCommGroup H]
[AddConstMapClass F G H a b] {f : F} (ha : 0 < a) (l : G) :
StrictAnti f ↔ StrictAntiOn f (Icc l (l + a)) :=
strictMono_iff_Icc (H := Hᵒᵈ) ha l
end AddConstMapClass
open AddConstMapClass
namespace AddConstMap
section Add
variable {G H : Type*} [Add G] [Add H] {a : G} {b : H}
/-!
### Coercion to function
-/
instance : FunLike (G →+c[a, b] H) G H where
coe := AddConstMap.toFun
coe_injective' | ⟨_, _⟩, ⟨_, _⟩, rfl => rfl
@[simp, push_cast] theorem coe_mk (f : G → H) (hf) : ⇑(mk f hf : G →+c[a, b] H) = f := rfl
@[simp] theorem mk_coe (f : G →+c[a, b] H) : mk f f.2 = f := rfl
@[simp] theorem toFun_eq_coe (f : G →+c[a, b] H) : f.toFun = f := rfl
instance : AddConstMapClass (G →+c[a, b] H) G H a b where
map_add_const f := f.map_add_const'
@[ext] protected theorem ext {f g : G →+c[a, b] H} (h : ∀ x, f x = g x) : f = g :=
DFunLike.ext _ _ h
initialize_simps_projections AddConstMap (toFun → coe, as_prefix coe)
/-!
### Constructions about `G →+c[a, b] H`
-/
/-- The identity map as `G →+c[a, a] G`. -/
@[simps (config := .asFn)]
protected def id : G →+c[a, a] G := ⟨id, fun _ ↦ rfl⟩
instance : Inhabited (G →+c[a, a] G) := ⟨.id⟩
/-- Composition of two `AddConstMap`s. -/
@[simps (config := .asFn)]
def comp {K : Type*} [Add K] {c : K} (g : H →+c[b, c] K) (f : G →+c[a, b] H) :
G →+c[a, c] K :=
⟨g ∘ f, by simp⟩
@[simp] theorem comp_id (f : G →+c[a, b] H) : f.comp .id = f := rfl
@[simp] theorem id_comp (f : G →+c[a, b] H) : .comp .id f = f := rfl
/-- Change constants `a` and `b` in `(f : G →+c[a, b] H)` to improve definitional equalities. -/
@[simps (config := .asFn)]
def replaceConsts (f : G →+c[a, b] H) (a' b') (ha : a = a') (hb : b = b') :
G →+c[a', b'] H where
toFun := f
map_add_const' := ha ▸ hb ▸ f.map_add_const'
/-!
### Additive action on `G →+c[a, b] H`
-/
/-- If `f` is an `AddConstMap`, then so is `(c +ᵥ f ·)`. -/
instance {K : Type*} [VAdd K H] [VAddAssocClass K H H] : VAdd K (G →+c[a, b] H) :=
⟨fun c f ↦ ⟨c +ᵥ ⇑f, fun x ↦ by simp [vadd_add_assoc]⟩⟩
@[simp, norm_cast]
theorem coe_vadd {K : Type*} [VAdd K H] [VAddAssocClass K H H] (c : K) (f : G →+c[a, b] H) :
⇑(c +ᵥ f) = c +ᵥ ⇑f :=
rfl
instance {K : Type*} [AddMonoid K] [AddAction K H] [VAddAssocClass K H H] :
AddAction K (G →+c[a, b] H) :=
DFunLike.coe_injective.addAction _ coe_vadd
/-!
### Monoid structure on endomorphisms `G →+c[a, a] G`
-/
instance : Mul (G →+c[a, a] G) := ⟨comp⟩
instance : One (G →+c[a, a] G) := ⟨.id⟩
instance : Pow (G →+c[a, a] G) ℕ where
pow f n := ⟨f^[n], Commute.iterate_left (AddConstMapClass.semiconj f) _⟩
instance : Monoid (G →+c[a, a] G) :=
DFunLike.coe_injective.monoid (M₂ := Function.End G) _ rfl (fun _ _ ↦ rfl) fun _ _ ↦ rfl
theorem mul_def (f g : G →+c[a, a] G) : f * g = f.comp g := rfl
@[simp, push_cast] theorem coe_mul (f g : G →+c[a, a] G) : ⇑(f * g) = f ∘ g := rfl
theorem one_def : (1 : G →+c[a, a] G) = .id := rfl
@[simp, push_cast] theorem coe_one : ⇑(1 : G →+c[a, a] G) = id := rfl
@[simp, push_cast] theorem coe_pow (f : G →+c[a, a] G) (n : ℕ) : ⇑(f ^ n) = f^[n] := rfl
theorem pow_apply (f : G →+c[a, a] G) (n : ℕ) (x : G) : (f ^ n) x = f^[n] x := rfl
/-- Coercion to functions as a monoid homomorphism to `Function.End G`. -/
@[simps (config := .asFn)]
def toEnd : (G →+c[a, a] G) →* Function.End G where
toFun := DFunLike.coe
map_mul' _ _ := rfl
map_one' := rfl
end Add
section AddZeroClass
variable {G H K : Type*} [Add G] [AddZeroClass H] {a : G} {b : H}
/-!
### Multiplicative action on `(b : H) × (G →+c[a, b] H)`
If `K` acts distributively on `H`, then for each `f : G →+c[a, b] H`
we define `(AddConstMap.smul c f : G →+c[a, c • b] H)`.
One can show that this defines a multiplicative action of `K` on `(b : H) × (G →+c[a, b] H)`
but we don't do this at the moment because we don't need this.
-/
/-- Pointwise scalar multiplication of `f : G →+c[a, b] H` as a map `G →+c[a, c • b] H`. -/
@[simps (config := .asFn)]
def smul [DistribSMul K H] (c : K) (f : G →+c[a, b] H) : G →+c[a, c • b] H where
toFun := c • ⇑f
map_add_const' x := by simp [smul_add]
end AddZeroClass
section AddMonoid
variable {G : Type*} [AddMonoid G] {a : G}
/-- The map that sends `c` to a translation by `c`
as a monoid homomorphism from `Multiplicative G` to `G →+c[a, a] G`. -/
@[simps! (config := .asFn)]
def addLeftHom : Multiplicative G →* (G →+c[a, a] G) where
toFun c := Multiplicative.toAdd c +ᵥ .id
map_one' := by ext; apply zero_add
map_mul' _ _ := by ext; apply add_assoc
end AddMonoid
section AddCommGroup
variable {G H : Type*} [AddCommGroup G] [AddCommGroup H] {a : G} {b : H}
/-- If `f : G → H` is an `AddConstMap`, then so is `fun x ↦ -f (-x)`. -/
@[simps! apply_coe]
def conjNeg : (G →+c[a, b] H) ≃ (G →+c[a, b] H) :=
Involutive.toPerm (fun f ↦ ⟨fun x ↦ - f (-x), fun _ ↦ by simp [neg_add_eq_sub]⟩) fun _ ↦
AddConstMap.ext fun _ ↦ by simp
@[simp] theorem conjNeg_symm : (conjNeg (a := a) (b := b)).symm = conjNeg := rfl
end AddCommGroup
section FloorRing
variable {R G : Type*} [LinearOrderedRing R] [FloorRing R] [AddGroup G] (a : G)
/-- A map `f : R →+c[1, a] G` is defined by its values on `Set.Ico 0 1`. -/
def mkFract : (Ico (0 : R) 1 → G) ≃ (R →+c[1, a] G) where
toFun f := ⟨fun x ↦ f ⟨Int.fract x, Int.fract_nonneg _, Int.fract_lt_one _⟩ + ⌊x⌋ • a, fun x ↦ by
simp [add_one_zsmul, add_assoc]⟩
invFun f x := f x
left_inv _ := by ext x; simp [Int.fract_eq_self.2 x.2, Int.floor_eq_zero_iff.2 x.2]
right_inv f := by ext x; simp [map_fract]
end FloorRing
end AddConstMap
|
Algebra\AddConstMap\Equiv.lean | /-
Copyright (c) 2024 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov
-/
import Mathlib.Algebra.AddConstMap.Basic
import Mathlib.GroupTheory.Perm.Basic
/-!
# Equivalences conjugating `(· + a)` to `(· + b)`
In this file we define `AddConstEquiv G H a b` (notation: `G ≃+c[a, b] H`)
to be the type of equivalences such that `∀ x, f (x + a) = f x + b`.
We also define the corresponding typeclass and prove some basic properties.
-/
open Function
open scoped AddConstMap
/-- An equivalence between `G` and `H` conjugating `(· + a)` to `(· + b)`. -/
structure AddConstEquiv (G H : Type*) [Add G] [Add H] (a : G) (b : H)
extends G ≃ H, G →+c[a, b] H
/-- Interpret an `AddConstEquiv` as an `Equiv`. -/
add_decl_doc AddConstEquiv.toEquiv
/-- Interpret an `AddConstEquiv` as an `AddConstMap`. -/
add_decl_doc AddConstEquiv.toAddConstMap
@[inherit_doc]
scoped [AddConstMap] notation:25 G " ≃+c[" a ", " b "] " H => AddConstEquiv G H a b
namespace AddConstEquiv
variable {G H K : Type*} [Add G] [Add H] [Add K] {a : G} {b : H} {c : K}
lemma toEquiv_injective : Injective (toEquiv : (G ≃+c[a, b] H) → G ≃ H)
| ⟨_, _⟩, ⟨_, _⟩, rfl => rfl
instance {G H : Type*} [Add G] [Add H] {a : G} {b : H} :
EquivLike (G ≃+c[a, b] H) G H where
coe f := f.toEquiv
inv f := f.toEquiv.symm
left_inv f := f.left_inv
right_inv f := f.right_inv
coe_injective' _ _ h _ := toEquiv_injective <| DFunLike.ext' h
instance {G H : Type*} [Add G] [Add H] {a : G} {b : H} :
AddConstMapClass (G ≃+c[a, b] H) G H a b where
map_add_const f x := f.map_add_const' x
@[ext] lemma ext {e₁ e₂ : G ≃+c[a, b] H} (h : ∀ x, e₁ x = e₂ x) : e₁ = e₂ := DFunLike.ext _ _ h
@[simp]
lemma toEquiv_inj {e₁ e₂ : G ≃+c[a, b] H} : e₁.toEquiv = e₂.toEquiv ↔ e₁ = e₂ :=
toEquiv_injective.eq_iff
@[simp] lemma coe_toEquiv (e : G ≃+c[a, b] H) : ⇑e.toEquiv = e := rfl
/-- Inverse map of an `AddConstEquiv`, as an `AddConstEquiv`. -/
def symm (e : G ≃+c[a, b] H) : H ≃+c[b, a] G where
toEquiv := e.toEquiv.symm
map_add_const' := (AddConstMapClass.semiconj e).inverse_left e.left_inv e.right_inv
/-- A custom projection for `simps`. -/
def Simps.symm_apply (e : G ≃+c[a, b] H) : H → G := e.symm
initialize_simps_projections AddConstEquiv (toFun → apply, invFun → symm_apply)
@[simp] lemma symm_symm (e : G ≃+c[a, b] H) : e.symm.symm = e := rfl
/-- The identity map as an `AddConstEquiv`. -/
@[simps! toEquiv apply]
def refl (a : G) : G ≃+c[a, a] G where
toEquiv := .refl G
map_add_const' _ := rfl
@[simp] lemma symm_refl (a : G) : (refl a).symm = refl a := rfl
/-- Composition of `AddConstEquiv`s, as an `AddConstEquiv`. -/
@[simps! (config := { simpRhs := true }) toEquiv apply]
def trans (e₁ : G ≃+c[a, b] H) (e₂ : H ≃+c[b, c] K) : G ≃+c[a, c] K where
toEquiv := e₁.toEquiv.trans e₂.toEquiv
map_add_const' := (AddConstMapClass.semiconj e₁).trans (AddConstMapClass.semiconj e₂)
@[simp] lemma trans_refl (e : G ≃+c[a, b] H) : e.trans (.refl b) = e := rfl
@[simp] lemma refl_trans (e : G ≃+c[a, b] H) : (refl a).trans e = e := rfl
@[simp]
lemma self_trans_symm (e : G ≃+c[a, b] H) : e.trans e.symm = .refl a :=
toEquiv_injective e.toEquiv.self_trans_symm
@[simp]
lemma symm_trans_self (e : G ≃+c[a, b] H) : e.symm.trans e = .refl b :=
toEquiv_injective e.toEquiv.symm_trans_self
instance instOne : One (G ≃+c[a, a] G) := ⟨.refl _⟩
instance instMul : Mul (G ≃+c[a, a] G) := ⟨fun f g ↦ g.trans f⟩
instance instInv : Inv (G ≃+c[a, a] G) := ⟨.symm⟩
instance instDiv : Div (G ≃+c[a, a] G) := ⟨fun f g ↦ f * g⁻¹⟩
instance instPowNat : Pow (G ≃+c[a, a] G) ℕ where
pow e n := ⟨e^n, (e.toAddConstMap^n).map_add_const'⟩
instance instPowInt : Pow (G ≃+c[a, a] G) ℤ where
pow e n := ⟨e^n,
match n with
| .ofNat n => (e^n).map_add_const'
| .negSucc n => (e.symm^(n + 1)).map_add_const'⟩
instance instGroup : Group (G ≃+c[a, a] G) :=
toEquiv_injective.group _ rfl (fun _ _ ↦ rfl) (fun _ ↦ rfl) (fun _ _ ↦ rfl) (fun _ _ ↦ rfl)
fun _ _ ↦ rfl
/-- Projection from `G ≃+c[a, a] G` to permutations `G ≃ G`, as a monoid homomorphism. -/
@[simps! apply]
def toPerm : (G ≃+c[a, a] G) →* Equiv.Perm G :=
.mk' toEquiv fun _ _ ↦ rfl
/-- Projection from `G ≃+c[a, a] G` to `G →+c[a, a] G`, as a monoid homomorphism. -/
@[simps! apply]
def toAddConstMapHom : (G ≃+c[a, a] G) →* (G →+c[a, a] G) where
toFun := toAddConstMap
map_mul' _ _ := rfl
map_one' := rfl
/-- Group equivalence between `G ≃+c[a, a] G` and the units of `G →+c[a, a] G`. -/
@[simps!]
def equivUnits : (G ≃+c[a, a] G) ≃* (G →+c[a, a] G)ˣ where
toFun := toAddConstMapHom.toHomUnits
invFun u :=
{ toEquiv := Equiv.Perm.equivUnitsEnd.symm <| Units.map AddConstMap.toEnd u
map_add_const' := u.1.2 }
left_inv _ := rfl
right_inv _ := rfl
map_mul' _ _ := rfl
end AddConstEquiv
|
Algebra\Algebra\Basic.lean | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Yury Kudryashov
-/
import Mathlib.Algebra.Algebra.Defs
import Mathlib.Algebra.CharZero.Lemmas
import Mathlib.Algebra.Module.Equiv.Basic
import Mathlib.Algebra.Module.Submodule.Ker
import Mathlib.Algebra.Module.Submodule.RestrictScalars
import Mathlib.Algebra.Module.ULift
import Mathlib.Algebra.Ring.Subring.Basic
import Mathlib.Data.Nat.Cast.Order.Basic
import Mathlib.Data.Int.CharZero
/-!
# Further basic results about `Algebra`.
This file could usefully be split further.
-/
universe u v w u₁ v₁
namespace Algebra
variable {R : Type u} {S : Type v} {A : Type w} {B : Type*}
section Semiring
variable [CommSemiring R] [CommSemiring S]
variable [Semiring A] [Algebra R A] [Semiring B] [Algebra R B]
section PUnit
instance _root_.PUnit.algebra : Algebra R PUnit.{v + 1} where
toFun _ := PUnit.unit
map_one' := rfl
map_mul' _ _ := rfl
map_zero' := rfl
map_add' _ _ := rfl
commutes' _ _ := rfl
smul_def' _ _ := rfl
@[simp]
theorem algebraMap_pUnit (r : R) : algebraMap R PUnit r = PUnit.unit :=
rfl
end PUnit
section ULift
instance _root_.ULift.algebra : Algebra R (ULift A) :=
{ ULift.module',
(ULift.ringEquiv : ULift A ≃+* A).symm.toRingHom.comp (algebraMap R A) with
toFun := fun r => ULift.up (algebraMap R A r)
commutes' := fun r x => ULift.down_injective <| Algebra.commutes r x.down
smul_def' := fun r x => ULift.down_injective <| Algebra.smul_def' r x.down }
theorem _root_.ULift.algebraMap_eq (r : R) :
algebraMap R (ULift A) r = ULift.up (algebraMap R A r) :=
rfl
@[simp]
theorem _root_.ULift.down_algebraMap (r : R) : (algebraMap R (ULift A) r).down = algebraMap R A r :=
rfl
end ULift
/-- Algebra over a subsemiring. This builds upon `Subsemiring.module`. -/
instance ofSubsemiring (S : Subsemiring R) : Algebra S A where
toRingHom := (algebraMap R A).comp S.subtype
smul := (· • ·)
commutes' r x := Algebra.commutes (r : R) x
smul_def' r x := Algebra.smul_def (r : R) x
theorem algebraMap_ofSubsemiring (S : Subsemiring R) :
(algebraMap S R : S →+* R) = Subsemiring.subtype S :=
rfl
theorem coe_algebraMap_ofSubsemiring (S : Subsemiring R) : (algebraMap S R : S → R) = Subtype.val :=
rfl
theorem algebraMap_ofSubsemiring_apply (S : Subsemiring R) (x : S) : algebraMap S R x = x :=
rfl
/-- Algebra over a subring. This builds upon `Subring.module`. -/
instance ofSubring {R A : Type*} [CommRing R] [Ring A] [Algebra R A] (S : Subring R) :
Algebra S A where -- Porting note: don't use `toSubsemiring` because of a timeout
toRingHom := (algebraMap R A).comp S.subtype
smul := (· • ·)
commutes' r x := Algebra.commutes (r : R) x
smul_def' r x := Algebra.smul_def (r : R) x
theorem algebraMap_ofSubring {R : Type*} [CommRing R] (S : Subring R) :
(algebraMap S R : S →+* R) = Subring.subtype S :=
rfl
theorem coe_algebraMap_ofSubring {R : Type*} [CommRing R] (S : Subring R) :
(algebraMap S R : S → R) = Subtype.val :=
rfl
theorem algebraMap_ofSubring_apply {R : Type*} [CommRing R] (S : Subring R) (x : S) :
algebraMap S R x = x :=
rfl
/-- Explicit characterization of the submonoid map in the case of an algebra.
`S` is made explicit to help with type inference -/
def algebraMapSubmonoid (S : Type*) [Semiring S] [Algebra R S] (M : Submonoid R) : Submonoid S :=
M.map (algebraMap R S)
theorem mem_algebraMapSubmonoid_of_mem {S : Type*} [Semiring S] [Algebra R S] {M : Submonoid R}
(x : M) : algebraMap R S x ∈ algebraMapSubmonoid S M :=
Set.mem_image_of_mem (algebraMap R S) x.2
end Semiring
section CommSemiring
variable [CommSemiring R]
theorem mul_sub_algebraMap_commutes [Ring A] [Algebra R A] (x : A) (r : R) :
x * (x - algebraMap R A r) = (x - algebraMap R A r) * x := by rw [mul_sub, ← commutes, sub_mul]
theorem mul_sub_algebraMap_pow_commutes [Ring A] [Algebra R A] (x : A) (r : R) (n : ℕ) :
x * (x - algebraMap R A r) ^ n = (x - algebraMap R A r) ^ n * x := by
induction' n with n ih
· simp
· rw [pow_succ', ← mul_assoc, mul_sub_algebraMap_commutes, mul_assoc, ih, ← mul_assoc]
end CommSemiring
section Ring
variable [CommRing R]
variable (R)
/-- A `Semiring` that is an `Algebra` over a commutative ring carries a natural `Ring` structure.
See note [reducible non-instances]. -/
abbrev semiringToRing [Semiring A] [Algebra R A] : Ring A :=
{ __ := (inferInstance : Semiring A)
__ := Module.addCommMonoidToAddCommGroup R
intCast := fun z => algebraMap R A z
intCast_ofNat := fun z => by simp only [Int.cast_natCast, map_natCast]
intCast_negSucc := fun z => by simp }
end Ring
end Algebra
open scoped Algebra
namespace Module
variable (R : Type u) (S : Type v) (M : Type w)
variable [CommSemiring R] [Semiring S] [AddCommMonoid M] [Module R M] [Module S M]
variable [SMulCommClass S R M] [SMul R S] [IsScalarTower R S M]
instance End.instAlgebra : Algebra R (Module.End S M) :=
Algebra.ofModule smul_mul_assoc fun r f g => (smul_comm r f g).symm
-- to prove this is a special case of the above
example : Algebra R (Module.End R M) := End.instAlgebra _ _ _
theorem algebraMap_end_eq_smul_id (a : R) : algebraMap R (End S M) a = a • LinearMap.id :=
rfl
@[simp]
theorem algebraMap_end_apply (a : R) (m : M) : algebraMap R (End S M) a m = a • m :=
rfl
@[simp]
theorem ker_algebraMap_end (K : Type u) (V : Type v) [Field K] [AddCommGroup V] [Module K V] (a : K)
(ha : a ≠ 0) : LinearMap.ker ((algebraMap K (End K V)) a) = ⊥ :=
LinearMap.ker_smul _ _ ha
section
variable {R M}
theorem End_algebraMap_isUnit_inv_apply_eq_iff {x : R}
(h : IsUnit (algebraMap R (Module.End S M) x)) (m m' : M) :
(↑(h.unit⁻¹) : Module.End S M) m = m' ↔ m = x • m' :=
{ mp := fun H => ((congr_arg h.unit H).symm.trans (End_isUnit_apply_inv_apply_of_isUnit h _)).symm
mpr := fun H =>
H.symm ▸ by
apply_fun ⇑h.unit.val using ((Module.End_isUnit_iff _).mp h).injective
erw [End_isUnit_apply_inv_apply_of_isUnit]
rfl }
theorem End_algebraMap_isUnit_inv_apply_eq_iff' {x : R}
(h : IsUnit (algebraMap R (Module.End S M) x)) (m m' : M) :
m' = (↑h.unit⁻¹ : Module.End S M) m ↔ m = x • m' :=
{ mp := fun H => ((congr_arg h.unit H).trans (End_isUnit_apply_inv_apply_of_isUnit h _)).symm
mpr := fun H =>
H.symm ▸ by
apply_fun (↑h.unit : M → M) using ((Module.End_isUnit_iff _).mp h).injective
erw [End_isUnit_apply_inv_apply_of_isUnit]
rfl }
end
end Module
namespace LinearMap
variable {R : Type*} {A : Type*} {B : Type*} [CommSemiring R] [Semiring A] [Semiring B]
[Algebra R A] [Algebra R B]
/-- An alternate statement of `LinearMap.map_smul` for when `algebraMap` is more convenient to
work with than `•`. -/
theorem map_algebraMap_mul (f : A →ₗ[R] B) (a : A) (r : R) :
f (algebraMap R A r * a) = algebraMap R B r * f a := by
rw [← Algebra.smul_def, ← Algebra.smul_def, map_smul]
theorem map_mul_algebraMap (f : A →ₗ[R] B) (a : A) (r : R) :
f (a * algebraMap R A r) = f a * algebraMap R B r := by
rw [← Algebra.commutes, ← Algebra.commutes, map_algebraMap_mul]
end LinearMap
section Nat
variable {R : Type*} [Semiring R]
-- Lower the priority so that `Algebra.id` is picked most of the time when working with
-- `ℕ`-algebras.
-- TODO: is this still needed?
/-- Semiring ⥤ ℕ-Alg -/
instance (priority := 99) Semiring.toNatAlgebra : Algebra ℕ R where
commutes' := Nat.cast_commute
smul_def' _ _ := nsmul_eq_mul _ _
toRingHom := Nat.castRingHom R
instance nat_algebra_subsingleton : Subsingleton (Algebra ℕ R) :=
⟨fun P Q => by ext; simp⟩
end Nat
section Int
variable (R : Type*) [Ring R]
-- Lower the priority so that `Algebra.id` is picked most of the time when working with
-- `ℤ`-algebras.
-- TODO: is this still needed?
/-- Ring ⥤ ℤ-Alg -/
instance (priority := 99) Ring.toIntAlgebra : Algebra ℤ R where
commutes' := Int.cast_commute
smul_def' _ _ := zsmul_eq_mul _ _
toRingHom := Int.castRingHom R
/-- A special case of `eq_intCast'` that happens to be true definitionally -/
@[simp]
theorem algebraMap_int_eq : algebraMap ℤ R = Int.castRingHom R :=
rfl
variable {R}
instance int_algebra_subsingleton : Subsingleton (Algebra ℤ R) :=
⟨fun P Q => Algebra.algebra_ext P Q <| RingHom.congr_fun <| Subsingleton.elim _ _⟩
end Int
namespace NoZeroSMulDivisors
variable {R A : Type*}
open Algebra
/-- If `algebraMap R A` is injective and `A` has no zero divisors,
`R`-multiples in `A` are zero only if one of the factors is zero.
Cannot be an instance because there is no `Injective (algebraMap R A)` typeclass.
-/
theorem of_algebraMap_injective [CommSemiring R] [Semiring A] [Algebra R A] [NoZeroDivisors A]
(h : Function.Injective (algebraMap R A)) : NoZeroSMulDivisors R A :=
⟨fun hcx => (mul_eq_zero.mp ((smul_def _ _).symm.trans hcx)).imp_left
(map_eq_zero_iff (algebraMap R A) h).mp⟩
variable (R A)
theorem algebraMap_injective [CommRing R] [Ring A] [Nontrivial A] [Algebra R A]
[NoZeroSMulDivisors R A] : Function.Injective (algebraMap R A) := by
simpa only [algebraMap_eq_smul_one'] using smul_left_injective R one_ne_zero
theorem _root_.NeZero.of_noZeroSMulDivisors (n : ℕ) [CommRing R] [NeZero (n : R)] [Ring A]
[Nontrivial A] [Algebra R A] [NoZeroSMulDivisors R A] : NeZero (n : A) :=
NeZero.nat_of_injective <| NoZeroSMulDivisors.algebraMap_injective R A
variable {R A}
theorem iff_algebraMap_injective [CommRing R] [Ring A] [IsDomain A] [Algebra R A] :
NoZeroSMulDivisors R A ↔ Function.Injective (algebraMap R A) :=
⟨@NoZeroSMulDivisors.algebraMap_injective R A _ _ _ _, NoZeroSMulDivisors.of_algebraMap_injective⟩
-- see note [lower instance priority]
instance (priority := 100) CharZero.noZeroSMulDivisors_nat [Semiring R] [NoZeroDivisors R]
[CharZero R] : NoZeroSMulDivisors ℕ R :=
NoZeroSMulDivisors.of_algebraMap_injective <| (algebraMap ℕ R).injective_nat
-- see note [lower instance priority]
instance (priority := 100) CharZero.noZeroSMulDivisors_int [Ring R] [NoZeroDivisors R]
[CharZero R] : NoZeroSMulDivisors ℤ R :=
NoZeroSMulDivisors.of_algebraMap_injective <| (algebraMap ℤ R).injective_int
section Field
variable [Field R] [Semiring A] [Algebra R A]
-- see note [lower instance priority]
instance (priority := 100) Algebra.noZeroSMulDivisors [Nontrivial A] [NoZeroDivisors A] :
NoZeroSMulDivisors R A :=
NoZeroSMulDivisors.of_algebraMap_injective (algebraMap R A).injective
end Field
end NoZeroSMulDivisors
section IsScalarTower
variable {R : Type*} [CommSemiring R]
variable (A : Type*) [Semiring A] [Algebra R A]
variable {M : Type*} [AddCommMonoid M] [Module A M] [Module R M] [IsScalarTower R A M]
variable {N : Type*} [AddCommMonoid N] [Module A N] [Module R N] [IsScalarTower R A N]
theorem algebra_compatible_smul (r : R) (m : M) : r • m = (algebraMap R A) r • m := by
rw [← one_smul A m, ← smul_assoc, Algebra.smul_def, mul_one, one_smul]
@[simp]
theorem algebraMap_smul (r : R) (m : M) : (algebraMap R A) r • m = r • m :=
(algebra_compatible_smul A r m).symm
theorem NoZeroSMulDivisors.trans (R A M : Type*) [CommRing R] [Ring A] [IsDomain A] [Algebra R A]
[AddCommGroup M] [Module R M] [Module A M] [IsScalarTower R A M] [NoZeroSMulDivisors R A]
[NoZeroSMulDivisors A M] : NoZeroSMulDivisors R M := by
refine ⟨fun {r m} h => ?_⟩
rw [algebra_compatible_smul A r m] at h
cases' smul_eq_zero.1 h with H H
· have : Function.Injective (algebraMap R A) :=
NoZeroSMulDivisors.iff_algebraMap_injective.1 inferInstance
left
exact (injective_iff_map_eq_zero _).1 this _ H
· right
exact H
variable {A}
-- see Note [lower instance priority]
-- priority manually adjusted in #11980, as it is a very common path
instance (priority := 120) IsScalarTower.to_smulCommClass : SMulCommClass R A M :=
⟨fun r a m => by
rw [algebra_compatible_smul A r (a • m), smul_smul, Algebra.commutes, mul_smul, ←
algebra_compatible_smul]⟩
-- see Note [lower instance priority]
-- priority manually adjusted in #11980, as it is a very common path
instance (priority := 110) IsScalarTower.to_smulCommClass' : SMulCommClass A R M :=
SMulCommClass.symm _ _ _
-- see Note [lower instance priority]
instance (priority := 200) Algebra.to_smulCommClass {R A} [CommSemiring R] [Semiring A]
[Algebra R A] : SMulCommClass R A A :=
IsScalarTower.to_smulCommClass
theorem smul_algebra_smul_comm (r : R) (a : A) (m : M) : a • r • m = r • a • m :=
smul_comm _ _ _
namespace LinearMap
variable (R)
-- Porting note (#11215): TODO: generalize to `CompatibleSMul`
/-- `A`-linearly coerce an `R`-linear map from `M` to `A` to a function, given an algebra `A` over
a commutative semiring `R` and `M` a module over `R`. -/
def ltoFun (R : Type u) (M : Type v) (A : Type w) [CommSemiring R] [AddCommMonoid M] [Module R M]
[CommSemiring A] [Algebra R A] : (M →ₗ[R] A) →ₗ[A] M → A where
toFun f := f.toFun
map_add' _ _ := rfl
map_smul' _ _ := rfl
end LinearMap
end IsScalarTower
/-! TODO: The following lemmas no longer involve `Algebra` at all, and could be moved closer
to `Algebra/Module/Submodule.lean`. Currently this is tricky because `ker`, `range`, `⊤`, and `⊥`
are all defined in `LinearAlgebra/Basic.lean`. -/
section Module
variable (R : Type*) {S M N : Type*} [Semiring R] [Semiring S] [SMul R S]
variable [AddCommMonoid M] [Module R M] [Module S M] [IsScalarTower R S M]
variable [AddCommMonoid N] [Module R N] [Module S N] [IsScalarTower R S N]
@[simp]
theorem LinearMap.ker_restrictScalars (f : M →ₗ[S] N) :
LinearMap.ker (f.restrictScalars R) = f.ker.restrictScalars R :=
rfl
end Module
example {R A} [CommSemiring R] [Semiring A] [Module R A] [SMulCommClass R A A]
[IsScalarTower R A A] : Algebra R A :=
Algebra.ofModule smul_mul_assoc mul_smul_comm
section invertibility
variable {R A B : Type*}
variable [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B]
/-- If there is a linear map `f : A →ₗ[R] B` that preserves `1`, then `algebraMap R B r` is
invertible when `algebraMap R A r` is. -/
abbrev Invertible.algebraMapOfInvertibleAlgebraMap (f : A →ₗ[R] B) (hf : f 1 = 1) {r : R}
(h : Invertible (algebraMap R A r)) : Invertible (algebraMap R B r) where
invOf := f ⅟(algebraMap R A r)
invOf_mul_self := by rw [← Algebra.commutes, ← Algebra.smul_def, ← map_smul, Algebra.smul_def,
mul_invOf_self, hf]
mul_invOf_self := by rw [← Algebra.smul_def, ← map_smul, Algebra.smul_def, mul_invOf_self, hf]
/-- If there is a linear map `f : A →ₗ[R] B` that preserves `1`, then `algebraMap R B r` is
a unit when `algebraMap R A r` is. -/
lemma IsUnit.algebraMap_of_algebraMap (f : A →ₗ[R] B) (hf : f 1 = 1) {r : R}
(h : IsUnit (algebraMap R A r)) : IsUnit (algebraMap R B r) :=
let ⟨i⟩ := nonempty_invertible h
letI := Invertible.algebraMapOfInvertibleAlgebraMap f hf i
isUnit_of_invertible _
end invertibility
section algebraMap
variable {F E : Type*} [CommSemiring F] [Semiring E] [Algebra F E] (b : F →ₗ[F] E)
/-- If `E` is an `F`-algebra, and there exists an injective `F`-linear map from `F` to `E`,
then the algebra map from `F` to `E` is also injective. -/
theorem injective_algebraMap_of_linearMap (hb : Function.Injective b) :
Function.Injective (algebraMap F E) := fun x y e ↦ hb <| by
rw [← mul_one x, ← mul_one y, ← smul_eq_mul, ← smul_eq_mul,
map_smul, map_smul, Algebra.smul_def, Algebra.smul_def, e]
/-- If `E` is an `F`-algebra, and there exists a surjective `F`-linear map from `F` to `E`,
then the algebra map from `F` to `E` is also surjective. -/
theorem surjective_algebraMap_of_linearMap (hb : Function.Surjective b) :
Function.Surjective (algebraMap F E) := fun x ↦ by
obtain ⟨x, rfl⟩ := hb x
obtain ⟨y, hy⟩ := hb (b 1 * b 1)
refine ⟨x * y, ?_⟩
obtain ⟨z, hz⟩ := hb 1
apply_fun (x • z • ·) at hy
rwa [← map_smul, smul_eq_mul, mul_comm, ← smul_mul_assoc, ← map_smul _ z, smul_eq_mul, mul_one,
← smul_eq_mul, map_smul, hz, one_mul, ← map_smul, smul_eq_mul, mul_one, smul_smul,
← Algebra.algebraMap_eq_smul_one] at hy
/-- If `E` is an `F`-algebra, and there exists a bijective `F`-linear map from `F` to `E`,
then the algebra map from `F` to `E` is also bijective.
NOTE: The same result can also be obtained if there are two `F`-linear maps from `F` to `E`,
one is injective, the other one is surjective. In this case, use
`injective_algebraMap_of_linearMap` and `surjective_algebraMap_of_linearMap` separately. -/
theorem bijective_algebraMap_of_linearMap (hb : Function.Bijective b) :
Function.Bijective (algebraMap F E) :=
⟨injective_algebraMap_of_linearMap b hb.1, surjective_algebraMap_of_linearMap b hb.2⟩
/-- If `E` is an `F`-algebra, there exists an `F`-linear isomorphism from `F` to `E` (namely,
`E` is a free `F`-module of rank one), then the algebra map from `F` to `E` is bijective. -/
theorem bijective_algebraMap_of_linearEquiv (b : F ≃ₗ[F] E) :
Function.Bijective (algebraMap F E) :=
bijective_algebraMap_of_linearMap _ b.bijective
end algebraMap
section surjective
variable {R S} [CommSemiring R] [Semiring S] [Algebra R S]
variable {M N} [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module S M] [IsScalarTower R S M]
variable [Module R N] [Module S N] [IsScalarTower R S N]
/-- If `R →+* S` is surjective, then `S`-linear maps between modules are exactly `R`-linear maps. -/
def LinearMap.extendScalarsOfSurjectiveEquiv (h : Function.Surjective (algebraMap R S)) :
(M →ₗ[R] N) ≃ₗ[R] (M →ₗ[S] N) where
toFun f := { __ := f, map_smul' := fun r x ↦ by obtain ⟨r, rfl⟩ := h r; simp }
map_add' _ _ := rfl
map_smul' _ _ := rfl
invFun f := f.restrictScalars S
left_inv f := rfl
right_inv f := rfl
/-- If `R →+* S` is surjective, then `R`-linear maps are also `S`-linear. -/
abbrev LinearMap.extendScalarsOfSurjective (h : Function.Surjective (algebraMap R S))
(l : M →ₗ[R] N) : M →ₗ[S] N :=
extendScalarsOfSurjectiveEquiv h l
/-- If `R →+* S` is surjective, then `R`-linear isomorphisms are also `S`-linear. -/
def LinearEquiv.extendScalarsOfSurjective (h : Function.Surjective (algebraMap R S))
(f : M ≃ₗ[R] N) : M ≃ₗ[S] N where
__ := f
map_smul' r x := by obtain ⟨r, rfl⟩ := h r; simp
variable (h : Function.Surjective (algebraMap R S))
@[simp]
lemma LinearMap.extendScalarsOfSurjective_apply (l : M →ₗ[R] N) (x) :
l.extendScalarsOfSurjective h x = l x := rfl
@[simp]
lemma LinearEquiv.extendScalarsOfSurjective_apply (f : M ≃ₗ[R] N) (x) :
f.extendScalarsOfSurjective h x = f x := rfl
@[simp]
lemma LinearEquiv.extendScalarsOfSurjective_symm (f : M ≃ₗ[R] N) :
(f.extendScalarsOfSurjective h).symm = f.symm.extendScalarsOfSurjective h := rfl
end surjective
|
Algebra\Algebra\Bilinear.lean | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Yury Kudryashov
-/
import Mathlib.Algebra.Algebra.Defs
import Mathlib.Algebra.Algebra.NonUnitalHom
import Mathlib.Algebra.GroupPower.IterateHom
import Mathlib.LinearAlgebra.TensorProduct.Basic
/-!
# Facts about algebras involving bilinear maps and tensor products
We move a few basic statements about algebras out of `Algebra.Algebra.Basic`,
in order to avoid importing `LinearAlgebra.BilinearMap` and
`LinearAlgebra.TensorProduct` unnecessarily.
-/
open TensorProduct Module
namespace LinearMap
section NonUnitalNonAssoc
variable (R A : Type*) [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]
[SMulCommClass R A A] [IsScalarTower R A A]
/-- The multiplication in a non-unital non-associative algebra is a bilinear map.
A weaker version of this for semirings exists as `AddMonoidHom.mul`. -/
def mul : A →ₗ[R] A →ₗ[R] A :=
LinearMap.mk₂ R (· * ·) add_mul smul_mul_assoc mul_add mul_smul_comm
/-- The multiplication map on a non-unital algebra, as an `R`-linear map from `A ⊗[R] A` to `A`. -/
noncomputable def mul' : A ⊗[R] A →ₗ[R] A :=
TensorProduct.lift (mul R A)
variable {A}
/-- The multiplication on the left in a non-unital algebra is a linear map. -/
def mulLeft (a : A) : A →ₗ[R] A :=
mul R A a
/-- The multiplication on the right in an algebra is a linear map. -/
def mulRight (a : A) : A →ₗ[R] A :=
(mul R A).flip a
/-- Simultaneous multiplication on the left and right is a linear map. -/
def mulLeftRight (ab : A × A) : A →ₗ[R] A :=
(mulRight R ab.snd).comp (mulLeft R ab.fst)
@[simp]
theorem mulLeft_toAddMonoidHom (a : A) : (mulLeft R a : A →+ A) = AddMonoidHom.mulLeft a :=
rfl
@[simp]
theorem mulRight_toAddMonoidHom (a : A) : (mulRight R a : A →+ A) = AddMonoidHom.mulRight a :=
rfl
variable {R}
@[simp]
theorem mul_apply' (a b : A) : mul R A a b = a * b :=
rfl
@[simp]
theorem mulLeft_apply (a b : A) : mulLeft R a b = a * b :=
rfl
@[simp]
theorem mulRight_apply (a b : A) : mulRight R a b = b * a :=
rfl
@[simp]
theorem mulLeftRight_apply (a b x : A) : mulLeftRight R (a, b) x = a * x * b :=
rfl
@[simp]
theorem mul'_apply {a b : A} : mul' R A (a ⊗ₜ b) = a * b :=
rfl
@[simp]
theorem mulLeft_zero_eq_zero : mulLeft R (0 : A) = 0 :=
(mul R A).map_zero
@[simp]
theorem mulRight_zero_eq_zero : mulRight R (0 : A) = 0 :=
(mul R A).flip.map_zero
end NonUnitalNonAssoc
section NonUnital
variable (R A : Type*) [CommSemiring R] [NonUnitalSemiring A] [Module R A] [SMulCommClass R A A]
[IsScalarTower R A A]
/-- The multiplication in a non-unital algebra is a bilinear map.
A weaker version of this for non-unital non-associative algebras exists as `LinearMap.mul`. -/
def _root_.NonUnitalAlgHom.lmul : A →ₙₐ[R] End R A :=
{ mul R A with
map_mul' := by
intro a b
ext c
exact mul_assoc a b c
map_zero' := by
ext a
exact zero_mul a }
variable {R A}
@[simp]
theorem _root_.NonUnitalAlgHom.coe_lmul_eq_mul : ⇑(NonUnitalAlgHom.lmul R A) = mul R A :=
rfl
theorem commute_mulLeft_right (a b : A) : Commute (mulLeft R a) (mulRight R b) := by
ext c
exact (mul_assoc a c b).symm
@[simp]
theorem mulLeft_mul (a b : A) : mulLeft R (a * b) = (mulLeft R a).comp (mulLeft R b) := by
ext
simp only [mulLeft_apply, comp_apply, mul_assoc]
@[simp]
theorem mulRight_mul (a b : A) : mulRight R (a * b) = (mulRight R b).comp (mulRight R a) := by
ext
simp only [mulRight_apply, comp_apply, mul_assoc]
end NonUnital
section Semiring
variable (R A B : Type*) [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B]
variable {R A B} in
/-- A `LinearMap` preserves multiplication if pre- and post- composition with `LinearMap.mul` are
equivalent. By converting the statement into an equality of `LinearMap`s, this lemma allows various
specialized `ext` lemmas about `→ₗ[R]` to then be applied.
This is the `LinearMap` version of `AddMonoidHom.map_mul_iff`. -/
theorem map_mul_iff (f : A →ₗ[R] B) :
(∀ x y, f (x * y) = f x * f y) ↔
(LinearMap.mul R A).compr₂ f = (LinearMap.mul R B ∘ₗ f).compl₂ f :=
Iff.symm LinearMap.ext_iff₂
/-- The multiplication in an algebra is an algebra homomorphism into the endomorphisms on
the algebra.
A weaker version of this for non-unital algebras exists as `NonUnitalAlgHom.mul`. -/
def _root_.Algebra.lmul : A →ₐ[R] End R A :=
{ LinearMap.mul R A with
map_one' := by
ext a
exact one_mul a
map_mul' := by
intro a b
ext c
exact mul_assoc a b c
map_zero' := by
ext a
exact zero_mul a
commutes' := by
intro r
ext a
exact (Algebra.smul_def r a).symm }
variable {R A}
@[simp]
theorem _root_.Algebra.coe_lmul_eq_mul : ⇑(Algebra.lmul R A) = mul R A :=
rfl
theorem _root_.Algebra.lmul_injective : Function.Injective (Algebra.lmul R A) :=
fun a₁ a₂ h ↦ by simpa using DFunLike.congr_fun h 1
theorem _root_.Algebra.lmul_isUnit_iff {x : A} :
IsUnit (Algebra.lmul R A x) ↔ IsUnit x := by
rw [Module.End_isUnit_iff, Iff.comm]
exact IsUnit.isUnit_iff_mulLeft_bijective
@[simp]
theorem mulLeft_eq_zero_iff (a : A) : mulLeft R a = 0 ↔ a = 0 := by
constructor <;> intro h
-- Porting note: had to supply `R` explicitly in `@mulLeft_apply` below
· rw [← mul_one a, ← @mulLeft_apply R _ _ _ _ _ _ a 1, h, LinearMap.zero_apply]
· rw [h]
exact mulLeft_zero_eq_zero
@[simp]
theorem mulRight_eq_zero_iff (a : A) : mulRight R a = 0 ↔ a = 0 := by
constructor <;> intro h
-- Porting note: had to supply `R` explicitly in `@mulRight_apply` below
· rw [← one_mul a, ← @mulRight_apply R _ _ _ _ _ _ a 1, h, LinearMap.zero_apply]
· rw [h]
exact mulRight_zero_eq_zero
@[simp]
theorem mulLeft_one : mulLeft R (1 : A) = LinearMap.id := by
ext
simp
@[simp]
theorem mulRight_one : mulRight R (1 : A) = LinearMap.id := by
ext
simp
@[simp]
theorem pow_mulLeft (a : A) (n : ℕ) : mulLeft R a ^ n = mulLeft R (a ^ n) := by
simpa only [mulLeft, ← Algebra.coe_lmul_eq_mul] using (map_pow (Algebra.lmul R A) a n).symm
@[simp]
theorem pow_mulRight (a : A) (n : ℕ) : mulRight R a ^ n = mulRight R (a ^ n) := by
simp only [mulRight, ← Algebra.coe_lmul_eq_mul]
exact
LinearMap.coe_injective (((mulRight R a).coe_pow n).symm ▸ mul_right_iterate a n)
end Semiring
section Ring
variable {R A : Type*} [CommSemiring R] [Ring A] [Algebra R A]
theorem mulLeft_injective [NoZeroDivisors A] {x : A} (hx : x ≠ 0) :
Function.Injective (mulLeft R x) := by
letI : Nontrivial A := ⟨⟨x, 0, hx⟩⟩
letI := NoZeroDivisors.to_isDomain A
exact mul_right_injective₀ hx
theorem mulRight_injective [NoZeroDivisors A] {x : A} (hx : x ≠ 0) :
Function.Injective (mulRight R x) := by
letI : Nontrivial A := ⟨⟨x, 0, hx⟩⟩
letI := NoZeroDivisors.to_isDomain A
exact mul_left_injective₀ hx
theorem mul_injective [NoZeroDivisors A] {x : A} (hx : x ≠ 0) : Function.Injective (mul R A x) := by
letI : Nontrivial A := ⟨⟨x, 0, hx⟩⟩
letI := NoZeroDivisors.to_isDomain A
exact mul_right_injective₀ hx
end Ring
end LinearMap
|
Algebra\Algebra\Defs.lean | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Yury Kudryashov
-/
import Mathlib.Algebra.BigOperators.Group.Finset
import Mathlib.Algebra.Module.LinearMap.Defs
/-!
# Algebras over commutative semirings
In this file we define associative unital `Algebra`s over commutative (semi)rings.
* algebra homomorphisms `AlgHom` are defined in `Mathlib.Algebra.Algebra.Hom`;
* algebra equivalences `AlgEquiv` are defined in `Mathlib.Algebra.Algebra.Equiv`;
* `Subalgebra`s are defined in `Mathlib.Algebra.Algebra.Subalgebra`;
* The category `AlgebraCat R` of `R`-algebras is defined in the file
`Mathlib.Algebra.Category.Algebra.Basic`.
See the implementation notes for remarks about non-associative and non-unital algebras.
## Main definitions:
* `Algebra R A`: the algebra typeclass.
* `algebraMap R A : R →+* A`: the canonical map from `R` to `A`, as a `RingHom`. This is the
preferred spelling of this map, it is also available as:
* `Algebra.linearMap R A : R →ₗ[R] A`, a `LinearMap`.
* `Algebra.ofId R A : R →ₐ[R] A`, an `AlgHom` (defined in a later file).
## Implementation notes
Given a commutative (semi)ring `R`, there are two ways to define an `R`-algebra structure on a
(possibly noncommutative) (semi)ring `A`:
* By endowing `A` with a morphism of rings `R →+* A` denoted `algebraMap R A` which lands in the
center of `A`.
* By requiring `A` be an `R`-module such that the action associates and commutes with multiplication
as `r • (a₁ * a₂) = (r • a₁) * a₂ = a₁ * (r • a₂)`.
We define `Algebra R A` in a way that subsumes both definitions, by extending `SMul R A` and
requiring that this scalar action `r • x` must agree with left multiplication by the image of the
structure morphism `algebraMap R A r * x`.
As a result, there are two ways to talk about an `R`-algebra `A` when `A` is a semiring:
1. ```lean
variable [CommSemiring R] [Semiring A]
variable [Algebra R A]
```
2. ```lean
variable [CommSemiring R] [Semiring A]
variable [Module R A] [SMulCommClass R A A] [IsScalarTower R A A]
```
The first approach implies the second via typeclass search; so any lemma stated with the second set
of arguments will automatically apply to the first set. Typeclass search does not know that the
second approach implies the first, but this can be shown with:
```lean
example {R A : Type*} [CommSemiring R] [Semiring A]
[Module R A] [SMulCommClass R A A] [IsScalarTower R A A] : Algebra R A :=
Algebra.ofModule smul_mul_assoc mul_smul_comm
```
The advantage of the first approach is that `algebraMap R A` is available, and `AlgHom R A B` and
`Subalgebra R A` can be used. For concrete `R` and `A`, `algebraMap R A` is often definitionally
convenient.
The advantage of the second approach is that `CommSemiring R`, `Semiring A`, and `Module R A` can
all be relaxed independently; for instance, this allows us to:
* Replace `Semiring A` with `NonUnitalNonAssocSemiring A` in order to describe non-unital and/or
non-associative algebras.
* Replace `CommSemiring R` and `Module R A` with `CommGroup R'` and `DistribMulAction R' A`,
which when `R' = Rˣ` lets us talk about the "algebra-like" action of `Rˣ` on an
`R`-algebra `A`.
While `AlgHom R A B` cannot be used in the second approach, `NonUnitalAlgHom R A B` still can.
You should always use the first approach when working with associative unital algebras, and mimic
the second approach only when you need to weaken a condition on either `R` or `A`.
-/
assert_not_exists Field
universe u v w u₁ v₁
section Prio
-- We set this priority to 0 later in this file
-- Porting note: unsupported set_option extends_priority 200
/- control priority of
`instance [Algebra R A] : SMul R A` -/
/-- An associative unital `R`-algebra is a semiring `A` equipped with a map into its center `R → A`.
See the implementation notes in this file for discussion of the details of this definition.
-/
-- Porting note(#5171): unsupported @[nolint has_nonempty_instance]
class Algebra (R : Type u) (A : Type v) [CommSemiring R] [Semiring A] extends SMul R A,
R →+* A where
commutes' : ∀ r x, toRingHom r * x = x * toRingHom r
smul_def' : ∀ r x, r • x = toRingHom r * x
end Prio
/-- Embedding `R →+* A` given by `Algebra` structure. -/
def algebraMap (R : Type u) (A : Type v) [CommSemiring R] [Semiring A] [Algebra R A] : R →+* A :=
Algebra.toRingHom
/-- Coercion from a commutative semiring to an algebra over this semiring. -/
@[coe, reducible]
def Algebra.cast {R A : Type*} [CommSemiring R] [Semiring A] [Algebra R A] : R → A :=
algebraMap R A
namespace algebraMap
scoped instance coeHTCT (R A : Type*) [CommSemiring R] [Semiring A] [Algebra R A] :
CoeHTCT R A :=
⟨Algebra.cast⟩
section CommSemiringSemiring
variable {R A : Type*} [CommSemiring R] [Semiring A] [Algebra R A]
@[norm_cast]
theorem coe_zero : (↑(0 : R) : A) = 0 :=
map_zero (algebraMap R A)
@[norm_cast]
theorem coe_one : (↑(1 : R) : A) = 1 :=
map_one (algebraMap R A)
@[norm_cast]
theorem coe_natCast (a : ℕ) : (↑(a : R) : A) = a :=
map_natCast (algebraMap R A) a
@[norm_cast]
theorem coe_add (a b : R) : (↑(a + b : R) : A) = ↑a + ↑b :=
map_add (algebraMap R A) a b
@[norm_cast]
theorem coe_mul (a b : R) : (↑(a * b : R) : A) = ↑a * ↑b :=
map_mul (algebraMap R A) a b
@[norm_cast]
theorem coe_pow (a : R) (n : ℕ) : (↑(a ^ n : R) : A) = (a : A) ^ n :=
map_pow (algebraMap R A) _ _
end CommSemiringSemiring
section CommRingRing
variable {R A : Type*} [CommRing R] [Ring A] [Algebra R A]
@[norm_cast]
theorem coe_neg (x : R) : (↑(-x : R) : A) = -↑x :=
map_neg (algebraMap R A) x
@[norm_cast]
theorem coe_sub (a b : R) :
(↑(a - b : R) : A) = ↑a - ↑b :=
map_sub (algebraMap R A) a b
end CommRingRing
section CommSemiringCommSemiring
variable {R A : Type*} [CommSemiring R] [CommSemiring A] [Algebra R A]
-- direct to_additive fails because of some mix-up with polynomials
@[norm_cast]
theorem coe_prod {ι : Type*} {s : Finset ι} (a : ι → R) :
(↑(∏ i ∈ s, a i : R) : A) = ∏ i ∈ s, (↑(a i) : A) :=
map_prod (algebraMap R A) a s
-- to_additive fails for some reason
@[norm_cast]
theorem coe_sum {ι : Type*} {s : Finset ι} (a : ι → R) :
↑(∑ i ∈ s, a i) = ∑ i ∈ s, (↑(a i) : A) :=
map_sum (algebraMap R A) a s
-- Porting note: removed attribute [to_additive] coe_prod; why should this be a `to_additive`?
end CommSemiringCommSemiring
end algebraMap
/-- Creating an algebra from a morphism to the center of a semiring. -/
def RingHom.toAlgebra' {R S} [CommSemiring R] [Semiring S] (i : R →+* S)
(h : ∀ c x, i c * x = x * i c) : Algebra R S where
smul c x := i c * x
commutes' := h
smul_def' _ _ := rfl
toRingHom := i
/-- Creating an algebra from a morphism to a commutative semiring. -/
def RingHom.toAlgebra {R S} [CommSemiring R] [CommSemiring S] (i : R →+* S) : Algebra R S :=
i.toAlgebra' fun _ => mul_comm _
theorem RingHom.algebraMap_toAlgebra {R S} [CommSemiring R] [CommSemiring S] (i : R →+* S) :
@algebraMap R S _ _ i.toAlgebra = i :=
rfl
namespace Algebra
variable {R : Type u} {S : Type v} {A : Type w} {B : Type*}
/-- Let `R` be a commutative semiring, let `A` be a semiring with a `Module R` structure.
If `(r • 1) * x = x * (r • 1) = r • x` for all `r : R` and `x : A`, then `A` is an `Algebra`
over `R`.
See note [reducible non-instances]. -/
abbrev ofModule' [CommSemiring R] [Semiring A] [Module R A]
(h₁ : ∀ (r : R) (x : A), r • (1 : A) * x = r • x)
(h₂ : ∀ (r : R) (x : A), x * r • (1 : A) = r • x) : Algebra R A where
toFun r := r • (1 : A)
map_one' := one_smul _ _
map_mul' r₁ r₂ := by simp only [h₁, mul_smul]
map_zero' := zero_smul _ _
map_add' r₁ r₂ := add_smul r₁ r₂ 1
commutes' r x := by simp [h₁, h₂]
smul_def' r x := by simp [h₁]
/-- Let `R` be a commutative semiring, let `A` be a semiring with a `Module R` structure.
If `(r • x) * y = x * (r • y) = r • (x * y)` for all `r : R` and `x y : A`, then `A`
is an `Algebra` over `R`.
See note [reducible non-instances]. -/
abbrev ofModule [CommSemiring R] [Semiring A] [Module R A]
(h₁ : ∀ (r : R) (x y : A), r • x * y = r • (x * y))
(h₂ : ∀ (r : R) (x y : A), x * r • y = r • (x * y)) : Algebra R A :=
ofModule' (fun r x => by rw [h₁, one_mul]) fun r x => by rw [h₂, mul_one]
section Semiring
variable [CommSemiring R] [CommSemiring S]
variable [Semiring A] [Algebra R A] [Semiring B] [Algebra R B]
-- Porting note: deleted a private lemma
-- We'll later use this to show `Algebra ℤ M` is a subsingleton.
/-- To prove two algebra structures on a fixed `[CommSemiring R] [Semiring A]` agree,
it suffices to check the `algebraMap`s agree.
-/
@[ext]
theorem algebra_ext {R : Type*} [CommSemiring R] {A : Type*} [Semiring A] (P Q : Algebra R A)
(h : ∀ r : R, (haveI := P; algebraMap R A r) = haveI := Q; algebraMap R A r) :
P = Q := by
replace h : P.toRingHom = Q.toRingHom := DFunLike.ext _ _ h
have h' : (haveI := P; (· • ·) : R → A → A) = (haveI := Q; (· • ·) : R → A → A) := by
funext r a
rw [P.smul_def', Q.smul_def', h]
rcases P with @⟨⟨P⟩⟩
rcases Q with @⟨⟨Q⟩⟩
congr
-- see Note [lower instance priority]
instance (priority := 200) toModule : Module R A where
one_smul _ := by simp [smul_def']
mul_smul := by simp [smul_def', mul_assoc]
smul_add := by simp [smul_def', mul_add]
smul_zero := by simp [smul_def']
add_smul := by simp [smul_def', add_mul]
zero_smul := by simp [smul_def']
-- Porting note: this caused deterministic timeouts later in mathlib3 but not in mathlib 4.
-- attribute [instance 0] Algebra.toSMul
theorem smul_def (r : R) (x : A) : r • x = algebraMap R A r * x :=
Algebra.smul_def' r x
theorem algebraMap_eq_smul_one (r : R) : algebraMap R A r = r • (1 : A) :=
calc
algebraMap R A r = algebraMap R A r * 1 := (mul_one _).symm
_ = r • (1 : A) := (Algebra.smul_def r 1).symm
theorem algebraMap_eq_smul_one' : ⇑(algebraMap R A) = fun r => r • (1 : A) :=
funext algebraMap_eq_smul_one
/-- `mul_comm` for `Algebra`s when one element is from the base ring. -/
theorem commutes (r : R) (x : A) : algebraMap R A r * x = x * algebraMap R A r :=
Algebra.commutes' r x
lemma commute_algebraMap_left (r : R) (x : A) : Commute (algebraMap R A r) x :=
Algebra.commutes r x
lemma commute_algebraMap_right (r : R) (x : A) : Commute x (algebraMap R A r) :=
(Algebra.commutes r x).symm
/-- `mul_left_comm` for `Algebra`s when one element is from the base ring. -/
theorem left_comm (x : A) (r : R) (y : A) :
x * (algebraMap R A r * y) = algebraMap R A r * (x * y) := by
rw [← mul_assoc, ← commutes, mul_assoc]
/-- `mul_right_comm` for `Algebra`s when one element is from the base ring. -/
theorem right_comm (x : A) (r : R) (y : A) :
x * algebraMap R A r * y = x * y * algebraMap R A r := by
rw [mul_assoc, commutes, ← mul_assoc]
instance _root_.IsScalarTower.right : IsScalarTower R A A :=
⟨fun x y z => by rw [smul_eq_mul, smul_eq_mul, smul_def, smul_def, mul_assoc]⟩
@[simp]
theorem _root_.RingHom.smulOneHom_eq_algebraMap : RingHom.smulOneHom = algebraMap R A :=
RingHom.ext fun r => (algebraMap_eq_smul_one r).symm
-- TODO: set up `IsScalarTower.smulCommClass` earlier so that we can actually prove this using
-- `mul_smul_comm s x y`.
/-- This is just a special case of the global `mul_smul_comm` lemma that requires less typeclass
search (and was here first). -/
@[simp]
protected theorem mul_smul_comm (s : R) (x y : A) : x * s • y = s • (x * y) := by
rw [smul_def, smul_def, left_comm]
/-- This is just a special case of the global `smul_mul_assoc` lemma that requires less typeclass
search (and was here first). -/
@[simp]
protected theorem smul_mul_assoc (r : R) (x y : A) : r • x * y = r • (x * y) :=
smul_mul_assoc r x y
@[simp]
theorem _root_.smul_algebraMap {α : Type*} [Monoid α] [MulDistribMulAction α A]
[SMulCommClass α R A] (a : α) (r : R) : a • algebraMap R A r = algebraMap R A r := by
rw [algebraMap_eq_smul_one, smul_comm a r (1 : A), smul_one]
section
end
variable (R A)
/-- The canonical ring homomorphism `algebraMap R A : R →+* A` for any `R`-algebra `A`,
packaged as an `R`-linear map.
-/
protected def linearMap : R →ₗ[R] A :=
{ algebraMap R A with map_smul' := fun x y => by simp [Algebra.smul_def] }
@[simp]
theorem linearMap_apply (r : R) : Algebra.linearMap R A r = algebraMap R A r :=
rfl
theorem coe_linearMap : ⇑(Algebra.linearMap R A) = algebraMap R A :=
rfl
/-- The identity map inducing an `Algebra` structure. -/
instance (priority := 1100) id : Algebra R R where
-- We override `toFun` and `toSMul` because `RingHom.id` is not reducible and cannot
-- be made so without a significant performance hit.
-- see library note [reducible non-instances].
toFun x := x
toSMul := Mul.toSMul _
__ := (RingHom.id R).toAlgebra
variable {R A}
namespace id
@[simp]
theorem map_eq_id : algebraMap R R = RingHom.id _ :=
rfl
theorem map_eq_self (x : R) : algebraMap R R x = x :=
rfl
@[simp]
theorem smul_eq_mul (x y : R) : x • y = x * y :=
rfl
end id
end Semiring
end Algebra
@[norm_cast]
theorem algebraMap.coe_smul (A B C : Type*) [SMul A B] [CommSemiring B] [Semiring C] [Algebra B C]
[SMul A C] [IsScalarTower A B C] (a : A) (b : B) : (a • b : B) = a • (b : C) := calc
((a • b : B) : C) = (a • b) • 1 := Algebra.algebraMap_eq_smul_one _
_ = a • (b • 1) := smul_assoc ..
_ = a • (b : C) := congrArg _ (Algebra.algebraMap_eq_smul_one b).symm
assert_not_exists Module.End
|
Algebra\Algebra\Equiv.lean | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Yury Kudryashov
-/
import Mathlib.Algebra.Algebra.Hom
import Mathlib.Algebra.Ring.Aut
/-!
# Isomorphisms of `R`-algebras
This file defines bundled isomorphisms of `R`-algebras.
## Main definitions
* `AlgEquiv R A B`: the type of `R`-algebra isomorphisms between `A` and `B`.
## Notations
* `A ≃ₐ[R] B` : `R`-algebra equivalence from `A` to `B`.
-/
universe u v w u₁ v₁
/-- An equivalence of algebras is an equivalence of rings commuting with the actions of scalars. -/
structure AlgEquiv (R : Type u) (A : Type v) (B : Type w) [CommSemiring R] [Semiring A] [Semiring B]
[Algebra R A] [Algebra R B] extends A ≃ B, A ≃* B, A ≃+ B, A ≃+* B where
/-- An equivalence of algebras commutes with the action of scalars. -/
protected commutes' : ∀ r : R, toFun (algebraMap R A r) = algebraMap R B r
attribute [nolint docBlame] AlgEquiv.toRingEquiv
attribute [nolint docBlame] AlgEquiv.toEquiv
attribute [nolint docBlame] AlgEquiv.toAddEquiv
attribute [nolint docBlame] AlgEquiv.toMulEquiv
@[inherit_doc]
notation:50 A " ≃ₐ[" R "] " A' => AlgEquiv R A A'
/-- `AlgEquivClass F R A B` states that `F` is a type of algebra structure preserving
equivalences. You should extend this class when you extend `AlgEquiv`. -/
class AlgEquivClass (F : Type*) (R A B : outParam Type*) [CommSemiring R] [Semiring A]
[Semiring B] [Algebra R A] [Algebra R B] [EquivLike F A B]
extends RingEquivClass F A B : Prop where
/-- An equivalence of algebras commutes with the action of scalars. -/
commutes : ∀ (f : F) (r : R), f (algebraMap R A r) = algebraMap R B r
-- Porting note: Removed nolint dangerousInstance from AlgEquivClass.toRingEquivClass
namespace AlgEquivClass
-- See note [lower instance priority]
instance (priority := 100) toAlgHomClass (F R A B : Type*) [CommSemiring R] [Semiring A]
[Semiring B] [Algebra R A] [Algebra R B] [EquivLike F A B] [h : AlgEquivClass F R A B] :
AlgHomClass F R A B :=
{ h with }
instance (priority := 100) toLinearEquivClass (F R A B : Type*) [CommSemiring R]
[Semiring A] [Semiring B] [Algebra R A] [Algebra R B]
[EquivLike F A B] [h : AlgEquivClass F R A B] : LinearEquivClass F R A B :=
{ h with map_smulₛₗ := fun f => map_smulₛₗ f }
/-- Turn an element of a type `F` satisfying `AlgEquivClass F R A B` into an actual `AlgEquiv`.
This is declared as the default coercion from `F` to `A ≃ₐ[R] B`. -/
@[coe]
def toAlgEquiv {F R A B : Type*} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A]
[Algebra R B] [EquivLike F A B] [AlgEquivClass F R A B] (f : F) : A ≃ₐ[R] B :=
{ (f : A ≃ B), (f : A ≃+* B) with commutes' := commutes f }
instance (F R A B : Type*) [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B]
[EquivLike F A B] [AlgEquivClass F R A B] : CoeTC F (A ≃ₐ[R] B) :=
⟨toAlgEquiv⟩
end AlgEquivClass
namespace AlgEquiv
universe uR uA₁ uA₂ uA₃ uA₁' uA₂' uA₃'
variable {R : Type uR}
variable {A₁ : Type uA₁} {A₂ : Type uA₂} {A₃ : Type uA₃}
variable {A₁' : Type uA₁'} {A₂' : Type uA₂'} {A₃' : Type uA₃'}
section Semiring
variable [CommSemiring R] [Semiring A₁] [Semiring A₂] [Semiring A₃]
variable [Semiring A₁'] [Semiring A₂'] [Semiring A₃']
variable [Algebra R A₁] [Algebra R A₂] [Algebra R A₃]
variable [Algebra R A₁'] [Algebra R A₂'] [Algebra R A₃']
variable (e : A₁ ≃ₐ[R] A₂)
instance : EquivLike (A₁ ≃ₐ[R] A₂) A₁ A₂ where
coe f := f.toFun
inv f := f.invFun
left_inv f := f.left_inv
right_inv f := f.right_inv
coe_injective' f g h₁ h₂ := by
obtain ⟨⟨f,_⟩,_⟩ := f
obtain ⟨⟨g,_⟩,_⟩ := g
congr
/-- Helper instance since the coercion is not always found. -/
instance : FunLike (A₁ ≃ₐ[R] A₂) A₁ A₂ where
coe := DFunLike.coe
coe_injective' := DFunLike.coe_injective'
instance : AlgEquivClass (A₁ ≃ₐ[R] A₂) R A₁ A₂ where
map_add f := f.map_add'
map_mul f := f.map_mul'
commutes f := f.commutes'
-- Porting note: the default simps projection was `e.toEquiv.toFun`, it should be `FunLike.coe`
/-- See Note [custom simps projection] -/
def Simps.apply (e : A₁ ≃ₐ[R] A₂) : A₁ → A₂ :=
e
-- Porting note: the default simps projection was `e.toEquiv`, it should be `EquivLike.toEquiv`
/-- See Note [custom simps projection] -/
def Simps.toEquiv (e : A₁ ≃ₐ[R] A₂) : A₁ ≃ A₂ :=
e
-- Porting note: `protected` used to be an attribute below
@[simp]
protected theorem coe_coe {F : Type*} [EquivLike F A₁ A₂] [AlgEquivClass F R A₁ A₂] (f : F) :
⇑(f : A₁ ≃ₐ[R] A₂) = f :=
rfl
@[ext]
theorem ext {f g : A₁ ≃ₐ[R] A₂} (h : ∀ a, f a = g a) : f = g :=
DFunLike.ext f g h
protected theorem congr_arg {f : A₁ ≃ₐ[R] A₂} {x x' : A₁} : x = x' → f x = f x' :=
DFunLike.congr_arg f
protected theorem congr_fun {f g : A₁ ≃ₐ[R] A₂} (h : f = g) (x : A₁) : f x = g x :=
DFunLike.congr_fun h x
theorem coe_fun_injective : @Function.Injective (A₁ ≃ₐ[R] A₂) (A₁ → A₂) fun e => (e : A₁ → A₂) :=
DFunLike.coe_injective
-- Porting note: Made to CoeOut instance from Coe, not dangerous anymore
instance hasCoeToRingEquiv : CoeOut (A₁ ≃ₐ[R] A₂) (A₁ ≃+* A₂) :=
⟨AlgEquiv.toRingEquiv⟩
@[simp]
theorem coe_mk {toEquiv map_mul map_add commutes} :
⇑(⟨toEquiv, map_mul, map_add, commutes⟩ : A₁ ≃ₐ[R] A₂) = toEquiv :=
rfl
@[simp]
theorem mk_coe (e : A₁ ≃ₐ[R] A₂) (e' h₁ h₂ h₃ h₄ h₅) :
(⟨⟨e, e', h₁, h₂⟩, h₃, h₄, h₅⟩ : A₁ ≃ₐ[R] A₂) = e :=
ext fun _ => rfl
-- Porting note: `toFun_eq_coe` no longer needed in Lean4
@[simp]
theorem toEquiv_eq_coe : e.toEquiv = e :=
rfl
@[simp]
theorem toRingEquiv_eq_coe : e.toRingEquiv = e :=
rfl
@[simp, norm_cast]
lemma toRingEquiv_toRingHom : ((e : A₁ ≃+* A₂) : A₁ →+* A₂) = e :=
rfl
@[simp, norm_cast]
theorem coe_ringEquiv : ((e : A₁ ≃+* A₂) : A₁ → A₂) = e :=
rfl
theorem coe_ringEquiv' : (e.toRingEquiv : A₁ → A₂) = e :=
rfl
theorem coe_ringEquiv_injective : Function.Injective ((↑) : (A₁ ≃ₐ[R] A₂) → A₁ ≃+* A₂) :=
fun _ _ h => ext <| RingEquiv.congr_fun h
@[deprecated map_add (since := "2024-06-20")]
protected theorem map_add : ∀ x y, e (x + y) = e x + e y :=
map_add e
@[deprecated map_zero (since := "2024-06-20")]
protected theorem map_zero : e 0 = 0 :=
map_zero e
@[deprecated map_mul (since := "2024-06-20")]
protected theorem map_mul : ∀ x y, e (x * y) = e x * e y :=
map_mul e
@[deprecated map_one (since := "2024-06-20")]
protected theorem map_one : e 1 = 1 :=
map_one e
@[simp]
theorem commutes : ∀ r : R, e (algebraMap R A₁ r) = algebraMap R A₂ r :=
e.commutes'
-- @[simp] -- Porting note (#10618): simp can prove this
@[deprecated map_smul (since := "2024-06-20")]
protected theorem map_smul (r : R) (x : A₁) : e (r • x) = r • e x :=
map_smul _ _ _
@[deprecated map_sum (since := "2023-12-26")]
protected theorem map_sum {ι : Type*} (f : ι → A₁) (s : Finset ι) :
e (∑ x ∈ s, f x) = ∑ x ∈ s, e (f x) :=
map_sum e f s
@[deprecated map_finsupp_sum (since := "2024-06-20")]
protected theorem map_finsupp_sum {α : Type*} [Zero α] {ι : Type*} (f : ι →₀ α) (g : ι → α → A₁) :
e (f.sum g) = f.sum fun i b => e (g i b) :=
map_finsupp_sum _ _ _
-- Porting note: Added [coe] attribute
/-- Interpret an algebra equivalence as an algebra homomorphism.
This definition is included for symmetry with the other `to*Hom` projections.
The `simp` normal form is to use the coercion of the `AlgHomClass.coeTC` instance. -/
@[coe]
def toAlgHom : A₁ →ₐ[R] A₂ :=
{ e with
map_one' := map_one e
map_zero' := map_zero e }
@[simp]
theorem toAlgHom_eq_coe : e.toAlgHom = e :=
rfl
@[simp, norm_cast]
theorem coe_algHom : DFunLike.coe (e.toAlgHom) = DFunLike.coe e :=
rfl
theorem coe_algHom_injective : Function.Injective ((↑) : (A₁ ≃ₐ[R] A₂) → A₁ →ₐ[R] A₂) :=
fun _ _ h => ext <| AlgHom.congr_fun h
@[simp, norm_cast]
lemma toAlgHom_toRingHom : ((e : A₁ →ₐ[R] A₂) : A₁ →+* A₂) = e :=
rfl
/-- The two paths coercion can take to a `RingHom` are equivalent -/
theorem coe_ringHom_commutes : ((e : A₁ →ₐ[R] A₂) : A₁ →+* A₂) = ((e : A₁ ≃+* A₂) : A₁ →+* A₂) :=
rfl
@[deprecated map_pow (since := "2024-06-20")]
protected theorem map_pow : ∀ (x : A₁) (n : ℕ), e (x ^ n) = e x ^ n :=
map_pow _
protected theorem injective : Function.Injective e :=
EquivLike.injective e
protected theorem surjective : Function.Surjective e :=
EquivLike.surjective e
protected theorem bijective : Function.Bijective e :=
EquivLike.bijective e
/-- Algebra equivalences are reflexive. -/
@[refl]
def refl : A₁ ≃ₐ[R] A₁ :=
{ (1 : A₁ ≃+* A₁) with commutes' := fun _ => rfl }
instance : Inhabited (A₁ ≃ₐ[R] A₁) :=
⟨refl⟩
@[simp]
theorem refl_toAlgHom : ↑(refl : A₁ ≃ₐ[R] A₁) = AlgHom.id R A₁ :=
rfl
@[simp]
theorem coe_refl : ⇑(refl : A₁ ≃ₐ[R] A₁) = id :=
rfl
/-- Algebra equivalences are symmetric. -/
@[symm]
def symm (e : A₁ ≃ₐ[R] A₂) : A₂ ≃ₐ[R] A₁ :=
{ e.toRingEquiv.symm with
commutes' := fun r => by
rw [← e.toRingEquiv.symm_apply_apply (algebraMap R A₁ r)]
congr
change _ = e _
rw [e.commutes] }
/-- See Note [custom simps projection] -/
def Simps.symm_apply (e : A₁ ≃ₐ[R] A₂) : A₂ → A₁ :=
e.symm
initialize_simps_projections AlgEquiv (toFun → apply, invFun → symm_apply)
--@[simp] -- Porting note (#10618): simp can prove this once symm_mk is introduced
theorem coe_apply_coe_coe_symm_apply {F : Type*} [EquivLike F A₁ A₂] [AlgEquivClass F R A₁ A₂]
(f : F) (x : A₂) :
f ((f : A₁ ≃ₐ[R] A₂).symm x) = x :=
EquivLike.right_inv f x
--@[simp] -- Porting note (#10618): simp can prove this once symm_mk is introduced
theorem coe_coe_symm_apply_coe_apply {F : Type*} [EquivLike F A₁ A₂] [AlgEquivClass F R A₁ A₂]
(f : F) (x : A₁) :
(f : A₁ ≃ₐ[R] A₂).symm (f x) = x :=
EquivLike.left_inv f x
-- Porting note: `simp` normal form of `invFun_eq_symm`
@[simp]
theorem symm_toEquiv_eq_symm {e : A₁ ≃ₐ[R] A₂} : (e : A₁ ≃ A₂).symm = e.symm :=
rfl
theorem invFun_eq_symm {e : A₁ ≃ₐ[R] A₂} : e.invFun = e.symm :=
rfl
@[simp]
theorem symm_symm (e : A₁ ≃ₐ[R] A₂) : e.symm.symm = e := by
ext
rfl
theorem symm_bijective : Function.Bijective (symm : (A₁ ≃ₐ[R] A₂) → A₂ ≃ₐ[R] A₁) :=
Function.bijective_iff_has_inverse.mpr ⟨_, symm_symm, symm_symm⟩
@[simp]
theorem mk_coe' (e : A₁ ≃ₐ[R] A₂) (f h₁ h₂ h₃ h₄ h₅) :
(⟨⟨f, e, h₁, h₂⟩, h₃, h₄, h₅⟩ : A₂ ≃ₐ[R] A₁) = e.symm :=
symm_bijective.injective <| ext fun _ => rfl
/-- Auxilliary definition to avoid looping in `dsimp` with `AlgEquiv.symm_mk`. -/
protected def symm_mk.aux (f f') (h₁ h₂ h₃ h₄ h₅) :=
(⟨⟨f, f', h₁, h₂⟩, h₃, h₄, h₅⟩ : A₁ ≃ₐ[R] A₂).symm
@[simp]
theorem symm_mk (f f') (h₁ h₂ h₃ h₄ h₅) :
(⟨⟨f, f', h₁, h₂⟩, h₃, h₄, h₅⟩ : A₁ ≃ₐ[R] A₂).symm =
{ symm_mk.aux f f' h₁ h₂ h₃ h₄ h₅ with
toFun := f'
invFun := f } :=
rfl
@[simp]
theorem refl_symm : (AlgEquiv.refl : A₁ ≃ₐ[R] A₁).symm = AlgEquiv.refl :=
rfl
--this should be a simp lemma but causes a lint timeout
theorem toRingEquiv_symm (f : A₁ ≃ₐ[R] A₁) : (f : A₁ ≃+* A₁).symm = f.symm :=
rfl
@[simp]
theorem symm_toRingEquiv : (e.symm : A₂ ≃+* A₁) = (e : A₁ ≃+* A₂).symm :=
rfl
/-- Algebra equivalences are transitive. -/
@[trans]
def trans (e₁ : A₁ ≃ₐ[R] A₂) (e₂ : A₂ ≃ₐ[R] A₃) : A₁ ≃ₐ[R] A₃ :=
{ e₁.toRingEquiv.trans e₂.toRingEquiv with
commutes' := fun r => show e₂.toFun (e₁.toFun _) = _ by rw [e₁.commutes', e₂.commutes'] }
@[simp]
theorem apply_symm_apply (e : A₁ ≃ₐ[R] A₂) : ∀ x, e (e.symm x) = x :=
e.toEquiv.apply_symm_apply
@[simp]
theorem symm_apply_apply (e : A₁ ≃ₐ[R] A₂) : ∀ x, e.symm (e x) = x :=
e.toEquiv.symm_apply_apply
@[simp]
theorem symm_trans_apply (e₁ : A₁ ≃ₐ[R] A₂) (e₂ : A₂ ≃ₐ[R] A₃) (x : A₃) :
(e₁.trans e₂).symm x = e₁.symm (e₂.symm x) :=
rfl
@[simp]
theorem coe_trans (e₁ : A₁ ≃ₐ[R] A₂) (e₂ : A₂ ≃ₐ[R] A₃) : ⇑(e₁.trans e₂) = e₂ ∘ e₁ :=
rfl
@[simp]
theorem trans_apply (e₁ : A₁ ≃ₐ[R] A₂) (e₂ : A₂ ≃ₐ[R] A₃) (x : A₁) : (e₁.trans e₂) x = e₂ (e₁ x) :=
rfl
@[simp]
theorem comp_symm (e : A₁ ≃ₐ[R] A₂) : AlgHom.comp (e : A₁ →ₐ[R] A₂) ↑e.symm = AlgHom.id R A₂ := by
ext
simp
@[simp]
theorem symm_comp (e : A₁ ≃ₐ[R] A₂) : AlgHom.comp ↑e.symm (e : A₁ →ₐ[R] A₂) = AlgHom.id R A₁ := by
ext
simp
theorem leftInverse_symm (e : A₁ ≃ₐ[R] A₂) : Function.LeftInverse e.symm e :=
e.left_inv
theorem rightInverse_symm (e : A₁ ≃ₐ[R] A₂) : Function.RightInverse e.symm e :=
e.right_inv
/-- If `A₁` is equivalent to `A₁'` and `A₂` is equivalent to `A₂'`, then the type of maps
`A₁ →ₐ[R] A₂` is equivalent to the type of maps `A₁' →ₐ[R] A₂'`. -/
@[simps apply]
def arrowCongr (e₁ : A₁ ≃ₐ[R] A₁') (e₂ : A₂ ≃ₐ[R] A₂') : (A₁ →ₐ[R] A₂) ≃ (A₁' →ₐ[R] A₂') where
toFun f := (e₂.toAlgHom.comp f).comp e₁.symm.toAlgHom
invFun f := (e₂.symm.toAlgHom.comp f).comp e₁.toAlgHom
left_inv f := by
simp only [AlgHom.comp_assoc, toAlgHom_eq_coe, symm_comp]
simp only [← AlgHom.comp_assoc, symm_comp, AlgHom.id_comp, AlgHom.comp_id]
right_inv f := by
simp only [AlgHom.comp_assoc, toAlgHom_eq_coe, comp_symm]
simp only [← AlgHom.comp_assoc, comp_symm, AlgHom.id_comp, AlgHom.comp_id]
theorem arrowCongr_comp (e₁ : A₁ ≃ₐ[R] A₁') (e₂ : A₂ ≃ₐ[R] A₂')
(e₃ : A₃ ≃ₐ[R] A₃') (f : A₁ →ₐ[R] A₂) (g : A₂ →ₐ[R] A₃) :
arrowCongr e₁ e₃ (g.comp f) = (arrowCongr e₂ e₃ g).comp (arrowCongr e₁ e₂ f) := by
ext
simp only [arrowCongr, Equiv.coe_fn_mk, AlgHom.comp_apply]
congr
exact (e₂.symm_apply_apply _).symm
@[simp]
theorem arrowCongr_refl : arrowCongr AlgEquiv.refl AlgEquiv.refl = Equiv.refl (A₁ →ₐ[R] A₂) := by
ext
rfl
@[simp]
theorem arrowCongr_trans (e₁ : A₁ ≃ₐ[R] A₂) (e₁' : A₁' ≃ₐ[R] A₂')
(e₂ : A₂ ≃ₐ[R] A₃) (e₂' : A₂' ≃ₐ[R] A₃') :
arrowCongr (e₁.trans e₂) (e₁'.trans e₂') = (arrowCongr e₁ e₁').trans (arrowCongr e₂ e₂') := by
ext
rfl
@[simp]
theorem arrowCongr_symm (e₁ : A₁ ≃ₐ[R] A₁') (e₂ : A₂ ≃ₐ[R] A₂') :
(arrowCongr e₁ e₂).symm = arrowCongr e₁.symm e₂.symm := by
ext
rfl
/-- If `A₁` is equivalent to `A₂` and `A₁'` is equivalent to `A₂'`, then the type of maps
`A₁ ≃ₐ[R] A₁'` is equivalent to the type of maps `A₂ ≃ ₐ[R] A₂'`.
This is the `AlgEquiv` version of `AlgEquiv.arrowCongr`. -/
@[simps apply]
def equivCongr (e : A₁ ≃ₐ[R] A₂) (e' : A₁' ≃ₐ[R] A₂') : (A₁ ≃ₐ[R] A₁') ≃ A₂ ≃ₐ[R] A₂' where
toFun ψ := e.symm.trans (ψ.trans e')
invFun ψ := e.trans (ψ.trans e'.symm)
left_inv ψ := by
ext
simp_rw [trans_apply, symm_apply_apply]
right_inv ψ := by
ext
simp_rw [trans_apply, apply_symm_apply]
@[simp]
theorem equivCongr_refl : equivCongr AlgEquiv.refl AlgEquiv.refl = Equiv.refl (A₁ ≃ₐ[R] A₁') := by
ext
rfl
@[simp]
theorem equivCongr_symm (e : A₁ ≃ₐ[R] A₂) (e' : A₁' ≃ₐ[R] A₂') :
(equivCongr e e').symm = equivCongr e.symm e'.symm :=
rfl
@[simp]
theorem equivCongr_trans (e₁₂ : A₁ ≃ₐ[R] A₂) (e₁₂' : A₁' ≃ₐ[R] A₂')
(e₂₃ : A₂ ≃ₐ[R] A₃) (e₂₃' : A₂' ≃ₐ[R] A₃') :
(equivCongr e₁₂ e₁₂').trans (equivCongr e₂₃ e₂₃') =
equivCongr (e₁₂.trans e₂₃) (e₁₂'.trans e₂₃') :=
rfl
/-- If an algebra morphism has an inverse, it is an algebra isomorphism. -/
@[simps]
def ofAlgHom (f : A₁ →ₐ[R] A₂) (g : A₂ →ₐ[R] A₁) (h₁ : f.comp g = AlgHom.id R A₂)
(h₂ : g.comp f = AlgHom.id R A₁) : A₁ ≃ₐ[R] A₂ :=
{ f with
toFun := f
invFun := g
left_inv := AlgHom.ext_iff.1 h₂
right_inv := AlgHom.ext_iff.1 h₁ }
theorem coe_algHom_ofAlgHom (f : A₁ →ₐ[R] A₂) (g : A₂ →ₐ[R] A₁) (h₁ h₂) :
↑(ofAlgHom f g h₁ h₂) = f :=
AlgHom.ext fun _ => rfl
@[simp]
theorem ofAlgHom_coe_algHom (f : A₁ ≃ₐ[R] A₂) (g : A₂ →ₐ[R] A₁) (h₁ h₂) :
ofAlgHom (↑f) g h₁ h₂ = f :=
ext fun _ => rfl
theorem ofAlgHom_symm (f : A₁ →ₐ[R] A₂) (g : A₂ →ₐ[R] A₁) (h₁ h₂) :
(ofAlgHom f g h₁ h₂).symm = ofAlgHom g f h₂ h₁ :=
rfl
/-- Promotes a bijective algebra homomorphism to an algebra equivalence. -/
noncomputable def ofBijective (f : A₁ →ₐ[R] A₂) (hf : Function.Bijective f) : A₁ ≃ₐ[R] A₂ :=
{ RingEquiv.ofBijective (f : A₁ →+* A₂) hf, f with }
@[simp]
theorem coe_ofBijective {f : A₁ →ₐ[R] A₂} {hf : Function.Bijective f} :
(AlgEquiv.ofBijective f hf : A₁ → A₂) = f :=
rfl
theorem ofBijective_apply {f : A₁ →ₐ[R] A₂} {hf : Function.Bijective f} (a : A₁) :
(AlgEquiv.ofBijective f hf) a = f a :=
rfl
/-- Forgetting the multiplicative structures, an equivalence of algebras is a linear equivalence. -/
@[simps apply]
def toLinearEquiv (e : A₁ ≃ₐ[R] A₂) : A₁ ≃ₗ[R] A₂ :=
{ e with
toFun := e
map_smul' := map_smul e
invFun := e.symm }
@[simp]
theorem toLinearEquiv_refl : (AlgEquiv.refl : A₁ ≃ₐ[R] A₁).toLinearEquiv = LinearEquiv.refl R A₁ :=
rfl
@[simp]
theorem toLinearEquiv_symm (e : A₁ ≃ₐ[R] A₂) : e.toLinearEquiv.symm = e.symm.toLinearEquiv :=
rfl
@[simp]
theorem toLinearEquiv_trans (e₁ : A₁ ≃ₐ[R] A₂) (e₂ : A₂ ≃ₐ[R] A₃) :
(e₁.trans e₂).toLinearEquiv = e₁.toLinearEquiv.trans e₂.toLinearEquiv :=
rfl
theorem toLinearEquiv_injective : Function.Injective (toLinearEquiv : _ → A₁ ≃ₗ[R] A₂) :=
fun _ _ h => ext <| LinearEquiv.congr_fun h
/-- Interpret an algebra equivalence as a linear map. -/
def toLinearMap : A₁ →ₗ[R] A₂ :=
e.toAlgHom.toLinearMap
@[simp]
theorem toAlgHom_toLinearMap : (e : A₁ →ₐ[R] A₂).toLinearMap = e.toLinearMap :=
rfl
theorem toLinearMap_ofAlgHom (f : A₁ →ₐ[R] A₂) (g : A₂ →ₐ[R] A₁) (h₁ h₂) :
(ofAlgHom f g h₁ h₂).toLinearMap = f.toLinearMap :=
LinearMap.ext fun _ => rfl
@[simp]
theorem toLinearEquiv_toLinearMap : e.toLinearEquiv.toLinearMap = e.toLinearMap :=
rfl
@[simp]
theorem toLinearMap_apply (x : A₁) : e.toLinearMap x = e x :=
rfl
theorem toLinearMap_injective : Function.Injective (toLinearMap : _ → A₁ →ₗ[R] A₂) := fun _ _ h =>
ext <| LinearMap.congr_fun h
@[simp]
theorem trans_toLinearMap (f : A₁ ≃ₐ[R] A₂) (g : A₂ ≃ₐ[R] A₃) :
(f.trans g).toLinearMap = g.toLinearMap.comp f.toLinearMap :=
rfl
section OfLinearEquiv
variable (l : A₁ ≃ₗ[R] A₂) (map_one : l 1 = 1) (map_mul : ∀ x y : A₁, l (x * y) = l x * l y)
/--
Upgrade a linear equivalence to an algebra equivalence,
given that it distributes over multiplication and the identity
-/
@[simps apply]
def ofLinearEquiv : A₁ ≃ₐ[R] A₂ :=
{ l with
toFun := l
invFun := l.symm
map_mul' := map_mul
commutes' := (AlgHom.ofLinearMap l map_one map_mul : A₁ →ₐ[R] A₂).commutes }
/-- Auxilliary definition to avoid looping in `dsimp` with `AlgEquiv.ofLinearEquiv_symm`. -/
protected def ofLinearEquiv_symm.aux := (ofLinearEquiv l map_one map_mul).symm
@[simp]
theorem ofLinearEquiv_symm :
(ofLinearEquiv l map_one map_mul).symm =
ofLinearEquiv l.symm
(_root_.map_one <| ofLinearEquiv_symm.aux l map_one map_mul)
(_root_.map_mul <| ofLinearEquiv_symm.aux l map_one map_mul) :=
rfl
@[simp]
theorem ofLinearEquiv_toLinearEquiv (map_mul) (map_one) :
ofLinearEquiv e.toLinearEquiv map_mul map_one = e := by
ext
rfl
@[simp]
theorem toLinearEquiv_ofLinearEquiv : toLinearEquiv (ofLinearEquiv l map_one map_mul) = l := by
ext
rfl
end OfLinearEquiv
section OfRingEquiv
/-- Promotes a linear `RingEquiv` to an `AlgEquiv`. -/
@[simps apply symm_apply toEquiv] -- Porting note: don't want redundant `toEquiv_symm_apply` simps
def ofRingEquiv {f : A₁ ≃+* A₂} (hf : ∀ x, f (algebraMap R A₁ x) = algebraMap R A₂ x) :
A₁ ≃ₐ[R] A₂ :=
{ f with
toFun := f
invFun := f.symm
commutes' := hf }
end OfRingEquiv
-- Porting note: projections mul & one not found, removed [simps] and added theorems manually
-- @[simps (config := .lemmasOnly) one]
instance aut : Group (A₁ ≃ₐ[R] A₁) where
mul ϕ ψ := ψ.trans ϕ
mul_assoc ϕ ψ χ := rfl
one := refl
one_mul ϕ := ext fun x => rfl
mul_one ϕ := ext fun x => rfl
inv := symm
mul_left_inv ϕ := ext <| symm_apply_apply ϕ
theorem aut_mul (ϕ ψ : A₁ ≃ₐ[R] A₁) : ϕ * ψ = ψ.trans ϕ :=
rfl
theorem aut_one : 1 = AlgEquiv.refl (R := R) (A₁ := A₁) :=
rfl
@[simp]
theorem one_apply (x : A₁) : (1 : A₁ ≃ₐ[R] A₁) x = x :=
rfl
@[simp]
theorem mul_apply (e₁ e₂ : A₁ ≃ₐ[R] A₁) (x : A₁) : (e₁ * e₂) x = e₁ (e₂ x) :=
rfl
/-- An algebra isomorphism induces a group isomorphism between automorphism groups.
This is a more bundled version of `AlgEquiv.equivCongr`. -/
@[simps apply]
def autCongr (ϕ : A₁ ≃ₐ[R] A₂) : (A₁ ≃ₐ[R] A₁) ≃* A₂ ≃ₐ[R] A₂ where
__ := equivCongr ϕ ϕ
toFun ψ := ϕ.symm.trans (ψ.trans ϕ)
invFun ψ := ϕ.trans (ψ.trans ϕ.symm)
map_mul' ψ χ := by
ext
simp only [mul_apply, trans_apply, symm_apply_apply]
@[simp]
theorem autCongr_refl : autCongr AlgEquiv.refl = MulEquiv.refl (A₁ ≃ₐ[R] A₁) := by
ext
rfl
@[simp]
theorem autCongr_symm (ϕ : A₁ ≃ₐ[R] A₂) : (autCongr ϕ).symm = autCongr ϕ.symm :=
rfl
@[simp]
theorem autCongr_trans (ϕ : A₁ ≃ₐ[R] A₂) (ψ : A₂ ≃ₐ[R] A₃) :
(autCongr ϕ).trans (autCongr ψ) = autCongr (ϕ.trans ψ) :=
rfl
/-- The tautological action by `A₁ ≃ₐ[R] A₁` on `A₁`.
This generalizes `Function.End.applyMulAction`. -/
instance applyMulSemiringAction : MulSemiringAction (A₁ ≃ₐ[R] A₁) A₁ where
smul := (· <| ·)
smul_zero := map_zero
smul_add := map_add
smul_one := map_one
smul_mul := map_mul
one_smul _ := rfl
mul_smul _ _ _ := rfl
@[simp]
protected theorem smul_def (f : A₁ ≃ₐ[R] A₁) (a : A₁) : f • a = f a :=
rfl
instance apply_faithfulSMul : FaithfulSMul (A₁ ≃ₐ[R] A₁) A₁ :=
⟨AlgEquiv.ext⟩
instance apply_smulCommClass {S} [SMul S R] [SMul S A₁] [IsScalarTower S R A₁] :
SMulCommClass S (A₁ ≃ₐ[R] A₁) A₁ where
smul_comm r e a := (e.toLinearEquiv.map_smul_of_tower r a).symm
instance apply_smulCommClass' {S} [SMul S R] [SMul S A₁] [IsScalarTower S R A₁] :
SMulCommClass (A₁ ≃ₐ[R] A₁) S A₁ :=
SMulCommClass.symm _ _ _
instance : MulDistribMulAction (A₁ ≃ₐ[R] A₁) A₁ˣ where
smul := fun f => Units.map f
one_smul := fun x => by ext; rfl
mul_smul := fun x y z => by ext; rfl
smul_mul := fun x y z => by ext; exact map_mul x _ _
smul_one := fun x => by ext; exact map_one x
@[simp]
theorem smul_units_def (f : A₁ ≃ₐ[R] A₁) (x : A₁ˣ) :
f • x = Units.map f x := rfl
@[simp]
theorem algebraMap_eq_apply (e : A₁ ≃ₐ[R] A₂) {y : R} {x : A₁} :
algebraMap R A₂ y = e x ↔ algebraMap R A₁ y = x :=
⟨fun h => by simpa using e.symm.toAlgHom.algebraMap_eq_apply h, fun h =>
e.toAlgHom.algebraMap_eq_apply h⟩
/-- `AlgEquiv.toLinearMap` as a `MonoidHom`. -/
@[simps]
def toLinearMapHom (R A) [CommSemiring R] [Semiring A] [Algebra R A] :
(A ≃ₐ[R] A) →* A →ₗ[R] A where
toFun := AlgEquiv.toLinearMap
map_one' := rfl
map_mul' := fun _ _ ↦ rfl
lemma pow_toLinearMap (σ : A₁ ≃ₐ[R] A₁) (n : ℕ) :
(σ ^ n).toLinearMap = σ.toLinearMap ^ n :=
(AlgEquiv.toLinearMapHom R A₁).map_pow σ n
@[simp]
lemma one_toLinearMap :
(1 : A₁ ≃ₐ[R] A₁).toLinearMap = 1 := rfl
/-- The units group of `S →ₐ[R] S` is `S ≃ₐ[R] S`.
See `LinearMap.GeneralLinearGroup.generalLinearEquiv` for the linear map version. -/
@[simps]
def algHomUnitsEquiv (R S : Type*) [CommSemiring R] [Semiring S] [Algebra R S] :
(S →ₐ[R] S)ˣ ≃* (S ≃ₐ[R] S) where
toFun := fun f ↦
{ (f : S →ₐ[R] S) with
invFun := ↑(f⁻¹)
left_inv := (fun x ↦ show (↑(f⁻¹ * f) : S →ₐ[R] S) x = x by rw [inv_mul_self]; rfl)
right_inv := (fun x ↦ show (↑(f * f⁻¹) : S →ₐ[R] S) x = x by rw [mul_inv_self]; rfl) }
invFun := fun f ↦ ⟨f, f.symm, f.comp_symm, f.symm_comp⟩
left_inv := fun _ ↦ rfl
right_inv := fun _ ↦ rfl
map_mul' := fun _ _ ↦ rfl
end Semiring
section CommSemiring
variable [CommSemiring R] [CommSemiring A₁] [CommSemiring A₂]
variable [Algebra R A₁] [Algebra R A₂] (e : A₁ ≃ₐ[R] A₂)
@[deprecated map_prod (since := "2024-06-20")]
protected theorem map_prod {ι : Type*} (f : ι → A₁) (s : Finset ι) :
e (∏ x ∈ s, f x) = ∏ x ∈ s, e (f x) :=
map_prod _ f s
@[deprecated map_finsupp_prod (since := "2024-06-20")]
protected theorem map_finsupp_prod {α : Type*} [Zero α] {ι : Type*} (f : ι →₀ α) (g : ι → α → A₁) :
e (f.prod g) = f.prod fun i a => e (g i a) :=
map_finsupp_prod _ f g
end CommSemiring
section Ring
variable [CommSemiring R] [Ring A₁] [Ring A₂]
variable [Algebra R A₁] [Algebra R A₂] (e : A₁ ≃ₐ[R] A₂)
@[deprecated map_neg (since := "2024-06-20")]
protected theorem map_neg (x) : e (-x) = -e x :=
map_neg e x
@[deprecated map_sub (since := "2024-06-20")]
protected theorem map_sub (x y) : e (x - y) = e x - e y :=
map_sub e x y
end Ring
end AlgEquiv
namespace MulSemiringAction
variable {M G : Type*} (R A : Type*) [CommSemiring R] [Semiring A] [Algebra R A]
section
variable [Group G] [MulSemiringAction G A] [SMulCommClass G R A]
/-- Each element of the group defines an algebra equivalence.
This is a stronger version of `MulSemiringAction.toRingEquiv` and
`DistribMulAction.toLinearEquiv`. -/
@[simps! apply symm_apply toEquiv] -- Porting note: don't want redundant simps lemma `toEquiv_symm`
def toAlgEquiv (g : G) : A ≃ₐ[R] A :=
{ MulSemiringAction.toRingEquiv _ _ g, MulSemiringAction.toAlgHom R A g with }
theorem toAlgEquiv_injective [FaithfulSMul G A] :
Function.Injective (MulSemiringAction.toAlgEquiv R A : G → A ≃ₐ[R] A) := fun _ _ h =>
eq_of_smul_eq_smul fun r => AlgEquiv.ext_iff.1 h r
end
end MulSemiringAction
|
Algebra\Algebra\Field.lean | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Yury Kudryashov
-/
import Mathlib.Algebra.Algebra.Defs
import Mathlib.Data.Rat.Cast.Defs
/-!
# Facts about `algebraMap` when the coefficient ring is a field.
-/
namespace algebraMap
universe u v w u₁ v₁
section FieldNontrivial
variable {R A : Type*} [Field R] [CommSemiring A] [Nontrivial A] [Algebra R A]
@[norm_cast, simp]
theorem coe_inj {a b : R} : (↑a : A) = ↑b ↔ a = b :=
(algebraMap R A).injective.eq_iff
@[norm_cast]
theorem lift_map_eq_zero_iff (a : R) : (↑a : A) = 0 ↔ a = 0 := map_eq_zero _
end FieldNontrivial
section SemifieldSemidivisionRing
variable {R : Type*} (A : Type*) [Semifield R] [DivisionSemiring A] [Algebra R A]
@[norm_cast]
theorem coe_inv (r : R) : ↑r⁻¹ = ((↑r)⁻¹ : A) :=
map_inv₀ (algebraMap R A) r
@[norm_cast]
theorem coe_div (r s : R) : ↑(r / s) = (↑r / ↑s : A) :=
map_div₀ (algebraMap R A) r s
@[norm_cast]
theorem coe_zpow (r : R) (z : ℤ) : ↑(r ^ z) = (r : A) ^ z :=
map_zpow₀ (algebraMap R A) r z
end SemifieldSemidivisionRing
section FieldDivisionRing
variable (R A : Type*) [Field R] [DivisionRing A] [Algebra R A]
@[norm_cast]
theorem coe_ratCast (q : ℚ) : ↑(q : R) = (q : A) := map_ratCast (algebraMap R A) q
end FieldDivisionRing
end algebraMap
|
Algebra\Algebra\Hom.lean | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Yury Kudryashov
-/
import Mathlib.Algebra.Algebra.Basic
import Mathlib.Algebra.BigOperators.Finsupp
/-!
# Homomorphisms of `R`-algebras
This file defines bundled homomorphisms of `R`-algebras.
## Main definitions
* `AlgHom R A B`: the type of `R`-algebra morphisms from `A` to `B`.
* `Algebra.ofId R A : R →ₐ[R] A`: the canonical map from `R` to `A`, as an `AlgHom`.
## Notations
* `A →ₐ[R] B` : `R`-algebra homomorphism from `A` to `B`.
-/
universe u v w u₁ v₁
/-- Defining the homomorphism in the category R-Alg. -/
-- @[nolint has_nonempty_instance] -- Porting note(#5171): linter not ported yet
structure AlgHom (R : Type u) (A : Type v) (B : Type w) [CommSemiring R] [Semiring A] [Semiring B]
[Algebra R A] [Algebra R B] extends RingHom A B where
commutes' : ∀ r : R, toFun (algebraMap R A r) = algebraMap R B r
/-- Reinterpret an `AlgHom` as a `RingHom` -/
add_decl_doc AlgHom.toRingHom
@[inherit_doc AlgHom]
infixr:25 " →ₐ " => AlgHom _
@[inherit_doc]
notation:25 A " →ₐ[" R "] " B => AlgHom R A B
/-- `AlgHomClass F R A B` asserts `F` is a type of bundled algebra homomorphisms
from `A` to `B`. -/
class AlgHomClass (F : Type*) (R A B : outParam Type*)
[CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B]
[FunLike F A B] extends RingHomClass F A B : Prop where
commutes : ∀ (f : F) (r : R), f (algebraMap R A r) = algebraMap R B r
-- Porting note: `dangerousInstance` linter has become smarter about `outParam`s
-- attribute [nolint dangerousInstance] AlgHomClass.toRingHomClass
-- Porting note (#10618): simp can prove this
-- attribute [simp] AlgHomClass.commutes
namespace AlgHomClass
variable {R A B F : Type*} [CommSemiring R] [Semiring A] [Semiring B]
[Algebra R A] [Algebra R B] [FunLike F A B]
-- see Note [lower instance priority]
instance (priority := 100) linearMapClass [AlgHomClass F R A B] : LinearMapClass F R A B :=
{ ‹AlgHomClass F R A B› with
map_smulₛₗ := fun f r x => by
simp only [Algebra.smul_def, map_mul, commutes, RingHom.id_apply] }
-- Porting note (#11445): A new definition underlying a coercion `↑`.
/-- Turn an element of a type `F` satisfying `AlgHomClass F α β` into an actual
`AlgHom`. This is declared as the default coercion from `F` to `α →+* β`. -/
@[coe]
def toAlgHom {F : Type*} [FunLike F A B] [AlgHomClass F R A B] (f : F) : A →ₐ[R] B where
__ := (f : A →+* B)
toFun := f
commutes' := AlgHomClass.commutes f
instance coeTC {F : Type*} [FunLike F A B] [AlgHomClass F R A B] : CoeTC F (A →ₐ[R] B) :=
⟨AlgHomClass.toAlgHom⟩
end AlgHomClass
namespace AlgHom
variable {R : Type u} {A : Type v} {B : Type w} {C : Type u₁} {D : Type v₁}
section Semiring
variable [CommSemiring R] [Semiring A] [Semiring B] [Semiring C] [Semiring D]
variable [Algebra R A] [Algebra R B] [Algebra R C] [Algebra R D]
-- Porting note: we don't port specialized `CoeFun` instances if there is `DFunLike` instead
instance funLike : FunLike (A →ₐ[R] B) A B where
coe f := f.toFun
coe_injective' f g h := by
rcases f with ⟨⟨⟨⟨_, _⟩, _⟩, _, _⟩, _⟩
rcases g with ⟨⟨⟨⟨_, _⟩, _⟩, _, _⟩, _⟩
congr
-- Porting note: This instance is moved.
instance algHomClass : AlgHomClass (A →ₐ[R] B) R A B where
map_add f := f.map_add'
map_zero f := f.map_zero'
map_mul f := f.map_mul'
map_one f := f.map_one'
commutes f := f.commutes'
/-- See Note [custom simps projection] -/
def Simps.apply {R : Type u} {α : Type v} {β : Type w} [CommSemiring R]
[Semiring α] [Semiring β] [Algebra R α] [Algebra R β] (f : α →ₐ[R] β) : α → β := f
initialize_simps_projections AlgHom (toFun → apply)
@[simp]
protected theorem coe_coe {F : Type*} [FunLike F A B] [AlgHomClass F R A B] (f : F) :
⇑(f : A →ₐ[R] B) = f :=
rfl
@[simp]
theorem toFun_eq_coe (f : A →ₐ[R] B) : f.toFun = f :=
rfl
-- Porting note (#11445): A new definition underlying a coercion `↑`.
@[coe]
def toMonoidHom' (f : A →ₐ[R] B) : A →* B := (f : A →+* B)
instance coeOutMonoidHom : CoeOut (A →ₐ[R] B) (A →* B) :=
⟨AlgHom.toMonoidHom'⟩
-- Porting note (#11445): A new definition underlying a coercion `↑`.
@[coe]
def toAddMonoidHom' (f : A →ₐ[R] B) : A →+ B := (f : A →+* B)
instance coeOutAddMonoidHom : CoeOut (A →ₐ[R] B) (A →+ B) :=
⟨AlgHom.toAddMonoidHom'⟩
-- Porting note: Lean 3: `@[simp, norm_cast] coe_mk`
-- Lean 4: `@[simp] coe_mk` & `@[norm_cast] coe_mks`
@[simp]
theorem coe_mk {f : A →+* B} (h) : ((⟨f, h⟩ : A →ₐ[R] B) : A → B) = f :=
rfl
@[norm_cast]
theorem coe_mks {f : A → B} (h₁ h₂ h₃ h₄ h₅) : ⇑(⟨⟨⟨⟨f, h₁⟩, h₂⟩, h₃, h₄⟩, h₅⟩ : A →ₐ[R] B) = f :=
rfl
-- Porting note: This theorem is new.
@[simp, norm_cast]
theorem coe_ringHom_mk {f : A →+* B} (h) : ((⟨f, h⟩ : A →ₐ[R] B) : A →+* B) = f :=
rfl
-- make the coercion the simp-normal form
@[simp]
theorem toRingHom_eq_coe (f : A →ₐ[R] B) : f.toRingHom = f :=
rfl
@[simp, norm_cast]
theorem coe_toRingHom (f : A →ₐ[R] B) : ⇑(f : A →+* B) = f :=
rfl
@[simp, norm_cast]
theorem coe_toMonoidHom (f : A →ₐ[R] B) : ⇑(f : A →* B) = f :=
rfl
@[simp, norm_cast]
theorem coe_toAddMonoidHom (f : A →ₐ[R] B) : ⇑(f : A →+ B) = f :=
rfl
variable (φ : A →ₐ[R] B)
theorem coe_fn_injective : @Function.Injective (A →ₐ[R] B) (A → B) (↑) :=
DFunLike.coe_injective
theorem coe_fn_inj {φ₁ φ₂ : A →ₐ[R] B} : (φ₁ : A → B) = φ₂ ↔ φ₁ = φ₂ :=
DFunLike.coe_fn_eq
theorem coe_ringHom_injective : Function.Injective ((↑) : (A →ₐ[R] B) → A →+* B) := fun φ₁ φ₂ H =>
coe_fn_injective <| show ((φ₁ : A →+* B) : A → B) = ((φ₂ : A →+* B) : A → B) from congr_arg _ H
theorem coe_monoidHom_injective : Function.Injective ((↑) : (A →ₐ[R] B) → A →* B) :=
RingHom.coe_monoidHom_injective.comp coe_ringHom_injective
theorem coe_addMonoidHom_injective : Function.Injective ((↑) : (A →ₐ[R] B) → A →+ B) :=
RingHom.coe_addMonoidHom_injective.comp coe_ringHom_injective
protected theorem congr_fun {φ₁ φ₂ : A →ₐ[R] B} (H : φ₁ = φ₂) (x : A) : φ₁ x = φ₂ x :=
DFunLike.congr_fun H x
protected theorem congr_arg (φ : A →ₐ[R] B) {x y : A} (h : x = y) : φ x = φ y :=
DFunLike.congr_arg φ h
@[ext]
theorem ext {φ₁ φ₂ : A →ₐ[R] B} (H : ∀ x, φ₁ x = φ₂ x) : φ₁ = φ₂ :=
DFunLike.ext _ _ H
@[simp]
theorem mk_coe {f : A →ₐ[R] B} (h₁ h₂ h₃ h₄ h₅) : (⟨⟨⟨⟨f, h₁⟩, h₂⟩, h₃, h₄⟩, h₅⟩ : A →ₐ[R] B) = f :=
ext fun _ => rfl
@[simp]
theorem commutes (r : R) : φ (algebraMap R A r) = algebraMap R B r :=
φ.commutes' r
theorem comp_algebraMap : (φ : A →+* B).comp (algebraMap R A) = algebraMap R B :=
RingHom.ext <| φ.commutes
@[deprecated map_add (since := "2024-06-26")]
protected theorem map_add (r s : A) : φ (r + s) = φ r + φ s :=
map_add _ _ _
@[deprecated map_zero (since := "2024-06-26")]
protected theorem map_zero : φ 0 = 0 :=
map_zero _
@[deprecated map_mul (since := "2024-06-26")]
protected theorem map_mul (x y) : φ (x * y) = φ x * φ y :=
map_mul _ _ _
@[deprecated map_one (since := "2024-06-26")]
protected theorem map_one : φ 1 = 1 :=
map_one _
@[deprecated map_pow (since := "2024-06-26")]
protected theorem map_pow (x : A) (n : ℕ) : φ (x ^ n) = φ x ^ n :=
map_pow _ _ _
-- @[simp] -- Porting note (#10618): simp can prove this
@[deprecated map_smul (since := "2024-06-26")]
protected theorem map_smul (r : R) (x : A) : φ (r • x) = r • φ x :=
map_smul _ _ _
@[deprecated map_sum (since := "2024-06-26")]
protected theorem map_sum {ι : Type*} (f : ι → A) (s : Finset ι) :
φ (∑ x ∈ s, f x) = ∑ x ∈ s, φ (f x) :=
map_sum _ _ _
@[deprecated map_finsupp_sum (since := "2024-06-26")]
protected theorem map_finsupp_sum {α : Type*} [Zero α] {ι : Type*} (f : ι →₀ α) (g : ι → α → A) :
φ (f.sum g) = f.sum fun i a => φ (g i a) :=
map_finsupp_sum _ _ _
/-- If a `RingHom` is `R`-linear, then it is an `AlgHom`. -/
def mk' (f : A →+* B) (h : ∀ (c : R) (x), f (c • x) = c • f x) : A →ₐ[R] B :=
{ f with
toFun := f
commutes' := fun c => by simp only [Algebra.algebraMap_eq_smul_one, h, f.map_one] }
@[simp]
theorem coe_mk' (f : A →+* B) (h : ∀ (c : R) (x), f (c • x) = c • f x) : ⇑(mk' f h) = f :=
rfl
section
variable (R A)
/-- Identity map as an `AlgHom`. -/
protected def id : A →ₐ[R] A :=
{ RingHom.id A with commutes' := fun _ => rfl }
@[simp]
theorem coe_id : ⇑(AlgHom.id R A) = id :=
rfl
@[simp]
theorem id_toRingHom : (AlgHom.id R A : A →+* A) = RingHom.id _ :=
rfl
end
theorem id_apply (p : A) : AlgHom.id R A p = p :=
rfl
/-- Composition of algebra homeomorphisms. -/
def comp (φ₁ : B →ₐ[R] C) (φ₂ : A →ₐ[R] B) : A →ₐ[R] C :=
{ φ₁.toRingHom.comp ↑φ₂ with
commutes' := fun r : R => by rw [← φ₁.commutes, ← φ₂.commutes]; rfl }
@[simp]
theorem coe_comp (φ₁ : B →ₐ[R] C) (φ₂ : A →ₐ[R] B) : ⇑(φ₁.comp φ₂) = φ₁ ∘ φ₂ :=
rfl
theorem comp_apply (φ₁ : B →ₐ[R] C) (φ₂ : A →ₐ[R] B) (p : A) : φ₁.comp φ₂ p = φ₁ (φ₂ p) :=
rfl
theorem comp_toRingHom (φ₁ : B →ₐ[R] C) (φ₂ : A →ₐ[R] B) :
(φ₁.comp φ₂ : A →+* C) = (φ₁ : B →+* C).comp ↑φ₂ :=
rfl
@[simp]
theorem comp_id : φ.comp (AlgHom.id R A) = φ :=
ext fun _x => rfl
@[simp]
theorem id_comp : (AlgHom.id R B).comp φ = φ :=
ext fun _x => rfl
theorem comp_assoc (φ₁ : C →ₐ[R] D) (φ₂ : B →ₐ[R] C) (φ₃ : A →ₐ[R] B) :
(φ₁.comp φ₂).comp φ₃ = φ₁.comp (φ₂.comp φ₃) :=
ext fun _x => rfl
/-- R-Alg ⥤ R-Mod -/
def toLinearMap : A →ₗ[R] B where
toFun := φ
map_add' := map_add _
map_smul' := map_smul _
@[simp]
theorem toLinearMap_apply (p : A) : φ.toLinearMap p = φ p :=
rfl
theorem toLinearMap_injective :
Function.Injective (toLinearMap : _ → A →ₗ[R] B) := fun _φ₁ _φ₂ h =>
ext <| LinearMap.congr_fun h
@[simp]
theorem comp_toLinearMap (f : A →ₐ[R] B) (g : B →ₐ[R] C) :
(g.comp f).toLinearMap = g.toLinearMap.comp f.toLinearMap :=
rfl
@[simp]
theorem toLinearMap_id : toLinearMap (AlgHom.id R A) = LinearMap.id :=
LinearMap.ext fun _ => rfl
/-- Promote a `LinearMap` to an `AlgHom` by supplying proofs about the behavior on `1` and `*`. -/
@[simps]
def ofLinearMap (f : A →ₗ[R] B) (map_one : f 1 = 1) (map_mul : ∀ x y, f (x * y) = f x * f y) :
A →ₐ[R] B :=
{ f.toAddMonoidHom with
toFun := f
map_one' := map_one
map_mul' := map_mul
commutes' := fun c => by simp only [Algebra.algebraMap_eq_smul_one, f.map_smul, map_one] }
@[simp]
theorem ofLinearMap_toLinearMap (map_one) (map_mul) :
ofLinearMap φ.toLinearMap map_one map_mul = φ := by
ext
rfl
@[simp]
theorem toLinearMap_ofLinearMap (f : A →ₗ[R] B) (map_one) (map_mul) :
toLinearMap (ofLinearMap f map_one map_mul) = f := by
ext
rfl
@[simp]
theorem ofLinearMap_id (map_one) (map_mul) :
ofLinearMap LinearMap.id map_one map_mul = AlgHom.id R A :=
ext fun _ => rfl
theorem map_smul_of_tower {R'} [SMul R' A] [SMul R' B] [LinearMap.CompatibleSMul A B R' R] (r : R')
(x : A) : φ (r • x) = r • φ x :=
φ.toLinearMap.map_smul_of_tower r x
@[deprecated map_list_prod (since := "2024-06-26")]
protected theorem map_list_prod (s : List A) : φ s.prod = (s.map φ).prod :=
map_list_prod φ s
@[simps (config := .lemmasOnly) toSemigroup_toMul_mul toOne_one]
instance End : Monoid (A →ₐ[R] A) where
mul := comp
mul_assoc ϕ ψ χ := rfl
one := AlgHom.id R A
one_mul ϕ := ext fun x => rfl
mul_one ϕ := ext fun x => rfl
@[simp]
theorem one_apply (x : A) : (1 : A →ₐ[R] A) x = x :=
rfl
@[simp]
theorem mul_apply (φ ψ : A →ₐ[R] A) (x : A) : (φ * ψ) x = φ (ψ x) :=
rfl
theorem algebraMap_eq_apply (f : A →ₐ[R] B) {y : R} {x : A} (h : algebraMap R A y = x) :
algebraMap R B y = f x :=
h ▸ (f.commutes _).symm
end Semiring
section CommSemiring
variable [CommSemiring R] [CommSemiring A] [CommSemiring B]
variable [Algebra R A] [Algebra R B] (φ : A →ₐ[R] B)
@[deprecated map_multiset_prod (since := "2024-06-26")]
protected theorem map_multiset_prod (s : Multiset A) : φ s.prod = (s.map φ).prod :=
map_multiset_prod _ _
@[deprecated map_prod (since := "2024-06-26")]
protected theorem map_prod {ι : Type*} (f : ι → A) (s : Finset ι) :
φ (∏ x ∈ s, f x) = ∏ x ∈ s, φ (f x) :=
map_prod _ _ _
@[deprecated map_finsupp_prod (since := "2024-06-26")]
protected theorem map_finsupp_prod {α : Type*} [Zero α] {ι : Type*} (f : ι →₀ α) (g : ι → α → A) :
φ (f.prod g) = f.prod fun i a => φ (g i a) :=
map_finsupp_prod _ _ _
end CommSemiring
section Ring
variable [CommSemiring R] [Ring A] [Ring B]
variable [Algebra R A] [Algebra R B] (φ : A →ₐ[R] B)
@[deprecated map_neg (since := "2024-06-26")]
protected theorem map_neg (x) : φ (-x) = -φ x :=
map_neg _ _
@[deprecated map_sub (since := "2024-06-26")]
protected theorem map_sub (x y) : φ (x - y) = φ x - φ y :=
map_sub _ _ _
end Ring
end AlgHom
namespace RingHom
variable {R S : Type*}
/-- Reinterpret a `RingHom` as an `ℕ`-algebra homomorphism. -/
def toNatAlgHom [Semiring R] [Semiring S] (f : R →+* S) : R →ₐ[ℕ] S :=
{ f with
toFun := f
commutes' := fun n => by simp }
/-- Reinterpret a `RingHom` as a `ℤ`-algebra homomorphism. -/
def toIntAlgHom [Ring R] [Ring S] [Algebra ℤ R] [Algebra ℤ S] (f : R →+* S) : R →ₐ[ℤ] S :=
{ f with commutes' := fun n => by simp }
lemma toIntAlgHom_injective [Ring R] [Ring S] [Algebra ℤ R] [Algebra ℤ S] :
Function.Injective (RingHom.toIntAlgHom : (R →+* S) → _) :=
fun _ _ e ↦ DFunLike.ext _ _ (fun x ↦ DFunLike.congr_fun e x)
end RingHom
namespace Algebra
variable (R : Type u) (A : Type v)
variable [CommSemiring R] [Semiring A] [Algebra R A]
/-- `AlgebraMap` as an `AlgHom`. -/
def ofId : R →ₐ[R] A :=
{ algebraMap R A with commutes' := fun _ => rfl }
variable {R}
theorem ofId_apply (r) : ofId R A r = algebraMap R A r :=
rfl
/-- This is a special case of a more general instance that we define in a later file. -/
instance subsingleton_id : Subsingleton (R →ₐ[R] A) :=
⟨fun f g => AlgHom.ext fun _ => (f.commutes _).trans (g.commutes _).symm⟩
/-- This ext lemma closes trivial subgoals create when chaining heterobasic ext lemmas. -/
@[ext high]
theorem ext_id (f g : R →ₐ[R] A) : f = g := Subsingleton.elim _ _
section MulDistribMulAction
instance : MulDistribMulAction (A →ₐ[R] A) Aˣ where
smul := fun f => Units.map f
one_smul := fun x => by ext; rfl
mul_smul := fun x y z => by ext; rfl
smul_mul := fun x y z => by ext; exact map_mul _ _ _
smul_one := fun x => by ext; exact map_one _
@[simp]
theorem smul_units_def (f : A →ₐ[R] A) (x : Aˣ) :
f • x = Units.map (f : A →* A) x := rfl
end MulDistribMulAction
variable (M : Submonoid R) {B : Type w} [CommRing B] [Algebra R B] {A}
lemma algebraMapSubmonoid_map_eq (f : A →ₐ[R] B) :
(algebraMapSubmonoid A M).map f = algebraMapSubmonoid B M := by
ext x
constructor
· rintro ⟨a, ⟨r, hr, rfl⟩, rfl⟩
simp only [AlgHom.commutes]
use r
· rintro ⟨r, hr, rfl⟩
simp only [Submonoid.mem_map]
use (algebraMap R A r)
simp only [AlgHom.commutes, and_true]
use r
lemma algebraMapSubmonoid_le_comap (f : A →ₐ[R] B) :
algebraMapSubmonoid A M ≤ (algebraMapSubmonoid B M).comap f.toRingHom := by
rw [← algebraMapSubmonoid_map_eq M f]
exact Submonoid.le_comap_map (Algebra.algebraMapSubmonoid A M)
end Algebra
namespace MulSemiringAction
variable {M G : Type*} (R A : Type*) [CommSemiring R] [Semiring A] [Algebra R A]
variable [Monoid M] [MulSemiringAction M A] [SMulCommClass M R A]
/-- Each element of the monoid defines an algebra homomorphism.
This is a stronger version of `MulSemiringAction.toRingHom` and
`DistribMulAction.toLinearMap`. -/
@[simps]
def toAlgHom (m : M) : A →ₐ[R] A :=
{ MulSemiringAction.toRingHom _ _ m with
toFun := fun a => m • a
commutes' := smul_algebraMap _ }
theorem toAlgHom_injective [FaithfulSMul M A] :
Function.Injective (MulSemiringAction.toAlgHom R A : M → A →ₐ[R] A) := fun _m₁ _m₂ h =>
eq_of_smul_eq_smul fun r => AlgHom.ext_iff.1 h r
end MulSemiringAction
|
Algebra\Algebra\NonUnitalHom.lean | /-
Copyright (c) 2021 Oliver Nash. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Oliver Nash
-/
import Mathlib.Algebra.Algebra.Hom
import Mathlib.Algebra.GroupWithZero.Action.Prod
/-!
# Morphisms of non-unital algebras
This file defines morphisms between two types, each of which carries:
* an addition,
* an additive zero,
* a multiplication,
* a scalar action.
The multiplications are not assumed to be associative or unital, or even to be compatible with the
scalar actions. In a typical application, the operations will satisfy compatibility conditions
making them into algebras (albeit possibly non-associative and/or non-unital) but such conditions
are not required to make this definition.
This notion of morphism should be useful for any category of non-unital algebras. The motivating
application at the time it was introduced was to be able to state the adjunction property for
magma algebras. These are non-unital, non-associative algebras obtained by applying the
group-algebra construction except where we take a type carrying just `Mul` instead of `Group`.
For a plausible future application, one could take the non-unital algebra of compactly-supported
functions on a non-compact topological space. A proper map between a pair of such spaces
(contravariantly) induces a morphism between their algebras of compactly-supported functions which
will be a `NonUnitalAlgHom`.
TODO: add `NonUnitalAlgEquiv` when needed.
## Main definitions
* `NonUnitalAlgHom`
* `AlgHom.toNonUnitalAlgHom`
## Tags
non-unital, algebra, morphism
-/
universe u u₁ v w w₁ w₂ w₃
variable {R : Type u} {S : Type u₁}
/-- A morphism respecting addition, multiplication, and scalar multiplication. When these arise from
algebra structures, this is the same as a not-necessarily-unital morphism of algebras. -/
structure NonUnitalAlgHom [Monoid R] [Monoid S] (φ : R →* S) (A : Type v) (B : Type w)
[NonUnitalNonAssocSemiring A] [DistribMulAction R A]
[NonUnitalNonAssocSemiring B] [DistribMulAction S B] extends A →ₑ+[φ] B, A →ₙ* B
@[inherit_doc NonUnitalAlgHom]
infixr:25 " →ₙₐ " => NonUnitalAlgHom _
@[inherit_doc]
notation:25 A " →ₛₙₐ[" φ "] " B => NonUnitalAlgHom φ A B
@[inherit_doc]
notation:25 A " →ₙₐ[" R "] " B => NonUnitalAlgHom (MonoidHom.id R) A B
attribute [nolint docBlame] NonUnitalAlgHom.toMulHom
/-- `NonUnitalAlgSemiHomClass F φ A B` asserts `F` is a type of bundled algebra homomorphisms
from `A` to `B` which are equivariant with respect to `φ`. -/
class NonUnitalAlgSemiHomClass (F : Type*) {R S : outParam Type*} [Monoid R] [Monoid S]
(φ : outParam (R →* S)) (A B : outParam Type*)
[NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B]
[DistribMulAction R A] [DistribMulAction S B] [FunLike F A B]
extends DistribMulActionSemiHomClass F φ A B, MulHomClass F A B : Prop
/-- `NonUnitalAlgHomClass F R A B` asserts `F` is a type of bundled algebra homomorphisms
from `A` to `B` which are `R`-linear.
This is an abbreviation to `NonUnitalAlgSemiHomClass F (MonoidHom.id R) A B` -/
abbrev NonUnitalAlgHomClass (F : Type*) (R A B : outParam Type*)
[Monoid R] [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B]
[DistribMulAction R A] [DistribMulAction R B] [FunLike F A B] :=
NonUnitalAlgSemiHomClass F (MonoidHom.id R) A B
-- Porting note: commented out, not dangerous
-- attribute [nolint dangerousInstance] NonUnitalAlgHomClass.toMulHomClass
namespace NonUnitalAlgHomClass
-- Porting note: Made following instance non-dangerous through [...] -> [...] replacement
-- See note [lower instance priority]
instance (priority := 100) toNonUnitalRingHomClass
{F R S A B : Type*} {_ : Monoid R} {_ : Monoid S} {φ : outParam (R →* S)}
{_ : NonUnitalNonAssocSemiring A} [DistribMulAction R A]
{_ : NonUnitalNonAssocSemiring B} [DistribMulAction S B] [FunLike F A B]
[NonUnitalAlgSemiHomClass F φ A B] : NonUnitalRingHomClass F A B :=
{ ‹NonUnitalAlgSemiHomClass F φ A B› with }
variable [Semiring R] [Semiring S] {φ : R →+* S}
{A B : Type*} [NonUnitalNonAssocSemiring A] [Module R A]
[NonUnitalNonAssocSemiring B] [Module S B]
-- see Note [lower instance priority]
instance (priority := 100) {F R S A B : Type*}
{_ : Semiring R} {_ : Semiring S} {φ : R →+* S}
{_ : NonUnitalSemiring A} {_ : NonUnitalSemiring B} [Module R A] [Module S B] [FunLike F A B]
[NonUnitalAlgSemiHomClass (R := R) (S := S) F φ A B] :
SemilinearMapClass F φ A B :=
{ ‹NonUnitalAlgSemiHomClass F φ A B› with map_smulₛₗ := map_smulₛₗ }
instance (priority := 100) {F : Type*} [FunLike F A B] [Module R B] [NonUnitalAlgHomClass F R A B] :
LinearMapClass F R A B :=
{ ‹NonUnitalAlgHomClass F R A B› with map_smulₛₗ := map_smulₛₗ }
/-- Turn an element of a type `F` satisfying `NonUnitalAlgSemiHomClass F φ A B` into an actual
`NonUnitalAlgHom`. This is declared as the default coercion from `F` to `A →ₛₙₐ[φ] B`. -/
@[coe]
def toNonUnitalAlgSemiHom {F R S : Type*} [Monoid R] [Monoid S] {φ : R →* S} {A B : Type*}
[NonUnitalNonAssocSemiring A] [DistribMulAction R A]
[NonUnitalNonAssocSemiring B] [DistribMulAction S B] [FunLike F A B]
[NonUnitalAlgSemiHomClass F φ A B] (f : F) : A →ₛₙₐ[φ] B :=
{ (f : A →ₙ+* B) with
toFun := f
map_smul' := map_smulₛₗ f }
instance {F R S A B : Type*} [Monoid R] [Monoid S] {φ : R →* S}
[NonUnitalNonAssocSemiring A] [DistribMulAction R A]
[NonUnitalNonAssocSemiring B] [DistribMulAction S B] [FunLike F A B]
[NonUnitalAlgSemiHomClass F φ A B] :
CoeTC F (A →ₛₙₐ[φ] B) :=
⟨toNonUnitalAlgSemiHom⟩
/-- Turn an element of a type `F` satisfying `NonUnitalAlgHomClass F R A B` into an actual
@[coe]
`NonUnitalAlgHom`. This is declared as the default coercion from `F` to `A →ₛₙₐ[R] B`. -/
def toNonUnitalAlgHom {F R : Type*} [Monoid R] {A B : Type*}
[NonUnitalNonAssocSemiring A] [DistribMulAction R A]
[NonUnitalNonAssocSemiring B] [DistribMulAction R B]
[FunLike F A B] [NonUnitalAlgHomClass F R A B] (f : F) : A →ₙₐ[R] B :=
{ (f : A →ₙ+* B) with
toFun := f
map_smul' := map_smulₛₗ f }
instance {F R : Type*} [Monoid R] {A B : Type*}
[NonUnitalNonAssocSemiring A] [DistribMulAction R A]
[NonUnitalNonAssocSemiring B] [DistribMulAction R B]
[FunLike F A B] [NonUnitalAlgHomClass F R A B] :
CoeTC F (A →ₙₐ[R] B) :=
⟨toNonUnitalAlgHom⟩
end NonUnitalAlgHomClass
namespace NonUnitalAlgHom
variable {T : Type*} [Monoid R] [Monoid S] [Monoid T] (φ : R →* S)
variable (A : Type v) (B : Type w) (C : Type w₁)
variable [NonUnitalNonAssocSemiring A] [DistribMulAction R A]
variable [NonUnitalNonAssocSemiring B] [DistribMulAction S B]
variable [NonUnitalNonAssocSemiring C] [DistribMulAction T C]
-- Porting note: Replaced with DFunLike instance
-- /-- see Note [function coercion] -/
-- instance : CoeFun (A →ₙₐ[R] B) fun _ => A → B :=
-- ⟨toFun⟩
instance : DFunLike (A →ₛₙₐ[φ] B) A fun _ => B where
coe f := f.toFun
coe_injective' := by rintro ⟨⟨⟨f, _⟩, _⟩, _⟩ ⟨⟨⟨g, _⟩, _⟩, _⟩ h; congr
@[simp]
theorem toFun_eq_coe (f : A →ₛₙₐ[φ] B) : f.toFun = ⇑f :=
rfl
/-- See Note [custom simps projection] -/
def Simps.apply (f : A →ₛₙₐ[φ] B) : A → B := f
initialize_simps_projections NonUnitalAlgHom
(toDistribMulActionHom_toMulActionHom_toFun → apply, -toDistribMulActionHom)
variable {φ A B C}
@[simp]
protected theorem coe_coe {F : Type*} [FunLike F A B]
[NonUnitalAlgSemiHomClass F φ A B] (f : F) :
⇑(f : A →ₛₙₐ[φ] B) = f :=
rfl
theorem coe_injective : @Function.Injective (A →ₛₙₐ[φ] B) (A → B) (↑) := by
rintro ⟨⟨⟨f, _⟩, _⟩, _⟩ ⟨⟨⟨g, _⟩, _⟩, _⟩ h; congr
instance : FunLike (A →ₛₙₐ[φ] B) A B where
coe f := f.toFun
coe_injective' := coe_injective
instance : NonUnitalAlgSemiHomClass (A →ₛₙₐ[φ] B) φ A B where
map_add f := f.map_add'
map_zero f := f.map_zero'
map_mul f := f.map_mul'
map_smulₛₗ f := f.map_smul'
@[ext]
theorem ext {f g : A →ₛₙₐ[φ] B} (h : ∀ x, f x = g x) : f = g :=
coe_injective <| funext h
theorem congr_fun {f g : A →ₛₙₐ[φ] B} (h : f = g) (x : A) : f x = g x :=
h ▸ rfl
@[simp]
theorem coe_mk (f : A → B) (h₁ h₂ h₃ h₄) : ⇑(⟨⟨⟨f, h₁⟩, h₂, h₃⟩, h₄⟩ : A →ₛₙₐ[φ] B) = f :=
rfl
@[simp]
theorem mk_coe (f : A →ₛₙₐ[φ] B) (h₁ h₂ h₃ h₄) : (⟨⟨⟨f, h₁⟩, h₂, h₃⟩, h₄⟩ : A →ₛₙₐ[φ] B) = f := by
rfl
instance : CoeOut (A →ₛₙₐ[φ] B) (A →ₑ+[φ] B) :=
⟨toDistribMulActionHom⟩
instance : CoeOut (A →ₛₙₐ[φ] B) (A →ₙ* B) :=
⟨toMulHom⟩
@[simp]
theorem toDistribMulActionHom_eq_coe (f : A →ₛₙₐ[φ] B) : f.toDistribMulActionHom = ↑f :=
rfl
@[simp]
theorem toMulHom_eq_coe (f : A →ₛₙₐ[φ] B) : f.toMulHom = ↑f :=
rfl
@[simp, norm_cast]
theorem coe_to_distribMulActionHom (f : A →ₛₙₐ[φ] B) : ⇑(f : A →ₑ+[φ] B) = f :=
rfl
@[simp, norm_cast]
theorem coe_to_mulHom (f : A →ₛₙₐ[φ] B) : ⇑(f : A →ₙ* B) = f :=
rfl
theorem to_distribMulActionHom_injective {f g : A →ₛₙₐ[φ] B}
(h : (f : A →ₑ+[φ] B) = (g : A →ₑ+[φ] B)) : f = g := by
ext a
exact DistribMulActionHom.congr_fun h a
theorem to_mulHom_injective {f g : A →ₛₙₐ[φ] B} (h : (f : A →ₙ* B) = (g : A →ₙ* B)) : f = g := by
ext a
exact DFunLike.congr_fun h a
@[norm_cast]
theorem coe_distribMulActionHom_mk (f : A →ₛₙₐ[φ] B) (h₁ h₂ h₃ h₄) :
((⟨⟨⟨f, h₁⟩, h₂, h₃⟩, h₄⟩ : A →ₛₙₐ[φ] B) : A →ₑ+[φ] B) = ⟨⟨f, h₁⟩, h₂, h₃⟩ := by
rfl
@[norm_cast]
theorem coe_mulHom_mk (f : A →ₛₙₐ[φ] B) (h₁ h₂ h₃ h₄) :
((⟨⟨⟨f, h₁⟩, h₂, h₃⟩, h₄⟩ : A →ₛₙₐ[φ] B) : A →ₙ* B) = ⟨f, h₄⟩ := by
rfl
-- @[simp] -- Porting note (#10618) : simp can prove this
protected theorem map_smul (f : A →ₛₙₐ[φ] B) (c : R) (x : A) : f (c • x) = (φ c) • f x :=
map_smulₛₗ _ _ _
-- @[simp] -- Porting note (#10618) : simp can prove this
protected theorem map_add (f : A →ₛₙₐ[φ] B) (x y : A) : f (x + y) = f x + f y :=
map_add _ _ _
-- @[simp] -- Porting note (#10618) : simp can prove this
protected theorem map_mul (f : A →ₛₙₐ[φ] B) (x y : A) : f (x * y) = f x * f y :=
map_mul _ _ _
-- @[simp] -- Porting note (#10618) : simp can prove this
protected theorem map_zero (f : A →ₛₙₐ[φ] B) : f 0 = 0 :=
map_zero _
/-- The identity map as a `NonUnitalAlgHom`. -/
protected def id (R A : Type*) [Monoid R] [NonUnitalNonAssocSemiring A]
[DistribMulAction R A] : A →ₙₐ[R] A :=
{ NonUnitalRingHom.id A with
toFun := id
map_smul' := fun _ _ => rfl }
@[simp]
theorem coe_id : ⇑(NonUnitalAlgHom.id R A) = id :=
rfl
instance : Zero (A →ₛₙₐ[φ] B) :=
⟨{ (0 : A →ₑ+[φ] B) with map_mul' := by simp }⟩
instance : One (A →ₙₐ[R] A) :=
⟨NonUnitalAlgHom.id R A⟩
@[simp]
theorem coe_zero : ⇑(0 : A →ₛₙₐ[φ] B) = 0 :=
rfl
@[simp]
theorem coe_one : ((1 : A →ₙₐ[R] A) : A → A) = id :=
rfl
theorem zero_apply (a : A) : (0 : A →ₛₙₐ[φ] B) a = 0 :=
rfl
theorem one_apply (a : A) : (1 : A →ₙₐ[R] A) a = a :=
rfl
instance : Inhabited (A →ₛₙₐ[φ] B) :=
⟨0⟩
variable {φ' : S →* R} {ψ : S →* T} {χ : R →* T}
set_option linter.unusedVariables false in
/-- The composition of morphisms is a morphism. -/
def comp (f : B →ₛₙₐ[ψ] C) (g : A →ₛₙₐ[φ] B) [κ : MonoidHom.CompTriple φ ψ χ] :
A →ₛₙₐ[χ] C :=
{ (f : B →ₙ* C).comp (g : A →ₙ* B), (f : B →ₑ+[ψ] C).comp (g : A →ₑ+[φ] B) with }
@[simp, norm_cast]
theorem coe_comp (f : B →ₛₙₐ[ψ] C) (g : A →ₛₙₐ[φ] B) [MonoidHom.CompTriple φ ψ χ] :
⇑(f.comp g) = (⇑f) ∘ (⇑g) := rfl
theorem comp_apply (f : B →ₛₙₐ[ψ] C) (g : A →ₛₙₐ[φ] B) [MonoidHom.CompTriple φ ψ χ] (x : A) :
f.comp g x = f (g x) := rfl
variable {B₁ : Type*} [NonUnitalNonAssocSemiring B₁] [DistribMulAction R B₁]
/-- The inverse of a bijective morphism is a morphism. -/
def inverse (f : A →ₙₐ[R] B₁) (g : B₁ → A)
(h₁ : Function.LeftInverse g f)
(h₂ : Function.RightInverse g f) : B₁ →ₙₐ[R] A :=
{ (f : A →ₙ* B₁).inverse g h₁ h₂, (f : A →+[R] B₁).inverse g h₁ h₂ with }
@[simp]
theorem coe_inverse (f : A →ₙₐ[R] B₁) (g : B₁ → A) (h₁ : Function.LeftInverse g f)
(h₂ : Function.RightInverse g f) : (inverse f g h₁ h₂ : B₁ → A) = g :=
rfl
/-- The inverse of a bijective morphism is a morphism. -/
def inverse' (f : A →ₛₙₐ[φ] B) (g : B → A)
(k : Function.RightInverse φ' φ)
(h₁ : Function.LeftInverse g f) (h₂ : Function.RightInverse g f) :
B →ₛₙₐ[φ'] A :=
{ (f : A →ₙ* B).inverse g h₁ h₂, (f : A →ₑ+[φ] B).inverse' g k h₁ h₂ with
map_zero' := by
simp only [MulHom.toFun_eq_coe, MulHom.inverse_apply]
rw [← f.map_zero, h₁]
map_add' := fun x y ↦ by
simp only [MulHom.toFun_eq_coe, MulHom.inverse_apply]
rw [← h₂ x, ← h₂ y, ← map_add, h₁, h₂, h₂] }
@[simp]
theorem coe_inverse' (f : A →ₛₙₐ[φ] B) (g : B → A)
(k : Function.RightInverse φ' φ)
(h₁ : Function.LeftInverse g f) (h₂ : Function.RightInverse g f) :
(inverse' f g k h₁ h₂ : B → A) = g :=
rfl
/-! ### Operations on the product type
Note that much of this is copied from [`LinearAlgebra/Prod`](../../LinearAlgebra/Prod). -/
section Prod
variable (R A B)
variable [DistribMulAction R B]
/-- The first projection of a product is a non-unital alg_hom. -/
@[simps]
def fst : A × B →ₙₐ[R] A where
toFun := Prod.fst
map_zero' := rfl
map_add' _ _ := rfl
map_smul' _ _ := rfl
map_mul' _ _ := rfl
/-- The second projection of a product is a non-unital alg_hom. -/
@[simps]
def snd : A × B →ₙₐ[R] B where
toFun := Prod.snd
map_zero' := rfl
map_add' _ _ := rfl
map_smul' _ _ := rfl
map_mul' _ _ := rfl
variable {R A B}
variable [DistribMulAction R C]
/-- The prod of two morphisms is a morphism. -/
@[simps]
def prod (f : A →ₙₐ[R] B) (g : A →ₙₐ[R] C) : A →ₙₐ[R] B × C where
toFun := Pi.prod f g
map_zero' := by simp only [Pi.prod, Prod.zero_eq_mk, map_zero]
map_add' x y := by simp only [Pi.prod, Prod.mk_add_mk, map_add]
map_mul' x y := by simp only [Pi.prod, Prod.mk_mul_mk, map_mul]
map_smul' c x := by simp only [Pi.prod, map_smul, MonoidHom.id_apply, id_eq, Prod.smul_mk]
theorem coe_prod (f : A →ₙₐ[R] B) (g : A →ₙₐ[R] C) : ⇑(f.prod g) = Pi.prod f g :=
rfl
@[simp]
theorem fst_prod (f : A →ₙₐ[R] B) (g : A →ₙₐ[R] C) : (fst R B C).comp (prod f g) = f := by
rfl
@[simp]
theorem snd_prod (f : A →ₙₐ[R] B) (g : A →ₙₐ[R] C) : (snd R B C).comp (prod f g) = g := by
rfl
@[simp]
theorem prod_fst_snd : prod (fst R A B) (snd R A B) = 1 :=
coe_injective Pi.prod_fst_snd
/-- Taking the product of two maps with the same domain is equivalent to taking the product of
their codomains. -/
@[simps]
def prodEquiv : (A →ₙₐ[R] B) × (A →ₙₐ[R] C) ≃ (A →ₙₐ[R] B × C) where
toFun f := f.1.prod f.2
invFun f := ((fst _ _ _).comp f, (snd _ _ _).comp f)
left_inv _ := rfl
right_inv _ := rfl
variable (R A B)
/-- The left injection into a product is a non-unital algebra homomorphism. -/
def inl : A →ₙₐ[R] A × B :=
prod 1 0
/-- The right injection into a product is a non-unital algebra homomorphism. -/
def inr : B →ₙₐ[R] A × B :=
prod 0 1
variable {R A B}
@[simp]
theorem coe_inl : (inl R A B : A → A × B) = fun x => (x, 0) :=
rfl
theorem inl_apply (x : A) : inl R A B x = (x, 0) :=
rfl
@[simp]
theorem coe_inr : (inr R A B : B → A × B) = Prod.mk 0 :=
rfl
theorem inr_apply (x : B) : inr R A B x = (0, x) :=
rfl
end Prod
end NonUnitalAlgHom
/-! ### Interaction with `AlgHom` -/
namespace AlgHom
variable {F R : Type*} [CommSemiring R]
variable {A B : Type*} [Semiring A] [Semiring B] [Algebra R A]
[Algebra R B]
-- see Note [lower instance priority]
instance (priority := 100) [FunLike F A B] [AlgHomClass F R A B] : NonUnitalAlgHomClass F R A B :=
{ ‹AlgHomClass F R A B› with map_smulₛₗ := map_smul }
/-- A unital morphism of algebras is a `NonUnitalAlgHom`. -/
@[coe]
def toNonUnitalAlgHom (f : A →ₐ[R] B) : A →ₙₐ[R] B :=
{ f with map_smul' := map_smul f }
instance NonUnitalAlgHom.hasCoe : CoeOut (A →ₐ[R] B) (A →ₙₐ[R] B) :=
⟨toNonUnitalAlgHom⟩
@[simp]
theorem toNonUnitalAlgHom_eq_coe (f : A →ₐ[R] B) : f.toNonUnitalAlgHom = f :=
rfl
-- Note (#6057) : tagging simpNF because linter complains
@[simp, norm_cast, nolint simpNF]
theorem coe_to_nonUnitalAlgHom (f : A →ₐ[R] B) : ⇑(f.toNonUnitalAlgHom) = ⇑f :=
rfl
end AlgHom
section RestrictScalars
namespace NonUnitalAlgHom
variable (R : Type*) {S A B : Type*} [Monoid R] [Monoid S]
[NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [MulAction R S]
[DistribMulAction S A] [DistribMulAction S B] [DistribMulAction R A] [DistribMulAction R B]
[IsScalarTower R S A] [IsScalarTower R S B]
/-- If a monoid `R` acts on another monoid `S`, then a non-unital algebra homomorphism
over `S` can be viewed as a non-unital algebra homomorphism over `R`. -/
def restrictScalars (f : A →ₙₐ[S] B) : A →ₙₐ[R] B :=
{ (f : A →ₙ+* B) with
map_smul' := fun r x ↦ by have := map_smul f (r • 1) x; simpa }
@[simp]
lemma restrictScalars_apply (f : A →ₙₐ[S] B) (x : A) : f.restrictScalars R x = f x := rfl
lemma coe_restrictScalars (f : A →ₙₐ[S] B) : (f.restrictScalars R : A →ₙ+* B) = f := rfl
lemma coe_restrictScalars' (f : A →ₙₐ[S] B) : (f.restrictScalars R : A → B) = f := rfl
theorem restrictScalars_injective :
Function.Injective (restrictScalars R : (A →ₙₐ[S] B) → A →ₙₐ[R] B) :=
fun _ _ h ↦ ext (congr_fun h : _)
end NonUnitalAlgHom
end RestrictScalars
|
Algebra\Algebra\NonUnitalSubalgebra.lean | /-
Copyright (c) 2023 Jireh Loreaux. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jireh Loreaux
-/
import Mathlib.Algebra.Algebra.NonUnitalHom
import Mathlib.Data.Set.UnionLift
import Mathlib.LinearAlgebra.Span
import Mathlib.RingTheory.NonUnitalSubring.Basic
/-!
# Non-unital Subalgebras over Commutative Semirings
In this file we define `NonUnitalSubalgebra`s and the usual operations on them (`map`, `comap`).
## TODO
* once we have scalar actions by semigroups (as opposed to monoids), implement the action of a
non-unital subalgebra on the larger algebra.
-/
universe u u' v v' w w'
section NonUnitalSubalgebraClass
variable {S R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]
variable [SetLike S A] [NonUnitalSubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)
namespace NonUnitalSubalgebraClass
/-- Embedding of a non-unital subalgebra into the non-unital algebra. -/
def subtype (s : S) : s →ₙₐ[R] A :=
{ NonUnitalSubsemiringClass.subtype s, SMulMemClass.subtype s with toFun := (↑) }
@[simp]
theorem coeSubtype : (subtype s : s → A) = ((↑) : s → A) :=
rfl
end NonUnitalSubalgebraClass
end NonUnitalSubalgebraClass
/-- A non-unital subalgebra is a sub(semi)ring that is also a submodule. -/
structure NonUnitalSubalgebra (R : Type u) (A : Type v) [CommSemiring R]
[NonUnitalNonAssocSemiring A] [Module R A]
extends NonUnitalSubsemiring A, Submodule R A : Type v
/-- Reinterpret a `NonUnitalSubalgebra` as a `NonUnitalSubsemiring`. -/
add_decl_doc NonUnitalSubalgebra.toNonUnitalSubsemiring
/-- Reinterpret a `NonUnitalSubalgebra` as a `Submodule`. -/
add_decl_doc NonUnitalSubalgebra.toSubmodule
namespace NonUnitalSubalgebra
variable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}
section NonUnitalNonAssocSemiring
variable [CommSemiring R]
variable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]
variable [Module R A] [Module R B] [Module R C]
instance : SetLike (NonUnitalSubalgebra R A) A where
coe s := s.carrier
coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective h
instance instNonUnitalSubsemiringClass :
NonUnitalSubsemiringClass (NonUnitalSubalgebra R A) A where
add_mem {s} := s.add_mem'
mul_mem {s} := s.mul_mem'
zero_mem {s} := s.zero_mem'
instance instSMulMemClass : SMulMemClass (NonUnitalSubalgebra R A) R A where
smul_mem := @fun s => s.smul_mem'
theorem mem_carrier {s : NonUnitalSubalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=
Iff.rfl
@[ext]
theorem ext {S T : NonUnitalSubalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=
SetLike.ext h
@[simp]
theorem mem_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {x} :
x ∈ S.toNonUnitalSubsemiring ↔ x ∈ S :=
Iff.rfl
@[simp]
theorem coe_toNonUnitalSubsemiring (S : NonUnitalSubalgebra R A) :
(↑S.toNonUnitalSubsemiring : Set A) = S :=
rfl
theorem toNonUnitalSubsemiring_injective :
Function.Injective
(toNonUnitalSubsemiring : NonUnitalSubalgebra R A → NonUnitalSubsemiring A) :=
fun S T h =>
ext fun x => by rw [← mem_toNonUnitalSubsemiring, ← mem_toNonUnitalSubsemiring, h]
theorem toNonUnitalSubsemiring_inj {S U : NonUnitalSubalgebra R A} :
S.toNonUnitalSubsemiring = U.toNonUnitalSubsemiring ↔ S = U :=
toNonUnitalSubsemiring_injective.eq_iff
theorem mem_toSubmodule (S : NonUnitalSubalgebra R A) {x} : x ∈ S.toSubmodule ↔ x ∈ S :=
Iff.rfl
@[simp]
theorem coe_toSubmodule (S : NonUnitalSubalgebra R A) : (↑S.toSubmodule : Set A) = S :=
rfl
theorem toSubmodule_injective :
Function.Injective (toSubmodule : NonUnitalSubalgebra R A → Submodule R A) := fun S T h =>
ext fun x => by rw [← mem_toSubmodule, ← mem_toSubmodule, h]
theorem toSubmodule_inj {S U : NonUnitalSubalgebra R A} : S.toSubmodule = U.toSubmodule ↔ S = U :=
toSubmodule_injective.eq_iff
/-- Copy of a non-unital subalgebra with a new `carrier` equal to the old one.
Useful to fix definitional equalities. -/
protected def copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :
NonUnitalSubalgebra R A :=
{ S.toNonUnitalSubsemiring.copy s hs with
smul_mem' := fun r a (ha : a ∈ s) => by
show r • a ∈ s
rw [hs] at ha ⊢
exact S.smul_mem' r ha }
@[simp]
theorem coe_copy (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) :
(S.copy s hs : Set A) = s :=
rfl
theorem copy_eq (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=
SetLike.coe_injective hs
instance (S : NonUnitalSubalgebra R A) : Inhabited S :=
⟨(0 : S.toNonUnitalSubsemiring)⟩
end NonUnitalNonAssocSemiring
section NonUnitalNonAssocRing
variable [CommRing R]
variable [NonUnitalNonAssocRing A] [NonUnitalNonAssocRing B] [NonUnitalNonAssocRing C]
variable [Module R A] [Module R B] [Module R C]
instance instNonUnitalSubringClass : NonUnitalSubringClass (NonUnitalSubalgebra R A) A :=
{ NonUnitalSubalgebra.instNonUnitalSubsemiringClass with
neg_mem := @fun _ x hx => neg_one_smul R x ▸ SMulMemClass.smul_mem _ hx }
/-- A non-unital subalgebra over a ring is also a `Subring`. -/
def toNonUnitalSubring (S : NonUnitalSubalgebra R A) : NonUnitalSubring A where
toNonUnitalSubsemiring := S.toNonUnitalSubsemiring
neg_mem' := neg_mem (s := S)
@[simp]
theorem mem_toNonUnitalSubring {S : NonUnitalSubalgebra R A} {x} :
x ∈ S.toNonUnitalSubring ↔ x ∈ S :=
Iff.rfl
@[simp]
theorem coe_toNonUnitalSubring (S : NonUnitalSubalgebra R A) :
(↑S.toNonUnitalSubring : Set A) = S :=
rfl
theorem toNonUnitalSubring_injective :
Function.Injective (toNonUnitalSubring : NonUnitalSubalgebra R A → NonUnitalSubring A) :=
fun S T h => ext fun x => by rw [← mem_toNonUnitalSubring, ← mem_toNonUnitalSubring, h]
theorem toNonUnitalSubring_inj {S U : NonUnitalSubalgebra R A} :
S.toNonUnitalSubring = U.toNonUnitalSubring ↔ S = U :=
toNonUnitalSubring_injective.eq_iff
end NonUnitalNonAssocRing
section
/-! `NonUnitalSubalgebra`s inherit structure from their `NonUnitalSubsemiring` / `Semiring`
coercions. -/
instance toNonUnitalNonAssocSemiring [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]
(S : NonUnitalSubalgebra R A) : NonUnitalNonAssocSemiring S :=
inferInstance
instance toNonUnitalSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A]
(S : NonUnitalSubalgebra R A) : NonUnitalSemiring S :=
inferInstance
instance toNonUnitalCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]
(S : NonUnitalSubalgebra R A) : NonUnitalCommSemiring S :=
inferInstance
instance toNonUnitalNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A]
(S : NonUnitalSubalgebra R A) : NonUnitalNonAssocRing S :=
inferInstance
instance toNonUnitalRing [CommRing R] [NonUnitalRing A] [Module R A]
(S : NonUnitalSubalgebra R A) : NonUnitalRing S :=
inferInstance
instance toNonUnitalCommRing [CommRing R] [NonUnitalCommRing A] [Module R A]
(S : NonUnitalSubalgebra R A) : NonUnitalCommRing S :=
inferInstance
end
/-- The forgetful map from `NonUnitalSubalgebra` to `Submodule` as an `OrderEmbedding` -/
def toSubmodule' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :
NonUnitalSubalgebra R A ↪o Submodule R A where
toEmbedding :=
{ toFun := fun S => S.toSubmodule
inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }
map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe
/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an
`OrderEmbedding` -/
def toNonUnitalSubsemiring' [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] :
NonUnitalSubalgebra R A ↪o NonUnitalSubsemiring A where
toEmbedding :=
{ toFun := fun S => S.toNonUnitalSubsemiring
inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }
map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe
/-- The forgetful map from `NonUnitalSubalgebra` to `NonUnitalSubsemiring` as an
`OrderEmbedding` -/
def toNonUnitalSubring' [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :
NonUnitalSubalgebra R A ↪o NonUnitalSubring A where
toEmbedding :=
{ toFun := fun S => S.toNonUnitalSubring
inj' := fun S T h => ext <| by apply SetLike.ext_iff.1 h }
map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe
variable [CommSemiring R]
variable [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C]
variable [Module R A] [Module R B] [Module R C]
variable {S : NonUnitalSubalgebra R A}
section
/-! ### `NonUnitalSubalgebra`s inherit structure from their `Submodule` coercions. -/
instance instModule' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : Module R' S :=
SMulMemClass.toModule' _ R' R A S
instance instModule : Module R S :=
S.instModule'
instance instIsScalarTower' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :
IsScalarTower R' R S :=
S.toSubmodule.isScalarTower
instance [IsScalarTower R A A] : IsScalarTower R S S where
smul_assoc r x y := Subtype.ext <| smul_assoc r (x : A) (y : A)
instance instSMulCommClass' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A]
[SMulCommClass R' R A] : SMulCommClass R' R S where
smul_comm r' r s := Subtype.ext <| smul_comm r' r (s : A)
instance instSMulCommClass [SMulCommClass R A A] : SMulCommClass R S S where
smul_comm r x y := Subtype.ext <| smul_comm r (x : A) (y : A)
instance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=
⟨fun {c x} h =>
have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg ((↑) : S → A) h)
this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩
end
protected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y :=
rfl
protected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y :=
rfl
protected theorem coe_zero : ((0 : S) : A) = 0 :=
rfl
protected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]
{S : NonUnitalSubalgebra R A} (x : S) : (↑(-x) : A) = -↑x :=
rfl
protected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]
{S : NonUnitalSubalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y :=
rfl
@[simp, norm_cast]
theorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :
↑(r • x) = r • (x : A) :=
rfl
protected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=
ZeroMemClass.coe_eq_zero
@[simp]
theorem toNonUnitalSubsemiring_subtype :
NonUnitalSubsemiringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=
rfl
@[simp]
theorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A]
(S : NonUnitalSubalgebra R A) :
NonUnitalSubringClass.subtype S = NonUnitalSubalgebraClass.subtype (R := R) S :=
rfl
/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,
we define it as a `LinearEquiv` to avoid type equalities. -/
def toSubmoduleEquiv (S : NonUnitalSubalgebra R A) : S.toSubmodule ≃ₗ[R] S :=
LinearEquiv.ofEq _ _ rfl
variable [FunLike F A B] [NonUnitalAlgHomClass F R A B]
/-- Transport a non-unital subalgebra via an algebra homomorphism. -/
def map (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B :=
{ S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) with
smul_mem' := fun r b hb => by
rcases hb with ⟨a, ha, rfl⟩
exact map_smulₛₗ f r a ▸ Set.mem_image_of_mem f (S.smul_mem' r ha) }
theorem map_mono {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :
S₁ ≤ S₂ → (map f S₁ : NonUnitalSubalgebra R B) ≤ map f S₂ :=
Set.image_subset f
theorem map_injective {f : F} (hf : Function.Injective f) :
Function.Injective (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) :=
fun _S₁ _S₂ ih =>
ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih
@[simp]
theorem map_id (S : NonUnitalSubalgebra R A) : map (NonUnitalAlgHom.id R A) S = S :=
SetLike.coe_injective <| Set.image_id _
theorem map_map (S : NonUnitalSubalgebra R A) (g : B →ₙₐ[R] C) (f : A →ₙₐ[R] B) :
(S.map f).map g = S.map (g.comp f) :=
SetLike.coe_injective <| Set.image_image _ _ _
@[simp]
theorem mem_map {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=
NonUnitalSubsemiring.mem_map
theorem map_toSubmodule {S : NonUnitalSubalgebra R A} {f : F} :
-- TODO: introduce a better coercion from `NonUnitalAlgHomClass` to `LinearMap`
(map f S).toSubmodule = Submodule.map (LinearMapClass.linearMap f) S.toSubmodule :=
SetLike.coe_injective rfl
theorem map_toNonUnitalSubsemiring {S : NonUnitalSubalgebra R A} {f : F} :
(map f S).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring.map (f : A →ₙ+* B) :=
SetLike.coe_injective rfl
@[simp]
theorem coe_map (S : NonUnitalSubalgebra R A) (f : F) : (map f S : Set B) = f '' S :=
rfl
/-- Preimage of a non-unital subalgebra under an algebra homomorphism. -/
def comap (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A :=
{ S.toNonUnitalSubsemiring.comap (f : A →ₙ+* B) with
smul_mem' := fun r a (ha : f a ∈ S) =>
show f (r • a) ∈ S from (map_smulₛₗ f r a).symm ▸ SMulMemClass.smul_mem r ha }
theorem map_le {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :
map f S ≤ U ↔ S ≤ comap f U :=
Set.image_subset_iff
theorem gc_map_comap (f : F) :
GaloisConnection (map f : NonUnitalSubalgebra R A → NonUnitalSubalgebra R B) (comap f) :=
fun _ _ => map_le
@[simp]
theorem mem_comap (S : NonUnitalSubalgebra R B) (f : F) (x : A) : x ∈ comap f S ↔ f x ∈ S :=
Iff.rfl
@[simp, norm_cast]
theorem coe_comap (S : NonUnitalSubalgebra R B) (f : F) : (comap f S : Set A) = f ⁻¹' (S : Set B) :=
rfl
instance noZeroDivisors {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [NoZeroDivisors A]
[Module R A] (S : NonUnitalSubalgebra R A) : NoZeroDivisors S :=
NonUnitalSubsemiringClass.noZeroDivisors S
end NonUnitalSubalgebra
namespace Submodule
variable {R A : Type*} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]
/-- A submodule closed under multiplication is a non-unital subalgebra. -/
def toNonUnitalSubalgebra (p : Submodule R A) (h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) :
NonUnitalSubalgebra R A :=
{ p with
mul_mem' := h_mul _ _ }
@[simp]
theorem mem_toNonUnitalSubalgebra {p : Submodule R A} {h_mul} {x} :
x ∈ p.toNonUnitalSubalgebra h_mul ↔ x ∈ p :=
Iff.rfl
@[simp]
theorem coe_toNonUnitalSubalgebra (p : Submodule R A) (h_mul) :
(p.toNonUnitalSubalgebra h_mul : Set A) = p :=
rfl
theorem toNonUnitalSubalgebra_mk (p : Submodule R A) hmul :
p.toNonUnitalSubalgebra hmul =
NonUnitalSubalgebra.mk ⟨⟨⟨p, p.add_mem⟩, p.zero_mem⟩, hmul _ _⟩ p.smul_mem' :=
rfl
@[simp]
theorem toNonUnitalSubalgebra_toSubmodule (p : Submodule R A) (h_mul) :
(p.toNonUnitalSubalgebra h_mul).toSubmodule = p :=
SetLike.coe_injective rfl
@[simp]
theorem _root_.NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A) :
(S.toSubmodule.toNonUnitalSubalgebra fun _ _ => mul_mem (s := S)) = S :=
SetLike.coe_injective rfl
end Submodule
namespace NonUnitalAlgHom
variable {F : Type v'} {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}
variable [CommSemiring R]
variable [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B]
variable [NonUnitalNonAssocSemiring C] [Module R C] [FunLike F A B] [NonUnitalAlgHomClass F R A B]
/-- Range of an `NonUnitalAlgHom` as a non-unital subalgebra. -/
protected def range (φ : F) : NonUnitalSubalgebra R B where
toNonUnitalSubsemiring := NonUnitalRingHom.srange (φ : A →ₙ+* B)
smul_mem' := fun r a => by rintro ⟨a, rfl⟩; exact ⟨r • a, map_smul φ r a⟩
@[simp]
theorem mem_range (φ : F) {y : B} :
y ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) ↔ ∃ x : A, φ x = y :=
NonUnitalRingHom.mem_srange
theorem mem_range_self (φ : F) (x : A) :
φ x ∈ (NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) :=
(NonUnitalAlgHom.mem_range φ).2 ⟨x, rfl⟩
@[simp]
theorem coe_range (φ : F) :
((NonUnitalAlgHom.range φ : NonUnitalSubalgebra R B) : Set B) = Set.range (φ : A → B) := by
ext
rw [SetLike.mem_coe, mem_range]
rfl
theorem range_comp (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :
NonUnitalAlgHom.range (g.comp f) = (NonUnitalAlgHom.range f).map g :=
SetLike.coe_injective (Set.range_comp g f)
theorem range_comp_le_range (f : A →ₙₐ[R] B) (g : B →ₙₐ[R] C) :
NonUnitalAlgHom.range (g.comp f) ≤ NonUnitalAlgHom.range g :=
SetLike.coe_mono (Set.range_comp_subset_range f g)
/-- Restrict the codomain of a non-unital algebra homomorphism. -/
def codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₙₐ[R] S :=
{ NonUnitalRingHom.codRestrict (f : A →ₙ+* B) S.toNonUnitalSubsemiring hf with
map_smul' := fun r a => Subtype.ext <| map_smul f r a }
@[simp]
theorem subtype_comp_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :
(NonUnitalSubalgebraClass.subtype S).comp (NonUnitalAlgHom.codRestrict f S hf) = f :=
NonUnitalAlgHom.ext fun _ => rfl
@[simp]
theorem coe_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :
↑(NonUnitalAlgHom.codRestrict f S hf x) = f x :=
rfl
theorem injective_codRestrict (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ x : A, f x ∈ S) :
Function.Injective (NonUnitalAlgHom.codRestrict f S hf) ↔ Function.Injective f :=
⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩
/-- Restrict the codomain of an `NonUnitalAlgHom` `f` to `f.range`.
This is the bundled version of `Set.rangeFactorization`. -/
abbrev rangeRestrict (f : F) : A →ₙₐ[R] (NonUnitalAlgHom.range f : NonUnitalSubalgebra R B) :=
NonUnitalAlgHom.codRestrict f (NonUnitalAlgHom.range f) (NonUnitalAlgHom.mem_range_self f)
/-- The equalizer of two non-unital `R`-algebra homomorphisms -/
def equalizer (ϕ ψ : F) : NonUnitalSubalgebra R A where
carrier := {a | (ϕ a : B) = ψ a}
zero_mem' := by rw [Set.mem_setOf_eq, map_zero, map_zero]
add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by
rw [Set.mem_setOf_eq, map_add, map_add, hx, hy]
mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by
rw [Set.mem_setOf_eq, map_mul, map_mul, hx, hy]
smul_mem' r x (hx : ϕ x = ψ x) := by rw [Set.mem_setOf_eq, map_smul, map_smul, hx]
@[simp]
theorem mem_equalizer (φ ψ : F) (x : A) :
x ∈ NonUnitalAlgHom.equalizer φ ψ ↔ φ x = ψ x :=
Iff.rfl
/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.
Note that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/
instance fintypeRange [Fintype A] [DecidableEq B] (φ : F) :
Fintype (NonUnitalAlgHom.range φ) :=
Set.fintypeRange φ
end NonUnitalAlgHom
namespace NonUnitalAlgebra
variable {F : Type*} (R : Type u) {A : Type v} {B : Type w}
variable [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]
@[simp]
lemma span_eq_toSubmodule (s : NonUnitalSubalgebra R A) :
Submodule.span R (s : Set A) = s.toSubmodule := by
simp [SetLike.ext'_iff, Submodule.coe_span_eq_self]
variable [NonUnitalNonAssocSemiring B] [Module R B]
variable [FunLike F A B] [NonUnitalAlgHomClass F R A B]
section IsScalarTower
variable [IsScalarTower R A A] [SMulCommClass R A A]
/-- The minimal non-unital subalgebra that includes `s`. -/
def adjoin (s : Set A) : NonUnitalSubalgebra R A :=
{ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) with
mul_mem' :=
@fun a b (ha : a ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A))
(hb : b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A)) =>
show a * b ∈ Submodule.span R (NonUnitalSubsemiring.closure s : Set A) by
refine Submodule.span_induction ha ?_ ?_ ?_ ?_
· refine Submodule.span_induction hb ?_ ?_ ?_ ?_
· exact fun x (hx : x ∈ NonUnitalSubsemiring.closure s) y
(hy : y ∈ NonUnitalSubsemiring.closure s) => Submodule.subset_span (mul_mem hy hx)
· exact fun x _hx => (mul_zero x).symm ▸ Submodule.zero_mem _
· exact fun x y hx hy z hz => (mul_add z x y).symm ▸ add_mem (hx z hz) (hy z hz)
· exact fun r x hx y hy => (mul_smul_comm r y x).symm ▸ SMulMemClass.smul_mem r (hx y hy)
· exact (zero_mul b).symm ▸ Submodule.zero_mem _
· exact fun x y => (add_mul x y b).symm ▸ add_mem
· exact fun r x hx => (smul_mul_assoc r x b).symm ▸ SMulMemClass.smul_mem r hx }
theorem adjoin_toSubmodule (s : Set A) :
(adjoin R s).toSubmodule = Submodule.span R (NonUnitalSubsemiring.closure s : Set A) :=
rfl
@[aesop safe 20 apply (rule_sets := [SetLike])]
theorem subset_adjoin {s : Set A} : s ⊆ adjoin R s :=
NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span
theorem self_mem_adjoin_singleton (x : A) : x ∈ adjoin R ({x} : Set A) :=
NonUnitalAlgebra.subset_adjoin R (Set.mem_singleton x)
variable {R}
/-- If some predicate holds for all `x ∈ (s : Set A)` and this predicate is closed under the
`algebraMap`, addition, multiplication and star operations, then it holds for `a ∈ adjoin R s`. -/
@[elab_as_elim]
theorem adjoin_induction {s : Set A} {p : A → Prop} {a : A} (h : a ∈ adjoin R s)
(mem : ∀ x ∈ s, p x) (add : ∀ x y, p x → p y → p (x + y)) (zero : p 0)
(mul : ∀ x y, p x → p y → p (x * y)) (smul : ∀ (r : R) x, p x → p (r • x)) : p a :=
Submodule.span_induction h
(fun _a ha => NonUnitalSubsemiring.closure_induction ha mem zero add mul) zero add smul
@[elab_as_elim]
theorem adjoin_induction₂ {s : Set A} {p : A → A → Prop} {a b : A} (ha : a ∈ adjoin R s)
(hb : b ∈ adjoin R s) (Hs : ∀ x ∈ s, ∀ y ∈ s, p x y) (H0_left : ∀ y, p 0 y)
(H0_right : ∀ x, p x 0) (Hadd_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ + x₂) y)
(Hadd_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ + y₂))
(Hmul_left : ∀ x₁ x₂ y, p x₁ y → p x₂ y → p (x₁ * x₂) y)
(Hmul_right : ∀ x y₁ y₂, p x y₁ → p x y₂ → p x (y₁ * y₂))
(Hsmul_left : ∀ (r : R) x y, p x y → p (r • x) y)
(Hsmul_right : ∀ (r : R) x y, p x y → p x (r • y)) : p a b :=
Submodule.span_induction₂ ha hb
(fun _x hx _y hy =>
NonUnitalSubsemiring.closure_induction₂ hx hy Hs H0_left H0_right Hadd_left Hadd_right
Hmul_left Hmul_right)
H0_left H0_right Hadd_left Hadd_right Hsmul_left Hsmul_right
/-- The difference with `NonUnitalAlgebra.adjoin_induction` is that this acts on the subtype. -/
@[elab_as_elim]
lemma adjoin_induction_subtype {s : Set A} {p : adjoin R s → Prop} (a : adjoin R s)
(mem : ∀ x (h : x ∈ s), p ⟨x, subset_adjoin R h⟩)
(add : ∀ x y, p x → p y → p (x + y)) (zero : p 0)
(mul : ∀ x y, p x → p y → p (x * y)) (smul : ∀ (r : R) x, p x → p (r • x)) : p a :=
Subtype.recOn a fun b hb => by
refine Exists.elim ?_ (fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc)
refine adjoin_induction hb ?_ ?_ ?_ ?_ ?_
· exact fun x hx => ⟨subset_adjoin R hx, mem x hx⟩
· exact fun x y hx hy => Exists.elim hx fun hx' hx => Exists.elim hy fun hy' hy =>
⟨add_mem hx' hy', add _ _ hx hy⟩
· exact ⟨_, zero⟩
· exact fun x y hx hy => Exists.elim hx fun hx' hx => Exists.elim hy fun hy' hy =>
⟨mul_mem hx' hy', mul _ _ hx hy⟩
· exact fun r x hx => Exists.elim hx fun hx' hx =>
⟨SMulMemClass.smul_mem r hx', smul r _ hx⟩
/-- A dependent version of `NonUnitalAlgebra.adjoin_induction`. -/
theorem adjoin_induction' {s : Set A} {p : ∀ x, x ∈ adjoin R s → Prop}
(mem : ∀ (x) (h : x ∈ s), p x (subset_adjoin R h))
(add : ∀ x hx y hy, p x hx → p y hy → p (x + y) (add_mem ‹_› ‹_›))
(zero : p 0 (zero_mem _))
(mul : ∀ x hx y hy, p x hx → p y hy → p (x * y) (mul_mem ‹_› ‹_›))
(smul : ∀ (r : R) (x hx), p x hx → p (r • x) (SMulMemClass.smul_mem _ ‹_›))
{a} (ha : a ∈ adjoin R s) : p a ha :=
adjoin_induction_subtype ⟨a, ha⟩ (p := fun x ↦ p x.1 x.2) mem (fun x y ↦ add x.1 x.2 y.1 y.2)
zero (fun x y ↦ mul x.1 x.2 y.1 y.2) (fun r x ↦ smul r x.1 x.2)
protected theorem gc : GaloisConnection (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) :=
fun s S =>
⟨fun H => (NonUnitalSubsemiring.subset_closure.trans Submodule.subset_span).trans H,
fun H => show Submodule.span R _ ≤ S.toSubmodule from Submodule.span_le.mpr <|
show NonUnitalSubsemiring.closure s ≤ S.toNonUnitalSubsemiring from
NonUnitalSubsemiring.closure_le.2 H⟩
/-- Galois insertion between `adjoin` and `Subtype.val`. -/
protected def gi : GaloisInsertion (adjoin R : Set A → NonUnitalSubalgebra R A) (↑) where
choice s hs := (adjoin R s).copy s <| le_antisymm (NonUnitalAlgebra.gc.le_u_l s) hs
gc := NonUnitalAlgebra.gc
le_l_u S := (NonUnitalAlgebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl
choice_eq _ _ := NonUnitalSubalgebra.copy_eq _ _ _
instance : CompleteLattice (NonUnitalSubalgebra R A) :=
GaloisInsertion.liftCompleteLattice NonUnitalAlgebra.gi
theorem adjoin_le {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s ⊆ S) : adjoin R s ≤ S :=
NonUnitalAlgebra.gc.l_le hs
theorem adjoin_le_iff {S : NonUnitalSubalgebra R A} {s : Set A} : adjoin R s ≤ S ↔ s ⊆ S :=
NonUnitalAlgebra.gc _ _
theorem adjoin_union (s t : Set A) : adjoin R (s ∪ t) = adjoin R s ⊔ adjoin R t :=
(NonUnitalAlgebra.gc : GaloisConnection _ ((↑) : NonUnitalSubalgebra R A → Set A)).l_sup
lemma adjoin_eq (s : NonUnitalSubalgebra R A) : adjoin R (s : Set A) = s :=
le_antisymm (adjoin_le le_rfl) (subset_adjoin R)
open Submodule in
lemma adjoin_eq_span (s : Set A) : (adjoin R s).toSubmodule = span R (Subsemigroup.closure s) := by
apply le_antisymm
· intro x hx
induction hx using adjoin_induction' with
| mem x hx => exact subset_span <| Subsemigroup.subset_closure hx
| add x _ y _ hpx hpy => exact add_mem hpx hpy
| zero => exact zero_mem _
| mul x _ y _ hpx hpy =>
apply span_induction₂ hpx hpy ?Hs (by simp) (by simp) ?Hadd_l ?Hadd_r ?Hsmul_l ?Hsmul_r
case Hs => exact fun x hx y hy ↦ subset_span <| mul_mem hx hy
case Hadd_l => exact fun x y z hxz hyz ↦ by simpa [add_mul] using add_mem hxz hyz
case Hadd_r => exact fun x y z hxz hyz ↦ by simpa [mul_add] using add_mem hxz hyz
case Hsmul_l => exact fun r x y hxy ↦ by simpa [smul_mul_assoc] using smul_mem _ _ hxy
case Hsmul_r => exact fun r x y hxy ↦ by simpa [mul_smul_comm] using smul_mem _ _ hxy
| smul r x _ hpx => exact smul_mem _ _ hpx
· apply span_le.2 _
show Subsemigroup.closure s ≤ (adjoin R s).toSubsemigroup
exact Subsemigroup.closure_le.2 (subset_adjoin R)
variable (R A)
@[simp]
theorem adjoin_empty : adjoin R (∅ : Set A) = ⊥ :=
show adjoin R ⊥ = ⊥ by apply GaloisConnection.l_bot; exact NonUnitalAlgebra.gc
@[simp]
theorem adjoin_univ : adjoin R (Set.univ : Set A) = ⊤ :=
eq_top_iff.2 fun _x hx => subset_adjoin R hx
open NonUnitalSubalgebra in
lemma _root_.NonUnitalAlgHom.map_adjoin [IsScalarTower R B B] [SMulCommClass R B B]
(f : F) (s : Set A) : map f (adjoin R s) = adjoin R (f '' s) :=
Set.image_preimage.l_comm_of_u_comm (gc_map_comap f) NonUnitalAlgebra.gi.gc
NonUnitalAlgebra.gi.gc fun _t => rfl
open NonUnitalSubalgebra in
@[simp]
lemma _root_.NonUnitalAlgHom.map_adjoin_singleton [IsScalarTower R B B] [SMulCommClass R B B]
(f : F) (x : A) : map f (adjoin R {x}) = adjoin R {f x} := by
simp [NonUnitalAlgHom.map_adjoin]
variable {R A}
@[simp]
theorem coe_top : (↑(⊤ : NonUnitalSubalgebra R A) : Set A) = Set.univ :=
rfl
@[simp]
theorem mem_top {x : A} : x ∈ (⊤ : NonUnitalSubalgebra R A) :=
Set.mem_univ x
@[simp]
theorem top_toSubmodule : (⊤ : NonUnitalSubalgebra R A).toSubmodule = ⊤ :=
rfl
@[simp]
theorem top_toNonUnitalSubsemiring : (⊤ : NonUnitalSubalgebra R A).toNonUnitalSubsemiring = ⊤ :=
rfl
@[simp]
theorem top_toSubring {R A : Type*} [CommRing R] [NonUnitalNonAssocRing A] [Module R A]
[IsScalarTower R A A] [SMulCommClass R A A] :
(⊤ : NonUnitalSubalgebra R A).toNonUnitalSubring = ⊤ :=
rfl
@[simp]
theorem toSubmodule_eq_top {S : NonUnitalSubalgebra R A} : S.toSubmodule = ⊤ ↔ S = ⊤ :=
NonUnitalSubalgebra.toSubmodule'.injective.eq_iff' top_toSubmodule
@[simp]
theorem toNonUnitalSubsemiring_eq_top {S : NonUnitalSubalgebra R A} :
S.toNonUnitalSubsemiring = ⊤ ↔ S = ⊤ :=
NonUnitalSubalgebra.toNonUnitalSubsemiring_injective.eq_iff' top_toNonUnitalSubsemiring
@[simp]
theorem to_subring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A]
{S : NonUnitalSubalgebra R A} : S.toNonUnitalSubring = ⊤ ↔ S = ⊤ :=
NonUnitalSubalgebra.toNonUnitalSubring_injective.eq_iff' top_toSubring
theorem mem_sup_left {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T := by
rw [← SetLike.le_def]
exact le_sup_left
theorem mem_sup_right {S T : NonUnitalSubalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := by
rw [← SetLike.le_def]
exact le_sup_right
theorem mul_mem_sup {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) :
x * y ∈ S ⊔ T :=
mul_mem (mem_sup_left hx) (mem_sup_right hy)
theorem map_sup [IsScalarTower R B B] [SMulCommClass R B B]
(f : F) (S T : NonUnitalSubalgebra R A) :
((S ⊔ T).map f : NonUnitalSubalgebra R B) = S.map f ⊔ T.map f :=
(NonUnitalSubalgebra.gc_map_comap f).l_sup
@[simp, norm_cast]
theorem coe_inf (S T : NonUnitalSubalgebra R A) : (↑(S ⊓ T) : Set A) = (S : Set A) ∩ T :=
rfl
@[simp]
theorem mem_inf {S T : NonUnitalSubalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T :=
Iff.rfl
@[simp]
theorem inf_toSubmodule (S T : NonUnitalSubalgebra R A) :
(S ⊓ T).toSubmodule = S.toSubmodule ⊓ T.toSubmodule :=
rfl
@[simp]
theorem inf_toNonUnitalSubsemiring (S T : NonUnitalSubalgebra R A) :
(S ⊓ T).toNonUnitalSubsemiring = S.toNonUnitalSubsemiring ⊓ T.toNonUnitalSubsemiring :=
rfl
@[simp, norm_cast]
theorem coe_sInf (S : Set (NonUnitalSubalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=
sInf_image
theorem mem_sInf {S : Set (NonUnitalSubalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by
simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]
@[simp]
theorem sInf_toSubmodule (S : Set (NonUnitalSubalgebra R A)) :
(sInf S).toSubmodule = sInf (NonUnitalSubalgebra.toSubmodule '' S) :=
SetLike.coe_injective <| by simp
@[simp]
theorem sInf_toNonUnitalSubsemiring (S : Set (NonUnitalSubalgebra R A)) :
(sInf S).toNonUnitalSubsemiring = sInf (NonUnitalSubalgebra.toNonUnitalSubsemiring '' S) :=
SetLike.coe_injective <| by simp
@[simp, norm_cast]
theorem coe_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} :
(↑(⨅ i, S i) : Set A) = ⋂ i, S i := by simp [iInf]
theorem mem_iInf {ι : Sort*} {S : ι → NonUnitalSubalgebra R A} {x : A} :
(x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by simp only [iInf, mem_sInf, Set.forall_mem_range]
@[simp]
theorem iInf_toSubmodule {ι : Sort*} (S : ι → NonUnitalSubalgebra R A) :
(⨅ i, S i).toSubmodule = ⨅ i, (S i).toSubmodule :=
SetLike.coe_injective <| by simp
instance : Inhabited (NonUnitalSubalgebra R A) :=
⟨⊥⟩
theorem mem_bot {x : A} : x ∈ (⊥ : NonUnitalSubalgebra R A) ↔ x = 0 :=
show x ∈ Submodule.span R (NonUnitalSubsemiring.closure (∅ : Set A) : Set A) ↔ x = 0 by
rw [NonUnitalSubsemiring.closure_empty, NonUnitalSubsemiring.coe_bot,
Submodule.span_zero_singleton, Submodule.mem_bot]
theorem toSubmodule_bot : (⊥ : NonUnitalSubalgebra R A).toSubmodule = ⊥ := by
ext
simp only [mem_bot, NonUnitalSubalgebra.mem_toSubmodule, Submodule.mem_bot]
@[simp]
theorem coe_bot : ((⊥ : NonUnitalSubalgebra R A) : Set A) = {0} := by
simp [Set.ext_iff, NonUnitalAlgebra.mem_bot]
theorem eq_top_iff {S : NonUnitalSubalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=
⟨fun h x => by rw [h]; exact mem_top, fun h => by ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩
@[simp]
theorem range_id : NonUnitalAlgHom.range (NonUnitalAlgHom.id R A) = ⊤ :=
SetLike.coe_injective Set.range_id
@[simp]
theorem map_top (f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R A).map f = NonUnitalAlgHom.range f :=
SetLike.coe_injective Set.image_univ
@[simp]
theorem map_bot [IsScalarTower R B B] [SMulCommClass R B B]
(f : A →ₙₐ[R] B) : (⊥ : NonUnitalSubalgebra R A).map f = ⊥ :=
SetLike.coe_injective <| by simp [NonUnitalAlgebra.coe_bot, NonUnitalSubalgebra.coe_map]
@[simp]
theorem comap_top [IsScalarTower R B B] [SMulCommClass R B B]
(f : A →ₙₐ[R] B) : (⊤ : NonUnitalSubalgebra R B).comap f = ⊤ :=
eq_top_iff.2 fun _ => mem_top
/-- `NonUnitalAlgHom` to `⊤ : NonUnitalSubalgebra R A`. -/
def toTop : A →ₙₐ[R] (⊤ : NonUnitalSubalgebra R A) :=
NonUnitalAlgHom.codRestrict (NonUnitalAlgHom.id R A) ⊤ fun _ => mem_top
end IsScalarTower
theorem range_top_iff_surjective [IsScalarTower R B B] [SMulCommClass R B B] (f : A →ₙₐ[R] B) :
NonUnitalAlgHom.range f = (⊤ : NonUnitalSubalgebra R B) ↔ Function.Surjective f :=
NonUnitalAlgebra.eq_top_iff
end NonUnitalAlgebra
namespace NonUnitalSubalgebra
open NonUnitalAlgebra
section NonAssoc
variable {R : Type u} {A : Type v} {B : Type w}
variable [CommSemiring R]
variable [NonUnitalNonAssocSemiring A] [Module R A]
variable (S : NonUnitalSubalgebra R A)
theorem range_val : NonUnitalAlgHom.range (NonUnitalSubalgebraClass.subtype S) = S :=
ext <| Set.ext_iff.1 <| (NonUnitalSubalgebraClass.subtype S).coe_range.trans Subtype.range_val
instance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (NonUnitalSubalgebra R A) :=
⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩
variable [NonUnitalNonAssocSemiring B] [Module R B]
section Prod
variable (S₁ : NonUnitalSubalgebra R B)
/-- The product of two non-unital subalgebras is a non-unital subalgebra. -/
def prod : NonUnitalSubalgebra R (A × B) :=
{ S.toNonUnitalSubsemiring.prod S₁.toNonUnitalSubsemiring with
carrier := S ×ˢ S₁
smul_mem' := fun r _x hx => ⟨SMulMemClass.smul_mem r hx.1, SMulMemClass.smul_mem r hx.2⟩ }
@[simp]
theorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ S₁ :=
rfl
theorem prod_toSubmodule : (S.prod S₁).toSubmodule = S.toSubmodule.prod S₁.toSubmodule :=
rfl
@[simp]
theorem mem_prod {S : NonUnitalSubalgebra R A} {S₁ : NonUnitalSubalgebra R B} {x : A × B} :
x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ :=
Set.mem_prod
variable [IsScalarTower R A A] [SMulCommClass R A A] [IsScalarTower R B B] [SMulCommClass R B B]
@[simp]
theorem prod_top : (prod ⊤ ⊤ : NonUnitalSubalgebra R (A × B)) = ⊤ := by ext; simp
theorem prod_mono {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :
S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=
Set.prod_mono
@[simp]
theorem prod_inf_prod {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :
S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=
SetLike.coe_injective Set.prod_inter_prod
end Prod
variable [IsScalarTower R A A] [SMulCommClass R A A]
instance _root_.NonUnitalAlgHom.subsingleton [Subsingleton (NonUnitalSubalgebra R A)] :
Subsingleton (A →ₙₐ[R] B) :=
⟨fun f g =>
NonUnitalAlgHom.ext fun a =>
have : a ∈ (⊥ : NonUnitalSubalgebra R A) :=
Subsingleton.elim (⊤ : NonUnitalSubalgebra R A) ⊥ ▸ mem_top
(mem_bot.mp this).symm ▸ (map_zero f).trans (map_zero g).symm⟩
/-- The map `S → T` when `S` is a non-unital subalgebra contained in the non-unital subalgebra `T`.
This is the non-unital subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/
def inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) : S →ₙₐ[R] T where
toFun := Set.inclusion h
map_add' _ _ := rfl
map_mul' _ _ := rfl
map_zero' := rfl
map_smul' _ _ := rfl
theorem inclusion_injective {S T : NonUnitalSubalgebra R A} (h : S ≤ T) :
Function.Injective (inclusion h) := fun _ _ => Subtype.ext ∘ Subtype.mk.inj
@[simp]
theorem inclusion_self {S : NonUnitalSubalgebra R A} :
inclusion (le_refl S) = NonUnitalAlgHom.id R S :=
NonUnitalAlgHom.ext fun _ => Subtype.ext rfl
@[simp]
theorem inclusion_mk {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :
inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=
rfl
theorem inclusion_right {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :
inclusion h ⟨x, m⟩ = x :=
Subtype.ext rfl
@[simp]
theorem inclusion_inclusion {S T U : NonUnitalSubalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :
inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=
Subtype.ext rfl
@[simp]
theorem coe_inclusion {S T : NonUnitalSubalgebra R A} (h : S ≤ T) (s : S) :
(inclusion h s : A) = s :=
rfl
section SuprLift
variable {ι : Type*}
theorem coe_iSup_of_directed [Nonempty ι] {S : ι → NonUnitalSubalgebra R A}
(dir : Directed (· ≤ ·) S) : ↑(iSup S) = ⋃ i, (S i : Set A) :=
let K : NonUnitalSubalgebra R A :=
{ __ := NonUnitalSubsemiring.copy _ _ (NonUnitalSubsemiring.coe_iSup_of_directed dir).symm
smul_mem' := fun r _x hx ↦
let ⟨i, hi⟩ := Set.mem_iUnion.1 hx
Set.mem_iUnion.2 ⟨i, (S i).smul_mem' r hi⟩ }
have : iSup S = K := le_antisymm
(iSup_le fun i ↦ le_iSup (fun i ↦ (S i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup S _)
this.symm ▸ rfl
/-- Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining
it on each non-unital subalgebra, and proving that it agrees on the intersection of
non-unital subalgebras. -/
noncomputable def iSupLift [Nonempty ι] (K : ι → NonUnitalSubalgebra R A) (dir : Directed (· ≤ ·) K)
(f : ∀ i, K i →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))
(T : NonUnitalSubalgebra R A) (hT : T = iSup K) : ↥T →ₙₐ[R] B := by
subst hT
exact
{ toFun :=
Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)
(fun i j x hxi hxj => by
let ⟨k, hik, hjk⟩ := dir i j
simp only
rw [hf i k hik, hf j k hjk]
rfl)
(↑(iSup K)) (by rw [coe_iSup_of_directed dir])
map_zero' := by
dsimp
exact Set.iUnionLift_const _ (fun i : ι => (0 : K i)) (fun _ => rfl) _ (by simp)
map_mul' := by
dsimp
apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))
all_goals simp
map_add' := by
dsimp
apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· + ·))
all_goals simp
map_smul' := fun r => by
dsimp
apply Set.iUnionLift_unary (coe_iSup_of_directed dir) _ (fun _ x => r • x)
(fun _ _ => rfl)
all_goals simp }
variable [Nonempty ι] {K : ι → NonUnitalSubalgebra R A} {dir : Directed (· ≤ ·) K}
{f : ∀ i, K i →ₙₐ[R] B} {hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h)}
{T : NonUnitalSubalgebra R A} {hT : T = iSup K}
@[simp]
theorem iSupLift_inclusion {i : ι} (x : K i) (h : K i ≤ T) :
iSupLift K dir f hf T hT (inclusion h x) = f i x := by
subst T
dsimp [iSupLift]
apply Set.iUnionLift_inclusion
exact h
@[simp]
theorem iSupLift_comp_inclusion {i : ι} (h : K i ≤ T) :
(iSupLift K dir f hf T hT).comp (inclusion h) = f i := by
ext
simp only [NonUnitalAlgHom.comp_apply, iSupLift_inclusion]
@[simp]
theorem iSupLift_mk {i : ι} (x : K i) (hx : (x : A) ∈ T) :
iSupLift K dir f hf T hT ⟨x, hx⟩ = f i x := by
subst hT
dsimp [iSupLift]
apply Set.iUnionLift_mk
theorem iSupLift_of_mem {i : ι} (x : T) (hx : (x : A) ∈ K i) :
iSupLift K dir f hf T hT x = f i ⟨x, hx⟩ := by
subst hT
dsimp [iSupLift]
apply Set.iUnionLift_of_mem
end SuprLift
end NonAssoc
section Center
section NonUnitalNonAssocSemiring
variable {R A : Type*}
variable [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A]
variable [IsScalarTower R A A] [SMulCommClass R A A]
theorem _root_.Set.smul_mem_center (r : R) {a : A} (ha : a ∈ Set.center A) :
r • a ∈ Set.center A where
comm b := by rw [mul_smul_comm, smul_mul_assoc, ha.comm]
left_assoc b c := by rw [smul_mul_assoc, smul_mul_assoc, smul_mul_assoc, ha.left_assoc]
mid_assoc b c := by
rw [mul_smul_comm, smul_mul_assoc, smul_mul_assoc, mul_smul_comm, ha.mid_assoc]
right_assoc b c := by
rw [mul_smul_comm, mul_smul_comm, mul_smul_comm, ha.right_assoc]
variable (R A) in
/-- The center of a non-unital algebra is the set of elements which commute with every element.
They form a non-unital subalgebra. -/
def center : NonUnitalSubalgebra R A :=
{ NonUnitalSubsemiring.center A with smul_mem' := Set.smul_mem_center }
theorem coe_center : (center R A : Set A) = Set.center A :=
rfl
/-- The center of a non-unital algebra is commutative and associative -/
instance center.instNonUnitalCommSemiring : NonUnitalCommSemiring (center R A) :=
NonUnitalSubsemiring.center.instNonUnitalCommSemiring _
instance center.instNonUnitalCommRing {A : Type*} [NonUnitalNonAssocRing A] [Module R A]
[IsScalarTower R A A] [SMulCommClass R A A] : NonUnitalCommRing (center R A) :=
NonUnitalSubring.center.instNonUnitalCommRing _
@[simp]
theorem center_toNonUnitalSubsemiring :
(center R A).toNonUnitalSubsemiring = NonUnitalSubsemiring.center A :=
rfl
@[simp] lemma center_toNonUnitalSubring (R A : Type*) [CommRing R] [NonUnitalRing A]
[Module R A] [IsScalarTower R A A] [SMulCommClass R A A] :
(center R A).toNonUnitalSubring = NonUnitalSubring.center A :=
rfl
end NonUnitalNonAssocSemiring
variable (R A : Type*) [CommSemiring R] [NonUnitalSemiring A] [Module R A] [IsScalarTower R A A]
[SMulCommClass R A A]
-- no instance diamond, as the `npow` field isn't present in the non-unital case.
example : center.instNonUnitalCommSemiring.toNonUnitalSemiring =
NonUnitalSubsemiringClass.toNonUnitalSemiring (center R A) := by
with_reducible_and_instances rfl
@[simp]
theorem center_eq_top (A : Type*) [NonUnitalCommSemiring A] [Module R A] [IsScalarTower R A A]
[SMulCommClass R A A] : center R A = ⊤ :=
SetLike.coe_injective (Set.center_eq_univ A)
variable {R A}
theorem mem_center_iff {a : A} : a ∈ center R A ↔ ∀ b : A, b * a = a * b :=
Subsemigroup.mem_center_iff
end Center
section Centralizer
variable {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [Module R A] [IsScalarTower R A A]
[SMulCommClass R A A]
@[simp]
theorem _root_.Set.smul_mem_centralizer {s : Set A} (r : R) {a : A} (ha : a ∈ s.centralizer) :
r • a ∈ s.centralizer :=
fun x hx => by rw [mul_smul_comm, smul_mul_assoc, ha x hx]
variable (R)
/-- The centralizer of a set as a non-unital subalgebra. -/
def centralizer (s : Set A) : NonUnitalSubalgebra R A where
toNonUnitalSubsemiring := NonUnitalSubsemiring.centralizer s
smul_mem' := Set.smul_mem_centralizer
@[simp, norm_cast]
theorem coe_centralizer (s : Set A) : (centralizer R s : Set A) = s.centralizer :=
rfl
theorem mem_centralizer_iff {s : Set A} {z : A} : z ∈ centralizer R s ↔ ∀ g ∈ s, g * z = z * g :=
Iff.rfl
theorem centralizer_le (s t : Set A) (h : s ⊆ t) : centralizer R t ≤ centralizer R s :=
Set.centralizer_subset h
@[simp]
theorem centralizer_univ : centralizer R Set.univ = center R A :=
SetLike.ext' (Set.centralizer_univ A)
end Centralizer
end NonUnitalSubalgebra
section Nat
variable {R : Type*} [NonUnitalNonAssocSemiring R]
/-- A non-unital subsemiring is a non-unital `ℕ`-subalgebra. -/
def nonUnitalSubalgebraOfNonUnitalSubsemiring (S : NonUnitalSubsemiring R) :
NonUnitalSubalgebra ℕ R where
toNonUnitalSubsemiring := S
smul_mem' n _x hx := nsmul_mem (S := S) hx n
@[simp]
theorem mem_nonUnitalSubalgebraOfNonUnitalSubsemiring {x : R} {S : NonUnitalSubsemiring R} :
x ∈ nonUnitalSubalgebraOfNonUnitalSubsemiring S ↔ x ∈ S :=
Iff.rfl
end Nat
section Int
variable {R : Type*} [NonUnitalNonAssocRing R]
/-- A non-unital subring is a non-unital `ℤ`-subalgebra. -/
def nonUnitalSubalgebraOfNonUnitalSubring (S : NonUnitalSubring R) : NonUnitalSubalgebra ℤ R where
toNonUnitalSubsemiring := S.toNonUnitalSubsemiring
smul_mem' n _x hx := zsmul_mem (K := S) hx n
@[simp]
theorem mem_nonUnitalSubalgebraOfNonUnitalSubring {x : R} {S : NonUnitalSubring R} :
x ∈ nonUnitalSubalgebraOfNonUnitalSubring S ↔ x ∈ S :=
Iff.rfl
end Int
|
Algebra\Algebra\Operations.lean | /-
Copyright (c) 2019 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Bilinear
import Mathlib.Algebra.Algebra.Equiv
import Mathlib.Algebra.Algebra.Opposite
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
import Mathlib.Algebra.Module.Opposites
import Mathlib.Algebra.Module.Submodule.Bilinear
import Mathlib.Algebra.Module.Submodule.Pointwise
import Mathlib.Algebra.Order.Kleene
import Mathlib.Data.Finset.Pointwise
import Mathlib.Data.Set.Pointwise.BigOperators
import Mathlib.Data.Set.Semiring
import Mathlib.GroupTheory.GroupAction.SubMulAction.Pointwise
/-!
# Multiplication and division of submodules of an algebra.
An interface for multiplication and division of sub-R-modules of an R-algebra A is developed.
## Main definitions
Let `R` be a commutative ring (or semiring) and let `A` be an `R`-algebra.
* `1 : Submodule R A` : the R-submodule R of the R-algebra A
* `Mul (Submodule R A)` : multiplication of two sub-R-modules M and N of A is defined to be
the smallest submodule containing all the products `m * n`.
* `Div (Submodule R A)` : `I / J` is defined to be the submodule consisting of all `a : A` such
that `a • J ⊆ I`
It is proved that `Submodule R A` is a semiring, and also an algebra over `Set A`.
Additionally, in the `Pointwise` locale we promote `Submodule.pointwiseDistribMulAction` to a
`MulSemiringAction` as `Submodule.pointwiseMulSemiringAction`.
## Tags
multiplication of submodules, division of submodules, submodule semiring
-/
universe uι u v
open Algebra Set MulOpposite
open Pointwise
namespace SubMulAction
variable {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A]
theorem algebraMap_mem (r : R) : algebraMap R A r ∈ (1 : SubMulAction R A) :=
⟨r, (algebraMap_eq_smul_one r).symm⟩
theorem mem_one' {x : A} : x ∈ (1 : SubMulAction R A) ↔ ∃ y, algebraMap R A y = x :=
exists_congr fun r => by rw [algebraMap_eq_smul_one]
end SubMulAction
namespace Submodule
variable {ι : Sort uι}
variable {R : Type u} [CommSemiring R]
section Ring
variable {A : Type v} [Semiring A] [Algebra R A]
variable (S T : Set A) {M N P Q : Submodule R A} {m n : A}
/-- `1 : Submodule R A` is the submodule R of A. -/
instance one : One (Submodule R A) :=
-- Porting note: `f.range` notation doesn't work
⟨LinearMap.range (Algebra.linearMap R A)⟩
theorem one_eq_range : (1 : Submodule R A) = LinearMap.range (Algebra.linearMap R A) :=
rfl
theorem le_one_toAddSubmonoid : 1 ≤ (1 : Submodule R A).toAddSubmonoid := by
rintro x ⟨n, rfl⟩
exact ⟨n, map_natCast (algebraMap R A) n⟩
theorem algebraMap_mem (r : R) : algebraMap R A r ∈ (1 : Submodule R A) :=
LinearMap.mem_range_self (Algebra.linearMap R A) _
@[simp]
theorem mem_one {x : A} : x ∈ (1 : Submodule R A) ↔ ∃ y, algebraMap R A y = x :=
Iff.rfl
@[simp]
theorem toSubMulAction_one : (1 : Submodule R A).toSubMulAction = 1 :=
SetLike.ext fun _ => mem_one.trans SubMulAction.mem_one'.symm
theorem one_eq_span : (1 : Submodule R A) = R ∙ 1 := by
apply Submodule.ext
intro a
simp only [mem_one, mem_span_singleton, Algebra.smul_def, mul_one]
theorem one_eq_span_one_set : (1 : Submodule R A) = span R 1 :=
one_eq_span
theorem one_le : (1 : Submodule R A) ≤ P ↔ (1 : A) ∈ P := by
-- Porting note: simpa no longer closes refl goals, so added `SetLike.mem_coe`
simp only [one_eq_span, span_le, Set.singleton_subset_iff, SetLike.mem_coe]
protected theorem map_one {A'} [Semiring A'] [Algebra R A'] (f : A →ₐ[R] A') :
map f.toLinearMap (1 : Submodule R A) = 1 := by
ext
simp
@[simp]
theorem map_op_one :
map (↑(opLinearEquiv R : A ≃ₗ[R] Aᵐᵒᵖ) : A →ₗ[R] Aᵐᵒᵖ) (1 : Submodule R A) = 1 := by
ext x
induction x
simp
@[simp]
theorem comap_op_one :
comap (↑(opLinearEquiv R : A ≃ₗ[R] Aᵐᵒᵖ) : A →ₗ[R] Aᵐᵒᵖ) (1 : Submodule R Aᵐᵒᵖ) = 1 := by
ext
simp
@[simp]
theorem map_unop_one :
map (↑(opLinearEquiv R : A ≃ₗ[R] Aᵐᵒᵖ).symm : Aᵐᵒᵖ →ₗ[R] A) (1 : Submodule R Aᵐᵒᵖ) = 1 := by
rw [← comap_equiv_eq_map_symm, comap_op_one]
@[simp]
theorem comap_unop_one :
comap (↑(opLinearEquiv R : A ≃ₗ[R] Aᵐᵒᵖ).symm : Aᵐᵒᵖ →ₗ[R] A) (1 : Submodule R A) = 1 := by
rw [← map_equiv_eq_comap_symm, map_op_one]
/-- Multiplication of sub-R-modules of an R-algebra A. The submodule `M * N` is the
smallest R-submodule of `A` containing the elements `m * n` for `m ∈ M` and `n ∈ N`. -/
instance mul : Mul (Submodule R A) :=
⟨Submodule.map₂ <| LinearMap.mul R A⟩
theorem mul_mem_mul (hm : m ∈ M) (hn : n ∈ N) : m * n ∈ M * N :=
apply_mem_map₂ _ hm hn
theorem mul_le : M * N ≤ P ↔ ∀ m ∈ M, ∀ n ∈ N, m * n ∈ P :=
map₂_le
theorem mul_toAddSubmonoid (M N : Submodule R A) :
(M * N).toAddSubmonoid = M.toAddSubmonoid * N.toAddSubmonoid := by
dsimp [HMul.hMul, Mul.mul] -- Porting note: added `hMul`
rw [map₂, iSup_toAddSubmonoid]
rfl
@[elab_as_elim]
protected theorem mul_induction_on {C : A → Prop} {r : A} (hr : r ∈ M * N)
(hm : ∀ m ∈ M, ∀ n ∈ N, C (m * n)) (ha : ∀ x y, C x → C y → C (x + y)) : C r := by
rw [← mem_toAddSubmonoid, mul_toAddSubmonoid] at hr
exact AddSubmonoid.mul_induction_on hr hm ha
/-- A dependent version of `mul_induction_on`. -/
@[elab_as_elim]
protected theorem mul_induction_on' {C : ∀ r, r ∈ M * N → Prop}
(mem_mul_mem : ∀ m (hm : m ∈ M) n (hn : n ∈ N), C (m * n) (mul_mem_mul hm hn))
(add : ∀ x hx y hy, C x hx → C y hy → C (x + y) (add_mem hx hy)) {r : A} (hr : r ∈ M * N) :
C r hr := by
refine Exists.elim ?_ fun (hr : r ∈ M * N) (hc : C r hr) => hc
exact
Submodule.mul_induction_on hr
(fun x hx y hy => ⟨_, mem_mul_mem _ hx _ hy⟩)
fun x y ⟨_, hx⟩ ⟨_, hy⟩ => ⟨_, add _ _ _ _ hx hy⟩
variable (R)
theorem span_mul_span : span R S * span R T = span R (S * T) :=
map₂_span_span _ _ _ _
variable {R}
variable (M N P Q)
@[simp]
theorem mul_bot : M * ⊥ = ⊥ :=
map₂_bot_right _ _
@[simp]
theorem bot_mul : ⊥ * M = ⊥ :=
map₂_bot_left _ _
-- @[simp] -- Porting note (#10618): simp can prove this once we have a monoid structure
protected theorem one_mul : (1 : Submodule R A) * M = M := by
conv_lhs => rw [one_eq_span, ← span_eq M]
erw [span_mul_span, one_mul, span_eq]
-- @[simp] -- Porting note (#10618): simp can prove this once we have a monoid structure
protected theorem mul_one : M * 1 = M := by
conv_lhs => rw [one_eq_span, ← span_eq M]
erw [span_mul_span, mul_one, span_eq]
variable {M N P Q}
@[mono]
theorem mul_le_mul (hmp : M ≤ P) (hnq : N ≤ Q) : M * N ≤ P * Q :=
map₂_le_map₂ hmp hnq
theorem mul_le_mul_left (h : M ≤ N) : M * P ≤ N * P :=
map₂_le_map₂_left h
theorem mul_le_mul_right (h : N ≤ P) : M * N ≤ M * P :=
map₂_le_map₂_right h
variable (M N P)
theorem mul_sup : M * (N ⊔ P) = M * N ⊔ M * P :=
map₂_sup_right _ _ _ _
theorem sup_mul : (M ⊔ N) * P = M * P ⊔ N * P :=
map₂_sup_left _ _ _ _
theorem mul_subset_mul : (↑M : Set A) * (↑N : Set A) ⊆ (↑(M * N) : Set A) :=
image2_subset_map₂ (Algebra.lmul R A).toLinearMap M N
protected theorem map_mul {A'} [Semiring A'] [Algebra R A'] (f : A →ₐ[R] A') :
map f.toLinearMap (M * N) = map f.toLinearMap M * map f.toLinearMap N :=
calc
map f.toLinearMap (M * N) = ⨆ i : M, (N.map (LinearMap.mul R A i)).map f.toLinearMap :=
map_iSup _ _
_ = map f.toLinearMap M * map f.toLinearMap N := by
apply congr_arg sSup
ext S
constructor <;> rintro ⟨y, hy⟩
· use ⟨f y, mem_map.mpr ⟨y.1, y.2, rfl⟩⟩ -- Porting note: added `⟨⟩`
refine Eq.trans ?_ hy
ext
simp
· obtain ⟨y', hy', fy_eq⟩ := mem_map.mp y.2
use ⟨y', hy'⟩ -- Porting note: added `⟨⟩`
refine Eq.trans ?_ hy
rw [f.toLinearMap_apply] at fy_eq
ext
simp [fy_eq]
theorem map_op_mul :
map (↑(opLinearEquiv R : A ≃ₗ[R] Aᵐᵒᵖ) : A →ₗ[R] Aᵐᵒᵖ) (M * N) =
map (↑(opLinearEquiv R : A ≃ₗ[R] Aᵐᵒᵖ) : A →ₗ[R] Aᵐᵒᵖ) N *
map (↑(opLinearEquiv R : A ≃ₗ[R] Aᵐᵒᵖ) : A →ₗ[R] Aᵐᵒᵖ) M := by
apply le_antisymm
· simp_rw [map_le_iff_le_comap]
refine mul_le.2 fun m hm n hn => ?_
rw [mem_comap, map_equiv_eq_comap_symm, map_equiv_eq_comap_symm]
show op n * op m ∈ _
exact mul_mem_mul hn hm
· refine mul_le.2 (MulOpposite.rec' fun m hm => MulOpposite.rec' fun n hn => ?_)
rw [Submodule.mem_map_equiv] at hm hn ⊢
exact mul_mem_mul hn hm
theorem comap_unop_mul :
comap (↑(opLinearEquiv R : A ≃ₗ[R] Aᵐᵒᵖ).symm : Aᵐᵒᵖ →ₗ[R] A) (M * N) =
comap (↑(opLinearEquiv R : A ≃ₗ[R] Aᵐᵒᵖ).symm : Aᵐᵒᵖ →ₗ[R] A) N *
comap (↑(opLinearEquiv R : A ≃ₗ[R] Aᵐᵒᵖ).symm : Aᵐᵒᵖ →ₗ[R] A) M := by
simp_rw [← map_equiv_eq_comap_symm, map_op_mul]
theorem map_unop_mul (M N : Submodule R Aᵐᵒᵖ) :
map (↑(opLinearEquiv R : A ≃ₗ[R] Aᵐᵒᵖ).symm : Aᵐᵒᵖ →ₗ[R] A) (M * N) =
map (↑(opLinearEquiv R : A ≃ₗ[R] Aᵐᵒᵖ).symm : Aᵐᵒᵖ →ₗ[R] A) N *
map (↑(opLinearEquiv R : A ≃ₗ[R] Aᵐᵒᵖ).symm : Aᵐᵒᵖ →ₗ[R] A) M :=
have : Function.Injective (↑(opLinearEquiv R : A ≃ₗ[R] Aᵐᵒᵖ) : A →ₗ[R] Aᵐᵒᵖ) :=
LinearEquiv.injective _
map_injective_of_injective this <| by
rw [← map_comp, map_op_mul, ← map_comp, ← map_comp, LinearEquiv.comp_coe,
LinearEquiv.symm_trans_self, LinearEquiv.refl_toLinearMap, map_id, map_id, map_id]
theorem comap_op_mul (M N : Submodule R Aᵐᵒᵖ) :
comap (↑(opLinearEquiv R : A ≃ₗ[R] Aᵐᵒᵖ) : A →ₗ[R] Aᵐᵒᵖ) (M * N) =
comap (↑(opLinearEquiv R : A ≃ₗ[R] Aᵐᵒᵖ) : A →ₗ[R] Aᵐᵒᵖ) N *
comap (↑(opLinearEquiv R : A ≃ₗ[R] Aᵐᵒᵖ) : A →ₗ[R] Aᵐᵒᵖ) M := by
simp_rw [comap_equiv_eq_map_symm, map_unop_mul]
lemma restrictScalars_mul {A B C} [CommSemiring A] [CommSemiring B] [Semiring C]
[Algebra A B] [Algebra A C] [Algebra B C] [IsScalarTower A B C] {I J : Submodule B C} :
(I * J).restrictScalars A = I.restrictScalars A * J.restrictScalars A := by
apply le_antisymm
· intro x (hx : x ∈ I * J)
refine Submodule.mul_induction_on hx ?_ ?_
· exact fun m hm n hn ↦ mul_mem_mul hm hn
· exact fun _ _ ↦ add_mem
· exact mul_le.mpr (fun _ hm _ hn ↦ mul_mem_mul hm hn)
section
open Pointwise
/-- `Submodule.pointwiseNeg` distributes over multiplication.
This is available as an instance in the `Pointwise` locale. -/
protected def hasDistribPointwiseNeg {A} [Ring A] [Algebra R A] : HasDistribNeg (Submodule R A) :=
toAddSubmonoid_injective.hasDistribNeg _ neg_toAddSubmonoid mul_toAddSubmonoid
scoped[Pointwise] attribute [instance] Submodule.hasDistribPointwiseNeg
end
section DecidableEq
theorem mem_span_mul_finite_of_mem_span_mul {R A} [Semiring R] [AddCommMonoid A] [Mul A]
[Module R A] {S : Set A} {S' : Set A} {x : A} (hx : x ∈ span R (S * S')) :
∃ T T' : Finset A, ↑T ⊆ S ∧ ↑T' ⊆ S' ∧ x ∈ span R (T * T' : Set A) := by
classical
obtain ⟨U, h, hU⟩ := mem_span_finite_of_mem_span hx
obtain ⟨T, T', hS, hS', h⟩ := Finset.subset_mul h
use T, T', hS, hS'
have h' : (U : Set A) ⊆ T * T' := by assumption_mod_cast
have h'' := span_mono h' hU
assumption
end DecidableEq
theorem mul_eq_span_mul_set (s t : Submodule R A) : s * t = span R ((s : Set A) * (t : Set A)) :=
map₂_eq_span_image2 _ s t
theorem iSup_mul (s : ι → Submodule R A) (t : Submodule R A) : (⨆ i, s i) * t = ⨆ i, s i * t :=
map₂_iSup_left _ s t
theorem mul_iSup (t : Submodule R A) (s : ι → Submodule R A) : (t * ⨆ i, s i) = ⨆ i, t * s i :=
map₂_iSup_right _ t s
theorem mem_span_mul_finite_of_mem_mul {P Q : Submodule R A} {x : A} (hx : x ∈ P * Q) :
∃ T T' : Finset A, (T : Set A) ⊆ P ∧ (T' : Set A) ⊆ Q ∧ x ∈ span R (T * T' : Set A) :=
Submodule.mem_span_mul_finite_of_mem_span_mul
(by rwa [← Submodule.span_eq P, ← Submodule.span_eq Q, Submodule.span_mul_span] at hx)
variable {M N P}
theorem mem_span_singleton_mul {x y : A} : x ∈ span R {y} * P ↔ ∃ z ∈ P, y * z = x := by
-- Porting note: need both `*` and `Mul.mul`
simp_rw [(· * ·), Mul.mul, map₂_span_singleton_eq_map]
rfl
theorem mem_mul_span_singleton {x y : A} : x ∈ P * span R {y} ↔ ∃ z ∈ P, z * y = x := by
-- Porting note: need both `*` and `Mul.mul`
simp_rw [(· * ·), Mul.mul, map₂_span_singleton_eq_map_flip]
rfl
lemma span_singleton_mul {x : A} {p : Submodule R A} :
Submodule.span R {x} * p = x • p := ext fun _ ↦ mem_span_singleton_mul
lemma mem_smul_iff_inv_mul_mem {S} [Field S] [Algebra R S] {x : S} {p : Submodule R S} {y : S}
(hx : x ≠ 0) : y ∈ x • p ↔ x⁻¹ * y ∈ p := by
constructor
· rintro ⟨a, ha : a ∈ p, rfl⟩; simpa [inv_mul_cancel_left₀ hx]
· exact fun h ↦ ⟨_, h, by simp [mul_inv_cancel_left₀ hx]⟩
lemma mul_mem_smul_iff {S} [CommRing S] [Algebra R S] {x : S} {p : Submodule R S} {y : S}
(hx : x ∈ nonZeroDivisors S) :
x * y ∈ x • p ↔ y ∈ p :=
show Exists _ ↔ _ by simp [mul_cancel_left_mem_nonZeroDivisors hx]
variable (M N) in
theorem mul_smul_mul_eq_smul_mul_smul (x y : R) : (x * y) • (M * N) = (x • M) * (y • N) := by
ext
refine ⟨?_, fun hx ↦ Submodule.mul_induction_on hx ?_ fun _ _ hx hy ↦ Submodule.add_mem _ hx hy⟩
· rintro ⟨_, hx, rfl⟩
rw [DistribMulAction.toLinearMap_apply]
refine Submodule.mul_induction_on hx (fun m hm n hn ↦ ?_) (fun _ _ hn hm ↦ ?_)
· rw [← smul_mul_smul x y m n]
exact mul_mem_mul (smul_mem_pointwise_smul m x M hm) (smul_mem_pointwise_smul n y N hn)
· rw [smul_add]
exact Submodule.add_mem _ hn hm
· rintro _ ⟨m, hm, rfl⟩ _ ⟨n, hn, rfl⟩
erw [smul_mul_smul x y m n]
exact smul_mem_pointwise_smul _ _ _ (mul_mem_mul hm hn)
/-- Sub-R-modules of an R-algebra form an idempotent semiring. -/
instance idemSemiring : IdemSemiring (Submodule R A) :=
{ toAddSubmonoid_injective.semigroup _ fun m n : Submodule R A => mul_toAddSubmonoid m n,
AddMonoidWithOne.unary, Submodule.pointwiseAddCommMonoid,
(by infer_instance :
Lattice (Submodule R A)) with
one_mul := Submodule.one_mul
mul_one := Submodule.mul_one
zero_mul := bot_mul
mul_zero := mul_bot
left_distrib := mul_sup
right_distrib := sup_mul,
-- Porting note: removed `(by infer_instance : OrderBot (Submodule R A))`
bot_le := fun _ => bot_le }
variable (M)
theorem span_pow (s : Set A) : ∀ n : ℕ, span R s ^ n = span R (s ^ n)
| 0 => by rw [pow_zero, pow_zero, one_eq_span_one_set]
| n + 1 => by rw [pow_succ, pow_succ, span_pow s n, span_mul_span]
theorem pow_eq_span_pow_set (n : ℕ) : M ^ n = span R ((M : Set A) ^ n) := by
rw [← span_pow, span_eq]
theorem pow_subset_pow {n : ℕ} : (↑M : Set A) ^ n ⊆ ↑(M ^ n : Submodule R A) :=
(pow_eq_span_pow_set M n).symm ▸ subset_span
theorem pow_mem_pow {x : A} (hx : x ∈ M) (n : ℕ) : x ^ n ∈ M ^ n :=
pow_subset_pow _ <| Set.pow_mem_pow hx _
theorem pow_toAddSubmonoid {n : ℕ} (h : n ≠ 0) : (M ^ n).toAddSubmonoid = M.toAddSubmonoid ^ n := by
induction' n with n ih
· exact (h rfl).elim
· rw [pow_succ, pow_succ, mul_toAddSubmonoid]
cases n with
| zero => rw [pow_zero, pow_zero, one_mul, ← mul_toAddSubmonoid, one_mul]
| succ n => rw [ih n.succ_ne_zero]
theorem le_pow_toAddSubmonoid {n : ℕ} : M.toAddSubmonoid ^ n ≤ (M ^ n).toAddSubmonoid := by
obtain rfl | hn := Decidable.eq_or_ne n 0
· rw [pow_zero, pow_zero]
exact le_one_toAddSubmonoid
· exact (pow_toAddSubmonoid M hn).ge
/-- Dependent version of `Submodule.pow_induction_on_left`. -/
@[elab_as_elim]
protected theorem pow_induction_on_left' {C : ∀ (n : ℕ) (x), x ∈ M ^ n → Prop}
(algebraMap : ∀ r : R, C 0 (algebraMap _ _ r) (algebraMap_mem r))
(add : ∀ x y i hx hy, C i x hx → C i y hy → C i (x + y) (add_mem ‹_› ‹_›))
(mem_mul : ∀ m (hm : m ∈ M), ∀ (i x hx), C i x hx → C i.succ (m * x)
((pow_succ' M i).symm ▸ (mul_mem_mul hm hx)))
-- Porting note: swapped argument order to match order of `C`
{n : ℕ} {x : A}
(hx : x ∈ M ^ n) : C n x hx := by
induction' n with n n_ih generalizing x
· rw [pow_zero] at hx
obtain ⟨r, rfl⟩ := hx
exact algebraMap r
revert hx
simp_rw [pow_succ']
intro hx
exact
Submodule.mul_induction_on' (fun m hm x ih => mem_mul _ hm _ _ _ (n_ih ih))
(fun x hx y hy Cx Cy => add _ _ _ _ _ Cx Cy) hx
/-- Dependent version of `Submodule.pow_induction_on_right`. -/
@[elab_as_elim]
protected theorem pow_induction_on_right' {C : ∀ (n : ℕ) (x), x ∈ M ^ n → Prop}
(algebraMap : ∀ r : R, C 0 (algebraMap _ _ r) (algebraMap_mem r))
(add : ∀ x y i hx hy, C i x hx → C i y hy → C i (x + y) (add_mem ‹_› ‹_›))
(mul_mem :
∀ i x hx, C i x hx →
∀ m (hm : m ∈ M), C i.succ (x * m) (mul_mem_mul hx hm))
-- Porting note: swapped argument order to match order of `C`
{n : ℕ} {x : A} (hx : x ∈ M ^ n) : C n x hx := by
induction' n with n n_ih generalizing x
· rw [pow_zero] at hx
obtain ⟨r, rfl⟩ := hx
exact algebraMap r
revert hx
simp_rw [pow_succ]
intro hx
exact
Submodule.mul_induction_on' (fun m hm x ih => mul_mem _ _ hm (n_ih _) _ ih)
(fun x hx y hy Cx Cy => add _ _ _ _ _ Cx Cy) hx
/-- To show a property on elements of `M ^ n` holds, it suffices to show that it holds for scalars,
is closed under addition, and holds for `m * x` where `m ∈ M` and it holds for `x` -/
@[elab_as_elim]
protected theorem pow_induction_on_left {C : A → Prop} (hr : ∀ r : R, C (algebraMap _ _ r))
(hadd : ∀ x y, C x → C y → C (x + y)) (hmul : ∀ m ∈ M, ∀ (x), C x → C (m * x)) {x : A} {n : ℕ}
(hx : x ∈ M ^ n) : C x :=
-- Porting note: `M` is explicit yet can't be passed positionally!
Submodule.pow_induction_on_left' (M := M) (C := fun _ a _ => C a) hr
(fun x y _i _hx _hy => hadd x y)
(fun _m hm _i _x _hx => hmul _ hm _) hx
/-- To show a property on elements of `M ^ n` holds, it suffices to show that it holds for scalars,
is closed under addition, and holds for `x * m` where `m ∈ M` and it holds for `x` -/
@[elab_as_elim]
protected theorem pow_induction_on_right {C : A → Prop} (hr : ∀ r : R, C (algebraMap _ _ r))
(hadd : ∀ x y, C x → C y → C (x + y)) (hmul : ∀ x, C x → ∀ m ∈ M, C (x * m)) {x : A} {n : ℕ}
(hx : x ∈ M ^ n) : C x :=
Submodule.pow_induction_on_right' (M := M) (C := fun _ a _ => C a) hr
(fun x y _i _hx _hy => hadd x y)
(fun _i _x _hx => hmul _) hx
/-- `Submonoid.map` as a `MonoidWithZeroHom`, when applied to `AlgHom`s. -/
@[simps]
def mapHom {A'} [Semiring A'] [Algebra R A'] (f : A →ₐ[R] A') :
Submodule R A →*₀ Submodule R A' where
toFun := map f.toLinearMap
map_zero' := Submodule.map_bot _
map_one' := Submodule.map_one _
map_mul' _ _ := Submodule.map_mul _ _ _
/-- The ring of submodules of the opposite algebra is isomorphic to the opposite ring of
submodules. -/
@[simps apply symm_apply]
def equivOpposite : Submodule R Aᵐᵒᵖ ≃+* (Submodule R A)ᵐᵒᵖ where
toFun p := op <| p.comap (↑(opLinearEquiv R : A ≃ₗ[R] Aᵐᵒᵖ) : A →ₗ[R] Aᵐᵒᵖ)
invFun p := p.unop.comap (↑(opLinearEquiv R : A ≃ₗ[R] Aᵐᵒᵖ).symm : Aᵐᵒᵖ →ₗ[R] A)
left_inv p := SetLike.coe_injective <| rfl
right_inv p := unop_injective <| SetLike.coe_injective rfl
map_add' p q := by simp [comap_equiv_eq_map_symm, ← op_add]
map_mul' p q := congr_arg op <| comap_op_mul _ _
protected theorem map_pow {A'} [Semiring A'] [Algebra R A'] (f : A →ₐ[R] A') (n : ℕ) :
map f.toLinearMap (M ^ n) = map f.toLinearMap M ^ n :=
map_pow (mapHom f) M n
theorem comap_unop_pow (n : ℕ) :
comap (↑(opLinearEquiv R : A ≃ₗ[R] Aᵐᵒᵖ).symm : Aᵐᵒᵖ →ₗ[R] A) (M ^ n) =
comap (↑(opLinearEquiv R : A ≃ₗ[R] Aᵐᵒᵖ).symm : Aᵐᵒᵖ →ₗ[R] A) M ^ n :=
(equivOpposite : Submodule R Aᵐᵒᵖ ≃+* _).symm.map_pow (op M) n
theorem comap_op_pow (n : ℕ) (M : Submodule R Aᵐᵒᵖ) :
comap (↑(opLinearEquiv R : A ≃ₗ[R] Aᵐᵒᵖ) : A →ₗ[R] Aᵐᵒᵖ) (M ^ n) =
comap (↑(opLinearEquiv R : A ≃ₗ[R] Aᵐᵒᵖ) : A →ₗ[R] Aᵐᵒᵖ) M ^ n :=
op_injective <| (equivOpposite : Submodule R Aᵐᵒᵖ ≃+* _).map_pow M n
theorem map_op_pow (n : ℕ) :
map (↑(opLinearEquiv R : A ≃ₗ[R] Aᵐᵒᵖ) : A →ₗ[R] Aᵐᵒᵖ) (M ^ n) =
map (↑(opLinearEquiv R : A ≃ₗ[R] Aᵐᵒᵖ) : A →ₗ[R] Aᵐᵒᵖ) M ^ n := by
rw [map_equiv_eq_comap_symm, map_equiv_eq_comap_symm, comap_unop_pow]
theorem map_unop_pow (n : ℕ) (M : Submodule R Aᵐᵒᵖ) :
map (↑(opLinearEquiv R : A ≃ₗ[R] Aᵐᵒᵖ).symm : Aᵐᵒᵖ →ₗ[R] A) (M ^ n) =
map (↑(opLinearEquiv R : A ≃ₗ[R] Aᵐᵒᵖ).symm : Aᵐᵒᵖ →ₗ[R] A) M ^ n := by
rw [← comap_equiv_eq_map_symm, ← comap_equiv_eq_map_symm, comap_op_pow]
/-- `span` is a semiring homomorphism (recall multiplication is pointwise multiplication of subsets
on either side). -/
@[simps]
def span.ringHom : SetSemiring A →+* Submodule R A where
-- Note: the hint `(α := A)` is new in #8386
toFun s := Submodule.span R (SetSemiring.down (α := A) s)
map_zero' := span_empty
map_one' := one_eq_span.symm
map_add' := span_union
map_mul' s t := by
dsimp only -- Porting note: new, needed due to new-style structures
rw [SetSemiring.down_mul, span_mul_span]
section
variable {α : Type*} [Monoid α] [MulSemiringAction α A] [SMulCommClass α R A]
/-- The action on a submodule corresponding to applying the action to every element.
This is available as an instance in the `Pointwise` locale.
This is a stronger version of `Submodule.pointwiseDistribMulAction`. -/
protected def pointwiseMulSemiringAction : MulSemiringAction α (Submodule R A) :=
{
Submodule.pointwiseDistribMulAction with
smul_mul := fun r x y => Submodule.map_mul x y <| MulSemiringAction.toAlgHom R A r
smul_one := fun r => Submodule.map_one <| MulSemiringAction.toAlgHom R A r }
scoped[Pointwise] attribute [instance] Submodule.pointwiseMulSemiringAction
end
end Ring
section CommRing
variable {A : Type v} [CommSemiring A] [Algebra R A]
variable {M N : Submodule R A} {m n : A}
theorem mul_mem_mul_rev (hm : m ∈ M) (hn : n ∈ N) : n * m ∈ M * N :=
mul_comm m n ▸ mul_mem_mul hm hn
variable (M N)
protected theorem mul_comm : M * N = N * M :=
le_antisymm (mul_le.2 fun _r hrm _s hsn => mul_mem_mul_rev hsn hrm)
(mul_le.2 fun _r hrn _s hsm => mul_mem_mul_rev hsm hrn)
/-- Sub-R-modules of an R-algebra A form a semiring. -/
instance : IdemCommSemiring (Submodule R A) :=
{ Submodule.idemSemiring with mul_comm := Submodule.mul_comm }
theorem prod_span {ι : Type*} (s : Finset ι) (M : ι → Set A) :
(∏ i ∈ s, Submodule.span R (M i)) = Submodule.span R (∏ i ∈ s, M i) := by
letI := Classical.decEq ι
refine Finset.induction_on s ?_ ?_
· simp [one_eq_span, Set.singleton_one]
· intro _ _ H ih
rw [Finset.prod_insert H, Finset.prod_insert H, ih, span_mul_span]
theorem prod_span_singleton {ι : Type*} (s : Finset ι) (x : ι → A) :
(∏ i ∈ s, span R ({x i} : Set A)) = span R {∏ i ∈ s, x i} := by
rw [prod_span, Set.finset_prod_singleton]
variable (R A)
/-- R-submodules of the R-algebra A are a module over `Set A`. -/
instance moduleSet : Module (SetSemiring A) (Submodule R A) where
-- Porting note: have to unfold both `HSMul.hSMul` and `SMul.smul`
-- Note: the hint `(α := A)` is new in #8386
smul s P := span R (SetSemiring.down (α := A) s) * P
smul_add _ _ _ := mul_add _ _ _
add_smul s t P := by
simp_rw [HSMul.hSMul, SetSemiring.down_add, span_union, sup_mul, add_eq_sup]
mul_smul s t P := by
simp_rw [HSMul.hSMul, SetSemiring.down_mul, ← mul_assoc, span_mul_span]
one_smul P := by
simp_rw [HSMul.hSMul, SetSemiring.down_one, ← one_eq_span_one_set, one_mul]
zero_smul P := by
simp_rw [HSMul.hSMul, SetSemiring.down_zero, span_empty, bot_mul, bot_eq_zero]
smul_zero _ := mul_bot _
variable {R A}
theorem smul_def (s : SetSemiring A) (P : Submodule R A) :
s • P = span R (SetSemiring.down (α := A) s) * P :=
rfl
theorem smul_le_smul {s t : SetSemiring A} {M N : Submodule R A}
(h₁ : SetSemiring.down (α := A) s ⊆ SetSemiring.down (α := A) t)
(h₂ : M ≤ N) : s • M ≤ t • N :=
mul_le_mul (span_mono h₁) h₂
theorem singleton_smul (a : A) (M : Submodule R A) :
Set.up ({a} : Set A) • M = M.map (LinearMap.mulLeft R a) := by
conv_lhs => rw [← span_eq M]
rw [smul_def, SetSemiring.down_up, span_mul_span, singleton_mul]
exact (map (LinearMap.mulLeft R a) M).span_eq
section Quotient
/-- The elements of `I / J` are the `x` such that `x • J ⊆ I`.
In fact, we define `x ∈ I / J` to be `∀ y ∈ J, x * y ∈ I` (see `mem_div_iff_forall_mul_mem`),
which is equivalent to `x • J ⊆ I` (see `mem_div_iff_smul_subset`), but nicer to use in proofs.
This is the general form of the ideal quotient, traditionally written $I : J$.
-/
instance : Div (Submodule R A) :=
⟨fun I J =>
{ carrier := { x | ∀ y ∈ J, x * y ∈ I }
zero_mem' := fun y _ => by
rw [zero_mul]
apply Submodule.zero_mem
add_mem' := fun ha hb y hy => by
rw [add_mul]
exact Submodule.add_mem _ (ha _ hy) (hb _ hy)
smul_mem' := fun r x hx y hy => by
rw [Algebra.smul_mul_assoc]
exact Submodule.smul_mem _ _ (hx _ hy) }⟩
theorem mem_div_iff_forall_mul_mem {x : A} {I J : Submodule R A} : x ∈ I / J ↔ ∀ y ∈ J, x * y ∈ I :=
Iff.refl _
theorem mem_div_iff_smul_subset {x : A} {I J : Submodule R A} : x ∈ I / J ↔ x • (J : Set A) ⊆ I :=
⟨fun h y ⟨y', hy', xy'_eq_y⟩ => by
rw [← xy'_eq_y]
apply h
assumption, fun h y hy => h (Set.smul_mem_smul_set hy)⟩
theorem le_div_iff {I J K : Submodule R A} : I ≤ J / K ↔ ∀ x ∈ I, ∀ z ∈ K, x * z ∈ J :=
Iff.refl _
theorem le_div_iff_mul_le {I J K : Submodule R A} : I ≤ J / K ↔ I * K ≤ J := by
rw [le_div_iff, mul_le]
@[simp]
theorem one_le_one_div {I : Submodule R A} : 1 ≤ 1 / I ↔ I ≤ 1 := by
constructor; all_goals intro hI
· rwa [le_div_iff_mul_le, one_mul] at hI
· rwa [le_div_iff_mul_le, one_mul]
theorem le_self_mul_one_div {I : Submodule R A} (hI : I ≤ 1) : I ≤ I * (1 / I) := by
refine (mul_one I).symm.trans_le ?_ -- Porting note: drop `rw {occs := _}` in favor of `refine`
apply mul_le_mul_right (one_le_one_div.mpr hI)
theorem mul_one_div_le_one {I : Submodule R A} : I * (1 / I) ≤ 1 := by
rw [Submodule.mul_le]
intro m hm n hn
rw [Submodule.mem_div_iff_forall_mul_mem] at hn
rw [mul_comm]
exact hn m hm
@[simp]
protected theorem map_div {B : Type*} [CommSemiring B] [Algebra R B] (I J : Submodule R A)
(h : A ≃ₐ[R] B) : (I / J).map h.toLinearMap = I.map h.toLinearMap / J.map h.toLinearMap := by
ext x
simp only [mem_map, mem_div_iff_forall_mul_mem]
constructor
· rintro ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩
exact ⟨x * y, hx _ hy, map_mul h x y⟩
· rintro hx
refine ⟨h.symm x, fun z hz => ?_, h.apply_symm_apply x⟩
obtain ⟨xz, xz_mem, hxz⟩ := hx (h z) ⟨z, hz, rfl⟩
convert xz_mem
apply h.injective
erw [map_mul, h.apply_symm_apply, hxz]
end Quotient
end CommRing
end Submodule
|
Algebra\Algebra\Opposite.lean | /-
Copyright (c) 2023 Eric Wieser. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Eric Wieser
-/
import Mathlib.Algebra.Algebra.Equiv
import Mathlib.Algebra.Module.Opposites
import Mathlib.Algebra.Ring.Opposite
/-!
# Algebra structures on the multiplicative opposite
## Main definitions
* `MulOpposite.instAlgebra`: the algebra on `Aᵐᵒᵖ`
* `AlgHom.op`/`AlgHom.unop`: simultaneously convert the domain and codomain of a morphism to the
opposite algebra.
* `AlgHom.opComm`: swap which side of a morphism lies in the opposite algebra.
* `AlgEquiv.op`/`AlgEquiv.unop`: simultaneously convert the source and target of an isomorphism to
the opposite algebra.
* `AlgEquiv.opOp`: any algebra is isomorphic to the opposite of its opposite.
* `AlgEquiv.toOpposite`: in a commutative algebra, the opposite algebra is isomorphic to the
original algebra.
* `AlgEquiv.opComm`: swap which side of an isomorphism lies in the opposite algebra.
-/
variable {R S A B : Type*}
open MulOpposite
section Semiring
variable [CommSemiring R] [CommSemiring S] [Semiring A] [Semiring B]
variable [Algebra R S] [Algebra R A] [Algebra R B] [Algebra S A] [SMulCommClass R S A]
variable [IsScalarTower R S A]
namespace MulOpposite
instance instAlgebra : Algebra R Aᵐᵒᵖ where
toRingHom := (algebraMap R A).toOpposite fun x y => Algebra.commutes _ _
smul_def' c x := unop_injective <| by
simp only [unop_smul, RingHom.toOpposite_apply, Function.comp_apply, unop_mul, op_mul,
Algebra.smul_def, Algebra.commutes, op_unop, unop_op]
commutes' r := MulOpposite.rec' fun x => by
simp only [RingHom.toOpposite_apply, Function.comp_apply, ← op_mul, Algebra.commutes]
@[simp]
theorem algebraMap_apply (c : R) : algebraMap R Aᵐᵒᵖ c = op (algebraMap R A c) :=
rfl
end MulOpposite
namespace AlgEquiv
variable (R A)
/-- An algebra is isomorphic to the opposite of its opposite. -/
@[simps!]
def opOp : A ≃ₐ[R] Aᵐᵒᵖᵐᵒᵖ where
__ := RingEquiv.opOp A
commutes' _ := rfl
@[simp] theorem toRingEquiv_opOp : (opOp R A : A ≃+* Aᵐᵒᵖᵐᵒᵖ) = RingEquiv.opOp A := rfl
end AlgEquiv
namespace AlgHom
/--
An algebra homomorphism `f : A →ₐ[R] B` such that `f x` commutes with `f y` for all `x, y` defines
an algebra homomorphism from `Aᵐᵒᵖ`. -/
@[simps (config := .asFn)]
def fromOpposite (f : A →ₐ[R] B) (hf : ∀ x y, Commute (f x) (f y)) : Aᵐᵒᵖ →ₐ[R] B :=
{ f.toRingHom.fromOpposite hf with
toFun := f ∘ unop
commutes' := fun r => f.commutes r }
@[simp]
theorem toLinearMap_fromOpposite (f : A →ₐ[R] B) (hf : ∀ x y, Commute (f x) (f y)) :
(f.fromOpposite hf).toLinearMap = f.toLinearMap ∘ₗ (opLinearEquiv R (M := A)).symm :=
rfl
@[simp]
theorem toRingHom_fromOpposite (f : A →ₐ[R] B) (hf : ∀ x y, Commute (f x) (f y)) :
(f.fromOpposite hf : Aᵐᵒᵖ →+* B) = (f : A →+* B).fromOpposite hf :=
rfl
/--
An algebra homomorphism `f : A →ₐ[R] B` such that `f x` commutes with `f y` for all `x, y` defines
an algebra homomorphism to `Bᵐᵒᵖ`. -/
@[simps (config := .asFn)]
def toOpposite (f : A →ₐ[R] B) (hf : ∀ x y, Commute (f x) (f y)) : A →ₐ[R] Bᵐᵒᵖ :=
{ f.toRingHom.toOpposite hf with
toFun := op ∘ f
commutes' := fun r => unop_injective <| f.commutes r }
@[simp]
theorem toLinearMap_toOpposite (f : A →ₐ[R] B) (hf : ∀ x y, Commute (f x) (f y)) :
(f.toOpposite hf).toLinearMap = (opLinearEquiv R : B ≃ₗ[R] Bᵐᵒᵖ) ∘ₗ f.toLinearMap :=
rfl
@[simp]
theorem toRingHom_toOpposite (f : A →ₐ[R] B) (hf : ∀ x y, Commute (f x) (f y)) :
(f.toOpposite hf : A →+* Bᵐᵒᵖ) = (f : A →+* B).toOpposite hf :=
rfl
/-- An algebra hom `A →ₐ[R] B` can equivalently be viewed as an algebra hom `Aᵐᵒᵖ →ₐ[R] Bᵐᵒᵖ`.
This is the action of the (fully faithful) `ᵐᵒᵖ`-functor on morphisms. -/
@[simps!]
protected def op : (A →ₐ[R] B) ≃ (Aᵐᵒᵖ →ₐ[R] Bᵐᵒᵖ) where
toFun f := { RingHom.op f.toRingHom with commutes' := fun r => unop_injective <| f.commutes r }
invFun f := { RingHom.unop f.toRingHom with commutes' := fun r => op_injective <| f.commutes r }
left_inv _f := AlgHom.ext fun _a => rfl
right_inv _f := AlgHom.ext fun _a => rfl
theorem toRingHom_op (f : A →ₐ[R] B) : f.op.toRingHom = RingHom.op f.toRingHom :=
rfl
/-- The 'unopposite' of an algebra hom `Aᵐᵒᵖ →ₐ[R] Bᵐᵒᵖ`. Inverse to `RingHom.op`. -/
abbrev unop : (Aᵐᵒᵖ →ₐ[R] Bᵐᵒᵖ) ≃ (A →ₐ[R] B) := AlgHom.op.symm
theorem toRingHom_unop (f : Aᵐᵒᵖ →ₐ[R] Bᵐᵒᵖ) : f.unop.toRingHom = RingHom.unop f.toRingHom :=
rfl
/-- Swap the `ᵐᵒᵖ` on an algebra hom to the opposite side. -/
@[simps!]
def opComm : (A →ₐ[R] Bᵐᵒᵖ) ≃ (Aᵐᵒᵖ →ₐ[R] B) :=
AlgHom.op.trans <| AlgEquiv.refl.arrowCongr (AlgEquiv.opOp R B).symm
end AlgHom
namespace AlgEquiv
/-- An algebra iso `A ≃ₐ[R] B` can equivalently be viewed as an algebra iso `Aᵐᵒᵖ ≃ₐ[R] Bᵐᵒᵖ`.
This is the action of the (fully faithful) `ᵐᵒᵖ`-functor on morphisms. -/
@[simps!]
def op : (A ≃ₐ[R] B) ≃ Aᵐᵒᵖ ≃ₐ[R] Bᵐᵒᵖ where
toFun f :=
{ RingEquiv.op f.toRingEquiv with
commutes' := fun r => MulOpposite.unop_injective <| f.commutes r }
invFun f :=
{ RingEquiv.unop f.toRingEquiv with
commutes' := fun r => MulOpposite.op_injective <| f.commutes r }
left_inv _f := AlgEquiv.ext fun _a => rfl
right_inv _f := AlgEquiv.ext fun _a => rfl
theorem toAlgHom_op (f : A ≃ₐ[R] B) :
(AlgEquiv.op f).toAlgHom = AlgHom.op f.toAlgHom :=
rfl
theorem toRingEquiv_op (f : A ≃ₐ[R] B) :
(AlgEquiv.op f).toRingEquiv = RingEquiv.op f.toRingEquiv :=
rfl
/-- The 'unopposite' of an algebra iso `Aᵐᵒᵖ ≃ₐ[R] Bᵐᵒᵖ`. Inverse to `AlgEquiv.op`. -/
abbrev unop : (Aᵐᵒᵖ ≃ₐ[R] Bᵐᵒᵖ) ≃ A ≃ₐ[R] B := AlgEquiv.op.symm
theorem toAlgHom_unop (f : Aᵐᵒᵖ ≃ₐ[R] Bᵐᵒᵖ) : f.unop.toAlgHom = AlgHom.unop f.toAlgHom :=
rfl
theorem toRingEquiv_unop (f : Aᵐᵒᵖ ≃ₐ[R] Bᵐᵒᵖ) :
(AlgEquiv.unop f).toRingEquiv = RingEquiv.unop f.toRingEquiv :=
rfl
/-- Swap the `ᵐᵒᵖ` on an algebra isomorphism to the opposite side. -/
@[simps!]
def opComm : (A ≃ₐ[R] Bᵐᵒᵖ) ≃ (Aᵐᵒᵖ ≃ₐ[R] B) :=
AlgEquiv.op.trans <| AlgEquiv.refl.equivCongr (opOp R B).symm
end AlgEquiv
end Semiring
section CommSemiring
variable (R A) [CommSemiring R] [CommSemiring A] [Algebra R A]
namespace AlgEquiv
/-- A commutative algebra is isomorphic to its opposite. -/
@[simps!]
def toOpposite : A ≃ₐ[R] Aᵐᵒᵖ where
__ := RingEquiv.toOpposite A
commutes' _r := rfl
@[simp] lemma toRingEquiv_toOpposite : (toOpposite R A : A ≃+* Aᵐᵒᵖ) = RingEquiv.toOpposite A := rfl
@[simp] lemma toLinearEquiv_toOpposite : toLinearEquiv (toOpposite R A) = opLinearEquiv R := rfl
end AlgEquiv
end CommSemiring
|
Algebra\Algebra\Pi.lean | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Yury Kudryashov
-/
import Mathlib.Algebra.Algebra.Equiv
/-!
# The R-algebra structure on families of R-algebras
The R-algebra structure on `∀ i : I, A i` when each `A i` is an R-algebra.
## Main definitions
* `Pi.algebra`
* `Pi.evalAlgHom`
* `Pi.constAlgHom`
-/
universe u v w
namespace Pi
-- The indexing type
variable {I : Type u}
-- The scalar type
variable {R : Type*}
-- The family of types already equipped with instances
variable {f : I → Type v}
variable (x y : ∀ i, f i) (i : I)
variable (I f)
instance algebra {r : CommSemiring R} [s : ∀ i, Semiring (f i)] [∀ i, Algebra R (f i)] :
Algebra R (∀ i : I, f i) :=
{ (Pi.ringHom fun i => algebraMap R (f i) : R →+* ∀ i : I, f i) with
commutes' := fun a f => by ext; simp [Algebra.commutes]
smul_def' := fun a f => by ext; simp [Algebra.smul_def] }
theorem algebraMap_def {_ : CommSemiring R} [_s : ∀ i, Semiring (f i)] [∀ i, Algebra R (f i)]
(a : R) : algebraMap R (∀ i, f i) a = fun i => algebraMap R (f i) a :=
rfl
@[simp]
theorem algebraMap_apply {_ : CommSemiring R} [_s : ∀ i, Semiring (f i)] [∀ i, Algebra R (f i)]
(a : R) (i : I) : algebraMap R (∀ i, f i) a i = algebraMap R (f i) a :=
rfl
-- One could also build a `∀ i, R i`-algebra structure on `∀ i, A i`,
-- when each `A i` is an `R i`-algebra, although I'm not sure that it's useful.
variable {I} (R)
/-- `Function.eval` as an `AlgHom`. The name matches `Pi.evalRingHom`, `Pi.evalMonoidHom`,
etc. -/
@[simps]
def evalAlgHom {_ : CommSemiring R} [∀ i, Semiring (f i)] [∀ i, Algebra R (f i)] (i : I) :
(∀ i, f i) →ₐ[R] f i :=
{ Pi.evalRingHom f i with
toFun := fun f => f i
commutes' := fun _ => rfl }
variable (A B : Type*) [CommSemiring R] [Semiring B] [Algebra R B]
/-- `Function.const` as an `AlgHom`. The name matches `Pi.constRingHom`, `Pi.constMonoidHom`,
etc. -/
@[simps]
def constAlgHom : B →ₐ[R] A → B :=
{ Pi.constRingHom A B with
toFun := Function.const _
commutes' := fun _ => rfl }
/-- When `R` is commutative and permits an `algebraMap`, `Pi.constRingHom` is equal to that
map. -/
@[simp]
theorem constRingHom_eq_algebraMap : constRingHom A R = algebraMap R (A → R) :=
rfl
@[simp]
theorem constAlgHom_eq_algebra_ofId : constAlgHom R A R = Algebra.ofId R (A → R) :=
rfl
end Pi
/-- A special case of `Pi.algebra` for non-dependent types. Lean struggles to elaborate
definitions elsewhere in the library without this, -/
instance Function.algebra {R : Type*} (I : Type*) (A : Type*) [CommSemiring R] [Semiring A]
[Algebra R A] : Algebra R (I → A) :=
Pi.algebra _ _
namespace AlgHom
variable {R : Type u} {A : Type v} {B : Type w} {I : Type*}
variable [CommSemiring R] [Semiring A] [Semiring B]
variable [Algebra R A] [Algebra R B]
/-- `R`-algebra homomorphism between the function spaces `I → A` and `I → B`, induced by an
`R`-algebra homomorphism `f` between `A` and `B`. -/
@[simps]
protected def compLeft (f : A →ₐ[R] B) (I : Type*) : (I → A) →ₐ[R] I → B :=
{ f.toRingHom.compLeft I with
toFun := fun h => f ∘ h
commutes' := fun c => by
ext
exact f.commutes' c }
end AlgHom
namespace AlgEquiv
/-- A family of algebra equivalences `∀ i, (A₁ i ≃ₐ A₂ i)` generates a
multiplicative equivalence between `∀ i, A₁ i` and `∀ i, A₂ i`.
This is the `AlgEquiv` version of `Equiv.piCongrRight`, and the dependent version of
`AlgEquiv.arrowCongr`.
-/
@[simps apply]
def piCongrRight {R ι : Type*} {A₁ A₂ : ι → Type*} [CommSemiring R] [∀ i, Semiring (A₁ i)]
[∀ i, Semiring (A₂ i)] [∀ i, Algebra R (A₁ i)] [∀ i, Algebra R (A₂ i)]
(e : ∀ i, A₁ i ≃ₐ[R] A₂ i) : (∀ i, A₁ i) ≃ₐ[R] ∀ i, A₂ i :=
{ @RingEquiv.piCongrRight ι A₁ A₂ _ _ fun i => (e i).toRingEquiv with
toFun := fun x j => e j (x j)
invFun := fun x j => (e j).symm (x j)
commutes' := fun r => by
ext i
simp }
@[simp]
theorem piCongrRight_refl {R ι : Type*} {A : ι → Type*} [CommSemiring R] [∀ i, Semiring (A i)]
[∀ i, Algebra R (A i)] :
(piCongrRight fun i => (AlgEquiv.refl : A i ≃ₐ[R] A i)) = AlgEquiv.refl :=
rfl
@[simp]
theorem piCongrRight_symm {R ι : Type*} {A₁ A₂ : ι → Type*} [CommSemiring R]
[∀ i, Semiring (A₁ i)] [∀ i, Semiring (A₂ i)] [∀ i, Algebra R (A₁ i)] [∀ i, Algebra R (A₂ i)]
(e : ∀ i, A₁ i ≃ₐ[R] A₂ i) : (piCongrRight e).symm = piCongrRight fun i => (e i).symm :=
rfl
@[simp]
theorem piCongrRight_trans {R ι : Type*} {A₁ A₂ A₃ : ι → Type*} [CommSemiring R]
[∀ i, Semiring (A₁ i)] [∀ i, Semiring (A₂ i)] [∀ i, Semiring (A₃ i)] [∀ i, Algebra R (A₁ i)]
[∀ i, Algebra R (A₂ i)] [∀ i, Algebra R (A₃ i)] (e₁ : ∀ i, A₁ i ≃ₐ[R] A₂ i)
(e₂ : ∀ i, A₂ i ≃ₐ[R] A₃ i) :
(piCongrRight e₁).trans (piCongrRight e₂) = piCongrRight fun i => (e₁ i).trans (e₂ i) :=
rfl
end AlgEquiv
|
Algebra\Algebra\Prod.lean | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Yury Kudryashov
-/
import Mathlib.Algebra.Algebra.Hom
import Mathlib.Algebra.Module.Prod
/-!
# The R-algebra structure on products of R-algebras
The R-algebra structure on `(i : I) → A i` when each `A i` is an R-algebra.
## Main definitions
* `Prod.algebra`
* `AlgHom.fst`
* `AlgHom.snd`
* `AlgHom.prod`
-/
variable {R A B C : Type*}
variable [CommSemiring R]
variable [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] [Semiring C] [Algebra R C]
namespace Prod
variable (R A B)
open Algebra
instance algebra : Algebra R (A × B) :=
{ Prod.instModule,
RingHom.prod (algebraMap R A) (algebraMap R B) with
commutes' := by
rintro r ⟨a, b⟩
dsimp
rw [commutes r a, commutes r b]
smul_def' := by
rintro r ⟨a, b⟩
dsimp
rw [Algebra.smul_def r a, Algebra.smul_def r b] }
variable {R A B}
@[simp]
theorem algebraMap_apply (r : R) : algebraMap R (A × B) r = (algebraMap R A r, algebraMap R B r) :=
rfl
end Prod
namespace AlgHom
variable (R A B)
/-- First projection as `AlgHom`. -/
def fst : A × B →ₐ[R] A :=
{ RingHom.fst A B with commutes' := fun _r => rfl }
/-- Second projection as `AlgHom`. -/
def snd : A × B →ₐ[R] B :=
{ RingHom.snd A B with commutes' := fun _r => rfl }
variable {R A B}
/-- The `Pi.prod` of two morphisms is a morphism. -/
@[simps!]
def prod (f : A →ₐ[R] B) (g : A →ₐ[R] C) : A →ₐ[R] B × C :=
{ f.toRingHom.prod g.toRingHom with
commutes' := fun r => by
simp only [toRingHom_eq_coe, RingHom.toFun_eq_coe, RingHom.prod_apply, coe_toRingHom,
commutes, Prod.algebraMap_apply] }
theorem coe_prod (f : A →ₐ[R] B) (g : A →ₐ[R] C) : ⇑(f.prod g) = Pi.prod f g :=
rfl
@[simp]
theorem fst_prod (f : A →ₐ[R] B) (g : A →ₐ[R] C) : (fst R B C).comp (prod f g) = f := by ext; rfl
@[simp]
theorem snd_prod (f : A →ₐ[R] B) (g : A →ₐ[R] C) : (snd R B C).comp (prod f g) = g := by ext; rfl
@[simp]
theorem prod_fst_snd : prod (fst R A B) (snd R A B) = 1 :=
DFunLike.coe_injective Pi.prod_fst_snd
/-- Taking the product of two maps with the same domain is equivalent to taking the product of
their codomains. -/
@[simps]
def prodEquiv : (A →ₐ[R] B) × (A →ₐ[R] C) ≃ (A →ₐ[R] B × C) where
toFun f := f.1.prod f.2
invFun f := ((fst _ _ _).comp f, (snd _ _ _).comp f)
left_inv f := by ext <;> rfl
right_inv f := by ext <;> rfl
/-- `Prod.map` of two algebra homomorphisms. -/
def prodMap {D : Type*} [Semiring D] [Algebra R D] (f : A →ₐ[R] B) (g : C →ₐ[R] D) :
A × C →ₐ[R] B × D :=
{ toRingHom := f.toRingHom.prodMap g.toRingHom
commutes' := fun r => by simp [commutes] }
end AlgHom
|
Algebra\Algebra\Quasispectrum.lean | /-
Copyright (c) 2024 Jireh Loreaux. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jireh Loreaux
-/
import Mathlib.Algebra.Algebra.Unitization
import Mathlib.Algebra.Algebra.Spectrum
/-!
# Quasiregularity and quasispectrum
For a non-unital ring `R`, an element `r : R` is *quasiregular* if it is invertible in the monoid
`(R, ∘)` where `x ∘ y := y + x + x * y` with identity `0 : R`. We implement this both as a type
synonym `PreQuasiregular` which has an associated `Monoid` instance (note: *not* an `AddMonoid`
instance despite the fact that `0 : R` is the identity in this monoid) so that one may access
the quasiregular elements of `R` as `(PreQuasiregular R)ˣ`, but also as a predicate
`IsQuasiregular`.
Quasiregularity is closely tied to invertibility. Indeed, `(PreQuasiregular A)ˣ` is isomorphic to
the subgroup of `Unitization R A` whose scalar part is `1`, whenever `A` is a non-unital
`R`-algebra, and moreover this isomorphism is implemented by the map
`(x : A) ↦ (1 + x : Unitization R A)`. It is because of this isomorphism, and the associated ties
with multiplicative invertibility, that we choose a `Monoid` (as opposed to an `AddMonoid`)
structure on `PreQuasiregular`. In addition, in unital rings, we even have
`IsQuasiregular x ↔ IsUnit (1 + x)`.
The *quasispectrum* of `a : A` (with respect to `R`) is defined in terms of quasiregularity, and
this is the natural analogue of the `spectrum` for non-unital rings. Indeed, it is true that
`quasispectrum R a = spectrum R a ∪ {0}` when `A` is unital.
In Mathlib, the quasispectrum is the domain of the continuous functions associated to the
*non-unital* continuous functional calculus.
## Main definitions
+ `PreQuasiregular R`: a structure wrapping `R` that inherits a distinct `Monoid` instance when `R`
is a non-unital semiring.
+ `Unitization.unitsFstOne`: the subgroup with carrier `{ x : (Unitization R A)ˣ | x.fst = 1 }`.
+ `unitsFstOne_mulEquiv_quasiregular`: the group isomorphism between
`Unitization.unitsFstOne` and the units of `PreQuasiregular` (i.e., the quasiregular elements)
which sends `(1, x) ↦ x`.
+ `IsQuasiregular x`: the proposition that `x : R` is a unit with respect to the monoid structure on
`PreQuasiregular R`, i.e., there is some `u : (PreQuasiregular R)ˣ` such that `u.val` is
identified with `x` (via the natural equivalence between `R` and `PreQuasiregular R`).
+ `quasispectrum R a`: in an algebra over the semifield `R`, this is the set
`{r : R | (hr : IsUnit r) → ¬ IsQuasiregular (-(hr.unit⁻¹ • a))}`, which should be thought of
as a version of the `spectrum` which is applicable in non-unital algebras.
## Main theorems
+ `isQuasiregular_iff_isUnit`: in a unital ring, `x` is quasiregular if and only if `1 + x` is
a unit.
+ `quasispectrum_eq_spectrum_union_zero`: in a unital algebra `A` over a semifield `R`, the
quasispectrum of `a : A` is the `spectrum` with zero added.
+ `Unitization.isQuasiregular_inr_iff`: `a : A` is quasiregular if and only if it is quasiregular
in `Unitization R A` (via the coercion `Unitization.inr`).
+ `Unitization.quasispectrum_eq_spectrum_inr`: the quasispectrum of `a` in a non-unital `R`-algebra
`A` is precisely the spectrum of `a` in the unitization.
in `Unitization R A` (via the coercion `Unitization.inr`).
-/
/-- A type synonym for non-unital rings where an alternative monoid structure is introduced.
If `R` is a non-unital semiring, then `PreQuasiregular R` is equipped with the monoid structure
with binary operation `fun x y ↦ y + x + x * y` and identity `0`. Elements of `R` which are
invertible in this monoid satisfy the predicate `IsQuasiregular`. -/
structure PreQuasiregular (R : Type*) where
/-- The value wrapped into a term of `PreQuasiregular`. -/
val : R
namespace PreQuasiregular
variable {R : Type*} [NonUnitalSemiring R]
/-- The identity map between `R` and `PreQuasiregular R`. -/
@[simps]
def equiv : R ≃ PreQuasiregular R where
toFun := .mk
invFun := PreQuasiregular.val
left_inv _ := rfl
right_inv _ := rfl
instance instOne : One (PreQuasiregular R) where
one := equiv 0
@[simp]
lemma val_one : (1 : PreQuasiregular R).val = 0 := rfl
instance instMul : Mul (PreQuasiregular R) where
mul x y := .mk (y.val + x.val + x.val * y.val)
@[simp]
lemma val_mul (x y : PreQuasiregular R) : (x * y).val = y.val + x.val + x.val * y.val := rfl
instance instMonoid : Monoid (PreQuasiregular R) where
one := equiv 0
mul x y := .mk (y.val + x.val + x.val * y.val)
mul_one _ := equiv.symm.injective <| by simp [-EmbeddingLike.apply_eq_iff_eq]
one_mul _ := equiv.symm.injective <| by simp [-EmbeddingLike.apply_eq_iff_eq]
mul_assoc x y z := equiv.symm.injective <| by simp [mul_add, add_mul, mul_assoc]; abel
@[simp]
lemma inv_add_add_mul_eq_zero (u : (PreQuasiregular R)ˣ) :
u⁻¹.val.val + u.val.val + u.val.val * u⁻¹.val.val = 0 := by
simpa [-Units.mul_inv] using congr($(u.mul_inv).val)
@[simp]
lemma add_inv_add_mul_eq_zero (u : (PreQuasiregular R)ˣ) :
u.val.val + u⁻¹.val.val + u⁻¹.val.val * u.val.val = 0 := by
simpa [-Units.inv_mul] using congr($(u.inv_mul).val)
end PreQuasiregular
namespace Unitization
open PreQuasiregular
variable {R A : Type*} [CommSemiring R] [NonUnitalSemiring A] [Module R A] [IsScalarTower R A A]
[SMulCommClass R A A]
variable (R A) in
/-- The subgroup of the units of `Unitization R A` whose scalar part is `1`. -/
def unitsFstOne : Subgroup (Unitization R A)ˣ where
carrier := {x | x.val.fst = 1}
one_mem' := rfl
mul_mem' {x} {y} (hx : fst x.val = 1) (hy : fst y.val = 1) := by simp [hx, hy]
inv_mem' {x} (hx : fst x.val = 1) := by
simpa [-Units.mul_inv, hx] using congr(fstHom R A $(x.mul_inv))
@[simp]
lemma mem_unitsFstOne {x : (Unitization R A)ˣ} : x ∈ unitsFstOne R A ↔ x.val.fst = 1 := Iff.rfl
@[simp]
lemma unitsFstOne_val_val_fst (x : (unitsFstOne R A)) : x.val.val.fst = 1 :=
mem_unitsFstOne.mp x.property
@[simp]
lemma unitsFstOne_val_inv_val_fst (x : (unitsFstOne R A)) : x.val⁻¹.val.fst = 1 :=
mem_unitsFstOne.mp x⁻¹.property
variable (R) in
/-- If `A` is a non-unital `R`-algebra, then the subgroup of units of `Unitization R A` whose
scalar part is `1 : R` (i.e., `Unitization.unitsFstOne`) is isomorphic to the group of units of
`PreQuasiregular A`. -/
@[simps]
def unitsFstOne_mulEquiv_quasiregular : unitsFstOne R A ≃* (PreQuasiregular A)ˣ where
toFun x :=
{ val := equiv x.val.val.snd
inv := equiv x⁻¹.val.val.snd
val_inv := equiv.symm.injective <| by
simpa [-Units.mul_inv] using congr(snd $(x.val.mul_inv))
inv_val := equiv.symm.injective <| by
simpa [-Units.inv_mul] using congr(snd $(x.val.inv_mul)) }
invFun x :=
{ val :=
{ val := 1 + equiv.symm x.val
inv := 1 + equiv.symm x⁻¹.val
val_inv := by
convert congr((1 + $(inv_add_add_mul_eq_zero x) : Unitization R A)) using 1
· simp only [mul_one, equiv_symm_apply, one_mul, inr_zero, add_zero, mul_add, add_mul,
inr_add, inr_mul]
abel
· simp only [inr_zero, add_zero]
inv_val := by
convert congr((1 + $(add_inv_add_mul_eq_zero x) : Unitization R A)) using 1
· simp only [mul_one, equiv_symm_apply, one_mul, inr_zero, add_zero, mul_add, add_mul,
inr_add, inr_mul]
abel
· simp only [inr_zero, add_zero] }
property := by simp }
left_inv x := Subtype.ext <| Units.ext <| by simpa using x.val.val.inl_fst_add_inr_snd_eq
right_inv x := Units.ext <| by simp [-equiv_symm_apply]
map_mul' x y := Units.ext <| equiv.symm.injective <| by simp
end Unitization
section PreQuasiregular
open PreQuasiregular
variable {R : Type*} [NonUnitalSemiring R]
/-- In a non-unital semiring `R`, an element `x : R` satisfies `IsQuasiregular` if it is a unit
under the monoid operation `fun x y ↦ y + x + x * y`. -/
def IsQuasiregular (x : R) : Prop :=
∃ u : (PreQuasiregular R)ˣ, equiv.symm u.val = x
@[simp]
lemma isQuasiregular_zero : IsQuasiregular 0 := ⟨1, rfl⟩
lemma isQuasiregular_iff {x : R} :
IsQuasiregular x ↔ ∃ y, y + x + x * y = 0 ∧ x + y + y * x = 0 := by
constructor
· rintro ⟨u, rfl⟩
exact ⟨equiv.symm u⁻¹.val, by simp⟩
· rintro ⟨y, hy₁, hy₂⟩
refine ⟨⟨equiv x, equiv y, ?_, ?_⟩, rfl⟩
all_goals
apply equiv.symm.injective
assumption
end PreQuasiregular
lemma IsQuasiregular.map {F R S : Type*} [NonUnitalSemiring R] [NonUnitalSemiring S]
[FunLike F R S] [NonUnitalRingHomClass F R S] (f : F) {x : R} (hx : IsQuasiregular x) :
IsQuasiregular (f x) := by
rw [isQuasiregular_iff] at hx ⊢
obtain ⟨y, hy₁, hy₂⟩ := hx
exact ⟨f y, by simpa using And.intro congr(f $(hy₁)) congr(f $(hy₂))⟩
lemma IsQuasiregular.isUnit_one_add {R : Type*} [Semiring R] {x : R} (hx : IsQuasiregular x) :
IsUnit (1 + x) := by
obtain ⟨y, hy₁, hy₂⟩ := isQuasiregular_iff.mp hx
refine ⟨⟨1 + x, 1 + y, ?_, ?_⟩, rfl⟩
· convert congr(1 + $(hy₁)) using 1 <;> [noncomm_ring; simp]
· convert congr(1 + $(hy₂)) using 1 <;> [noncomm_ring; simp]
lemma isQuasiregular_iff_isUnit {R : Type*} [Ring R] {x : R} :
IsQuasiregular x ↔ IsUnit (1 + x) := by
refine ⟨IsQuasiregular.isUnit_one_add, fun hx ↦ ?_⟩
rw [isQuasiregular_iff]
use hx.unit⁻¹ - 1
constructor
case' h.left => have := congr($(hx.mul_val_inv) - 1)
case' h.right => have := congr($(hx.val_inv_mul) - 1)
all_goals
rw [← sub_add_cancel (↑hx.unit⁻¹ : R) 1, sub_self] at this
convert this using 1
noncomm_ring
-- interestingly, this holds even in the semiring case.
lemma isQuasiregular_iff_isUnit' (R : Type*) {A : Type*} [CommSemiring R] [NonUnitalSemiring A]
[Module R A] [IsScalarTower R A A] [SMulCommClass R A A] {x : A} :
IsQuasiregular x ↔ IsUnit (1 + x : Unitization R A) := by
refine ⟨?_, fun hx ↦ ?_⟩
· rintro ⟨u, rfl⟩
exact (Unitization.unitsFstOne_mulEquiv_quasiregular R).symm u |>.val.isUnit
· exact ⟨(Unitization.unitsFstOne_mulEquiv_quasiregular R) ⟨hx.unit, by simp⟩, by simp⟩
variable (R : Type*) {A : Type*} [CommSemiring R] [NonUnitalRing A]
[Module R A]
/-- If `A` is a non-unital `R`-algebra, the `R`-quasispectrum of `a : A` consists of those `r : R`
such that if `r` is invertible (in `R`), then `-(r⁻¹ • a)` is not quasiregular.
The quasispectrum is precisely the spectrum in the unitization when `R` is a commutative ring.
See `Unitization.quasispectrum_eq_spectrum_inr`. -/
def quasispectrum (a : A) : Set R :=
{r : R | (hr : IsUnit r) → ¬ IsQuasiregular (-(hr.unit⁻¹ • a))}
variable {R} in
lemma quasispectrum.not_isUnit_mem (a : A) {r : R} (hr : ¬ IsUnit r) : r ∈ quasispectrum R a :=
fun hr' ↦ (hr hr').elim
@[simp]
lemma quasispectrum.zero_mem [Nontrivial R] (a : A) : 0 ∈ quasispectrum R a :=
quasispectrum.not_isUnit_mem a <| by simp
instance quasispectrum.instZero [Nontrivial R] (a : A) : Zero (quasispectrum R a) where
zero := ⟨0, quasispectrum.zero_mem R a⟩
variable {R}
@[simp]
lemma quasispectrum.coe_zero [Nontrivial R] (a : A) : (0 : quasispectrum R a) = (0 : R) := rfl
lemma quasispectrum.mem_of_not_quasiregular (a : A) {r : Rˣ}
(hr : ¬ IsQuasiregular (-(r⁻¹ • a))) : (r : R) ∈ quasispectrum R a :=
fun _ ↦ by simpa using hr
lemma quasispectrum_eq_spectrum_union (R : Type*) {A : Type*} [CommSemiring R]
[Ring A] [Algebra R A] (a : A) : quasispectrum R a = spectrum R a ∪ {r : R | ¬ IsUnit r} := by
ext r
rw [quasispectrum]
simp only [Set.mem_setOf_eq, Set.mem_union, ← imp_iff_or_not, spectrum.mem_iff]
congr! 1 with hr
rw [not_iff_not, isQuasiregular_iff_isUnit, ← sub_eq_add_neg, Algebra.algebraMap_eq_smul_one]
exact (IsUnit.smul_sub_iff_sub_inv_smul hr.unit a).symm
lemma spectrum_subset_quasispectrum (R : Type*) {A : Type*} [CommSemiring R] [Ring A] [Algebra R A]
(a : A) : spectrum R a ⊆ quasispectrum R a :=
quasispectrum_eq_spectrum_union R a ▸ Set.subset_union_left
lemma quasispectrum_eq_spectrum_union_zero (R : Type*) {A : Type*} [Semifield R] [Ring A]
[Algebra R A] (a : A) : quasispectrum R a = spectrum R a ∪ {0} := by
convert quasispectrum_eq_spectrum_union R a
ext x
simp
lemma mem_quasispectrum_iff {R A : Type*} [Semifield R] [Ring A]
[Algebra R A] {a : A} {x : R} :
x ∈ quasispectrum R a ↔ x = 0 ∨ x ∈ spectrum R a := by
simp [quasispectrum_eq_spectrum_union_zero]
namespace Unitization
variable [IsScalarTower R A A] [SMulCommClass R A A]
lemma isQuasiregular_inr_iff (a : A) :
IsQuasiregular (a : Unitization R A) ↔ IsQuasiregular a := by
refine ⟨fun ha ↦ ?_, IsQuasiregular.map (inrNonUnitalAlgHom R A)⟩
rw [isQuasiregular_iff] at ha ⊢
obtain ⟨y, hy₁, hy₂⟩ := ha
lift y to A using by simpa using congr(fstHom R A $(hy₁))
refine ⟨y, ?_, ?_⟩ <;> exact inr_injective (R := R) <| by simpa
lemma zero_mem_spectrum_inr (R S : Type*) {A : Type*} [CommSemiring R]
[CommRing S] [Nontrivial S] [NonUnitalRing A] [Algebra R S] [Module S A] [IsScalarTower S A A]
[SMulCommClass S A A] [Module R A] [IsScalarTower R S A] (a : A) :
0 ∈ spectrum R (a : Unitization S A) := by
rw [spectrum.zero_mem_iff]
rintro ⟨u, hu⟩
simpa [-Units.mul_inv, hu] using congr($(u.mul_inv).fst)
lemma mem_spectrum_inr_of_not_isUnit {R A : Type*} [CommRing R]
[NonUnitalRing A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]
(a : A) (r : R) (hr : ¬ IsUnit r) : r ∈ spectrum R (a : Unitization R A) :=
fun h ↦ hr <| by simpa using h.map (fstHom R A)
lemma quasispectrum_eq_spectrum_inr (R : Type*) {A : Type*} [CommRing R] [Ring A]
[Algebra R A] (a : A) : quasispectrum R a = spectrum R (a : Unitization R A) := by
ext r
have : { r | ¬ IsUnit r} ⊆ spectrum R _ := mem_spectrum_inr_of_not_isUnit a
rw [← Set.union_eq_left.mpr this, ← quasispectrum_eq_spectrum_union]
apply forall_congr' fun hr ↦ ?_
rw [not_iff_not, Units.smul_def, Units.smul_def, ← inr_smul, ← inr_neg, isQuasiregular_inr_iff]
lemma quasispectrum_eq_spectrum_inr' (R S : Type*) {A : Type*} [Semifield R]
[Field S] [NonUnitalRing A] [Algebra R S] [Module S A] [IsScalarTower S A A]
[SMulCommClass S A A] [Module R A] [IsScalarTower R S A] (a : A) :
quasispectrum R a = spectrum R (a : Unitization S A) := by
ext r
have := Set.singleton_subset_iff.mpr (zero_mem_spectrum_inr R S a)
rw [← Set.union_eq_self_of_subset_right this, ← quasispectrum_eq_spectrum_union_zero]
apply forall_congr' fun x ↦ ?_
rw [not_iff_not, Units.smul_def, Units.smul_def, ← inr_smul, ← inr_neg, isQuasiregular_inr_iff]
end Unitization
/-- A class for `𝕜`-algebras with a partial order where the ordering is compatible with the
(quasi)spectrum. -/
class NonnegSpectrumClass (𝕜 A : Type*) [OrderedCommSemiring 𝕜] [NonUnitalRing A] [PartialOrder A]
[Module 𝕜 A] : Prop where
quasispectrum_nonneg_of_nonneg : ∀ a : A, 0 ≤ a → ∀ x ∈ quasispectrum 𝕜 a, 0 ≤ x
export NonnegSpectrumClass (quasispectrum_nonneg_of_nonneg)
namespace NonnegSpectrumClass
lemma iff_spectrum_nonneg {𝕜 A : Type*} [LinearOrderedSemifield 𝕜] [Ring A] [PartialOrder A]
[Algebra 𝕜 A] : NonnegSpectrumClass 𝕜 A ↔ ∀ a : A, 0 ≤ a → ∀ x ∈ spectrum 𝕜 a, 0 ≤ x := by
simp [show NonnegSpectrumClass 𝕜 A ↔ _ from ⟨fun ⟨h⟩ ↦ h, (⟨·⟩)⟩,
quasispectrum_eq_spectrum_union_zero]
alias ⟨_, of_spectrum_nonneg⟩ := iff_spectrum_nonneg
end NonnegSpectrumClass
lemma spectrum_nonneg_of_nonneg {𝕜 A : Type*} [OrderedCommSemiring 𝕜] [Ring A] [PartialOrder A]
[Algebra 𝕜 A] [NonnegSpectrumClass 𝕜 A] ⦃a : A⦄ (ha : 0 ≤ a) ⦃x : 𝕜⦄ (hx : x ∈ spectrum 𝕜 a) :
0 ≤ x :=
NonnegSpectrumClass.quasispectrum_nonneg_of_nonneg a ha x (spectrum_subset_quasispectrum 𝕜 a hx)
/-! ### Restriction of the spectrum -/
/-- Given an element `a : A` of an `S`-algebra, where `S` is itself an `R`-algebra, we say that
the spectrum of `a` restricts via a function `f : S → R` if `f` is a left inverse of
`algebraMap R S`, and `f` is a right inverse of `algebraMap R S` on `spectrum S a`.
For example, when `f = Complex.re` (so `S := ℂ` and `R := ℝ`), `SpectrumRestricts a f` means that
the `ℂ`-spectrum of `a` is contained within `ℝ`. This arises naturally when `a` is selfadjoint
and `A` is a C⋆-algebra.
This is the property allows us to restrict a continuous functional calculus over `S` to a
continuous functional calculus over `R`. -/
structure QuasispectrumRestricts
{R S A : Type*} [CommSemiring R] [CommSemiring S] [NonUnitalRing A]
[Module R A] [Module S A] [Algebra R S] (a : A) (f : S → R) : Prop where
/-- `f` is a right inverse of `algebraMap R S` when restricted to `quasispectrum S a`. -/
rightInvOn : (quasispectrum S a).RightInvOn f (algebraMap R S)
/-- `f` is a left inverse of `algebraMap R S`. -/
left_inv : Function.LeftInverse f (algebraMap R S)
lemma quasispectrumRestricts_iff
{R S A : Type*} [CommSemiring R] [CommSemiring S] [NonUnitalRing A]
[Module R A] [Module S A] [Algebra R S] (a : A) (f : S → R) :
QuasispectrumRestricts a f ↔ (quasispectrum S a).RightInvOn f (algebraMap R S) ∧
Function.LeftInverse f (algebraMap R S) :=
⟨fun ⟨h₁, h₂⟩ ↦ ⟨h₁, h₂⟩, fun ⟨h₁, h₂⟩ ↦ ⟨h₁, h₂⟩⟩
@[simp]
theorem quasispectrum.algebraMap_mem_iff (S : Type*) {R A : Type*} [Semifield R] [Field S]
[NonUnitalRing A] [Algebra R S] [Module S A] [IsScalarTower S A A]
[SMulCommClass S A A] [Module R A] [IsScalarTower R S A] {a : A} {r : R} :
algebraMap R S r ∈ quasispectrum S a ↔ r ∈ quasispectrum R a := by
simp_rw [Unitization.quasispectrum_eq_spectrum_inr' _ S a, spectrum.algebraMap_mem_iff]
protected alias ⟨quasispectrum.of_algebraMap_mem, quasispectrum.algebraMap_mem⟩ :=
quasispectrum.algebraMap_mem_iff
@[simp]
theorem quasispectrum.preimage_algebraMap (S : Type*) {R A : Type*} [Semifield R] [Field S]
[NonUnitalRing A] [Algebra R S] [Module S A] [IsScalarTower S A A]
[SMulCommClass S A A] [Module R A] [IsScalarTower R S A] {a : A} :
algebraMap R S ⁻¹' quasispectrum S a = quasispectrum R a :=
Set.ext fun _ => quasispectrum.algebraMap_mem_iff _
namespace QuasispectrumRestricts
section NonUnital
variable {R S A : Type*} [Semifield R] [Field S] [NonUnitalRing A] [Module R A] [Module S A]
variable [Algebra R S] {a : A} {f : S → R}
protected theorem map_zero (h : QuasispectrumRestricts a f) : f 0 = 0 := by
rw [← h.left_inv 0, map_zero (algebraMap R S)]
theorem of_subset_range_algebraMap (hf : f.LeftInverse (algebraMap R S))
(h : quasispectrum S a ⊆ Set.range (algebraMap R S)) : QuasispectrumRestricts a f where
rightInvOn := fun s hs => by obtain ⟨r, rfl⟩ := h hs; rw [hf r]
left_inv := hf
lemma of_quasispectrum_eq {a b : A} {f : S → R} (ha : QuasispectrumRestricts a f)
(h : quasispectrum S a = quasispectrum S b) : QuasispectrumRestricts b f where
rightInvOn := h ▸ ha.rightInvOn
left_inv := ha.left_inv
variable [IsScalarTower S A A] [SMulCommClass S A A] [IsScalarTower R S A]
theorem algebraMap_image (h : QuasispectrumRestricts a f) :
algebraMap R S '' quasispectrum R a = quasispectrum S a := by
refine Set.eq_of_subset_of_subset ?_ fun s hs => ⟨f s, ?_⟩
· simpa only [quasispectrum.preimage_algebraMap] using
(quasispectrum S a).image_preimage_subset (algebraMap R S)
exact ⟨quasispectrum.of_algebraMap_mem S ((h.rightInvOn hs).symm ▸ hs), h.rightInvOn hs⟩
theorem image (h : QuasispectrumRestricts a f) : f '' quasispectrum S a = quasispectrum R a := by
simp only [← h.algebraMap_image, Set.image_image, h.left_inv _, Set.image_id']
theorem apply_mem (h : QuasispectrumRestricts a f) {s : S} (hs : s ∈ quasispectrum S a) :
f s ∈ quasispectrum R a :=
h.image ▸ ⟨s, hs, rfl⟩
theorem subset_preimage (h : QuasispectrumRestricts a f) :
quasispectrum S a ⊆ f ⁻¹' quasispectrum R a :=
h.image ▸ (quasispectrum S a).subset_preimage_image f
protected lemma comp {R₁ R₂ R₃ A : Type*} [Semifield R₁] [Field R₂] [Field R₃]
[NonUnitalRing A] [Module R₁ A] [Module R₂ A] [Module R₃ A] [Algebra R₁ R₂] [Algebra R₂ R₃]
[Algebra R₁ R₃] [IsScalarTower R₁ R₂ R₃] [IsScalarTower R₂ R₃ A] [IsScalarTower R₃ A A]
[SMulCommClass R₃ A A] {a : A} {f : R₃ → R₂} {g : R₂ → R₁} {e : R₃ → R₁} (hfge : g ∘ f = e)
(hf : QuasispectrumRestricts a f) (hg : QuasispectrumRestricts a g) :
QuasispectrumRestricts a e where
left_inv := by
convert hfge ▸ hf.left_inv.comp hg.left_inv
congrm(⇑$(IsScalarTower.algebraMap_eq R₁ R₂ R₃))
rightInvOn := by
convert hfge ▸ hg.rightInvOn.comp hf.rightInvOn fun _ ↦ hf.apply_mem
congrm(⇑$(IsScalarTower.algebraMap_eq R₁ R₂ R₃))
end NonUnital
end QuasispectrumRestricts
/-- A (reducible) alias of `QuasispectrumRestricts` which enforces stronger type class assumptions
on the types involved, as it's really intended for the `spectrum`. The separate definition also
allows for dot notation. -/
@[reducible]
def SpectrumRestricts
{R S A : Type*} [Semifield R] [Semifield S] [Ring A]
[Algebra R A] [Algebra S A] [Algebra R S] (a : A) (f : S → R) : Prop :=
QuasispectrumRestricts a f
namespace SpectrumRestricts
section Unital
variable {R S A : Type*} [Semifield R] [Semifield S] [Ring A]
variable [Algebra R S] [Algebra R A] [Algebra S A] {a : A} {f : S → R}
theorem rightInvOn (h : SpectrumRestricts a f) : (spectrum S a).RightInvOn f (algebraMap R S) :=
(QuasispectrumRestricts.rightInvOn h).mono <| spectrum_subset_quasispectrum _ _
theorem of_rightInvOn (h₁ : Function.LeftInverse f (algebraMap R S))
(h₂ : (spectrum S a).RightInvOn f (algebraMap R S)) : SpectrumRestricts a f where
rightInvOn x hx := by
obtain (rfl | hx) := mem_quasispectrum_iff.mp hx
· simpa using h₁ 0
· exact h₂ hx
left_inv := h₁
lemma _root_.spectrumRestricts_iff :
SpectrumRestricts a f ↔ (spectrum S a).RightInvOn f (algebraMap R S) ∧
Function.LeftInverse f (algebraMap R S) :=
⟨fun h ↦ ⟨h.rightInvOn, h.left_inv⟩, fun h ↦ .of_rightInvOn h.2 h.1⟩
theorem of_subset_range_algebraMap (hf : f.LeftInverse (algebraMap R S))
(h : spectrum S a ⊆ Set.range (algebraMap R S)) : SpectrumRestricts a f where
rightInvOn := fun s hs => by
rw [mem_quasispectrum_iff] at hs
obtain (rfl | hs) := hs
· simpa using hf 0
· obtain ⟨r, rfl⟩ := h hs
rw [hf r]
left_inv := hf
lemma of_spectrum_eq {a b : A} {f : S → R} (ha : SpectrumRestricts a f)
(h : spectrum S a = spectrum S b) : SpectrumRestricts b f where
rightInvOn := by
rw [quasispectrum_eq_spectrum_union_zero, ← h, ← quasispectrum_eq_spectrum_union_zero]
exact QuasispectrumRestricts.rightInvOn ha
left_inv := ha.left_inv
variable [IsScalarTower R S A]
theorem algebraMap_image (h : SpectrumRestricts a f) :
algebraMap R S '' spectrum R a = spectrum S a := by
refine Set.eq_of_subset_of_subset ?_ fun s hs => ⟨f s, ?_⟩
· simpa only [spectrum.preimage_algebraMap] using
(spectrum S a).image_preimage_subset (algebraMap R S)
exact ⟨spectrum.of_algebraMap_mem S ((h.rightInvOn hs).symm ▸ hs), h.rightInvOn hs⟩
theorem image (h : SpectrumRestricts a f) : f '' spectrum S a = spectrum R a := by
simp only [← h.algebraMap_image, Set.image_image, h.left_inv _, Set.image_id']
theorem apply_mem (h : SpectrumRestricts a f) {s : S} (hs : s ∈ spectrum S a) :
f s ∈ spectrum R a :=
h.image ▸ ⟨s, hs, rfl⟩
theorem subset_preimage (h : SpectrumRestricts a f) : spectrum S a ⊆ f ⁻¹' spectrum R a :=
h.image ▸ (spectrum S a).subset_preimage_image f
end Unital
end SpectrumRestricts
theorem quasispectrumRestricts_iff_spectrumRestricts_inr (S : Type*) {R A : Type*} [Semifield R]
[Field S] [NonUnitalRing A] [Algebra R S] [Module R A] [Module S A] [IsScalarTower S A A]
[SMulCommClass S A A] [IsScalarTower R S A] {a : A} {f : S → R} :
QuasispectrumRestricts a f ↔ SpectrumRestricts (a : Unitization S A) f := by
rw [quasispectrumRestricts_iff, spectrumRestricts_iff,
← Unitization.quasispectrum_eq_spectrum_inr']
theorem quasispectrumRestricts_iff_spectrumRestricts {R S A : Type*} [Semifield R] [Semifield S]
[Ring A] [Algebra R S] [Algebra R A] [Algebra S A] {a : A} {f : S → R} :
QuasispectrumRestricts a f ↔ SpectrumRestricts a f := by
rw [quasispectrumRestricts_iff, spectrumRestricts_iff, quasispectrum_eq_spectrum_union_zero]
refine and_congr_left fun h ↦ ?_
refine ⟨(Set.RightInvOn.mono · Set.subset_union_left), fun h' x hx ↦ ?_⟩
simp only [Set.union_singleton, Set.mem_insert_iff] at hx
obtain (rfl | hx) := hx
· simpa using h 0
· exact h' hx
|
Algebra\Algebra\Rat.lean | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Yury Kudryashov
-/
import Mathlib.Data.Rat.Cast.CharZero
import Mathlib.Algebra.Algebra.Defs
/-!
# Further basic results about `Algebra`'s over `ℚ`.
This file could usefully be split further.
-/
namespace RingHom
variable {R S : Type*}
-- Porting note: changed `[Ring R] [Ring S]` to `[Semiring R] [Semiring S]`
-- otherwise, Lean failed to find a `Subsingleton (ℚ →+* S)` instance
@[simp]
theorem map_rat_algebraMap [Semiring R] [Semiring S] [Algebra ℚ R] [Algebra ℚ S] (f : R →+* S)
(r : ℚ) : f (algebraMap ℚ R r) = algebraMap ℚ S r :=
RingHom.ext_iff.1 (Subsingleton.elim (f.comp (algebraMap ℚ R)) (algebraMap ℚ S)) r
end RingHom
section Rat
/-- Every division ring of characteristic zero is an algebra over the rationals. -/
instance DivisionRing.toRatAlgebra {α} [DivisionRing α] [CharZero α] : Algebra ℚ α where
smul := (· • ·)
smul_def' := Rat.smul_def
toRingHom := Rat.castHom α
commutes' := Rat.cast_commute
/-- The rational numbers are an algebra over the non-negative rationals. -/
instance : Algebra NNRat ℚ :=
NNRat.coeHom.toAlgebra
/-- The two `Algebra ℚ ℚ` instances should coincide. -/
example : DivisionRing.toRatAlgebra = Algebra.id ℚ :=
rfl
@[simp] theorem algebraMap_rat_rat : algebraMap ℚ ℚ = RingHom.id ℚ := rfl
instance algebra_rat_subsingleton {α} [Semiring α] : Subsingleton (Algebra ℚ α) :=
⟨fun x y => Algebra.algebra_ext x y <| RingHom.congr_fun <| Subsingleton.elim _ _⟩
end Rat
|
Algebra\Algebra\RestrictScalars.lean | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Yury Kudryashov
-/
import Mathlib.Algebra.Algebra.Tower
/-!
# The `RestrictScalars` type alias
See the documentation attached to the `RestrictScalars` definition for advice on how and when to
use this type alias. As described there, it is often a better choice to use the `IsScalarTower`
typeclass instead.
## Main definitions
* `RestrictScalars R S M`: the `S`-module `M` viewed as an `R` module when `S` is an `R`-algebra.
Note that by default we do *not* have a `Module S (RestrictScalars R S M)` instance
for the original action.
This is available as a def `RestrictScalars.moduleOrig` if really needed.
* `RestrictScalars.addEquiv : RestrictScalars R S M ≃+ M`: the additive equivalence
between the restricted and original space (in fact, they are definitionally equal,
but sometimes it is helpful to avoid using this fact, to keep instances from leaking).
* `RestrictScalars.ringEquiv : RestrictScalars R S A ≃+* A`: the ring equivalence
between the restricted and original space when the module is an algebra.
## See also
There are many similarly-named definitions elsewhere which do not refer to this type alias. These
refer to restricting the scalar type in a bundled type, such as from `A →ₗ[R] B` to `A →ₗ[S] B`:
* `LinearMap.restrictScalars`
* `LinearEquiv.restrictScalars`
* `AlgHom.restrictScalars`
* `AlgEquiv.restrictScalars`
* `Submodule.restrictScalars`
* `Subalgebra.restrictScalars`
-/
variable (R S M A : Type*)
/-- If we put an `R`-algebra structure on a semiring `S`, we get a natural equivalence from the
category of `S`-modules to the category of representations of the algebra `S` (over `R`). The type
synonym `RestrictScalars` is essentially this equivalence.
Warning: use this type synonym judiciously! Consider an example where we want to construct an
`R`-linear map from `M` to `S`, given:
```lean
variable (R S M : Type*)
variable [CommSemiring R] [Semiring S] [Algebra R S] [AddCommMonoid M] [Module S M]
```
With the assumptions above we can't directly state our map as we have no `Module R M` structure, but
`RestrictScalars` permits it to be written as:
```lean
-- an `R`-module structure on `M` is provided by `RestrictScalars` which is compatible
example : RestrictScalars R S M →ₗ[R] S := sorry
```
However, it is usually better just to add this extra structure as an argument:
```lean
-- an `R`-module structure on `M` and proof of its compatibility is provided by the user
example [Module R M] [IsScalarTower R S M] : M →ₗ[R] S := sorry
```
The advantage of the second approach is that it defers the duty of providing the missing typeclasses
`[Module R M] [IsScalarTower R S M]`. If some concrete `M` naturally carries these (as is often
the case) then we have avoided `RestrictScalars` entirely. If not, we can pass
`RestrictScalars R S M` later on instead of `M`.
Note that this means we almost always want to state definitions and lemmas in the language of
`IsScalarTower` rather than `RestrictScalars`.
An example of when one might want to use `RestrictScalars` would be if one has a vector space
over a field of characteristic zero and wishes to make use of the `ℚ`-algebra structure. -/
@[nolint unusedArguments]
def RestrictScalars (_R _S M : Type*) : Type _ := M
instance [I : Inhabited M] : Inhabited (RestrictScalars R S M) := I
instance [I : AddCommMonoid M] : AddCommMonoid (RestrictScalars R S M) := I
instance [I : AddCommGroup M] : AddCommGroup (RestrictScalars R S M) := I
section Module
section
variable [Semiring S] [AddCommMonoid M]
/-- We temporarily install an action of the original ring on `RestrictScalars R S M`. -/
def RestrictScalars.moduleOrig [I : Module S M] : Module S (RestrictScalars R S M) := I
variable [CommSemiring R] [Algebra R S]
section
attribute [local instance] RestrictScalars.moduleOrig
/-- When `M` is a module over a ring `S`, and `S` is an algebra over `R`, then `M` inherits a
module structure over `R`.
The preferred way of setting this up is `[Module R M] [Module S M] [IsScalarTower R S M]`.
-/
instance RestrictScalars.module [Module S M] : Module R (RestrictScalars R S M) :=
Module.compHom M (algebraMap R S)
/-- This instance is only relevant when `RestrictScalars.moduleOrig` is available as an instance.
-/
instance RestrictScalars.isScalarTower [Module S M] : IsScalarTower R S (RestrictScalars R S M) :=
⟨fun r S M ↦ by
rw [Algebra.smul_def, mul_smul]
rfl⟩
end
/-- When `M` is a right-module over a ring `S`, and `S` is an algebra over `R`, then `M` inherits a
right-module structure over `R`.
The preferred way of setting this up is
`[Module Rᵐᵒᵖ M] [Module Sᵐᵒᵖ M] [IsScalarTower Rᵐᵒᵖ Sᵐᵒᵖ M]`.
-/
instance RestrictScalars.opModule [Module Sᵐᵒᵖ M] : Module Rᵐᵒᵖ (RestrictScalars R S M) :=
letI : Module Sᵐᵒᵖ (RestrictScalars R S M) := ‹Module Sᵐᵒᵖ M›
Module.compHom M (RingHom.op <| algebraMap R S)
instance RestrictScalars.isCentralScalar [Module S M] [Module Sᵐᵒᵖ M] [IsCentralScalar S M] :
IsCentralScalar R (RestrictScalars R S M) where
op_smul_eq_smul r _x := (op_smul_eq_smul (algebraMap R S r) (_ : M) : _)
/-- The `R`-algebra homomorphism from the original coefficient algebra `S` to endomorphisms
of `RestrictScalars R S M`.
-/
def RestrictScalars.lsmul [Module S M] : S →ₐ[R] Module.End R (RestrictScalars R S M) :=
-- We use `RestrictScalars.moduleOrig` in the implementation,
-- but not in the type.
letI : Module S (RestrictScalars R S M) := RestrictScalars.moduleOrig R S M
Algebra.lsmul R R (RestrictScalars R S M)
end
variable [AddCommMonoid M]
/-- `RestrictScalars.addEquiv` is the additive equivalence with the original module. -/
def RestrictScalars.addEquiv : RestrictScalars R S M ≃+ M :=
AddEquiv.refl M
variable [CommSemiring R] [Semiring S] [Algebra R S] [Module S M]
theorem RestrictScalars.smul_def (c : R) (x : RestrictScalars R S M) :
c • x = (RestrictScalars.addEquiv R S M).symm
(algebraMap R S c • RestrictScalars.addEquiv R S M x) :=
rfl
@[simp]
theorem RestrictScalars.addEquiv_map_smul (c : R) (x : RestrictScalars R S M) :
RestrictScalars.addEquiv R S M (c • x) = algebraMap R S c • RestrictScalars.addEquiv R S M x :=
rfl
theorem RestrictScalars.addEquiv_symm_map_algebraMap_smul (r : R) (x : M) :
(RestrictScalars.addEquiv R S M).symm (algebraMap R S r • x) =
r • (RestrictScalars.addEquiv R S M).symm x :=
rfl
theorem RestrictScalars.addEquiv_symm_map_smul_smul (r : R) (s : S) (x : M) :
(RestrictScalars.addEquiv R S M).symm ((r • s) • x) =
r • (RestrictScalars.addEquiv R S M).symm (s • x) := by
rw [Algebra.smul_def, mul_smul]
rfl
theorem RestrictScalars.lsmul_apply_apply (s : S) (x : RestrictScalars R S M) :
RestrictScalars.lsmul R S M s x =
(RestrictScalars.addEquiv R S M).symm (s • RestrictScalars.addEquiv R S M x) :=
rfl
end Module
section Algebra
instance [I : Semiring A] : Semiring (RestrictScalars R S A) := I
instance [I : Ring A] : Ring (RestrictScalars R S A) := I
instance [I : CommSemiring A] : CommSemiring (RestrictScalars R S A) := I
instance [I : CommRing A] : CommRing (RestrictScalars R S A) := I
variable [Semiring A]
/-- Tautological ring isomorphism `RestrictScalars R S A ≃+* A`. -/
def RestrictScalars.ringEquiv : RestrictScalars R S A ≃+* A :=
RingEquiv.refl _
variable [CommSemiring S] [Algebra S A] [CommSemiring R] [Algebra R S]
@[simp]
theorem RestrictScalars.ringEquiv_map_smul (r : R) (x : RestrictScalars R S A) :
RestrictScalars.ringEquiv R S A (r • x) =
algebraMap R S r • RestrictScalars.ringEquiv R S A x :=
rfl
/-- `R ⟶ S` induces `S-Alg ⥤ R-Alg` -/
instance RestrictScalars.algebra : Algebra R (RestrictScalars R S A) :=
{ (algebraMap S A).comp (algebraMap R S) with
smul := (· • ·)
commutes' := fun _ _ ↦ Algebra.commutes' (A := A) _ _
smul_def' := fun _ _ ↦ Algebra.smul_def' (A := A) _ _ }
@[simp]
theorem RestrictScalars.ringEquiv_algebraMap (r : R) :
RestrictScalars.ringEquiv R S A (algebraMap R (RestrictScalars R S A) r) =
algebraMap S A (algebraMap R S r) :=
rfl
end Algebra
|
Algebra\Algebra\Spectrum.lean | /-
Copyright (c) 2021 Jireh Loreaux. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jireh Loreaux
-/
import Mathlib.Algebra.Star.Subalgebra
import Mathlib.RingTheory.Ideal.Maps
import Mathlib.Tactic.NoncommRing
/-!
# Spectrum of an element in an algebra
This file develops the basic theory of the spectrum of an element of an algebra.
This theory will serve as the foundation for spectral theory in Banach algebras.
## Main definitions
* `resolventSet a : Set R`: the resolvent set of an element `a : A` where
`A` is an `R`-algebra.
* `spectrum a : Set R`: the spectrum of an element `a : A` where
`A` is an `R`-algebra.
* `resolvent : R → A`: the resolvent function is `fun r ↦ Ring.inverse (↑ₐr - a)`, and hence
when `r ∈ resolvent R A`, it is actually the inverse of the unit `(↑ₐr - a)`.
## Main statements
* `spectrum.unit_smul_eq_smul` and `spectrum.smul_eq_smul`: units in the scalar ring commute
(multiplication) with the spectrum, and over a field even `0` commutes with the spectrum.
* `spectrum.left_add_coset_eq`: elements of the scalar ring commute (addition) with the spectrum.
* `spectrum.unit_mem_mul_iff_mem_swap_mul` and `spectrum.preimage_units_mul_eq_swap_mul`: the
units (of `R`) in `σ (a*b)` coincide with those in `σ (b*a)`.
* `spectrum.scalar_eq`: in a nontrivial algebra over a field, the spectrum of a scalar is
a singleton.
## Notations
* `σ a` : `spectrum R a` of `a : A`
-/
open Set
open scoped Pointwise
universe u v
section Defs
variable (R : Type u) {A : Type v}
variable [CommSemiring R] [Ring A] [Algebra R A]
local notation "↑ₐ" => algebraMap R A
-- definition and basic properties
/-- Given a commutative ring `R` and an `R`-algebra `A`, the *resolvent set* of `a : A`
is the `Set R` consisting of those `r : R` for which `r•1 - a` is a unit of the
algebra `A`. -/
def resolventSet (a : A) : Set R :=
{r : R | IsUnit (↑ₐ r - a)}
/-- Given a commutative ring `R` and an `R`-algebra `A`, the *spectrum* of `a : A`
is the `Set R` consisting of those `r : R` for which `r•1 - a` is not a unit of the
algebra `A`.
The spectrum is simply the complement of the resolvent set. -/
def spectrum (a : A) : Set R :=
(resolventSet R a)ᶜ
variable {R}
/-- Given an `a : A` where `A` is an `R`-algebra, the *resolvent* is
a map `R → A` which sends `r : R` to `(algebraMap R A r - a)⁻¹` when
`r ∈ resolvent R A` and `0` when `r ∈ spectrum R A`. -/
noncomputable def resolvent (a : A) (r : R) : A :=
Ring.inverse (↑ₐ r - a)
/-- The unit `1 - r⁻¹ • a` constructed from `r • 1 - a` when the latter is a unit. -/
@[simps]
noncomputable def IsUnit.subInvSMul {r : Rˣ} {s : R} {a : A} (h : IsUnit <| r • ↑ₐ s - a) : Aˣ where
val := ↑ₐ s - r⁻¹ • a
inv := r • ↑h.unit⁻¹
val_inv := by rw [mul_smul_comm, ← smul_mul_assoc, smul_sub, smul_inv_smul, h.mul_val_inv]
inv_val := by rw [smul_mul_assoc, ← mul_smul_comm, smul_sub, smul_inv_smul, h.val_inv_mul]
end Defs
namespace spectrum
section ScalarSemiring
variable {R : Type u} {A : Type v}
variable [CommSemiring R] [Ring A] [Algebra R A]
local notation "σ" => spectrum R
local notation "↑ₐ" => algebraMap R A
theorem mem_iff {r : R} {a : A} : r ∈ σ a ↔ ¬IsUnit (↑ₐ r - a) :=
Iff.rfl
theorem not_mem_iff {r : R} {a : A} : r ∉ σ a ↔ IsUnit (↑ₐ r - a) := by
apply not_iff_not.mp
simp [Set.not_not_mem, mem_iff]
variable (R)
theorem zero_mem_iff {a : A} : (0 : R) ∈ σ a ↔ ¬IsUnit a := by
rw [mem_iff, map_zero, zero_sub, IsUnit.neg_iff]
alias ⟨not_isUnit_of_zero_mem, zero_mem⟩ := spectrum.zero_mem_iff
theorem zero_not_mem_iff {a : A} : (0 : R) ∉ σ a ↔ IsUnit a := by
rw [zero_mem_iff, Classical.not_not]
alias ⟨isUnit_of_zero_not_mem, zero_not_mem⟩ := spectrum.zero_not_mem_iff
lemma subset_singleton_zero_compl {a : A} (ha : IsUnit a) : spectrum R a ⊆ {0}ᶜ :=
Set.subset_compl_singleton_iff.mpr <| spectrum.zero_not_mem R ha
variable {R}
theorem mem_resolventSet_of_left_right_inverse {r : R} {a b c : A} (h₁ : (↑ₐ r - a) * b = 1)
(h₂ : c * (↑ₐ r - a) = 1) : r ∈ resolventSet R a :=
Units.isUnit ⟨↑ₐ r - a, b, h₁, by rwa [← left_inv_eq_right_inv h₂ h₁]⟩
theorem mem_resolventSet_iff {r : R} {a : A} : r ∈ resolventSet R a ↔ IsUnit (↑ₐ r - a) :=
Iff.rfl
@[simp]
theorem algebraMap_mem_iff (S : Type*) {R A : Type*} [CommSemiring R] [CommSemiring S]
[Ring A] [Algebra R S] [Algebra R A] [Algebra S A] [IsScalarTower R S A] {a : A} {r : R} :
algebraMap R S r ∈ spectrum S a ↔ r ∈ spectrum R a := by
simp only [spectrum.mem_iff, Algebra.algebraMap_eq_smul_one, smul_assoc, one_smul]
protected alias ⟨of_algebraMap_mem, algebraMap_mem⟩ := spectrum.algebraMap_mem_iff
@[simp]
theorem preimage_algebraMap (S : Type*) {R A : Type*} [CommSemiring R] [CommSemiring S]
[Ring A] [Algebra R S] [Algebra R A] [Algebra S A] [IsScalarTower R S A] {a : A} :
algebraMap R S ⁻¹' spectrum S a = spectrum R a :=
Set.ext fun _ => spectrum.algebraMap_mem_iff _
@[simp]
theorem resolventSet_of_subsingleton [Subsingleton A] (a : A) : resolventSet R a = Set.univ := by
simp_rw [resolventSet, Subsingleton.elim (algebraMap R A _ - a) 1, isUnit_one, Set.setOf_true]
@[simp]
theorem of_subsingleton [Subsingleton A] (a : A) : spectrum R a = ∅ := by
rw [spectrum, resolventSet_of_subsingleton, Set.compl_univ]
theorem resolvent_eq {a : A} {r : R} (h : r ∈ resolventSet R a) : resolvent a r = ↑h.unit⁻¹ :=
Ring.inverse_unit h.unit
theorem units_smul_resolvent {r : Rˣ} {s : R} {a : A} :
r • resolvent a (s : R) = resolvent (r⁻¹ • a) (r⁻¹ • s : R) := by
by_cases h : s ∈ spectrum R a
· rw [mem_iff] at h
simp only [resolvent, Algebra.algebraMap_eq_smul_one] at *
rw [smul_assoc, ← smul_sub]
have h' : ¬IsUnit (r⁻¹ • (s • (1 : A) - a)) := fun hu =>
h (by simpa only [smul_inv_smul] using IsUnit.smul r hu)
simp only [Ring.inverse_non_unit _ h, Ring.inverse_non_unit _ h', smul_zero]
· simp only [resolvent]
have h' : IsUnit (r • algebraMap R A (r⁻¹ • s) - a) := by
simpa [Algebra.algebraMap_eq_smul_one, smul_assoc] using not_mem_iff.mp h
rw [← h'.val_subInvSMul, ← (not_mem_iff.mp h).unit_spec, Ring.inverse_unit, Ring.inverse_unit,
h'.val_inv_subInvSMul]
simp only [Algebra.algebraMap_eq_smul_one, smul_assoc, smul_inv_smul]
theorem units_smul_resolvent_self {r : Rˣ} {a : A} :
r • resolvent a (r : R) = resolvent (r⁻¹ • a) (1 : R) := by
simpa only [Units.smul_def, Algebra.id.smul_eq_mul, Units.inv_mul] using
@units_smul_resolvent _ _ _ _ _ r r a
/-- The resolvent is a unit when the argument is in the resolvent set. -/
theorem isUnit_resolvent {r : R} {a : A} : r ∈ resolventSet R a ↔ IsUnit (resolvent a r) :=
isUnit_ring_inverse.symm
theorem inv_mem_resolventSet {r : Rˣ} {a : Aˣ} (h : (r : R) ∈ resolventSet R (a : A)) :
(↑r⁻¹ : R) ∈ resolventSet R (↑a⁻¹ : A) := by
rw [mem_resolventSet_iff, Algebra.algebraMap_eq_smul_one, ← Units.smul_def] at h ⊢
rw [IsUnit.smul_sub_iff_sub_inv_smul, inv_inv, IsUnit.sub_iff]
have h₁ : (a : A) * (r • (↑a⁻¹ : A) - 1) = r • (1 : A) - a := by
rw [mul_sub, mul_smul_comm, a.mul_inv, mul_one]
have h₂ : (r • (↑a⁻¹ : A) - 1) * a = r • (1 : A) - a := by
rw [sub_mul, smul_mul_assoc, a.inv_mul, one_mul]
have hcomm : Commute (a : A) (r • (↑a⁻¹ : A) - 1) := by rwa [← h₂] at h₁
exact (hcomm.isUnit_mul_iff.mp (h₁.symm ▸ h)).2
theorem inv_mem_iff {r : Rˣ} {a : Aˣ} : (r : R) ∈ σ (a : A) ↔ (↑r⁻¹ : R) ∈ σ (↑a⁻¹ : A) :=
not_iff_not.2 <| ⟨inv_mem_resolventSet, inv_mem_resolventSet⟩
theorem zero_mem_resolventSet_of_unit (a : Aˣ) : 0 ∈ resolventSet R (a : A) := by
simpa only [mem_resolventSet_iff, ← not_mem_iff, zero_not_mem_iff] using a.isUnit
theorem ne_zero_of_mem_of_unit {a : Aˣ} {r : R} (hr : r ∈ σ (a : A)) : r ≠ 0 := fun hn =>
(hn ▸ hr) (zero_mem_resolventSet_of_unit a)
theorem add_mem_iff {a : A} {r s : R} : r + s ∈ σ a ↔ r ∈ σ (-↑ₐ s + a) := by
simp only [mem_iff, sub_neg_eq_add, ← sub_sub, map_add]
theorem add_mem_add_iff {a : A} {r s : R} : r + s ∈ σ (↑ₐ s + a) ↔ r ∈ σ a := by
rw [add_mem_iff, neg_add_cancel_left]
theorem smul_mem_smul_iff {a : A} {s : R} {r : Rˣ} : r • s ∈ σ (r • a) ↔ s ∈ σ a := by
simp only [mem_iff, not_iff_not, Algebra.algebraMap_eq_smul_one, smul_assoc, ← smul_sub,
isUnit_smul_iff]
theorem unit_smul_eq_smul (a : A) (r : Rˣ) : σ (r • a) = r • σ a := by
ext x
have x_eq : x = r • r⁻¹ • x := by simp
nth_rw 1 [x_eq]
rw [smul_mem_smul_iff]
constructor
· exact fun h => ⟨r⁻¹ • x, ⟨h, show r • r⁻¹ • x = x by simp⟩⟩
· rintro ⟨w, _, (x'_eq : r • w = x)⟩
simpa [← x'_eq ]
-- `r ∈ σ(a*b) ↔ r ∈ σ(b*a)` for any `r : Rˣ`
theorem unit_mem_mul_iff_mem_swap_mul {a b : A} {r : Rˣ} : ↑r ∈ σ (a * b) ↔ ↑r ∈ σ (b * a) := by
have h₁ : ∀ x y : A, IsUnit (1 - x * y) → IsUnit (1 - y * x) := by
refine fun x y h => ⟨⟨1 - y * x, 1 + y * h.unit.inv * x, ?_, ?_⟩, rfl⟩
· calc
(1 - y * x) * (1 + y * (IsUnit.unit h).inv * x) =
1 - y * x + y * ((1 - x * y) * h.unit.inv) * x := by noncomm_ring
_ = 1 := by simp only [Units.inv_eq_val_inv, IsUnit.mul_val_inv, mul_one, sub_add_cancel]
· calc
(1 + y * (IsUnit.unit h).inv * x) * (1 - y * x) =
1 - y * x + y * (h.unit.inv * (1 - x * y)) * x := by noncomm_ring
_ = 1 := by simp only [Units.inv_eq_val_inv, IsUnit.val_inv_mul, mul_one, sub_add_cancel]
have := Iff.intro (h₁ (r⁻¹ • a) b) (h₁ b (r⁻¹ • a))
rw [mul_smul_comm r⁻¹ b a] at this
simpa only [mem_iff, not_iff_not, Algebra.algebraMap_eq_smul_one, ← Units.smul_def,
IsUnit.smul_sub_iff_sub_inv_smul, smul_mul_assoc]
theorem preimage_units_mul_eq_swap_mul {a b : A} :
((↑) : Rˣ → R) ⁻¹' σ (a * b) = (↑) ⁻¹' σ (b * a) :=
Set.ext fun _ => unit_mem_mul_iff_mem_swap_mul
section Star
variable [InvolutiveStar R] [StarRing A] [StarModule R A]
theorem star_mem_resolventSet_iff {r : R} {a : A} :
star r ∈ resolventSet R a ↔ r ∈ resolventSet R (star a) := by
refine ⟨fun h => ?_, fun h => ?_⟩ <;>
simpa only [mem_resolventSet_iff, Algebra.algebraMap_eq_smul_one, star_sub, star_smul,
star_star, star_one] using IsUnit.star h
protected theorem map_star (a : A) : σ (star a) = star (σ a) := by
ext
simpa only [Set.mem_star, mem_iff, not_iff_not] using star_mem_resolventSet_iff.symm
end Star
end ScalarSemiring
section ScalarRing
variable {R : Type u} {A : Type v}
variable [CommRing R] [Ring A] [Algebra R A]
local notation "σ" => spectrum R
local notation "↑ₐ" => algebraMap R A
theorem subset_subalgebra {S R A : Type*} [CommSemiring R] [Ring A] [Algebra R A]
[SetLike S A] [SubringClass S A] [SMulMemClass S R A] {s : S} (a : s) :
spectrum R (a : A) ⊆ spectrum R a :=
Set.compl_subset_compl.mpr fun _ ↦ IsUnit.map (SubalgebraClass.val s)
@[deprecated subset_subalgebra (since := "2024-07-19")]
theorem subset_starSubalgebra [StarRing R] [StarRing A] [StarModule R A] {S : StarSubalgebra R A}
(a : S) : spectrum R (a : A) ⊆ spectrum R a :=
subset_subalgebra a
theorem singleton_add_eq (a : A) (r : R) : {r} + σ a = σ (↑ₐ r + a) :=
ext fun x => by
rw [singleton_add, image_add_left, mem_preimage, add_comm, add_mem_iff, map_neg, neg_neg]
theorem add_singleton_eq (a : A) (r : R) : σ a + {r} = σ (a + ↑ₐ r) :=
add_comm {r} (σ a) ▸ add_comm (algebraMap R A r) a ▸ singleton_add_eq a r
theorem vadd_eq (a : A) (r : R) : r +ᵥ σ a = σ (↑ₐ r + a) :=
singleton_add.symm.trans <| singleton_add_eq a r
theorem neg_eq (a : A) : -σ a = σ (-a) :=
Set.ext fun x => by
simp only [mem_neg, mem_iff, map_neg, ← neg_add', IsUnit.neg_iff, sub_neg_eq_add]
theorem singleton_sub_eq (a : A) (r : R) : {r} - σ a = σ (↑ₐ r - a) := by
rw [sub_eq_add_neg, neg_eq, singleton_add_eq, sub_eq_add_neg]
theorem sub_singleton_eq (a : A) (r : R) : σ a - {r} = σ (a - ↑ₐ r) := by
simpa only [neg_sub, neg_eq] using congr_arg Neg.neg (singleton_sub_eq a r)
end ScalarRing
section ScalarField
variable {𝕜 : Type u} {A : Type v}
variable [Field 𝕜] [Ring A] [Algebra 𝕜 A]
local notation "σ" => spectrum 𝕜
local notation "↑ₐ" => algebraMap 𝕜 A
/-- Without the assumption `Nontrivial A`, then `0 : A` would be invertible. -/
@[simp]
theorem zero_eq [Nontrivial A] : σ (0 : A) = {0} := by
refine Set.Subset.antisymm ?_ (by simp [Algebra.algebraMap_eq_smul_one, mem_iff])
rw [spectrum, Set.compl_subset_comm]
intro k hk
rw [Set.mem_compl_singleton_iff] at hk
have : IsUnit (Units.mk0 k hk • (1 : A)) := IsUnit.smul (Units.mk0 k hk) isUnit_one
simpa [mem_resolventSet_iff, Algebra.algebraMap_eq_smul_one]
@[simp]
theorem scalar_eq [Nontrivial A] (k : 𝕜) : σ (↑ₐ k) = {k} := by
rw [← add_zero (↑ₐ k), ← singleton_add_eq, zero_eq, Set.singleton_add_singleton, add_zero]
@[simp]
theorem one_eq [Nontrivial A] : σ (1 : A) = {1} :=
calc
σ (1 : A) = σ (↑ₐ 1) := by rw [Algebra.algebraMap_eq_smul_one, one_smul]
_ = {1} := scalar_eq 1
/-- the assumption `(σ a).Nonempty` is necessary and cannot be removed without
further conditions on the algebra `A` and scalar field `𝕜`. -/
theorem smul_eq_smul [Nontrivial A] (k : 𝕜) (a : A) (ha : (σ a).Nonempty) :
σ (k • a) = k • σ a := by
rcases eq_or_ne k 0 with (rfl | h)
· simpa [ha, zero_smul_set] using (show {(0 : 𝕜)} = (0 : Set 𝕜) from rfl)
· exact unit_smul_eq_smul a (Units.mk0 k h)
theorem nonzero_mul_eq_swap_mul (a b : A) : σ (a * b) \ {0} = σ (b * a) \ {0} := by
suffices h : ∀ x y : A, σ (x * y) \ {0} ⊆ σ (y * x) \ {0} from
Set.eq_of_subset_of_subset (h a b) (h b a)
rintro _ _ k ⟨k_mem, k_neq⟩
change ((Units.mk0 k k_neq) : 𝕜) ∈ _ at k_mem
exact ⟨unit_mem_mul_iff_mem_swap_mul.mp k_mem, k_neq⟩
protected theorem map_inv (a : Aˣ) : (σ (a : A))⁻¹ = σ (↑a⁻¹ : A) := by
refine Set.eq_of_subset_of_subset (fun k hk => ?_) fun k hk => ?_
· rw [Set.mem_inv] at hk
have : k ≠ 0 := by simpa only [inv_inv] using inv_ne_zero (ne_zero_of_mem_of_unit hk)
lift k to 𝕜ˣ using isUnit_iff_ne_zero.mpr this
rw [← Units.val_inv_eq_inv_val k] at hk
exact inv_mem_iff.mp hk
· lift k to 𝕜ˣ using isUnit_iff_ne_zero.mpr (ne_zero_of_mem_of_unit hk)
simpa only [Units.val_inv_eq_inv_val] using inv_mem_iff.mp hk
end ScalarField
end spectrum
namespace AlgHom
section CommSemiring
variable {F R A B : Type*} [CommSemiring R] [Ring A] [Algebra R A] [Ring B] [Algebra R B]
variable [FunLike F A B] [AlgHomClass F R A B]
local notation "σ" => spectrum R
local notation "↑ₐ" => algebraMap R A
theorem mem_resolventSet_apply (φ : F) {a : A} {r : R} (h : r ∈ resolventSet R a) :
r ∈ resolventSet R ((φ : A → B) a) := by
simpa only [map_sub, AlgHomClass.commutes] using h.map φ
theorem spectrum_apply_subset (φ : F) (a : A) : σ ((φ : A → B) a) ⊆ σ a := fun _ =>
mt (mem_resolventSet_apply φ)
end CommSemiring
section CommRing
variable {F R A B : Type*} [CommRing R] [Ring A] [Algebra R A] [Ring B] [Algebra R B]
variable [FunLike F A R] [AlgHomClass F R A R]
local notation "σ" => spectrum R
local notation "↑ₐ" => algebraMap R A
theorem apply_mem_spectrum [Nontrivial R] (φ : F) (a : A) : φ a ∈ σ a := by
have h : ↑ₐ (φ a) - a ∈ RingHom.ker (φ : A →+* R) := by
simp only [RingHom.mem_ker, map_sub, RingHom.coe_coe, AlgHomClass.commutes,
Algebra.id.map_eq_id, RingHom.id_apply, sub_self]
simp only [spectrum.mem_iff, ← mem_nonunits_iff,
coe_subset_nonunits (RingHom.ker_ne_top (φ : A →+* R)) h]
end CommRing
end AlgHom
@[simp]
theorem AlgEquiv.spectrum_eq {F R A B : Type*} [CommSemiring R] [Ring A] [Ring B] [Algebra R A]
[Algebra R B] [EquivLike F A B] [AlgEquivClass F R A B] (f : F) (a : A) :
spectrum R (f a) = spectrum R a :=
Set.Subset.antisymm (AlgHom.spectrum_apply_subset _ _) <| by
simpa only [AlgEquiv.coe_algHom, AlgEquiv.coe_coe_symm_apply_coe_apply] using
AlgHom.spectrum_apply_subset (f : A ≃ₐ[R] B).symm (f a)
section ConjugateUnits
variable {R A : Type*} [CommSemiring R] [Ring A] [Algebra R A]
/-- Conjugation by a unit preserves the spectrum, inverse on right. -/
@[simp]
lemma spectrum.units_conjugate {a : A} {u : Aˣ} :
spectrum R (u * a * u⁻¹) = spectrum R a := by
suffices ∀ (b : A) (v : Aˣ), spectrum R (v * b * v⁻¹) ⊆ spectrum R b by
refine le_antisymm (this a u) ?_
apply le_of_eq_of_le ?_ <| this (u * a * u⁻¹) u⁻¹
simp [mul_assoc]
intro a u μ hμ
rw [spectrum.mem_iff] at hμ ⊢
contrapose! hμ
simpa [mul_sub, sub_mul, Algebra.right_comm] using u.isUnit.mul hμ |>.mul u⁻¹.isUnit
/-- Conjugation by a unit preserves the spectrum, inverse on left. -/
@[simp]
lemma spectrum.units_conjugate' {a : A} {u : Aˣ} :
spectrum R (u⁻¹ * a * u) = spectrum R a := by
simpa using spectrum.units_conjugate (u := u⁻¹)
end ConjugateUnits
|
Algebra\Algebra\Tower.lean | /-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Anne Baanen
-/
import Mathlib.Algebra.Algebra.Equiv
import Mathlib.LinearAlgebra.Span
/-!
# Towers of algebras
In this file we prove basic facts about towers of algebra.
An algebra tower A/S/R is expressed by having instances of `Algebra A S`,
`Algebra R S`, `Algebra R A` and `IsScalarTower R S A`, the later asserting the
compatibility condition `(r • s) • a = r • (s • a)`.
An important definition is `toAlgHom R S A`, the canonical `R`-algebra homomorphism `S →ₐ[R] A`.
-/
open Pointwise
universe u v w u₁ v₁
variable (R : Type u) (S : Type v) (A : Type w) (B : Type u₁) (M : Type v₁)
namespace Algebra
variable [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B]
variable [AddCommMonoid M] [Module R M] [Module A M] [Module B M]
variable [IsScalarTower R A M] [IsScalarTower R B M] [SMulCommClass A B M]
variable {A}
/-- The `R`-algebra morphism `A → End (M)` corresponding to the representation of the algebra `A`
on the `B`-module `M`.
This is a stronger version of `DistribMulAction.toLinearMap`, and could also have been
called `Algebra.toModuleEnd`.
The typeclasses correspond to the situation where the types act on each other as
```
R ----→ B
| ⟍ |
| ⟍ |
↓ ↘ ↓
A ----→ M
```
where the diagram commutes, the action by `R` commutes with everything, and the action by `A` and
`B` on `M` commute.
Typically this is most useful with `B = R` as `Algebra.lsmul R R A : A →ₐ[R] Module.End R M`.
However this can be used to get the fact that left-multiplication by `A` is right `A`-linear, and
vice versa, as
```lean
example : A →ₐ[R] Module.End Aᵐᵒᵖ A := Algebra.lsmul R Aᵐᵒᵖ A
example : Aᵐᵒᵖ →ₐ[R] Module.End A A := Algebra.lsmul R A A
```
respectively; though `LinearMap.mulLeft` and `LinearMap.mulRight` can also be used here.
-/
def lsmul : A →ₐ[R] Module.End B M where
toFun := DistribMulAction.toLinearMap B M
map_one' := LinearMap.ext fun _ => one_smul A _
map_mul' a b := LinearMap.ext <| smul_assoc a b
map_zero' := LinearMap.ext fun _ => zero_smul A _
map_add' _a _b := LinearMap.ext fun _ => add_smul _ _ _
commutes' r := LinearMap.ext <| algebraMap_smul A r
@[simp]
theorem lsmul_coe (a : A) : (lsmul R B M a : M → M) = (a • ·) := rfl
end Algebra
namespace IsScalarTower
section Module
variable [CommSemiring R] [Semiring A] [Algebra R A]
variable [MulAction A M]
variable {R} {M}
theorem algebraMap_smul [SMul R M] [IsScalarTower R A M] (r : R) (x : M) :
algebraMap R A r • x = r • x := by
rw [Algebra.algebraMap_eq_smul_one, smul_assoc, one_smul]
variable {A} in
theorem of_algebraMap_smul [SMul R M] (h : ∀ (r : R) (x : M), algebraMap R A r • x = r • x) :
IsScalarTower R A M where
smul_assoc r a x := by rw [Algebra.smul_def, mul_smul, h]
variable (R M) in
theorem of_compHom : letI := MulAction.compHom M (algebraMap R A : R →* A); IsScalarTower R A M :=
letI := MulAction.compHom M (algebraMap R A : R →* A); of_algebraMap_smul fun _ _ ↦ rfl
end Module
section Semiring
variable [CommSemiring R] [CommSemiring S] [Semiring A] [Semiring B]
variable [Algebra R S] [Algebra S A] [Algebra S B]
variable {R S A}
theorem of_algebraMap_eq [Algebra R A]
(h : ∀ x, algebraMap R A x = algebraMap S A (algebraMap R S x)) : IsScalarTower R S A :=
⟨fun x y z => by simp_rw [Algebra.smul_def, RingHom.map_mul, mul_assoc, h]⟩
/-- See note [partially-applied ext lemmas]. -/
theorem of_algebraMap_eq' [Algebra R A]
(h : algebraMap R A = (algebraMap S A).comp (algebraMap R S)) : IsScalarTower R S A :=
of_algebraMap_eq <| RingHom.ext_iff.1 h
variable (R S A)
variable [Algebra R A] [Algebra R B]
variable [IsScalarTower R S A] [IsScalarTower R S B]
theorem algebraMap_eq : algebraMap R A = (algebraMap S A).comp (algebraMap R S) :=
RingHom.ext fun x => by
simp_rw [RingHom.comp_apply, Algebra.algebraMap_eq_smul_one, smul_assoc, one_smul]
theorem algebraMap_apply (x : R) : algebraMap R A x = algebraMap S A (algebraMap R S x) := by
rw [algebraMap_eq R S A, RingHom.comp_apply]
@[ext]
theorem Algebra.ext {S : Type u} {A : Type v} [CommSemiring S] [Semiring A] (h1 h2 : Algebra S A)
(h : ∀ (r : S) (x : A), (by have I := h1; exact r • x) = r • x) : h1 = h2 :=
Algebra.algebra_ext _ _ fun r => by
simpa only [@Algebra.smul_def _ _ _ _ h1, @Algebra.smul_def _ _ _ _ h2, mul_one] using h r 1
/-- In a tower, the canonical map from the middle element to the top element is an
algebra homomorphism over the bottom element. -/
def toAlgHom : S →ₐ[R] A :=
{ algebraMap S A with commutes' := fun _ => (algebraMap_apply _ _ _ _).symm }
theorem toAlgHom_apply (y : S) : toAlgHom R S A y = algebraMap S A y := rfl
@[simp]
theorem coe_toAlgHom : ↑(toAlgHom R S A) = algebraMap S A :=
RingHom.ext fun _ => rfl
@[simp]
theorem coe_toAlgHom' : (toAlgHom R S A : S → A) = algebraMap S A := rfl
variable {R S A B}
@[simp]
theorem _root_.AlgHom.map_algebraMap (f : A →ₐ[S] B) (r : R) :
f (algebraMap R A r) = algebraMap R B r := by
rw [algebraMap_apply R S A r, f.commutes, ← algebraMap_apply R S B]
variable (R)
@[simp]
theorem _root_.AlgHom.comp_algebraMap_of_tower (f : A →ₐ[S] B) :
(f : A →+* B).comp (algebraMap R A) = algebraMap R B :=
RingHom.ext (AlgHom.map_algebraMap f)
-- conflicts with IsScalarTower.Subalgebra
instance (priority := 999) subsemiring (U : Subsemiring S) : IsScalarTower U S A :=
of_algebraMap_eq fun _x => rfl
-- Porting note(#12096): removed @[nolint instance_priority], linter not ported yet
instance (priority := 999) of_algHom {R A B : Type*} [CommSemiring R] [CommSemiring A]
[CommSemiring B] [Algebra R A] [Algebra R B] (f : A →ₐ[R] B) :
@IsScalarTower R A B _ f.toRingHom.toAlgebra.toSMul _ :=
letI := (f : A →+* B).toAlgebra
of_algebraMap_eq fun x => (f.commutes x).symm
end Semiring
end IsScalarTower
section Homs
variable [CommSemiring R] [CommSemiring S] [Semiring A] [Semiring B]
variable [Algebra R S] [Algebra S A] [Algebra S B]
variable [Algebra R A] [Algebra R B]
variable [IsScalarTower R S A] [IsScalarTower R S B]
variable {A S B}
open IsScalarTower
namespace AlgHom
/-- R ⟶ S induces S-Alg ⥤ R-Alg -/
def restrictScalars (f : A →ₐ[S] B) : A →ₐ[R] B :=
{ (f : A →+* B) with
commutes' := fun r => by
rw [algebraMap_apply R S A, algebraMap_apply R S B]
exact f.commutes (algebraMap R S r) }
theorem restrictScalars_apply (f : A →ₐ[S] B) (x : A) : f.restrictScalars R x = f x := rfl
@[simp]
theorem coe_restrictScalars (f : A →ₐ[S] B) : (f.restrictScalars R : A →+* B) = f := rfl
@[simp]
theorem coe_restrictScalars' (f : A →ₐ[S] B) : (restrictScalars R f : A → B) = f := rfl
theorem restrictScalars_injective :
Function.Injective (restrictScalars R : (A →ₐ[S] B) → A →ₐ[R] B) := fun _ _ h =>
AlgHom.ext (AlgHom.congr_fun h : _)
end AlgHom
namespace AlgEquiv
/-- R ⟶ S induces S-Alg ⥤ R-Alg -/
def restrictScalars (f : A ≃ₐ[S] B) : A ≃ₐ[R] B :=
{ (f : A ≃+* B) with
commutes' := fun r => by
rw [algebraMap_apply R S A, algebraMap_apply R S B]
exact f.commutes (algebraMap R S r) }
theorem restrictScalars_apply (f : A ≃ₐ[S] B) (x : A) : f.restrictScalars R x = f x := rfl
@[simp]
theorem coe_restrictScalars (f : A ≃ₐ[S] B) : (f.restrictScalars R : A ≃+* B) = f := rfl
@[simp]
theorem coe_restrictScalars' (f : A ≃ₐ[S] B) : (restrictScalars R f : A → B) = f := rfl
theorem restrictScalars_injective :
Function.Injective (restrictScalars R : (A ≃ₐ[S] B) → A ≃ₐ[R] B) := fun _ _ h =>
AlgEquiv.ext (AlgEquiv.congr_fun h : _)
end AlgEquiv
end Homs
namespace Submodule
variable {M}
variable [CommSemiring R] [Semiring A] [Algebra R A] [AddCommMonoid M]
variable [Module R M] [Module A M] [IsScalarTower R A M]
/-- If `A` is an `R`-algebra such that the induced morphism `R →+* A` is surjective, then the
`R`-module generated by a set `X` equals the `A`-module generated by `X`. -/
theorem restrictScalars_span (hsur : Function.Surjective (algebraMap R A)) (X : Set M) :
restrictScalars R (span A X) = span R X := by
refine ((span_le_restrictScalars R A X).antisymm fun m hm => ?_).symm
refine span_induction hm subset_span (zero_mem _) (fun _ _ => add_mem) fun a m hm => ?_
obtain ⟨r, rfl⟩ := hsur a
simpa [algebraMap_smul] using smul_mem _ r hm
theorem coe_span_eq_span_of_surjective (h : Function.Surjective (algebraMap R A)) (s : Set M) :
(Submodule.span A s : Set M) = Submodule.span R s :=
congr_arg ((↑) : Submodule R M → Set M) (Submodule.restrictScalars_span R A h s)
end Submodule
section Semiring
variable {R S A}
namespace Submodule
section Module
variable [Semiring R] [Semiring S] [AddCommMonoid A]
variable [Module R S] [Module S A] [Module R A] [IsScalarTower R S A]
open IsScalarTower
theorem smul_mem_span_smul_of_mem {s : Set S} {t : Set A} {k : S} (hks : k ∈ span R s) {x : A}
(hx : x ∈ t) : k • x ∈ span R (s • t) :=
span_induction hks (fun c hc => subset_span <| Set.smul_mem_smul hc hx)
(by rw [zero_smul]; exact zero_mem _)
(fun c₁ c₂ ih₁ ih₂ => by rw [add_smul]; exact add_mem ih₁ ih₂)
fun b c hc => by rw [IsScalarTower.smul_assoc]; exact smul_mem _ _ hc
theorem span_smul_of_span_eq_top {s : Set S} (hs : span R s = ⊤) (t : Set A) :
span R (s • t) = (span S t).restrictScalars R :=
le_antisymm
(span_le.2 fun _x ⟨p, _hps, _q, hqt, hpqx⟩ ↦ hpqx ▸ (span S t).smul_mem p (subset_span hqt))
fun p hp ↦ closure_induction hp (zero_mem _) (fun _ _ ↦ add_mem) fun s0 y hy ↦ by
refine span_induction (hs ▸ mem_top : s0 ∈ span R s)
(fun x hx ↦ subset_span ⟨x, hx, y, hy, rfl⟩) ?_ ?_ ?_
· rw [zero_smul]; apply zero_mem
· intro _ _; rw [add_smul]; apply add_mem
· intro r s0 hy; rw [IsScalarTower.smul_assoc]; exact smul_mem _ r hy
-- The following two lemmas were originally used to prove `span_smul_of_span_eq_top`
-- but are now not needed.
theorem smul_mem_span_smul' {s : Set S} (hs : span R s = ⊤) {t : Set A} {k : S} {x : A}
(hx : x ∈ span R (s • t)) : k • x ∈ span R (s • t) := by
rw [span_smul_of_span_eq_top hs] at hx ⊢; exact (span S t).smul_mem k hx
theorem smul_mem_span_smul {s : Set S} (hs : span R s = ⊤) {t : Set A} {k : S} {x : A}
(hx : x ∈ span R t) : k • x ∈ span R (s • t) := by
rw [span_smul_of_span_eq_top hs]
exact (span S t).smul_mem k (span_le_restrictScalars R S t hx)
end Module
section Algebra
variable [CommSemiring R] [Semiring S] [AddCommMonoid A]
variable [Algebra R S] [Module S A] [Module R A] [IsScalarTower R S A]
/-- A variant of `Submodule.span_image` for `algebraMap`. -/
theorem span_algebraMap_image (a : Set R) :
Submodule.span R (algebraMap R S '' a) = (Submodule.span R a).map (Algebra.linearMap R S) :=
(Submodule.span_image <| Algebra.linearMap R S).trans rfl
theorem span_algebraMap_image_of_tower {S T : Type*} [CommSemiring S] [Semiring T] [Module R S]
[Algebra R T] [Algebra S T] [IsScalarTower R S T] (a : Set S) :
Submodule.span R (algebraMap S T '' a) =
(Submodule.span R a).map ((Algebra.linearMap S T).restrictScalars R) :=
(Submodule.span_image <| (Algebra.linearMap S T).restrictScalars R).trans rfl
theorem map_mem_span_algebraMap_image {S T : Type*} [CommSemiring S] [Semiring T] [Algebra R S]
[Algebra R T] [Algebra S T] [IsScalarTower R S T] (x : S) (a : Set S)
(hx : x ∈ Submodule.span R a) : algebraMap S T x ∈ Submodule.span R (algebraMap S T '' a) := by
rw [span_algebraMap_image_of_tower, mem_map]
exact ⟨x, hx, rfl⟩
end Algebra
end Submodule
end Semiring
section Ring
namespace Algebra
variable [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B]
variable [AddCommGroup M] [Module R M] [Module A M] [Module B M]
variable [IsScalarTower R A M] [IsScalarTower R B M] [SMulCommClass A B M]
theorem lsmul_injective [NoZeroSMulDivisors A M] {x : A} (hx : x ≠ 0) :
Function.Injective (lsmul R B M x) :=
smul_right_injective M hx
end Algebra
end Ring
|
Algebra\Algebra\Unitization.lean | /-
Copyright (c) 2022 Jireh Loreaux. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jireh Loreaux
-/
import Mathlib.Algebra.Algebra.Defs
import Mathlib.Algebra.Algebra.NonUnitalHom
import Mathlib.Algebra.Star.Module
import Mathlib.Algebra.Star.NonUnitalSubalgebra
import Mathlib.LinearAlgebra.Prod
import Mathlib.Tactic.Abel
/-!
# Unitization of a non-unital algebra
Given a non-unital `R`-algebra `A` (given via the type classes
`[NonUnitalRing A] [Module R A] [SMulCommClass R A A] [IsScalarTower R A A]`) we construct
the minimal unital `R`-algebra containing `A` as an ideal. This object `Unitization R A` is
a type synonym for `R × A` on which we place a different multiplicative structure, namely,
`(r₁, a₁) * (r₂, a₂) = (r₁ * r₂, r₁ • a₂ + r₂ • a₁ + a₁ * a₂)` where the multiplicative identity
is `(1, 0)`.
Note, when `A` is a *unital* `R`-algebra, then `Unitization R A` constructs a new multiplicative
identity different from the old one, and so in general `Unitization R A` and `A` will not be
isomorphic even in the unital case. This approach actually has nice functorial properties.
There is a natural coercion from `A` to `Unitization R A` given by `fun a ↦ (0, a)`, the image
of which is a proper ideal (TODO), and when `R` is a field this ideal is maximal. Moreover,
this ideal is always an essential ideal (it has nontrivial intersection with every other nontrivial
ideal).
Every non-unital algebra homomorphism from `A` into a *unital* `R`-algebra `B` has a unique
extension to a (unital) algebra homomorphism from `Unitization R A` to `B`.
## Main definitions
* `Unitization R A`: the unitization of a non-unital `R`-algebra `A`.
* `Unitization.algebra`: the unitization of `A` as a (unital) `R`-algebra.
* `Unitization.coeNonUnitalAlgHom`: coercion as a non-unital algebra homomorphism.
* `NonUnitalAlgHom.toAlgHom φ`: the extension of a non-unital algebra homomorphism `φ : A → B`
into a unital `R`-algebra `B` to an algebra homomorphism `Unitization R A →ₐ[R] B`.
* `Unitization.lift`: the universal property of the unitization, the extension
`NonUnitalAlgHom.toAlgHom` actually implements an equivalence
`(A →ₙₐ[R] B) ≃ (Unitization R A ≃ₐ[R] B)`
## Main results
* `AlgHom.ext'`: an extensionality lemma for algebra homomorphisms whose domain is
`Unitization R A`; it suffices that they agree on `A`.
## TODO
* prove the unitization operation is a functor between the appropriate categories
* prove the image of the coercion is an essential ideal, maximal if scalars are a field.
-/
/-- The minimal unitization of a non-unital `R`-algebra `A`. This is just a type synonym for
`R × A`. -/
def Unitization (R A : Type*) :=
R × A
namespace Unitization
section Basic
variable {R A : Type*}
/-- The canonical inclusion `R → Unitization R A`. -/
def inl [Zero A] (r : R) : Unitization R A :=
(r, 0)
-- Porting note: we need a def to which we can attach `@[coe]`
/-- The canonical inclusion `A → Unitization R A`. -/
@[coe]
def inr [Zero R] (a : A) : Unitization R A :=
(0, a)
instance [Zero R] : CoeTC A (Unitization R A) where
coe := inr
/-- The canonical projection `Unitization R A → R`. -/
def fst (x : Unitization R A) : R :=
x.1
/-- The canonical projection `Unitization R A → A`. -/
def snd (x : Unitization R A) : A :=
x.2
@[ext]
theorem ext {x y : Unitization R A} (h1 : x.fst = y.fst) (h2 : x.snd = y.snd) : x = y :=
Prod.ext h1 h2
section
variable (A)
@[simp]
theorem fst_inl [Zero A] (r : R) : (inl r : Unitization R A).fst = r :=
rfl
@[simp]
theorem snd_inl [Zero A] (r : R) : (inl r : Unitization R A).snd = 0 :=
rfl
end
section
variable (R)
@[simp]
theorem fst_inr [Zero R] (a : A) : (a : Unitization R A).fst = 0 :=
rfl
@[simp]
theorem snd_inr [Zero R] (a : A) : (a : Unitization R A).snd = a :=
rfl
end
theorem inl_injective [Zero A] : Function.Injective (inl : R → Unitization R A) :=
Function.LeftInverse.injective <| fst_inl _
theorem inr_injective [Zero R] : Function.Injective ((↑) : A → Unitization R A) :=
Function.LeftInverse.injective <| snd_inr _
instance instNontrivialLeft {𝕜 A} [Nontrivial 𝕜] [Nonempty A] :
Nontrivial (Unitization 𝕜 A) :=
nontrivial_prod_left
instance instNontrivialRight {𝕜 A} [Nonempty 𝕜] [Nontrivial A] :
Nontrivial (Unitization 𝕜 A) :=
nontrivial_prod_right
end Basic
/-! ### Structures inherited from `Prod`
Additive operators and scalar multiplication operate elementwise. -/
section Additive
variable {T : Type*} {S : Type*} {R : Type*} {A : Type*}
instance instCanLift [Zero R] : CanLift (Unitization R A) A inr (fun x ↦ x.fst = 0) where
prf x hx := ⟨x.snd, ext (hx ▸ fst_inr R (snd x)) rfl⟩
instance instInhabited [Inhabited R] [Inhabited A] : Inhabited (Unitization R A) :=
instInhabitedProd
instance instZero [Zero R] [Zero A] : Zero (Unitization R A) :=
Prod.instZero
instance instAdd [Add R] [Add A] : Add (Unitization R A) :=
Prod.instAdd
instance instNeg [Neg R] [Neg A] : Neg (Unitization R A) :=
Prod.instNeg
instance instAddSemigroup [AddSemigroup R] [AddSemigroup A] : AddSemigroup (Unitization R A) :=
Prod.instAddSemigroup
instance instAddZeroClass [AddZeroClass R] [AddZeroClass A] : AddZeroClass (Unitization R A) :=
Prod.instAddZeroClass
instance instAddMonoid [AddMonoid R] [AddMonoid A] : AddMonoid (Unitization R A) :=
Prod.instAddMonoid
instance instAddGroup [AddGroup R] [AddGroup A] : AddGroup (Unitization R A) :=
Prod.instAddGroup
instance instAddCommSemigroup [AddCommSemigroup R] [AddCommSemigroup A] :
AddCommSemigroup (Unitization R A) :=
Prod.instAddCommSemigroup
instance instAddCommMonoid [AddCommMonoid R] [AddCommMonoid A] : AddCommMonoid (Unitization R A) :=
Prod.instAddCommMonoid
instance instAddCommGroup [AddCommGroup R] [AddCommGroup A] : AddCommGroup (Unitization R A) :=
Prod.instAddCommGroup
instance instSMul [SMul S R] [SMul S A] : SMul S (Unitization R A) :=
Prod.smul
instance instIsScalarTower [SMul T R] [SMul T A] [SMul S R] [SMul S A] [SMul T S]
[IsScalarTower T S R] [IsScalarTower T S A] : IsScalarTower T S (Unitization R A) :=
Prod.isScalarTower
instance instSMulCommClass [SMul T R] [SMul T A] [SMul S R] [SMul S A] [SMulCommClass T S R]
[SMulCommClass T S A] : SMulCommClass T S (Unitization R A) :=
Prod.smulCommClass
instance instIsCentralScalar [SMul S R] [SMul S A] [SMul Sᵐᵒᵖ R] [SMul Sᵐᵒᵖ A] [IsCentralScalar S R]
[IsCentralScalar S A] : IsCentralScalar S (Unitization R A) :=
Prod.isCentralScalar
instance instMulAction [Monoid S] [MulAction S R] [MulAction S A] : MulAction S (Unitization R A) :=
Prod.mulAction
instance instDistribMulAction [Monoid S] [AddMonoid R] [AddMonoid A] [DistribMulAction S R]
[DistribMulAction S A] : DistribMulAction S (Unitization R A) :=
Prod.distribMulAction
instance instModule [Semiring S] [AddCommMonoid R] [AddCommMonoid A] [Module S R] [Module S A] :
Module S (Unitization R A) :=
Prod.instModule
variable (R A) in
/-- The identity map between `Unitization R A` and `R × A` as an `AddEquiv`. -/
def addEquiv [Add R] [Add A] : Unitization R A ≃+ R × A :=
AddEquiv.refl _
@[simp]
theorem fst_zero [Zero R] [Zero A] : (0 : Unitization R A).fst = 0 :=
rfl
@[simp]
theorem snd_zero [Zero R] [Zero A] : (0 : Unitization R A).snd = 0 :=
rfl
@[simp]
theorem fst_add [Add R] [Add A] (x₁ x₂ : Unitization R A) : (x₁ + x₂).fst = x₁.fst + x₂.fst :=
rfl
@[simp]
theorem snd_add [Add R] [Add A] (x₁ x₂ : Unitization R A) : (x₁ + x₂).snd = x₁.snd + x₂.snd :=
rfl
@[simp]
theorem fst_neg [Neg R] [Neg A] (x : Unitization R A) : (-x).fst = -x.fst :=
rfl
@[simp]
theorem snd_neg [Neg R] [Neg A] (x : Unitization R A) : (-x).snd = -x.snd :=
rfl
@[simp]
theorem fst_smul [SMul S R] [SMul S A] (s : S) (x : Unitization R A) : (s • x).fst = s • x.fst :=
rfl
@[simp]
theorem snd_smul [SMul S R] [SMul S A] (s : S) (x : Unitization R A) : (s • x).snd = s • x.snd :=
rfl
section
variable (A)
@[simp]
theorem inl_zero [Zero R] [Zero A] : (inl 0 : Unitization R A) = 0 :=
rfl
@[simp]
theorem inl_add [Add R] [AddZeroClass A] (r₁ r₂ : R) :
(inl (r₁ + r₂) : Unitization R A) = inl r₁ + inl r₂ :=
ext rfl (add_zero 0).symm
@[simp]
theorem inl_neg [Neg R] [AddGroup A] (r : R) : (inl (-r) : Unitization R A) = -inl r :=
ext rfl neg_zero.symm
@[simp]
theorem inl_sub [AddGroup R] [AddGroup A] (r₁ r₂ : R) :
(inl (r₁ - r₂) : Unitization R A) = inl r₁ - inl r₂ :=
ext rfl (sub_zero 0).symm
@[simp]
theorem inl_smul [Monoid S] [AddMonoid A] [SMul S R] [DistribMulAction S A] (s : S) (r : R) :
(inl (s • r) : Unitization R A) = s • inl r :=
ext rfl (smul_zero s).symm
end
section
variable (R)
@[simp]
theorem inr_zero [Zero R] [Zero A] : ↑(0 : A) = (0 : Unitization R A) :=
rfl
@[simp]
theorem inr_add [AddZeroClass R] [Add A] (m₁ m₂ : A) : (↑(m₁ + m₂) : Unitization R A) = m₁ + m₂ :=
ext (add_zero 0).symm rfl
@[simp]
theorem inr_neg [AddGroup R] [Neg A] (m : A) : (↑(-m) : Unitization R A) = -m :=
ext neg_zero.symm rfl
@[simp]
theorem inr_sub [AddGroup R] [AddGroup A] (m₁ m₂ : A) : (↑(m₁ - m₂) : Unitization R A) = m₁ - m₂ :=
ext (sub_zero 0).symm rfl
@[simp]
theorem inr_smul [Zero R] [Zero S] [SMulWithZero S R] [SMul S A] (r : S) (m : A) :
(↑(r • m) : Unitization R A) = r • (m : Unitization R A) :=
ext (smul_zero _).symm rfl
end
theorem inl_fst_add_inr_snd_eq [AddZeroClass R] [AddZeroClass A] (x : Unitization R A) :
inl x.fst + (x.snd : Unitization R A) = x :=
ext (add_zero x.1) (zero_add x.2)
/-- To show a property hold on all `Unitization R A` it suffices to show it holds
on terms of the form `inl r + a`.
This can be used as `induction x`. -/
@[elab_as_elim, induction_eliminator, cases_eliminator]
theorem ind {R A} [AddZeroClass R] [AddZeroClass A] {P : Unitization R A → Prop}
(inl_add_inr : ∀ (r : R) (a : A), P (inl r + (a : Unitization R A))) (x) : P x :=
inl_fst_add_inr_snd_eq x ▸ inl_add_inr x.1 x.2
/-- This cannot be marked `@[ext]` as it ends up being used instead of `LinearMap.prod_ext` when
working with `R × A`. -/
theorem linearMap_ext {N} [Semiring S] [AddCommMonoid R] [AddCommMonoid A] [AddCommMonoid N]
[Module S R] [Module S A] [Module S N] ⦃f g : Unitization R A →ₗ[S] N⦄
(hl : ∀ r, f (inl r) = g (inl r)) (hr : ∀ a : A, f a = g a) : f = g :=
LinearMap.prod_ext (LinearMap.ext hl) (LinearMap.ext hr)
variable (R A)
/-- The canonical `R`-linear inclusion `A → Unitization R A`. -/
@[simps apply]
def inrHom [Semiring R] [AddCommMonoid A] [Module R A] : A →ₗ[R] Unitization R A :=
{ LinearMap.inr R R A with toFun := (↑) }
/-- The canonical `R`-linear projection `Unitization R A → A`. -/
@[simps apply]
def sndHom [Semiring R] [AddCommMonoid A] [Module R A] : Unitization R A →ₗ[R] A :=
{ LinearMap.snd _ _ _ with toFun := snd }
end Additive
/-! ### Multiplicative structure -/
section Mul
variable {R A : Type*}
instance instOne [One R] [Zero A] : One (Unitization R A) :=
⟨(1, 0)⟩
instance instMul [Mul R] [Add A] [Mul A] [SMul R A] : Mul (Unitization R A) :=
⟨fun x y => (x.1 * y.1, x.1 • y.2 + y.1 • x.2 + x.2 * y.2)⟩
@[simp]
theorem fst_one [One R] [Zero A] : (1 : Unitization R A).fst = 1 :=
rfl
@[simp]
theorem snd_one [One R] [Zero A] : (1 : Unitization R A).snd = 0 :=
rfl
@[simp]
theorem fst_mul [Mul R] [Add A] [Mul A] [SMul R A] (x₁ x₂ : Unitization R A) :
(x₁ * x₂).fst = x₁.fst * x₂.fst :=
rfl
@[simp]
theorem snd_mul [Mul R] [Add A] [Mul A] [SMul R A] (x₁ x₂ : Unitization R A) :
(x₁ * x₂).snd = x₁.fst • x₂.snd + x₂.fst • x₁.snd + x₁.snd * x₂.snd :=
rfl
section
variable (A)
@[simp]
theorem inl_one [One R] [Zero A] : (inl 1 : Unitization R A) = 1 :=
rfl
@[simp]
theorem inl_mul [Monoid R] [NonUnitalNonAssocSemiring A] [DistribMulAction R A] (r₁ r₂ : R) :
(inl (r₁ * r₂) : Unitization R A) = inl r₁ * inl r₂ :=
ext rfl <|
show (0 : A) = r₁ • (0 : A) + r₂ • (0 : A) + 0 * 0 by
simp only [smul_zero, add_zero, mul_zero]
theorem inl_mul_inl [Monoid R] [NonUnitalNonAssocSemiring A] [DistribMulAction R A] (r₁ r₂ : R) :
(inl r₁ * inl r₂ : Unitization R A) = inl (r₁ * r₂) :=
(inl_mul A r₁ r₂).symm
end
section
variable (R)
@[simp]
theorem inr_mul [Semiring R] [AddCommMonoid A] [Mul A] [SMulWithZero R A] (a₁ a₂ : A) :
(↑(a₁ * a₂) : Unitization R A) = a₁ * a₂ :=
ext (mul_zero _).symm <|
show a₁ * a₂ = (0 : R) • a₂ + (0 : R) • a₁ + a₁ * a₂ by simp only [zero_smul, zero_add]
end
theorem inl_mul_inr [Semiring R] [NonUnitalNonAssocSemiring A] [DistribMulAction R A] (r : R)
(a : A) : ((inl r : Unitization R A) * a) = ↑(r • a) :=
ext (mul_zero r) <|
show r • a + (0 : R) • (0 : A) + 0 * a = r • a by
rw [smul_zero, add_zero, zero_mul, add_zero]
theorem inr_mul_inl [Semiring R] [NonUnitalNonAssocSemiring A] [DistribMulAction R A] (r : R)
(a : A) : a * (inl r : Unitization R A) = ↑(r • a) :=
ext (zero_mul r) <|
show (0 : R) • (0 : A) + r • a + a * 0 = r • a by
rw [smul_zero, zero_add, mul_zero, add_zero]
instance instMulOneClass [Monoid R] [NonUnitalNonAssocSemiring A] [DistribMulAction R A] :
MulOneClass (Unitization R A) :=
{ Unitization.instOne, Unitization.instMul with
one_mul := fun x =>
ext (one_mul x.1) <|
show (1 : R) • x.2 + x.1 • (0 : A) + 0 * x.2 = x.2 by
rw [one_smul, smul_zero, add_zero, zero_mul, add_zero]
mul_one := fun x =>
ext (mul_one x.1) <|
show (x.1 • (0 : A)) + (1 : R) • x.2 + x.2 * (0 : A) = x.2 by
rw [smul_zero, zero_add, one_smul, mul_zero, add_zero] }
instance instNonAssocSemiring [Semiring R] [NonUnitalNonAssocSemiring A] [Module R A] :
NonAssocSemiring (Unitization R A) :=
{ Unitization.instMulOneClass,
Unitization.instAddCommMonoid with
zero_mul := fun x =>
ext (zero_mul x.1) <|
show (0 : R) • x.2 + x.1 • (0 : A) + 0 * x.2 = 0 by
rw [zero_smul, zero_add, smul_zero, zero_mul, add_zero]
mul_zero := fun x =>
ext (mul_zero x.1) <|
show x.1 • (0 : A) + (0 : R) • x.2 + x.2 * 0 = 0 by
rw [smul_zero, zero_add, zero_smul, mul_zero, add_zero]
left_distrib := fun x₁ x₂ x₃ =>
ext (mul_add x₁.1 x₂.1 x₃.1) <|
show x₁.1 • (x₂.2 + x₃.2) + (x₂.1 + x₃.1) • x₁.2 + x₁.2 * (x₂.2 + x₃.2) =
x₁.1 • x₂.2 + x₂.1 • x₁.2 + x₁.2 * x₂.2 + (x₁.1 • x₃.2 + x₃.1 • x₁.2 + x₁.2 * x₃.2) by
simp only [smul_add, add_smul, mul_add]
abel
right_distrib := fun x₁ x₂ x₃ =>
ext (add_mul x₁.1 x₂.1 x₃.1) <|
show (x₁.1 + x₂.1) • x₃.2 + x₃.1 • (x₁.2 + x₂.2) + (x₁.2 + x₂.2) * x₃.2 =
x₁.1 • x₃.2 + x₃.1 • x₁.2 + x₁.2 * x₃.2 + (x₂.1 • x₃.2 + x₃.1 • x₂.2 + x₂.2 * x₃.2) by
simp only [add_smul, smul_add, add_mul]
abel }
instance instMonoid [CommMonoid R] [NonUnitalSemiring A] [DistribMulAction R A]
[IsScalarTower R A A] [SMulCommClass R A A] : Monoid (Unitization R A) :=
{ Unitization.instMulOneClass with
mul_assoc := fun x y z =>
ext (mul_assoc x.1 y.1 z.1) <|
show (x.1 * y.1) • z.2 + z.1 • (x.1 • y.2 + y.1 • x.2 + x.2 * y.2) +
(x.1 • y.2 + y.1 • x.2 + x.2 * y.2) * z.2 =
x.1 • (y.1 • z.2 + z.1 • y.2 + y.2 * z.2) + (y.1 * z.1) • x.2 +
x.2 * (y.1 • z.2 + z.1 • y.2 + y.2 * z.2) by
simp only [smul_add, mul_add, add_mul, smul_smul, smul_mul_assoc, mul_smul_comm,
mul_assoc]
rw [mul_comm z.1 x.1]
rw [mul_comm z.1 y.1]
abel }
instance instCommMonoid [CommMonoid R] [NonUnitalCommSemiring A] [DistribMulAction R A]
[IsScalarTower R A A] [SMulCommClass R A A] : CommMonoid (Unitization R A) :=
{ Unitization.instMonoid with
mul_comm := fun x₁ x₂ =>
ext (mul_comm x₁.1 x₂.1) <|
show x₁.1 • x₂.2 + x₂.1 • x₁.2 + x₁.2 * x₂.2 = x₂.1 • x₁.2 + x₁.1 • x₂.2 + x₂.2 * x₁.2 by
rw [add_comm (x₁.1 • x₂.2), mul_comm] }
instance instSemiring [CommSemiring R] [NonUnitalSemiring A] [Module R A] [IsScalarTower R A A]
[SMulCommClass R A A] : Semiring (Unitization R A) :=
{ Unitization.instMonoid, Unitization.instNonAssocSemiring with }
instance instCommSemiring [CommSemiring R] [NonUnitalCommSemiring A] [Module R A]
[IsScalarTower R A A] [SMulCommClass R A A] : CommSemiring (Unitization R A) :=
{ Unitization.instCommMonoid, Unitization.instNonAssocSemiring with }
instance instNonAssocRing [CommRing R] [NonUnitalNonAssocRing A] [Module R A] :
NonAssocRing (Unitization R A) :=
{ Unitization.instAddCommGroup, Unitization.instNonAssocSemiring with }
instance instRing [CommRing R] [NonUnitalRing A] [Module R A] [IsScalarTower R A A]
[SMulCommClass R A A] : Ring (Unitization R A) :=
{ Unitization.instAddCommGroup, Unitization.instSemiring with }
instance instCommRing [CommRing R] [NonUnitalCommRing A] [Module R A] [IsScalarTower R A A]
[SMulCommClass R A A] : CommRing (Unitization R A) :=
{ Unitization.instAddCommGroup, Unitization.instCommSemiring with }
variable (R A)
/-- The canonical inclusion of rings `R →+* Unitization R A`. -/
@[simps apply]
def inlRingHom [Semiring R] [NonUnitalSemiring A] [Module R A] : R →+* Unitization R A where
toFun := inl
map_one' := inl_one A
map_mul' := inl_mul A
map_zero' := inl_zero A
map_add' := inl_add A
end Mul
/-! ### Star structure -/
section Star
variable {R A : Type*}
instance instStar [Star R] [Star A] : Star (Unitization R A) :=
⟨fun ra => (star ra.fst, star ra.snd)⟩
@[simp]
theorem fst_star [Star R] [Star A] (x : Unitization R A) : (star x).fst = star x.fst :=
rfl
@[simp]
theorem snd_star [Star R] [Star A] (x : Unitization R A) : (star x).snd = star x.snd :=
rfl
@[simp]
theorem inl_star [Star R] [AddMonoid A] [StarAddMonoid A] (r : R) :
inl (star r) = star (inl r : Unitization R A) :=
ext rfl (by simp only [snd_star, star_zero, snd_inl])
@[simp]
theorem inr_star [AddMonoid R] [StarAddMonoid R] [Star A] (a : A) :
↑(star a) = star (a : Unitization R A) :=
ext (by simp only [fst_star, star_zero, fst_inr]) rfl
instance instStarAddMonoid [AddMonoid R] [AddMonoid A] [StarAddMonoid R] [StarAddMonoid A] :
StarAddMonoid (Unitization R A) where
star_involutive x := ext (star_star x.fst) (star_star x.snd)
star_add x y := ext (star_add x.fst y.fst) (star_add x.snd y.snd)
instance instStarModule [CommSemiring R] [StarRing R] [AddCommMonoid A] [StarAddMonoid A]
[Module R A] [StarModule R A] : StarModule R (Unitization R A) where
star_smul r x := ext (by simp) (by simp)
instance instStarRing [CommSemiring R] [StarRing R] [NonUnitalNonAssocSemiring A] [StarRing A]
[Module R A] [StarModule R A] :
StarRing (Unitization R A) :=
{ Unitization.instStarAddMonoid with
star_mul := fun x y =>
ext (by simp [-star_mul']) (by simp [-star_mul', add_comm (star x.fst • star y.snd)]) }
end Star
/-! ### Algebra structure -/
section Algebra
variable (S R A : Type*) [CommSemiring S] [CommSemiring R] [NonUnitalSemiring A] [Module R A]
[IsScalarTower R A A] [SMulCommClass R A A] [Algebra S R] [DistribMulAction S A]
[IsScalarTower S R A]
instance instAlgebra : Algebra S (Unitization R A) :=
{ (Unitization.inlRingHom R A).comp (algebraMap S R) with
commutes' := fun s x => by
induction' x with r a
show inl (algebraMap S R s) * _ = _ * inl (algebraMap S R s)
rw [mul_add, add_mul, inl_mul_inl, inl_mul_inl, inl_mul_inr, inr_mul_inl, mul_comm]
smul_def' := fun s x => by
induction' x with r a
show _ = inl (algebraMap S R s) * _
rw [mul_add, smul_add,Algebra.algebraMap_eq_smul_one, inl_mul_inl, inl_mul_inr, smul_one_mul,
inl_smul, inr_smul, smul_one_smul] }
theorem algebraMap_eq_inl_comp : ⇑(algebraMap S (Unitization R A)) = inl ∘ algebraMap S R :=
rfl
theorem algebraMap_eq_inlRingHom_comp :
algebraMap S (Unitization R A) = (inlRingHom R A).comp (algebraMap S R) :=
rfl
theorem algebraMap_eq_inl : ⇑(algebraMap R (Unitization R A)) = inl :=
rfl
theorem algebraMap_eq_inlRingHom : algebraMap R (Unitization R A) = inlRingHom R A :=
rfl
/-- The canonical `R`-algebra projection `Unitization R A → R`. -/
@[simps]
def fstHom : Unitization R A →ₐ[R] R where
toFun := fst
map_one' := fst_one
map_mul' := fst_mul
map_zero' := fst_zero (A := A)
map_add' := fst_add
commutes' := fst_inl A
end Algebra
section coe
/-- The coercion from a non-unital `R`-algebra `A` to its unitization `Unitization R A`
realized as a non-unital algebra homomorphism. -/
@[simps]
def inrNonUnitalAlgHom (R A : Type*) [CommSemiring R] [NonUnitalSemiring A] [Module R A] :
A →ₙₐ[R] Unitization R A where
toFun := (↑)
map_smul' := inr_smul R
map_zero' := inr_zero R
map_add' := inr_add R
map_mul' := inr_mul R
/-- The coercion from a non-unital `R`-algebra `A` to its unitization `Unitization R A`
realized as a non-unital star algebra homomorphism. -/
@[simps!]
def inrNonUnitalStarAlgHom (R A : Type*) [CommSemiring R] [StarAddMonoid R]
[NonUnitalSemiring A] [Star A] [Module R A] :
A →⋆ₙₐ[R] Unitization R A where
toNonUnitalAlgHom := inrNonUnitalAlgHom R A
map_star' := inr_star
/-- The star algebra equivalence obtained by restricting `Unitization.inrNonUnitalStarAlgHom`
to its range. -/
@[simps!]
def inrRangeEquiv (R A : Type*) [CommSemiring R] [StarAddMonoid R] [NonUnitalSemiring A]
[Star A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] :
A ≃⋆ₐ[R] NonUnitalStarAlgHom.range (inrNonUnitalStarAlgHom R A) :=
StarAlgEquiv.ofLeftInverse' (snd_inr R)
end coe
section AlgHom
variable {S R A : Type*} [CommSemiring S] [CommSemiring R] [NonUnitalSemiring A] [Module R A]
[SMulCommClass R A A] [IsScalarTower R A A] {B : Type*} [Semiring B] [Algebra S B] [Algebra S R]
[DistribMulAction S A] [IsScalarTower S R A] {C : Type*} [Semiring C] [Algebra R C]
theorem algHom_ext {F : Type*}
[FunLike F (Unitization R A) B] [AlgHomClass F S (Unitization R A) B] {φ ψ : F}
(h : ∀ a : A, φ a = ψ a)
(h' : ∀ r, φ (algebraMap R (Unitization R A) r) = ψ (algebraMap R (Unitization R A) r)) :
φ = ψ := by
refine DFunLike.ext φ ψ (fun x ↦ ?_)
induction x
simp only [map_add, ← algebraMap_eq_inl, h, h']
lemma algHom_ext'' {F : Type*}
[FunLike F (Unitization R A) C] [AlgHomClass F R (Unitization R A) C] {φ ψ : F}
(h : ∀ a : A, φ a = ψ a) : φ = ψ :=
algHom_ext h (fun r => by simp only [AlgHomClass.commutes])
/-- See note [partially-applied ext lemmas] -/
@[ext 1100]
theorem algHom_ext' {φ ψ : Unitization R A →ₐ[R] C}
(h :
φ.toNonUnitalAlgHom.comp (inrNonUnitalAlgHom R A) =
ψ.toNonUnitalAlgHom.comp (inrNonUnitalAlgHom R A)) :
φ = ψ :=
algHom_ext'' (NonUnitalAlgHom.congr_fun h)
/- porting note: this was extracted from `Unitization.lift` below, where it had previously
been inlined. Unfortunately, `Unitization.lift` was relatively slow in Lean 3, but in Lean 4 it
just times out. -/
/-- A non-unital algebra homomorphism from `A` into a unital `R`-algebra `C` lifts to a unital
algebra homomorphism from the unitization into `C`. This is extended to an `Equiv` in
`Unitization.lift` and that should be used instead. This declaration only exists for performance
reasons. -/
@[simps]
def _root_.NonUnitalAlgHom.toAlgHom (φ : A →ₙₐ[R] C) : Unitization R A →ₐ[R] C where
toFun := fun x => algebraMap R C x.fst + φ x.snd
map_one' := by simp only [fst_one, map_one, snd_one, φ.map_zero, add_zero]
map_mul' := fun x y => by
induction' x with x_r x_a
induction' y with y_r y_a
simp only [fst_mul, fst_add, fst_inl, fst_inr, snd_mul, snd_add, snd_inl, snd_inr, add_zero,
map_mul, zero_add, map_add, map_smul φ]
rw [add_mul, mul_add, mul_add]
rw [← Algebra.commutes _ (φ x_a)]
simp only [Algebra.algebraMap_eq_smul_one, smul_one_mul, add_assoc]
map_zero' := by simp only [fst_zero, map_zero, snd_zero, φ.map_zero, add_zero]
map_add' := fun x y => by
induction' x with x_r x_a
induction' y with y_r y_a
simp only [fst_add, fst_inl, fst_inr, add_zero, map_add, snd_add, snd_inl, snd_inr,
zero_add, φ.map_add]
rw [add_add_add_comm]
commutes' := fun r => by
simp only [algebraMap_eq_inl, fst_inl, snd_inl, φ.map_zero, add_zero]
/-- Non-unital algebra homomorphisms from `A` into a unital `R`-algebra `C` lift uniquely to
`Unitization R A →ₐ[R] C`. This is the universal property of the unitization. -/
@[simps! apply symm_apply apply_apply]
def lift : (A →ₙₐ[R] C) ≃ (Unitization R A →ₐ[R] C) where
toFun := NonUnitalAlgHom.toAlgHom
invFun φ := φ.toNonUnitalAlgHom.comp (inrNonUnitalAlgHom R A)
left_inv φ := by ext; simp [NonUnitalAlgHomClass.toNonUnitalAlgHom]
right_inv φ := by ext; simp [NonUnitalAlgHomClass.toNonUnitalAlgHom]
theorem lift_symm_apply_apply (φ : Unitization R A →ₐ[R] C) (a : A) :
Unitization.lift.symm φ a = φ a :=
rfl
@[simp]
lemma _root_.NonUnitalAlgHom.toAlgHom_zero :
⇑(0 : A →ₙₐ[R] R).toAlgHom = Unitization.fst := by
ext
simp
end AlgHom
section StarAlgHom
variable {R A C : Type*} [CommSemiring R] [StarRing R] [NonUnitalSemiring A] [StarRing A]
variable [Module R A] [SMulCommClass R A A] [IsScalarTower R A A]
variable [Semiring C] [Algebra R C] [StarRing C]
/-- See note [partially-applied ext lemmas] -/
@[ext]
theorem starAlgHom_ext {φ ψ : Unitization R A →⋆ₐ[R] C}
(h : (φ : Unitization R A →⋆ₙₐ[R] C).comp (Unitization.inrNonUnitalStarAlgHom R A) =
(ψ : Unitization R A →⋆ₙₐ[R] C).comp (Unitization.inrNonUnitalStarAlgHom R A)) :
φ = ψ :=
Unitization.algHom_ext'' <| DFunLike.congr_fun h
variable [StarModule R C]
/-- Non-unital star algebra homomorphisms from `A` into a unital star `R`-algebra `C` lift uniquely
to `Unitization R A →⋆ₐ[R] C`. This is the universal property of the unitization. -/
@[simps! apply symm_apply apply_apply]
def starLift : (A →⋆ₙₐ[R] C) ≃ (Unitization R A →⋆ₐ[R] C) :=
{ toFun := fun φ ↦
{ toAlgHom := Unitization.lift φ.toNonUnitalAlgHom
map_star' := fun x => by
induction x
simp [map_star] }
invFun := fun φ ↦ φ.toNonUnitalStarAlgHom.comp (inrNonUnitalStarAlgHom R A),
left_inv := fun φ => by ext; simp,
right_inv := fun φ => Unitization.algHom_ext'' <| by
simp }
-- Note (#6057) : tagging simpNF because linter complains
@[simp high, nolint simpNF]
theorem starLift_symm_apply_apply (φ : Unitization R A →⋆ₐ[R] C) (a : A) :
Unitization.starLift.symm φ a = φ a :=
rfl
end StarAlgHom
section StarNormal
variable {R A : Type*} [Semiring R]
variable [StarAddMonoid R] [Star A] {a : A}
@[simp]
lemma isSelfAdjoint_inr : IsSelfAdjoint (a : Unitization R A) ↔ IsSelfAdjoint a := by
simp only [isSelfAdjoint_iff, ← inr_star, ← inr_mul, inr_injective.eq_iff]
alias ⟨_root_.IsSelfAdjoint.of_inr, _⟩ := isSelfAdjoint_inr
variable (R) in
lemma _root_.IsSelfAdjoint.inr (ha : IsSelfAdjoint a) : IsSelfAdjoint (a : Unitization R A) :=
isSelfAdjoint_inr.mpr ha
variable [AddCommMonoid A] [Mul A] [SMulWithZero R A]
@[simp]
lemma isStarNormal_inr : IsStarNormal (a : Unitization R A) ↔ IsStarNormal a := by
simp only [isStarNormal_iff, commute_iff_eq, ← inr_star, ← inr_mul, inr_injective.eq_iff]
alias ⟨_root_.IsStarNormal.of_inr, _⟩ := isStarNormal_inr
variable (R a) in
instance instIsStarNormal (a : A) [IsStarNormal a] :
IsStarNormal (a : Unitization R A) :=
isStarNormal_inr.mpr ‹_›
end StarNormal
end Unitization
|
Algebra\Algebra\Hom\Rat.lean | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Yury Kudryashov
-/
import Mathlib.Algebra.Algebra.Hom
import Mathlib.Algebra.Algebra.Rat
/-!
# Homomorphisms of `ℚ`-algebras
-/
namespace RingHom
variable {R S : Type*}
/-- Reinterpret a `RingHom` as a `ℚ`-algebra homomorphism. This actually yields an equivalence,
see `RingHom.equivRatAlgHom`. -/
def toRatAlgHom [Ring R] [Ring S] [Algebra ℚ R] [Algebra ℚ S] (f : R →+* S) : R →ₐ[ℚ] S :=
{ f with commutes' := f.map_rat_algebraMap }
@[simp]
theorem toRatAlgHom_toRingHom [Ring R] [Ring S] [Algebra ℚ R] [Algebra ℚ S] (f : R →+* S) :
↑f.toRatAlgHom = f :=
RingHom.ext fun _x => rfl
end RingHom
section
variable {R S : Type*}
@[simp]
theorem AlgHom.toRingHom_toRatAlgHom [Ring R] [Ring S] [Algebra ℚ R] [Algebra ℚ S]
(f : R →ₐ[ℚ] S) : (f : R →+* S).toRatAlgHom = f :=
AlgHom.ext fun _x => rfl
/-- The equivalence between `RingHom` and `ℚ`-algebra homomorphisms. -/
@[simps]
def RingHom.equivRatAlgHom [Ring R] [Ring S] [Algebra ℚ R] [Algebra ℚ S] :
(R →+* S) ≃ (R →ₐ[ℚ] S) where
toFun := RingHom.toRatAlgHom
invFun := AlgHom.toRingHom
left_inv f := RingHom.toRatAlgHom_toRingHom f
right_inv f := AlgHom.toRingHom_toRatAlgHom f
end
|
Algebra\Algebra\Subalgebra\Basic.lean | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Yury Kudryashov
-/
import Mathlib.Algebra.Algebra.Operations
/-!
# Subalgebras over Commutative Semiring
In this file we define `Subalgebra`s and the usual operations on them (`map`, `comap`).
More lemmas about `adjoin` can be found in `RingTheory.Adjoin`.
-/
universe u u' v w w'
/-- A subalgebra is a sub(semi)ring that includes the range of `algebraMap`. -/
structure Subalgebra (R : Type u) (A : Type v) [CommSemiring R] [Semiring A] [Algebra R A] extends
Subsemiring A : Type v where
/-- The image of `algebraMap` is contained in the underlying set of the subalgebra -/
algebraMap_mem' : ∀ r, algebraMap R A r ∈ carrier
zero_mem' := (algebraMap R A).map_zero ▸ algebraMap_mem' 0
one_mem' := (algebraMap R A).map_one ▸ algebraMap_mem' 1
/-- Reinterpret a `Subalgebra` as a `Subsemiring`. -/
add_decl_doc Subalgebra.toSubsemiring
namespace Subalgebra
variable {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}
variable [CommSemiring R]
variable [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] [Semiring C] [Algebra R C]
instance : SetLike (Subalgebra R A) A where
coe s := s.carrier
coe_injective' p q h := by cases p; cases q; congr; exact SetLike.coe_injective' h
instance SubsemiringClass : SubsemiringClass (Subalgebra R A) A where
add_mem {s} := add_mem (s := s.toSubsemiring)
mul_mem {s} := mul_mem (s := s.toSubsemiring)
one_mem {s} := one_mem s.toSubsemiring
zero_mem {s} := zero_mem s.toSubsemiring
@[simp]
theorem mem_toSubsemiring {S : Subalgebra R A} {x} : x ∈ S.toSubsemiring ↔ x ∈ S :=
Iff.rfl
-- @[simp] -- Porting note (#10618): simp can prove this
theorem mem_carrier {s : Subalgebra R A} {x : A} : x ∈ s.carrier ↔ x ∈ s :=
Iff.rfl
@[ext]
theorem ext {S T : Subalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T :=
SetLike.ext h
@[simp]
theorem coe_toSubsemiring (S : Subalgebra R A) : (↑S.toSubsemiring : Set A) = S :=
rfl
theorem toSubsemiring_injective :
Function.Injective (toSubsemiring : Subalgebra R A → Subsemiring A) := fun S T h =>
ext fun x => by rw [← mem_toSubsemiring, ← mem_toSubsemiring, h]
theorem toSubsemiring_inj {S U : Subalgebra R A} : S.toSubsemiring = U.toSubsemiring ↔ S = U :=
toSubsemiring_injective.eq_iff
/-- Copy of a subalgebra with a new `carrier` equal to the old one. Useful to fix definitional
equalities. -/
protected def copy (S : Subalgebra R A) (s : Set A) (hs : s = ↑S) : Subalgebra R A :=
{ S.toSubsemiring.copy s hs with
carrier := s
algebraMap_mem' := hs.symm ▸ S.algebraMap_mem' }
@[simp]
theorem coe_copy (S : Subalgebra R A) (s : Set A) (hs : s = ↑S) : (S.copy s hs : Set A) = s :=
rfl
theorem copy_eq (S : Subalgebra R A) (s : Set A) (hs : s = ↑S) : S.copy s hs = S :=
SetLike.coe_injective hs
variable (S : Subalgebra R A)
instance instSMulMemClass : SMulMemClass (Subalgebra R A) R A where
smul_mem {S} r x hx := (Algebra.smul_def r x).symm ▸ mul_mem (S.algebraMap_mem' r) hx
@[aesop safe apply (rule_sets := [SetLike])]
theorem _root_.algebraMap_mem {S R A : Type*} [CommSemiring R] [Semiring A] [Algebra R A]
[SetLike S A] [OneMemClass S A] [SMulMemClass S R A] (s : S) (r : R) :
algebraMap R A r ∈ s :=
Algebra.algebraMap_eq_smul_one (A := A) r ▸ SMulMemClass.smul_mem r (one_mem s)
protected theorem algebraMap_mem (r : R) : algebraMap R A r ∈ S :=
algebraMap_mem S r
theorem rangeS_le : (algebraMap R A).rangeS ≤ S.toSubsemiring := fun _x ⟨r, hr⟩ =>
hr ▸ S.algebraMap_mem r
theorem range_subset : Set.range (algebraMap R A) ⊆ S := fun _x ⟨r, hr⟩ => hr ▸ S.algebraMap_mem r
theorem range_le : Set.range (algebraMap R A) ≤ S :=
S.range_subset
theorem smul_mem {x : A} (hx : x ∈ S) (r : R) : r • x ∈ S :=
SMulMemClass.smul_mem r hx
protected theorem one_mem : (1 : A) ∈ S :=
one_mem S
protected theorem mul_mem {x y : A} (hx : x ∈ S) (hy : y ∈ S) : x * y ∈ S :=
mul_mem hx hy
protected theorem pow_mem {x : A} (hx : x ∈ S) (n : ℕ) : x ^ n ∈ S :=
pow_mem hx n
protected theorem zero_mem : (0 : A) ∈ S :=
zero_mem S
protected theorem add_mem {x y : A} (hx : x ∈ S) (hy : y ∈ S) : x + y ∈ S :=
add_mem hx hy
protected theorem nsmul_mem {x : A} (hx : x ∈ S) (n : ℕ) : n • x ∈ S :=
nsmul_mem hx n
protected theorem natCast_mem (n : ℕ) : (n : A) ∈ S :=
natCast_mem S n
protected theorem list_prod_mem {L : List A} (h : ∀ x ∈ L, x ∈ S) : L.prod ∈ S :=
list_prod_mem h
protected theorem list_sum_mem {L : List A} (h : ∀ x ∈ L, x ∈ S) : L.sum ∈ S :=
list_sum_mem h
protected theorem multiset_sum_mem {m : Multiset A} (h : ∀ x ∈ m, x ∈ S) : m.sum ∈ S :=
multiset_sum_mem m h
protected theorem sum_mem {ι : Type w} {t : Finset ι} {f : ι → A} (h : ∀ x ∈ t, f x ∈ S) :
(∑ x ∈ t, f x) ∈ S :=
sum_mem h
protected theorem multiset_prod_mem {R : Type u} {A : Type v} [CommSemiring R] [CommSemiring A]
[Algebra R A] (S : Subalgebra R A) {m : Multiset A} (h : ∀ x ∈ m, x ∈ S) : m.prod ∈ S :=
multiset_prod_mem m h
protected theorem prod_mem {R : Type u} {A : Type v} [CommSemiring R] [CommSemiring A] [Algebra R A]
(S : Subalgebra R A) {ι : Type w} {t : Finset ι} {f : ι → A} (h : ∀ x ∈ t, f x ∈ S) :
(∏ x ∈ t, f x) ∈ S :=
prod_mem h
instance {R A : Type*} [CommRing R] [Ring A] [Algebra R A] : SubringClass (Subalgebra R A) A :=
{ Subalgebra.SubsemiringClass with
neg_mem := fun {S x} hx => neg_one_smul R x ▸ S.smul_mem hx _ }
protected theorem neg_mem {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]
(S : Subalgebra R A) {x : A} (hx : x ∈ S) : -x ∈ S :=
neg_mem hx
protected theorem sub_mem {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]
(S : Subalgebra R A) {x y : A} (hx : x ∈ S) (hy : y ∈ S) : x - y ∈ S :=
sub_mem hx hy
protected theorem zsmul_mem {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]
(S : Subalgebra R A) {x : A} (hx : x ∈ S) (n : ℤ) : n • x ∈ S :=
zsmul_mem hx n
protected theorem intCast_mem {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]
(S : Subalgebra R A) (n : ℤ) : (n : A) ∈ S :=
intCast_mem S n
@[deprecated natCast_mem (since := "2024-04-05")] alias coe_nat_mem := Subalgebra.natCast_mem
@[deprecated intCast_mem (since := "2024-04-05")] alias coe_int_mem := Subalgebra.intCast_mem
/-- The projection from a subalgebra of `A` to an additive submonoid of `A`. -/
def toAddSubmonoid {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A]
(S : Subalgebra R A) : AddSubmonoid A :=
S.toSubsemiring.toAddSubmonoid
-- Porting note: this field already exists in Lean 4.
-- /-- The projection from a subalgebra of `A` to a submonoid of `A`. -/
-- def toSubmonoid {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A]
-- (S : Subalgebra R A) : Submonoid A :=
-- S.toSubsemiring.toSubmonoid
/-- A subalgebra over a ring is also a `Subring`. -/
def toSubring {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A] (S : Subalgebra R A) :
Subring A :=
{ S.toSubsemiring with neg_mem' := S.neg_mem }
@[simp]
theorem mem_toSubring {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]
{S : Subalgebra R A} {x} : x ∈ S.toSubring ↔ x ∈ S :=
Iff.rfl
@[simp]
theorem coe_toSubring {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]
(S : Subalgebra R A) : (↑S.toSubring : Set A) = S :=
rfl
theorem toSubring_injective {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A] :
Function.Injective (toSubring : Subalgebra R A → Subring A) := fun S T h =>
ext fun x => by rw [← mem_toSubring, ← mem_toSubring, h]
theorem toSubring_inj {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]
{S U : Subalgebra R A} : S.toSubring = U.toSubring ↔ S = U :=
toSubring_injective.eq_iff
instance : Inhabited S :=
⟨(0 : S.toSubsemiring)⟩
section
/-! `Subalgebra`s inherit structure from their `Subsemiring` / `Semiring` coercions. -/
instance toSemiring {R A} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) :
Semiring S :=
S.toSubsemiring.toSemiring
instance toCommSemiring {R A} [CommSemiring R] [CommSemiring A] [Algebra R A] (S : Subalgebra R A) :
CommSemiring S :=
S.toSubsemiring.toCommSemiring
instance toRing {R A} [CommRing R] [Ring A] [Algebra R A] (S : Subalgebra R A) : Ring S :=
S.toSubring.toRing
instance toCommRing {R A} [CommRing R] [CommRing A] [Algebra R A] (S : Subalgebra R A) :
CommRing S :=
S.toSubring.toCommRing
end
/-- The forgetful map from `Subalgebra` to `Submodule` as an `OrderEmbedding` -/
def toSubmodule : Subalgebra R A ↪o Submodule R A where
toEmbedding :=
{ toFun := fun S =>
{ S with
carrier := S
smul_mem' := fun c {x} hx ↦
(Algebra.smul_def c x).symm ▸ mul_mem (S.range_le ⟨c, rfl⟩) hx }
inj' := fun _ _ h ↦ ext fun x ↦ SetLike.ext_iff.mp h x }
map_rel_iff' := SetLike.coe_subset_coe.symm.trans SetLike.coe_subset_coe
/- TODO: bundle other forgetful maps between algebraic substructures, e.g.
`to_subsemiring` and `to_subring` in this file. -/
@[simp]
theorem mem_toSubmodule {x} : x ∈ (toSubmodule S) ↔ x ∈ S := Iff.rfl
@[simp]
theorem coe_toSubmodule (S : Subalgebra R A) : (toSubmodule S : Set A) = S := rfl
theorem toSubmodule_injective : Function.Injective (toSubmodule : Subalgebra R A → Submodule R A) :=
fun _S₁ _S₂ h => SetLike.ext (SetLike.ext_iff.mp h :)
section
/-! `Subalgebra`s inherit structure from their `Submodule` coercions. -/
instance (priority := low) module' [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :
Module R' S :=
S.toSubmodule.module'
instance : Module R S :=
S.module'
instance [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] : IsScalarTower R' R S :=
inferInstanceAs (IsScalarTower R' R (toSubmodule S))
/- More general form of `Subalgebra.algebra`.
This instance should have low priority since it is slow to fail:
before failing, it will cause a search through all `SMul R' R` instances,
which can quickly get expensive.
-/
instance (priority := 500) algebra' [CommSemiring R'] [SMul R' R] [Algebra R' A]
[IsScalarTower R' R A] :
Algebra R' S :=
{ (algebraMap R' A).codRestrict S fun x => by
rw [Algebra.algebraMap_eq_smul_one, ← smul_one_smul R x (1 : A), ←
Algebra.algebraMap_eq_smul_one]
exact algebraMap_mem S
_ with
commutes' := fun c x => Subtype.eq <| Algebra.commutes _ _
smul_def' := fun c x => Subtype.eq <| Algebra.smul_def _ _ }
instance algebra : Algebra R S := S.algebra'
end
instance noZeroSMulDivisors_bot [NoZeroSMulDivisors R A] : NoZeroSMulDivisors R S :=
⟨fun {c} {x : S} h =>
have : c = 0 ∨ (x : A) = 0 := eq_zero_or_eq_zero_of_smul_eq_zero (congr_arg Subtype.val h)
this.imp_right (@Subtype.ext_iff _ _ x 0).mpr⟩
protected theorem coe_add (x y : S) : (↑(x + y) : A) = ↑x + ↑y := rfl
protected theorem coe_mul (x y : S) : (↑(x * y) : A) = ↑x * ↑y := rfl
protected theorem coe_zero : ((0 : S) : A) = 0 := rfl
protected theorem coe_one : ((1 : S) : A) = 1 := rfl
protected theorem coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]
{S : Subalgebra R A} (x : S) : (↑(-x) : A) = -↑x := rfl
protected theorem coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A]
{S : Subalgebra R A} (x y : S) : (↑(x - y) : A) = ↑x - ↑y := rfl
@[simp, norm_cast]
theorem coe_smul [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :
(↑(r • x) : A) = r • (x : A) := rfl
@[simp, norm_cast]
theorem coe_algebraMap [CommSemiring R'] [SMul R' R] [Algebra R' A] [IsScalarTower R' R A]
(r : R') : ↑(algebraMap R' S r) = algebraMap R' A r := rfl
protected theorem coe_pow (x : S) (n : ℕ) : (↑(x ^ n) : A) = (x : A) ^ n :=
SubmonoidClass.coe_pow x n
protected theorem coe_eq_zero {x : S} : (x : A) = 0 ↔ x = 0 :=
ZeroMemClass.coe_eq_zero
protected theorem coe_eq_one {x : S} : (x : A) = 1 ↔ x = 1 :=
OneMemClass.coe_eq_one
-- todo: standardize on the names these morphisms
-- compare with submodule.subtype
/-- Embedding of a subalgebra into the algebra. -/
def val : S →ₐ[R] A :=
{ toFun := ((↑) : S → A)
map_zero' := rfl
map_one' := rfl
map_add' := fun _ _ ↦ rfl
map_mul' := fun _ _ ↦ rfl
commutes' := fun _ ↦ rfl }
@[simp]
theorem coe_val : (S.val : S → A) = ((↑) : S → A) := rfl
theorem val_apply (x : S) : S.val x = (x : A) := rfl
@[simp]
theorem toSubsemiring_subtype : S.toSubsemiring.subtype = (S.val : S →+* A) := rfl
@[simp]
theorem toSubring_subtype {R A : Type*} [CommRing R] [Ring A] [Algebra R A] (S : Subalgebra R A) :
S.toSubring.subtype = (S.val : S →+* A) := rfl
/-- Linear equivalence between `S : Submodule R A` and `S`. Though these types are equal,
we define it as a `LinearEquiv` to avoid type equalities. -/
def toSubmoduleEquiv (S : Subalgebra R A) : toSubmodule S ≃ₗ[R] S :=
LinearEquiv.ofEq _ _ rfl
/-- Transport a subalgebra via an algebra homomorphism. -/
def map (f : A →ₐ[R] B) (S : Subalgebra R A) : Subalgebra R B :=
{ S.toSubsemiring.map (f : A →+* B) with
algebraMap_mem' := fun r => f.commutes r ▸ Set.mem_image_of_mem _ (S.algebraMap_mem r) }
theorem map_mono {S₁ S₂ : Subalgebra R A} {f : A →ₐ[R] B} : S₁ ≤ S₂ → S₁.map f ≤ S₂.map f :=
Set.image_subset f
theorem map_injective {f : A →ₐ[R] B} (hf : Function.Injective f) : Function.Injective (map f) :=
fun _S₁ _S₂ ih =>
ext <| Set.ext_iff.1 <| Set.image_injective.2 hf <| Set.ext <| SetLike.ext_iff.mp ih
@[simp]
theorem map_id (S : Subalgebra R A) : S.map (AlgHom.id R A) = S :=
SetLike.coe_injective <| Set.image_id _
theorem map_map (S : Subalgebra R A) (g : B →ₐ[R] C) (f : A →ₐ[R] B) :
(S.map f).map g = S.map (g.comp f) :=
SetLike.coe_injective <| Set.image_image _ _ _
@[simp]
theorem mem_map {S : Subalgebra R A} {f : A →ₐ[R] B} {y : B} : y ∈ map f S ↔ ∃ x ∈ S, f x = y :=
Subsemiring.mem_map
theorem map_toSubmodule {S : Subalgebra R A} {f : A →ₐ[R] B} :
(toSubmodule <| S.map f) = S.toSubmodule.map f.toLinearMap :=
SetLike.coe_injective rfl
theorem map_toSubsemiring {S : Subalgebra R A} {f : A →ₐ[R] B} :
(S.map f).toSubsemiring = S.toSubsemiring.map f.toRingHom :=
SetLike.coe_injective rfl
@[simp]
theorem coe_map (S : Subalgebra R A) (f : A →ₐ[R] B) : (S.map f : Set B) = f '' S := rfl
/-- Preimage of a subalgebra under an algebra homomorphism. -/
def comap (f : A →ₐ[R] B) (S : Subalgebra R B) : Subalgebra R A :=
{ S.toSubsemiring.comap (f : A →+* B) with
algebraMap_mem' := fun r =>
show f (algebraMap R A r) ∈ S from (f.commutes r).symm ▸ S.algebraMap_mem r }
theorem map_le {S : Subalgebra R A} {f : A →ₐ[R] B} {U : Subalgebra R B} :
map f S ≤ U ↔ S ≤ comap f U :=
Set.image_subset_iff
theorem gc_map_comap (f : A →ₐ[R] B) : GaloisConnection (map f) (comap f) := fun _S _U => map_le
@[simp]
theorem mem_comap (S : Subalgebra R B) (f : A →ₐ[R] B) (x : A) : x ∈ S.comap f ↔ f x ∈ S :=
Iff.rfl
@[simp, norm_cast]
theorem coe_comap (S : Subalgebra R B) (f : A →ₐ[R] B) : (S.comap f : Set A) = f ⁻¹' (S : Set B) :=
rfl
instance noZeroDivisors {R A : Type*} [CommSemiring R] [Semiring A] [NoZeroDivisors A]
[Algebra R A] (S : Subalgebra R A) : NoZeroDivisors S :=
inferInstanceAs (NoZeroDivisors S.toSubsemiring)
instance isDomain {R A : Type*} [CommRing R] [Ring A] [IsDomain A] [Algebra R A]
(S : Subalgebra R A) : IsDomain S :=
inferInstanceAs (IsDomain S.toSubring)
end Subalgebra
namespace SubalgebraClass
variable {S R A : Type*} [CommSemiring R] [Semiring A] [Algebra R A]
variable [SetLike S A] [SubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S)
instance (priority := 75) toAlgebra : Algebra R s where
toFun r := ⟨algebraMap R A r, algebraMap_mem s r⟩
map_one' := Subtype.ext <| by simp
map_mul' _ _ := Subtype.ext <| by simp
map_zero' := Subtype.ext <| by simp
map_add' _ _ := Subtype.ext <| by simp
commutes' r x := Subtype.ext <| Algebra.commutes r (x : A)
smul_def' r x := Subtype.ext <| (algebraMap_smul A r (x : A)).symm
@[simp, norm_cast]
lemma coe_algebraMap (r : R) : (algebraMap R s r : A) = algebraMap R A r := rfl
/-- Embedding of a subalgebra into the algebra, as an algebra homomorphism. -/
def val (s : S) : s →ₐ[R] A :=
{ SubsemiringClass.subtype s, SMulMemClass.subtype s with
toFun := (↑)
commutes' := fun _ ↦ rfl }
@[simp]
theorem coe_val : (val s : s → A) = ((↑) : s → A) :=
rfl
end SubalgebraClass
namespace Submodule
variable {R A : Type*} [CommSemiring R] [Semiring A] [Algebra R A]
variable (p : Submodule R A)
/-- A submodule containing `1` and closed under multiplication is a subalgebra. -/
def toSubalgebra (p : Submodule R A) (h_one : (1 : A) ∈ p)
(h_mul : ∀ x y, x ∈ p → y ∈ p → x * y ∈ p) : Subalgebra R A :=
{ p with
mul_mem' := fun hx hy ↦ h_mul _ _ hx hy
one_mem' := h_one
algebraMap_mem' := fun r => by
rw [Algebra.algebraMap_eq_smul_one]
exact p.smul_mem _ h_one }
@[simp]
theorem mem_toSubalgebra {p : Submodule R A} {h_one h_mul} {x} :
x ∈ p.toSubalgebra h_one h_mul ↔ x ∈ p := Iff.rfl
@[simp]
theorem coe_toSubalgebra (p : Submodule R A) (h_one h_mul) :
(p.toSubalgebra h_one h_mul : Set A) = p := rfl
-- Porting note: changed statement to reflect new structures
-- @[simp] -- Porting note: as a result, it is no longer a great simp lemma
theorem toSubalgebra_mk (s : Submodule R A) (h1 hmul) :
s.toSubalgebra h1 hmul =
Subalgebra.mk ⟨⟨⟨s, @hmul⟩, h1⟩, s.add_mem, s.zero_mem⟩
(by intro r; rw [Algebra.algebraMap_eq_smul_one]; apply s.smul_mem _ h1) :=
rfl
@[simp]
theorem toSubalgebra_toSubmodule (p : Submodule R A) (h_one h_mul) :
Subalgebra.toSubmodule (p.toSubalgebra h_one h_mul) = p :=
SetLike.coe_injective rfl
@[simp]
theorem _root_.Subalgebra.toSubmodule_toSubalgebra (S : Subalgebra R A) :
(S.toSubmodule.toSubalgebra S.one_mem fun _ _ => S.mul_mem) = S :=
SetLike.coe_injective rfl
end Submodule
namespace AlgHom
variable {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} {C : Type w'}
variable [CommSemiring R]
variable [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] [Semiring C] [Algebra R C]
variable (φ : A →ₐ[R] B)
/-- Range of an `AlgHom` as a subalgebra. -/
protected def range (φ : A →ₐ[R] B) : Subalgebra R B :=
{ φ.toRingHom.rangeS with algebraMap_mem' := fun r => ⟨algebraMap R A r, φ.commutes r⟩ }
@[simp]
theorem mem_range (φ : A →ₐ[R] B) {y : B} : y ∈ φ.range ↔ ∃ x, φ x = y :=
RingHom.mem_rangeS
theorem mem_range_self (φ : A →ₐ[R] B) (x : A) : φ x ∈ φ.range :=
φ.mem_range.2 ⟨x, rfl⟩
@[simp]
theorem coe_range (φ : A →ₐ[R] B) : (φ.range : Set B) = Set.range φ := by
ext
rw [SetLike.mem_coe, mem_range]
rfl
theorem range_comp (f : A →ₐ[R] B) (g : B →ₐ[R] C) : (g.comp f).range = f.range.map g :=
SetLike.coe_injective (Set.range_comp g f)
theorem range_comp_le_range (f : A →ₐ[R] B) (g : B →ₐ[R] C) : (g.comp f).range ≤ g.range :=
SetLike.coe_mono (Set.range_comp_subset_range f g)
/-- Restrict the codomain of an algebra homomorphism. -/
def codRestrict (f : A →ₐ[R] B) (S : Subalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₐ[R] S :=
{ RingHom.codRestrict (f : A →+* B) S hf with commutes' := fun r => Subtype.eq <| f.commutes r }
@[simp]
theorem val_comp_codRestrict (f : A →ₐ[R] B) (S : Subalgebra R B) (hf : ∀ x, f x ∈ S) :
S.val.comp (f.codRestrict S hf) = f :=
AlgHom.ext fun _ => rfl
@[simp]
theorem coe_codRestrict (f : A →ₐ[R] B) (S : Subalgebra R B) (hf : ∀ x, f x ∈ S) (x : A) :
↑(f.codRestrict S hf x) = f x :=
rfl
theorem injective_codRestrict (f : A →ₐ[R] B) (S : Subalgebra R B) (hf : ∀ x, f x ∈ S) :
Function.Injective (f.codRestrict S hf) ↔ Function.Injective f :=
⟨fun H _x _y hxy => H <| Subtype.eq hxy, fun H _x _y hxy => H (congr_arg Subtype.val hxy : _)⟩
/-- Restrict the codomain of an `AlgHom` `f` to `f.range`.
This is the bundled version of `Set.rangeFactorization`. -/
abbrev rangeRestrict (f : A →ₐ[R] B) : A →ₐ[R] f.range :=
f.codRestrict f.range f.mem_range_self
theorem rangeRestrict_surjective (f : A →ₐ[R] B) : Function.Surjective (f.rangeRestrict) :=
fun ⟨_y, hy⟩ =>
let ⟨x, hx⟩ := hy
⟨x, SetCoe.ext hx⟩
/-- The range of a morphism of algebras is a fintype, if the domain is a fintype.
Note that this instance can cause a diamond with `Subtype.fintype` if `B` is also a fintype. -/
instance fintypeRange [Fintype A] [DecidableEq B] (φ : A →ₐ[R] B) : Fintype φ.range :=
Set.fintypeRange φ
end AlgHom
namespace AlgEquiv
variable {R : Type u} {A : Type v} {B : Type w}
variable [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B]
/-- Restrict an algebra homomorphism with a left inverse to an algebra isomorphism to its range.
This is a computable alternative to `AlgEquiv.ofInjective`. -/
def ofLeftInverse {g : B → A} {f : A →ₐ[R] B} (h : Function.LeftInverse g f) : A ≃ₐ[R] f.range :=
{ f.rangeRestrict with
toFun := f.rangeRestrict
invFun := g ∘ f.range.val
left_inv := h
right_inv := fun x =>
Subtype.ext <|
let ⟨x', hx'⟩ := f.mem_range.mp x.prop
show f (g x) = x by rw [← hx', h x'] }
@[simp]
theorem ofLeftInverse_apply {g : B → A} {f : A →ₐ[R] B} (h : Function.LeftInverse g f) (x : A) :
↑(ofLeftInverse h x) = f x :=
rfl
@[simp]
theorem ofLeftInverse_symm_apply {g : B → A} {f : A →ₐ[R] B} (h : Function.LeftInverse g f)
(x : f.range) : (ofLeftInverse h).symm x = g x :=
rfl
/-- Restrict an injective algebra homomorphism to an algebra isomorphism -/
noncomputable def ofInjective (f : A →ₐ[R] B) (hf : Function.Injective f) : A ≃ₐ[R] f.range :=
ofLeftInverse (Classical.choose_spec hf.hasLeftInverse)
@[simp]
theorem ofInjective_apply (f : A →ₐ[R] B) (hf : Function.Injective f) (x : A) :
↑(ofInjective f hf x) = f x :=
rfl
/-- Restrict an algebra homomorphism between fields to an algebra isomorphism -/
noncomputable def ofInjectiveField {E F : Type*} [DivisionRing E] [Semiring F] [Nontrivial F]
[Algebra R E] [Algebra R F] (f : E →ₐ[R] F) : E ≃ₐ[R] f.range :=
ofInjective f f.toRingHom.injective
/-- Given an equivalence `e : A ≃ₐ[R] B` of `R`-algebras and a subalgebra `S` of `A`,
`subalgebraMap` is the induced equivalence between `S` and `S.map e` -/
@[simps!]
def subalgebraMap (e : A ≃ₐ[R] B) (S : Subalgebra R A) : S ≃ₐ[R] S.map (e : A →ₐ[R] B) :=
{ e.toRingEquiv.subsemiringMap S.toSubsemiring with
commutes' := fun r => by
ext; dsimp only; erw [RingEquiv.subsemiringMap_apply_coe]
exact e.commutes _ }
end AlgEquiv
namespace Algebra
variable (R : Type u) {A : Type v} {B : Type w}
variable [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B]
/-- The minimal subalgebra that includes `s`. -/
def adjoin (s : Set A) : Subalgebra R A :=
{ Subsemiring.closure (Set.range (algebraMap R A) ∪ s) with
algebraMap_mem' := fun r => Subsemiring.subset_closure <| Or.inl ⟨r, rfl⟩ }
variable {R}
protected theorem gc : GaloisConnection (adjoin R : Set A → Subalgebra R A) (↑) := fun s S =>
⟨fun H => le_trans (le_trans Set.subset_union_right Subsemiring.subset_closure) H,
fun H => show Subsemiring.closure (Set.range (algebraMap R A) ∪ s) ≤ S.toSubsemiring from
Subsemiring.closure_le.2 <| Set.union_subset S.range_subset H⟩
/-- Galois insertion between `adjoin` and `coe`. -/
protected def gi : GaloisInsertion (adjoin R : Set A → Subalgebra R A) (↑) where
choice s hs := (adjoin R s).copy s <| le_antisymm (Algebra.gc.le_u_l s) hs
gc := Algebra.gc
le_l_u S := (Algebra.gc (S : Set A) (adjoin R S)).1 <| le_rfl
choice_eq _ _ := Subalgebra.copy_eq _ _ _
instance : CompleteLattice (Subalgebra R A) where
__ := GaloisInsertion.liftCompleteLattice Algebra.gi
bot := (Algebra.ofId R A).range
bot_le _S := fun _a ⟨_r, hr⟩ => hr ▸ algebraMap_mem _ _
@[simp]
theorem coe_top : (↑(⊤ : Subalgebra R A) : Set A) = Set.univ := rfl
@[simp]
theorem mem_top {x : A} : x ∈ (⊤ : Subalgebra R A) := Set.mem_univ x
@[simp]
theorem top_toSubmodule : Subalgebra.toSubmodule (⊤ : Subalgebra R A) = ⊤ := rfl
@[simp]
theorem top_toSubsemiring : (⊤ : Subalgebra R A).toSubsemiring = ⊤ := rfl
@[simp]
theorem top_toSubring {R A : Type*} [CommRing R] [Ring A] [Algebra R A] :
(⊤ : Subalgebra R A).toSubring = ⊤ := rfl
@[simp]
theorem toSubmodule_eq_top {S : Subalgebra R A} : Subalgebra.toSubmodule S = ⊤ ↔ S = ⊤ :=
Subalgebra.toSubmodule.injective.eq_iff' top_toSubmodule
@[simp]
theorem toSubsemiring_eq_top {S : Subalgebra R A} : S.toSubsemiring = ⊤ ↔ S = ⊤ :=
Subalgebra.toSubsemiring_injective.eq_iff' top_toSubsemiring
@[simp]
theorem toSubring_eq_top {R A : Type*} [CommRing R] [Ring A] [Algebra R A] {S : Subalgebra R A} :
S.toSubring = ⊤ ↔ S = ⊤ :=
Subalgebra.toSubring_injective.eq_iff' top_toSubring
theorem mem_sup_left {S T : Subalgebra R A} : ∀ {x : A}, x ∈ S → x ∈ S ⊔ T :=
have : S ≤ S ⊔ T := le_sup_left; (this ·) -- Porting note: need `have` instead of `show`
theorem mem_sup_right {S T : Subalgebra R A} : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T :=
have : T ≤ S ⊔ T := le_sup_right; (this ·) -- Porting note: need `have` instead of `show`
theorem mul_mem_sup {S T : Subalgebra R A} {x y : A} (hx : x ∈ S) (hy : y ∈ T) : x * y ∈ S ⊔ T :=
(S ⊔ T).mul_mem (mem_sup_left hx) (mem_sup_right hy)
theorem map_sup (f : A →ₐ[R] B) (S T : Subalgebra R A) : (S ⊔ T).map f = S.map f ⊔ T.map f :=
(Subalgebra.gc_map_comap f).l_sup
@[simp, norm_cast]
theorem coe_inf (S T : Subalgebra R A) : (↑(S ⊓ T) : Set A) = (S ∩ T : Set A) := rfl
@[simp]
theorem mem_inf {S T : Subalgebra R A} {x : A} : x ∈ S ⊓ T ↔ x ∈ S ∧ x ∈ T := Iff.rfl
open Subalgebra in
@[simp]
theorem inf_toSubmodule (S T : Subalgebra R A) :
toSubmodule (S ⊓ T) = toSubmodule S ⊓ toSubmodule T := rfl
@[simp]
theorem inf_toSubsemiring (S T : Subalgebra R A) :
(S ⊓ T).toSubsemiring = S.toSubsemiring ⊓ T.toSubsemiring :=
rfl
@[simp, norm_cast]
theorem coe_sInf (S : Set (Subalgebra R A)) : (↑(sInf S) : Set A) = ⋂ s ∈ S, ↑s :=
sInf_image
theorem mem_sInf {S : Set (Subalgebra R A)} {x : A} : x ∈ sInf S ↔ ∀ p ∈ S, x ∈ p := by
simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]
@[simp]
theorem sInf_toSubmodule (S : Set (Subalgebra R A)) :
Subalgebra.toSubmodule (sInf S) = sInf (Subalgebra.toSubmodule '' S) :=
SetLike.coe_injective <| by simp
@[simp]
theorem sInf_toSubsemiring (S : Set (Subalgebra R A)) :
(sInf S).toSubsemiring = sInf (Subalgebra.toSubsemiring '' S) :=
SetLike.coe_injective <| by simp
@[simp, norm_cast]
theorem coe_iInf {ι : Sort*} {S : ι → Subalgebra R A} : (↑(⨅ i, S i) : Set A) = ⋂ i, S i := by
simp [iInf]
theorem mem_iInf {ι : Sort*} {S : ι → Subalgebra R A} {x : A} : (x ∈ ⨅ i, S i) ↔ ∀ i, x ∈ S i := by
simp only [iInf, mem_sInf, Set.forall_mem_range]
open Subalgebra in
@[simp]
theorem iInf_toSubmodule {ι : Sort*} (S : ι → Subalgebra R A) :
toSubmodule (⨅ i, S i) = ⨅ i, toSubmodule (S i) :=
SetLike.coe_injective <| by simp
instance : Inhabited (Subalgebra R A) := ⟨⊥⟩
theorem mem_bot {x : A} : x ∈ (⊥ : Subalgebra R A) ↔ x ∈ Set.range (algebraMap R A) := Iff.rfl
theorem toSubmodule_bot : Subalgebra.toSubmodule (⊥ : Subalgebra R A) = 1 := rfl
@[simp]
theorem coe_bot : ((⊥ : Subalgebra R A) : Set A) = Set.range (algebraMap R A) := rfl
theorem eq_top_iff {S : Subalgebra R A} : S = ⊤ ↔ ∀ x : A, x ∈ S :=
⟨fun h x => by rw [h]; exact mem_top, fun h => by
ext x; exact ⟨fun _ => mem_top, fun _ => h x⟩⟩
theorem range_top_iff_surjective (f : A →ₐ[R] B) :
f.range = (⊤ : Subalgebra R B) ↔ Function.Surjective f :=
Algebra.eq_top_iff
@[simp]
theorem range_id : (AlgHom.id R A).range = ⊤ :=
SetLike.coe_injective Set.range_id
@[simp]
theorem map_top (f : A →ₐ[R] B) : (⊤ : Subalgebra R A).map f = f.range :=
SetLike.coe_injective Set.image_univ
@[simp]
theorem map_bot (f : A →ₐ[R] B) : (⊥ : Subalgebra R A).map f = ⊥ :=
Subalgebra.toSubmodule_injective <| Submodule.map_one _
@[simp]
theorem comap_top (f : A →ₐ[R] B) : (⊤ : Subalgebra R B).comap f = ⊤ :=
eq_top_iff.2 fun _x => mem_top
/-- `AlgHom` to `⊤ : Subalgebra R A`. -/
def toTop : A →ₐ[R] (⊤ : Subalgebra R A) :=
(AlgHom.id R A).codRestrict ⊤ fun _ => mem_top
theorem surjective_algebraMap_iff :
Function.Surjective (algebraMap R A) ↔ (⊤ : Subalgebra R A) = ⊥ :=
⟨fun h =>
eq_bot_iff.2 fun y _ =>
let ⟨_x, hx⟩ := h y
hx ▸ Subalgebra.algebraMap_mem _ _,
fun h y => Algebra.mem_bot.1 <| eq_bot_iff.1 h (Algebra.mem_top : y ∈ _)⟩
theorem bijective_algebraMap_iff {R A : Type*} [Field R] [Semiring A] [Nontrivial A]
[Algebra R A] : Function.Bijective (algebraMap R A) ↔ (⊤ : Subalgebra R A) = ⊥ :=
⟨fun h => surjective_algebraMap_iff.1 h.2, fun h =>
⟨(algebraMap R A).injective, surjective_algebraMap_iff.2 h⟩⟩
/-- The bottom subalgebra is isomorphic to the base ring. -/
noncomputable def botEquivOfInjective (h : Function.Injective (algebraMap R A)) :
(⊥ : Subalgebra R A) ≃ₐ[R] R :=
AlgEquiv.symm <|
AlgEquiv.ofBijective (Algebra.ofId R _)
⟨fun _x _y hxy => h (congr_arg Subtype.val hxy : _), fun ⟨_y, x, hx⟩ => ⟨x, Subtype.eq hx⟩⟩
/-- The bottom subalgebra is isomorphic to the field. -/
@[simps! symm_apply]
noncomputable def botEquiv (F R : Type*) [Field F] [Semiring R] [Nontrivial R] [Algebra F R] :
(⊥ : Subalgebra F R) ≃ₐ[F] F :=
botEquivOfInjective (RingHom.injective _)
end Algebra
namespace Subalgebra
open Algebra
variable {R : Type u} {A : Type v} {B : Type w}
variable [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B]
variable (S : Subalgebra R A)
/-- The top subalgebra is isomorphic to the algebra.
This is the algebra version of `Submodule.topEquiv`. -/
@[simps!]
def topEquiv : (⊤ : Subalgebra R A) ≃ₐ[R] A :=
AlgEquiv.ofAlgHom (Subalgebra.val ⊤) toTop rfl <| AlgHom.ext fun _ => Subtype.ext rfl
instance subsingleton_of_subsingleton [Subsingleton A] : Subsingleton (Subalgebra R A) :=
⟨fun B C => ext fun x => by simp only [Subsingleton.elim x 0, zero_mem B, zero_mem C]⟩
instance _root_.AlgHom.subsingleton [Subsingleton (Subalgebra R A)] : Subsingleton (A →ₐ[R] B) :=
⟨fun f g =>
AlgHom.ext fun a =>
have : a ∈ (⊥ : Subalgebra R A) := Subsingleton.elim (⊤ : Subalgebra R A) ⊥ ▸ mem_top
let ⟨_x, hx⟩ := Set.mem_range.mp (mem_bot.mp this)
hx ▸ (f.commutes _).trans (g.commutes _).symm⟩
instance _root_.AlgEquiv.subsingleton_left [Subsingleton (Subalgebra R A)] :
Subsingleton (A ≃ₐ[R] B) :=
⟨fun f g => AlgEquiv.ext fun x => AlgHom.ext_iff.mp (Subsingleton.elim f.toAlgHom g.toAlgHom) x⟩
instance _root_.AlgEquiv.subsingleton_right [Subsingleton (Subalgebra R B)] :
Subsingleton (A ≃ₐ[R] B) :=
⟨fun f g => by rw [← f.symm_symm, Subsingleton.elim f.symm g.symm, g.symm_symm]⟩
theorem range_val : S.val.range = S :=
ext <| Set.ext_iff.1 <| S.val.coe_range.trans Subtype.range_val
instance : Unique (Subalgebra R R) :=
{ inferInstanceAs (Inhabited (Subalgebra R R)) with
uniq := by
intro S
refine le_antisymm ?_ bot_le
intro _ _
simp only [Set.mem_range, mem_bot, id.map_eq_self, exists_apply_eq_apply, default] }
/-- The map `S → T` when `S` is a subalgebra contained in the subalgebra `T`.
This is the subalgebra version of `Submodule.inclusion`, or `Subring.inclusion` -/
def inclusion {S T : Subalgebra R A} (h : S ≤ T) : S →ₐ[R] T where
toFun := Set.inclusion h
map_one' := rfl
map_add' _ _ := rfl
map_mul' _ _ := rfl
map_zero' := rfl
commutes' _ := rfl
theorem inclusion_injective {S T : Subalgebra R A} (h : S ≤ T) : Function.Injective (inclusion h) :=
fun _ _ => Subtype.ext ∘ Subtype.mk.inj
@[simp]
theorem inclusion_self {S : Subalgebra R A} : inclusion (le_refl S) = AlgHom.id R S :=
AlgHom.ext fun _x => Subtype.ext rfl
@[simp]
theorem inclusion_mk {S T : Subalgebra R A} (h : S ≤ T) (x : A) (hx : x ∈ S) :
inclusion h ⟨x, hx⟩ = ⟨x, h hx⟩ :=
rfl
theorem inclusion_right {S T : Subalgebra R A} (h : S ≤ T) (x : T) (m : (x : A) ∈ S) :
inclusion h ⟨x, m⟩ = x :=
Subtype.ext rfl
@[simp]
theorem inclusion_inclusion {S T U : Subalgebra R A} (hst : S ≤ T) (htu : T ≤ U) (x : S) :
inclusion htu (inclusion hst x) = inclusion (le_trans hst htu) x :=
Subtype.ext rfl
@[simp]
theorem coe_inclusion {S T : Subalgebra R A} (h : S ≤ T) (s : S) : (inclusion h s : A) = s :=
rfl
/-- Two subalgebras that are equal are also equivalent as algebras.
This is the `Subalgebra` version of `LinearEquiv.ofEq` and `Equiv.Set.ofEq`. -/
@[simps apply]
def equivOfEq (S T : Subalgebra R A) (h : S = T) : S ≃ₐ[R] T where
__ := LinearEquiv.ofEq _ _ (congr_arg toSubmodule h)
toFun x := ⟨x, h ▸ x.2⟩
invFun x := ⟨x, h.symm ▸ x.2⟩
map_mul' _ _ := rfl
commutes' _ := rfl
@[simp]
theorem equivOfEq_symm (S T : Subalgebra R A) (h : S = T) :
(equivOfEq S T h).symm = equivOfEq T S h.symm := rfl
@[simp]
theorem equivOfEq_rfl (S : Subalgebra R A) : equivOfEq S S rfl = AlgEquiv.refl := by ext; rfl
@[simp]
theorem equivOfEq_trans (S T U : Subalgebra R A) (hST : S = T) (hTU : T = U) :
(equivOfEq S T hST).trans (equivOfEq T U hTU) = equivOfEq S U (hST.trans hTU) := rfl
section equivMapOfInjective
variable (f : A →ₐ[R] B)
theorem range_comp_val : (f.comp S.val).range = S.map f := by
rw [AlgHom.range_comp, range_val]
variable (hf : Function.Injective f)
/-- A subalgebra is isomorphic to its image under an injective `AlgHom` -/
noncomputable def equivMapOfInjective : S ≃ₐ[R] S.map f :=
(AlgEquiv.ofInjective (f.comp S.val) (hf.comp Subtype.val_injective)).trans
(equivOfEq _ _ (range_comp_val S f))
@[simp]
theorem coe_equivMapOfInjective_apply (x : S) : ↑(equivMapOfInjective S f hf x) = f x := rfl
end equivMapOfInjective
/-! ## Actions by `Subalgebra`s
These are just copies of the definitions about `Subsemiring` starting from
`Subring.mulAction`.
-/
section Actions
variable {α β : Type*}
/-- The action by a subalgebra is the action by the underlying algebra. -/
instance [SMul A α] (S : Subalgebra R A) : SMul S α :=
inferInstanceAs (SMul S.toSubsemiring α)
theorem smul_def [SMul A α] {S : Subalgebra R A} (g : S) (m : α) : g • m = (g : A) • m := rfl
instance smulCommClass_left [SMul A β] [SMul α β] [SMulCommClass A α β] (S : Subalgebra R A) :
SMulCommClass S α β :=
S.toSubsemiring.smulCommClass_left
instance smulCommClass_right [SMul α β] [SMul A β] [SMulCommClass α A β] (S : Subalgebra R A) :
SMulCommClass α S β :=
S.toSubsemiring.smulCommClass_right
/-- Note that this provides `IsScalarTower S R R` which is needed by `smul_mul_assoc`. -/
instance isScalarTower_left [SMul α β] [SMul A α] [SMul A β] [IsScalarTower A α β]
(S : Subalgebra R A) : IsScalarTower S α β :=
inferInstanceAs (IsScalarTower S.toSubsemiring α β)
instance isScalarTower_mid {R S T : Type*} [CommSemiring R] [Semiring S] [AddCommMonoid T]
[Algebra R S] [Module R T] [Module S T] [IsScalarTower R S T] (S' : Subalgebra R S) :
IsScalarTower R S' T :=
⟨fun _x y _z => (smul_assoc _ (y : S) _ : _)⟩
instance [SMul A α] [FaithfulSMul A α] (S : Subalgebra R A) : FaithfulSMul S α :=
inferInstanceAs (FaithfulSMul S.toSubsemiring α)
/-- The action by a subalgebra is the action by the underlying algebra. -/
instance [MulAction A α] (S : Subalgebra R A) : MulAction S α :=
inferInstanceAs (MulAction S.toSubsemiring α)
/-- The action by a subalgebra is the action by the underlying algebra. -/
instance [AddMonoid α] [DistribMulAction A α] (S : Subalgebra R A) : DistribMulAction S α :=
inferInstanceAs (DistribMulAction S.toSubsemiring α)
/-- The action by a subalgebra is the action by the underlying algebra. -/
instance [Zero α] [SMulWithZero A α] (S : Subalgebra R A) : SMulWithZero S α :=
inferInstanceAs (SMulWithZero S.toSubsemiring α)
/-- The action by a subalgebra is the action by the underlying algebra. -/
instance [Zero α] [MulActionWithZero A α] (S : Subalgebra R A) : MulActionWithZero S α :=
inferInstanceAs (MulActionWithZero S.toSubsemiring α)
/-- The action by a subalgebra is the action by the underlying algebra. -/
instance moduleLeft [AddCommMonoid α] [Module A α] (S : Subalgebra R A) : Module S α :=
inferInstanceAs (Module S.toSubsemiring α)
/-- The action by a subalgebra is the action by the underlying algebra. -/
instance toAlgebra {R A : Type*} [CommSemiring R] [CommSemiring A] [Semiring α] [Algebra R A]
[Algebra A α] (S : Subalgebra R A) : Algebra S α :=
Algebra.ofSubsemiring S.toSubsemiring
theorem algebraMap_eq {R A : Type*} [CommSemiring R] [CommSemiring A] [Semiring α] [Algebra R A]
[Algebra A α] (S : Subalgebra R A) : algebraMap S α = (algebraMap A α).comp S.val :=
rfl
@[simp]
theorem rangeS_algebraMap {R A : Type*} [CommSemiring R] [CommSemiring A] [Algebra R A]
(S : Subalgebra R A) : (algebraMap S A).rangeS = S.toSubsemiring := by
rw [algebraMap_eq, Algebra.id.map_eq_id, RingHom.id_comp, ← toSubsemiring_subtype,
Subsemiring.rangeS_subtype]
@[simp]
theorem range_algebraMap {R A : Type*} [CommRing R] [CommRing A] [Algebra R A]
(S : Subalgebra R A) : (algebraMap S A).range = S.toSubring := by
rw [algebraMap_eq, Algebra.id.map_eq_id, RingHom.id_comp, ← toSubring_subtype,
Subring.range_subtype]
instance noZeroSMulDivisors_top [NoZeroDivisors A] (S : Subalgebra R A) : NoZeroSMulDivisors S A :=
⟨fun {c} x h =>
have : (c : A) = 0 ∨ x = 0 := eq_zero_or_eq_zero_of_mul_eq_zero h
this.imp_left (@Subtype.ext_iff _ _ c 0).mpr⟩
end Actions
section Center
theorem _root_.Set.algebraMap_mem_center (r : R) : algebraMap R A r ∈ Set.center A := by
simp only [Semigroup.mem_center_iff, commutes, forall_const]
variable (R A)
/-- The center of an algebra is the set of elements which commute with every element. They form a
subalgebra. -/
def center : Subalgebra R A :=
{ Subsemiring.center A with algebraMap_mem' := Set.algebraMap_mem_center }
theorem coe_center : (center R A : Set A) = Set.center A :=
rfl
@[simp]
theorem center_toSubsemiring : (center R A).toSubsemiring = Subsemiring.center A :=
rfl
@[simp]
theorem center_toSubring (R A : Type*) [CommRing R] [Ring A] [Algebra R A] :
(center R A).toSubring = Subring.center A :=
rfl
@[simp]
theorem center_eq_top (A : Type*) [CommSemiring A] [Algebra R A] : center R A = ⊤ :=
SetLike.coe_injective (Set.center_eq_univ A)
variable {R A}
instance : CommSemiring (center R A) :=
inferInstanceAs (CommSemiring (Subsemiring.center A))
instance {A : Type*} [Ring A] [Algebra R A] : CommRing (center R A) :=
inferInstanceAs (CommRing (Subring.center A))
theorem mem_center_iff {a : A} : a ∈ center R A ↔ ∀ b : A, b * a = a * b :=
Subsemigroup.mem_center_iff
end Center
section Centralizer
@[simp]
theorem _root_.Set.algebraMap_mem_centralizer {s : Set A} (r : R) :
algebraMap R A r ∈ s.centralizer :=
fun _a _h => (Algebra.commutes _ _).symm
variable (R)
/-- The centralizer of a set as a subalgebra. -/
def centralizer (s : Set A) : Subalgebra R A :=
{ Subsemiring.centralizer s with algebraMap_mem' := Set.algebraMap_mem_centralizer }
@[simp, norm_cast]
theorem coe_centralizer (s : Set A) : (centralizer R s : Set A) = s.centralizer :=
rfl
theorem mem_centralizer_iff {s : Set A} {z : A} : z ∈ centralizer R s ↔ ∀ g ∈ s, g * z = z * g :=
Iff.rfl
theorem center_le_centralizer (s) : center R A ≤ centralizer R s :=
s.center_subset_centralizer
theorem centralizer_le (s t : Set A) (h : s ⊆ t) : centralizer R t ≤ centralizer R s :=
Set.centralizer_subset h
@[simp]
theorem centralizer_eq_top_iff_subset {s : Set A} : centralizer R s = ⊤ ↔ s ⊆ center R A :=
SetLike.ext'_iff.trans Set.centralizer_eq_top_iff_subset
@[simp]
theorem centralizer_univ : centralizer R Set.univ = center R A :=
SetLike.ext' (Set.centralizer_univ A)
lemma le_centralizer_centralizer {s : Subalgebra R A} :
s ≤ centralizer R (centralizer R (s : Set A)) :=
Set.subset_centralizer_centralizer
@[simp]
lemma centralizer_centralizer_centralizer {s : Set A} :
centralizer R s.centralizer.centralizer = centralizer R s := by
apply SetLike.coe_injective
simp only [coe_centralizer, Set.centralizer_centralizer_centralizer]
end Centralizer
end Subalgebra
section Nat
variable {R : Type*} [Semiring R]
/-- A subsemiring is an `ℕ`-subalgebra. -/
def subalgebraOfSubsemiring (S : Subsemiring R) : Subalgebra ℕ R :=
{ S with algebraMap_mem' := fun i => natCast_mem S i }
@[simp]
theorem mem_subalgebraOfSubsemiring {x : R} {S : Subsemiring R} :
x ∈ subalgebraOfSubsemiring S ↔ x ∈ S :=
Iff.rfl
end Nat
section Int
variable {R : Type*} [Ring R]
/-- A subring is a `ℤ`-subalgebra. -/
def subalgebraOfSubring (S : Subring R) : Subalgebra ℤ R :=
{ S with
algebraMap_mem' := fun i =>
Int.induction_on i (by simpa using S.zero_mem)
(fun i ih => by simpa using S.add_mem ih S.one_mem) fun i ih =>
show ((-i - 1 : ℤ) : R) ∈ S by
rw [Int.cast_sub, Int.cast_one]
exact S.sub_mem ih S.one_mem }
variable {S : Type*} [Semiring S]
@[simp]
theorem mem_subalgebraOfSubring {x : R} {S : Subring R} : x ∈ subalgebraOfSubring S ↔ x ∈ S :=
Iff.rfl
end Int
section Equalizer
namespace AlgHom
variable {R A B : Type*} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B]
variable {F : Type*} [FunLike F A B] [AlgHomClass F R A B]
/-- The equalizer of two R-algebra homomorphisms -/
def equalizer (ϕ ψ : F) : Subalgebra R A where
carrier := { a | ϕ a = ψ a }
zero_mem' := by simp only [Set.mem_setOf_eq, map_zero]
one_mem' := by simp only [Set.mem_setOf_eq, map_one]
add_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by
rw [Set.mem_setOf_eq, map_add, map_add, hx, hy]
mul_mem' {x y} (hx : ϕ x = ψ x) (hy : ϕ y = ψ y) := by
rw [Set.mem_setOf_eq, map_mul, map_mul, hx, hy]
algebraMap_mem' x := by
simp only [Set.mem_setOf_eq, AlgHomClass.commutes]
@[simp]
theorem mem_equalizer (φ ψ : F) (x : A) : x ∈ equalizer φ ψ ↔ φ x = ψ x :=
Iff.rfl
theorem equalizer_toSubmodule {φ ψ : F} :
Subalgebra.toSubmodule (equalizer φ ψ) = LinearMap.eqLocus φ ψ := rfl
@[simp]
theorem equalizer_eq_top {φ ψ : F} : equalizer φ ψ = ⊤ ↔ φ = ψ := by
simp [SetLike.ext_iff, DFunLike.ext_iff]
@[simp]
theorem equalizer_same (φ : F) : equalizer φ φ = ⊤ := equalizer_eq_top.2 rfl
theorem le_equalizer {φ ψ : F} {S : Subalgebra R A} : S ≤ equalizer φ ψ ↔ Set.EqOn φ ψ S := Iff.rfl
theorem eqOn_sup {φ ψ : F} {S T : Subalgebra R A} (hS : Set.EqOn φ ψ S) (hT : Set.EqOn φ ψ T) :
Set.EqOn φ ψ ↑(S ⊔ T) := by
rw [← le_equalizer] at hS hT ⊢
exact sup_le hS hT
theorem ext_on_codisjoint {φ ψ : F} {S T : Subalgebra R A} (hST : Codisjoint S T)
(hS : Set.EqOn φ ψ S) (hT : Set.EqOn φ ψ T) : φ = ψ :=
DFunLike.ext _ _ fun _ ↦ eqOn_sup hS hT <| hST.eq_top.symm ▸ trivial
end AlgHom
end Equalizer
section MapComap
namespace Subalgebra
variable {R A B : Type*} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B]
theorem map_comap_eq (f : A →ₐ[R] B) (S : Subalgebra R B) : (S.comap f).map f = S ⊓ f.range :=
SetLike.coe_injective Set.image_preimage_eq_inter_range
theorem map_comap_eq_self
{f : A →ₐ[R] B} {S : Subalgebra R B} (h : S ≤ f.range) : (S.comap f).map f = S := by
simpa only [inf_of_le_left h] using map_comap_eq f S
theorem map_comap_eq_self_of_surjective
{f : A →ₐ[R] B} (hf : Function.Surjective f) (S : Subalgebra R B) : (S.comap f).map f = S :=
map_comap_eq_self <| by simp [(Algebra.range_top_iff_surjective f).2 hf]
theorem comap_map_eq_self_of_injective
{f : A →ₐ[R] B} (hf : Function.Injective f) (S : Subalgebra R A) : (S.map f).comap f = S :=
SetLike.coe_injective (Set.preimage_image_eq _ hf)
end Subalgebra
end MapComap
|
Algebra\Algebra\Subalgebra\Directed.lean | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Data.Set.UnionLift
/-!
# Subalgebras and directed Unions of sets
## Main results
* `Subalgebra.coe_iSup_of_directed`: a directed supremum consists of the union of the algebras
* `Subalgebra.iSupLift`: define an algebra homomorphism on a directed supremum of subalgebras by
defining it on each subalgebra, and proving that it agrees on the intersection of subalgebras.
-/
namespace Subalgebra
open Algebra
variable {R A B : Type*} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B]
variable (S : Subalgebra R A)
variable {ι : Type*} [Nonempty ι] {K : ι → Subalgebra R A}
theorem coe_iSup_of_directed (dir : Directed (· ≤ ·) K) : ↑(iSup K) = ⋃ i, (K i : Set A) :=
let s : Subalgebra R A :=
{ __ := Subsemiring.copy _ _ (Subsemiring.coe_iSup_of_directed dir).symm
algebraMap_mem' := fun _ ↦ Set.mem_iUnion.2
⟨Classical.arbitrary ι, Subalgebra.algebraMap_mem _ _⟩ }
have : iSup K = s := le_antisymm
(iSup_le fun i ↦ le_iSup (fun i ↦ (K i : Set A)) i) (Set.iUnion_subset fun _ ↦ le_iSup K _)
this.symm ▸ rfl
variable (K)
-- Porting note (#11215): TODO: turn `hT` into an assumption `T ≤ iSup K`.
-- That's what `Set.iUnionLift` needs
-- Porting note: the proofs of `map_{zero,one,add,mul}` got a bit uglier, probably unification trbls
/-- Define an algebra homomorphism on a directed supremum of subalgebras by defining
it on each subalgebra, and proving that it agrees on the intersection of subalgebras. -/
noncomputable def iSupLift (dir : Directed (· ≤ ·) K) (f : ∀ i, K i →ₐ[R] B)
(hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h))
(T : Subalgebra R A) (hT : T = iSup K): ↥T →ₐ[R] B :=
{ toFun := Set.iUnionLift (fun i => ↑(K i)) (fun i x => f i x)
(fun i j x hxi hxj => by
let ⟨k, hik, hjk⟩ := dir i j
dsimp
rw [hf i k hik, hf j k hjk]
rfl)
T (by rw [hT, coe_iSup_of_directed dir])
map_one' := by apply Set.iUnionLift_const _ (fun _ => 1) <;> simp
map_zero' := by dsimp; apply Set.iUnionLift_const _ (fun _ => 0) <;> simp
map_mul' := by
subst hT; dsimp
apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· * ·))
all_goals simp
map_add' := by
subst hT; dsimp
apply Set.iUnionLift_binary (coe_iSup_of_directed dir) dir _ (fun _ => (· + ·))
all_goals simp
commutes' := fun r => by
dsimp
apply Set.iUnionLift_const _ (fun _ => algebraMap R _ r) <;> simp }
@[simp]
theorem iSupLift_inclusion {dir : Directed (· ≤ ·) K} {f : ∀ i, K i →ₐ[R] B}
{hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h)}
{T : Subalgebra R A} {hT : T = iSup K} {i : ι} (x : K i) (h : K i ≤ T) :
iSupLift K dir f hf T hT (inclusion h x) = f i x := by
dsimp [iSupLift, inclusion]
rw [Set.iUnionLift_inclusion]
@[simp]
theorem iSupLift_comp_inclusion {dir : Directed (· ≤ ·) K} {f : ∀ i, K i →ₐ[R] B}
{hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h)}
{T : Subalgebra R A} {hT : T = iSup K} {i : ι} (h : K i ≤ T) :
(iSupLift K dir f hf T hT).comp (inclusion h) = f i := by ext; simp
@[simp]
theorem iSupLift_mk {dir : Directed (· ≤ ·) K} {f : ∀ i, K i →ₐ[R] B}
{hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h)}
{T : Subalgebra R A} {hT : T = iSup K} {i : ι} (x : K i) (hx : (x : A) ∈ T) :
iSupLift K dir f hf T hT ⟨x, hx⟩ = f i x := by
dsimp [iSupLift, inclusion]
rw [Set.iUnionLift_mk]
theorem iSupLift_of_mem {dir : Directed (· ≤ ·) K} {f : ∀ i, K i →ₐ[R] B}
{hf : ∀ (i j : ι) (h : K i ≤ K j), f i = (f j).comp (inclusion h)}
{T : Subalgebra R A} {hT : T = iSup K} {i : ι} (x : T) (hx : (x : A) ∈ K i) :
iSupLift K dir f hf T hT x = f i ⟨x, hx⟩ := by
dsimp [iSupLift, inclusion]
rw [Set.iUnionLift_of_mem]
end Subalgebra
|
Algebra\Algebra\Subalgebra\MulOpposite.lean | /-
Copyright (c) 2024 Jz Pan. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jz Pan
-/
import Mathlib.Algebra.Ring.Subring.MulOpposite
import Mathlib.Algebra.Algebra.Subalgebra.Basic
/-!
# Subalgebras of opposite rings
For every ring `A` over a commutative ring `R`, we construct an equivalence between
subalgebras of `A / R` and that of `Aᵐᵒᵖ / R`.
-/
namespace Subalgebra
section Semiring
variable {ι : Sort*} {R A : Type*} [CommSemiring R] [Semiring A] [Algebra R A]
/-- Pull a subalgebra back to an opposite subalgebra along `MulOpposite.unop` -/
@[simps toSubsemiring]
protected def op (S : Subalgebra R A) : Subalgebra R Aᵐᵒᵖ where
toSubsemiring := S.toSubsemiring.op
algebraMap_mem' := S.algebraMap_mem
@[simp, norm_cast]
theorem op_coe (S : Subalgebra R A) : S.op = MulOpposite.unop ⁻¹' (S : Set A) := rfl
@[simp]
theorem mem_op {x : Aᵐᵒᵖ} {S : Subalgebra R A} : x ∈ S.op ↔ x.unop ∈ S := Iff.rfl
/-- Pull an subalgebra subring back to a subalgebra along `MulOpposite.op` -/
@[simps toSubsemiring]
protected def unop (S : Subalgebra R Aᵐᵒᵖ) : Subalgebra R A where
toSubsemiring := S.toSubsemiring.unop
algebraMap_mem' := S.algebraMap_mem
@[simp, norm_cast]
theorem unop_coe (S : Subalgebra R Aᵐᵒᵖ) : S.unop = MulOpposite.op ⁻¹' (S : Set Aᵐᵒᵖ) := rfl
@[simp]
theorem mem_unop {x : A} {S : Subalgebra R Aᵐᵒᵖ} : x ∈ S.unop ↔ MulOpposite.op x ∈ S := Iff.rfl
@[simp]
theorem unop_op (S : Subalgebra R A) : S.op.unop = S := rfl
@[simp]
theorem op_unop (S : Subalgebra R Aᵐᵒᵖ) : S.unop.op = S := rfl
/-! ### Lattice results -/
theorem op_le_iff {S₁ : Subalgebra R A} {S₂ : Subalgebra R Aᵐᵒᵖ} : S₁.op ≤ S₂ ↔ S₁ ≤ S₂.unop :=
MulOpposite.op_surjective.forall
theorem le_op_iff {S₁ : Subalgebra R Aᵐᵒᵖ} {S₂ : Subalgebra R A} : S₁ ≤ S₂.op ↔ S₁.unop ≤ S₂ :=
MulOpposite.op_surjective.forall
@[simp]
theorem op_le_op_iff {S₁ S₂ : Subalgebra R A} : S₁.op ≤ S₂.op ↔ S₁ ≤ S₂ :=
MulOpposite.op_surjective.forall
@[simp]
theorem unop_le_unop_iff {S₁ S₂ : Subalgebra R Aᵐᵒᵖ} : S₁.unop ≤ S₂.unop ↔ S₁ ≤ S₂ :=
MulOpposite.unop_surjective.forall
/-- A subalgebra `S` of `A / R` determines a subring `S.op` of the opposite ring `Aᵐᵒᵖ / R`. -/
@[simps]
def opEquiv : Subalgebra R A ≃o Subalgebra R Aᵐᵒᵖ where
toFun := Subalgebra.op
invFun := Subalgebra.unop
left_inv := unop_op
right_inv := op_unop
map_rel_iff' := op_le_op_iff
@[simp]
theorem op_bot : (⊥ : Subalgebra R A).op = ⊥ := opEquiv.map_bot
@[simp]
theorem unop_bot : (⊥ : Subalgebra R Aᵐᵒᵖ).unop = ⊥ := opEquiv.symm.map_bot
@[simp]
theorem op_top : (⊤ : Subalgebra R A).op = ⊤ := opEquiv.map_top
@[simp]
theorem unop_top : (⊤ : Subalgebra R Aᵐᵒᵖ).unop = ⊤ := opEquiv.symm.map_top
theorem op_sup (S₁ S₂ : Subalgebra R A) : (S₁ ⊔ S₂).op = S₁.op ⊔ S₂.op :=
opEquiv.map_sup _ _
theorem unop_sup (S₁ S₂ : Subalgebra R Aᵐᵒᵖ) : (S₁ ⊔ S₂).unop = S₁.unop ⊔ S₂.unop :=
opEquiv.symm.map_sup _ _
theorem op_inf (S₁ S₂ : Subalgebra R A) : (S₁ ⊓ S₂).op = S₁.op ⊓ S₂.op := opEquiv.map_inf _ _
theorem unop_inf (S₁ S₂ : Subalgebra R Aᵐᵒᵖ) : (S₁ ⊓ S₂).unop = S₁.unop ⊓ S₂.unop :=
opEquiv.symm.map_inf _ _
theorem op_sSup (S : Set (Subalgebra R A)) : (sSup S).op = sSup (.unop ⁻¹' S) :=
opEquiv.map_sSup_eq_sSup_symm_preimage _
theorem unop_sSup (S : Set (Subalgebra R Aᵐᵒᵖ)) : (sSup S).unop = sSup (.op ⁻¹' S) :=
opEquiv.symm.map_sSup_eq_sSup_symm_preimage _
theorem op_sInf (S : Set (Subalgebra R A)) : (sInf S).op = sInf (.unop ⁻¹' S) :=
opEquiv.map_sInf_eq_sInf_symm_preimage _
theorem unop_sInf (S : Set (Subalgebra R Aᵐᵒᵖ)) : (sInf S).unop = sInf (.op ⁻¹' S) :=
opEquiv.symm.map_sInf_eq_sInf_symm_preimage _
theorem op_iSup (S : ι → Subalgebra R A) : (iSup S).op = ⨆ i, (S i).op := opEquiv.map_iSup _
theorem unop_iSup (S : ι → Subalgebra R Aᵐᵒᵖ) : (iSup S).unop = ⨆ i, (S i).unop :=
opEquiv.symm.map_iSup _
theorem op_iInf (S : ι → Subalgebra R A) : (iInf S).op = ⨅ i, (S i).op := opEquiv.map_iInf _
theorem unop_iInf (S : ι → Subalgebra R Aᵐᵒᵖ) : (iInf S).unop = ⨅ i, (S i).unop :=
opEquiv.symm.map_iInf _
theorem op_adjoin (s : Set A) :
(Algebra.adjoin R s).op = Algebra.adjoin R (MulOpposite.unop ⁻¹' s) := by
apply toSubsemiring_injective
simp_rw [Algebra.adjoin, op_toSubsemiring, Subsemiring.op_closure, Set.preimage_union]
congr with x
simp_rw [Set.mem_preimage, Set.mem_range, MulOpposite.algebraMap_apply]
congr!
rw [← MulOpposite.op_injective.eq_iff (b := x.unop), MulOpposite.op_unop]
theorem unop_adjoin (s : Set Aᵐᵒᵖ) :
(Algebra.adjoin R s).unop = Algebra.adjoin R (MulOpposite.op ⁻¹' s) := by
apply toSubsemiring_injective
simp_rw [Algebra.adjoin, unop_toSubsemiring, Subsemiring.unop_closure, Set.preimage_union]
congr with x
simp
/-- Bijection between a subalgebra `S` and its opposite. -/
@[simps!]
def linearEquivOp (S : Subalgebra R A) : S ≃ₗ[R] S.op where
__ := S.toSubsemiring.addEquivOp
map_smul' _ _ := rfl
/-- Bijection between a subalgebra `S` and `MulOpposite` of its opposite. -/
@[simps!]
def algEquivOpMop (S : Subalgebra R A) : S ≃ₐ[R] (S.op)ᵐᵒᵖ where
__ := S.toSubsemiring.ringEquivOpMop
commutes' _ := rfl
/-- Bijection between `MulOpposite` of a subalgebra `S` and its opposite. -/
@[simps!]
def mopAlgEquivOp (S : Subalgebra R A) : Sᵐᵒᵖ ≃ₐ[R] S.op where
__ := S.toSubsemiring.mopRingEquivOp
commutes' _ := rfl
end Semiring
section Ring
variable {R A : Type*} [CommRing R] [Ring A] [Algebra R A]
@[simp]
theorem op_toSubring (S : Subalgebra R A) : S.op.toSubring = S.toSubring.op := rfl
@[simp]
theorem unop_toSubring (S : Subalgebra R Aᵐᵒᵖ) : S.unop.toSubring = S.toSubring.unop := rfl
end Ring
end Subalgebra
|
Algebra\Algebra\Subalgebra\Operations.lean | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang, Antoine Chambert-Loir
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.RingTheory.Ideal.Maps
/-!
# More operations on subalgebras
In this file we relate the definitions in `Mathlib.RingTheory.Ideal.Operations` to subalgebras.
The contents of this file are somewhat random since both `Mathlib.Algebra.Algebra.Subalgebra.Basic`
and `Mathlib.RingTheory.Ideal.Operations` are somewhat of a grab-bag of definitions, and this is
whatever ends up in the intersection.
-/
namespace AlgHom
variable {R A B : Type*} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B]
theorem ker_rangeRestrict (f : A →ₐ[R] B) : RingHom.ker f.rangeRestrict = RingHom.ker f :=
Ideal.ext fun _ ↦ Subtype.ext_iff
end AlgHom
namespace Subalgebra
open Algebra
variable {R S : Type*} [CommSemiring R] [CommRing S] [Algebra R S]
variable (S' : Subalgebra R S)
/-- Suppose we are given `∑ i, lᵢ * sᵢ = 1` ∈ `S`, and `S'` a subalgebra of `S` that contains
`lᵢ` and `sᵢ`. To check that an `x : S` falls in `S'`, we only need to show that
`sᵢ ^ n • x ∈ S'` for some `n` for each `sᵢ`. -/
theorem mem_of_finset_sum_eq_one_of_pow_smul_mem
{ι : Type*} (ι' : Finset ι) (s : ι → S) (l : ι → S)
(e : ∑ i ∈ ι', l i * s i = 1) (hs : ∀ i, s i ∈ S') (hl : ∀ i, l i ∈ S') (x : S)
(H : ∀ i, ∃ n : ℕ, (s i ^ n : S) • x ∈ S') : x ∈ S' := by
-- Porting note: needed to add this instance
let _i : Algebra { x // x ∈ S' } { x // x ∈ S' } := Algebra.id _
suffices x ∈ Subalgebra.toSubmodule (Algebra.ofId S' S).range by
obtain ⟨x, rfl⟩ := this
exact x.2
choose n hn using H
let s' : ι → S' := fun x => ⟨s x, hs x⟩
let l' : ι → S' := fun x => ⟨l x, hl x⟩
have e' : ∑ i ∈ ι', l' i * s' i = 1 := by
ext
show S'.subtype (∑ i ∈ ι', l' i * s' i) = 1
simpa only [map_sum, map_mul] using e
have : Ideal.span (s' '' ι') = ⊤ := by
rw [Ideal.eq_top_iff_one, ← e']
apply sum_mem
intros i hi
exact Ideal.mul_mem_left _ _ <| Ideal.subset_span <| Set.mem_image_of_mem s' hi
let N := ι'.sup n
have hN := Ideal.span_pow_eq_top _ this N
apply (Algebra.ofId S' S).range.toSubmodule.mem_of_span_top_of_smul_mem _ hN
rintro ⟨_, _, ⟨i, hi, rfl⟩, rfl⟩
change s' i ^ N • x ∈ _
rw [← tsub_add_cancel_of_le (show n i ≤ N from Finset.le_sup hi), pow_add, mul_smul]
refine Submodule.smul_mem _ (⟨_, pow_mem (hs i) _⟩ : S') ?_
exact ⟨⟨_, hn i⟩, rfl⟩
theorem mem_of_span_eq_top_of_smul_pow_mem
(s : Set S) (l : s →₀ S) (hs : Finsupp.total s S S (↑) l = 1)
(hs' : s ⊆ S') (hl : ∀ i, l i ∈ S') (x : S) (H : ∀ r : s, ∃ n : ℕ, (r : S) ^ n • x ∈ S') :
x ∈ S' :=
mem_of_finset_sum_eq_one_of_pow_smul_mem S' l.support (↑) l hs (fun x => hs' x.2) hl x H
end Subalgebra
|
Algebra\Algebra\Subalgebra\Order.lean | /-
Copyright (c) 2021 Damiano Testa. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Damiano Testa
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Module.Submodule.Order
import Mathlib.Algebra.Ring.Subsemiring.Order
import Mathlib.Algebra.Ring.Subring.Order
/-!
# Order instances on subalgebras
-/
namespace Subalgebra
variable {R A : Type*}
instance toOrderedSemiring [CommSemiring R] [OrderedSemiring A] [Algebra R A]
(S : Subalgebra R A) : OrderedSemiring S :=
S.toSubsemiring.toOrderedSemiring
instance toStrictOrderedSemiring [CommSemiring R] [StrictOrderedSemiring A] [Algebra R A]
(S : Subalgebra R A) : StrictOrderedSemiring S :=
S.toSubsemiring.toStrictOrderedSemiring
instance toOrderedCommSemiring [CommSemiring R] [OrderedCommSemiring A] [Algebra R A]
(S : Subalgebra R A) : OrderedCommSemiring S :=
S.toSubsemiring.toOrderedCommSemiring
instance toStrictOrderedCommSemiring [CommSemiring R] [StrictOrderedCommSemiring A]
[Algebra R A] (S : Subalgebra R A) : StrictOrderedCommSemiring S :=
S.toSubsemiring.toStrictOrderedCommSemiring
instance toOrderedRing [CommRing R] [OrderedRing A] [Algebra R A] (S : Subalgebra R A) :
OrderedRing S :=
S.toSubring.toOrderedRing
instance toOrderedCommRing [CommRing R] [OrderedCommRing A] [Algebra R A]
(S : Subalgebra R A) : OrderedCommRing S :=
S.toSubring.toOrderedCommRing
instance toLinearOrderedSemiring [CommSemiring R] [LinearOrderedSemiring A] [Algebra R A]
(S : Subalgebra R A) : LinearOrderedSemiring S :=
S.toSubsemiring.toLinearOrderedSemiring
instance toLinearOrderedCommSemiring [CommSemiring R] [LinearOrderedCommSemiring A]
[Algebra R A] (S : Subalgebra R A) : LinearOrderedCommSemiring S :=
S.toSubsemiring.toLinearOrderedCommSemiring
instance toLinearOrderedRing [CommRing R] [LinearOrderedRing A] [Algebra R A]
(S : Subalgebra R A) : LinearOrderedRing S :=
S.toSubring.toLinearOrderedRing
instance toLinearOrderedCommRing [CommRing R] [LinearOrderedCommRing A] [Algebra R A]
(S : Subalgebra R A) : LinearOrderedCommRing S :=
S.toSubring.toLinearOrderedCommRing
end Subalgebra
|
Algebra\Algebra\Subalgebra\Pointwise.lean | /-
Copyright (c) 2021 Eric Weiser. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Eric Wieser
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Ring.Subring.Pointwise
import Mathlib.RingTheory.Adjoin.Basic
/-!
# Pointwise actions on subalgebras.
If `R'` acts on an `R`-algebra `A` (so that `R'` and `R` actions commute)
then we get an `R'` action on the collection of `R`-subalgebras.
-/
namespace Subalgebra
section Pointwise
variable {R : Type*} {A : Type*} [CommSemiring R] [Semiring A] [Algebra R A]
theorem mul_toSubmodule_le (S T : Subalgebra R A) :
(Subalgebra.toSubmodule S)* (Subalgebra.toSubmodule T) ≤ Subalgebra.toSubmodule (S ⊔ T) := by
rw [Submodule.mul_le]
intro y hy z hz
show y * z ∈ S ⊔ T
exact mul_mem (Algebra.mem_sup_left hy) (Algebra.mem_sup_right hz)
/-- As submodules, subalgebras are idempotent. -/
@[simp]
theorem mul_self (S : Subalgebra R A) : (Subalgebra.toSubmodule S) * (Subalgebra.toSubmodule S)
= (Subalgebra.toSubmodule S) := by
apply le_antisymm
· refine (mul_toSubmodule_le _ _).trans_eq ?_
rw [sup_idem]
· intro x hx1
rw [← mul_one x]
exact Submodule.mul_mem_mul hx1 (show (1 : A) ∈ S from one_mem S)
/-- When `A` is commutative, `Subalgebra.mul_toSubmodule_le` is strict. -/
theorem mul_toSubmodule {R : Type*} {A : Type*} [CommSemiring R] [CommSemiring A] [Algebra R A]
(S T : Subalgebra R A) : (Subalgebra.toSubmodule S) * (Subalgebra.toSubmodule T)
= Subalgebra.toSubmodule (S ⊔ T) := by
refine le_antisymm (mul_toSubmodule_le _ _) ?_
rintro x (hx : x ∈ Algebra.adjoin R (S ∪ T : Set A))
refine
Algebra.adjoin_induction hx (fun x hx => ?_) (fun r => ?_) (fun _ _ => Submodule.add_mem _)
fun x y hx hy => ?_
· cases' hx with hxS hxT
· rw [← mul_one x]
exact Submodule.mul_mem_mul hxS (show (1 : A) ∈ T from one_mem T)
· rw [← one_mul x]
exact Submodule.mul_mem_mul (show (1 : A) ∈ S from one_mem S) hxT
· rw [← one_mul (algebraMap _ _ _)]
exact Submodule.mul_mem_mul (show (1 : A) ∈ S from one_mem S) (algebraMap_mem T _)
have := Submodule.mul_mem_mul hx hy
rwa [mul_assoc, mul_comm _ (Subalgebra.toSubmodule T), ← mul_assoc _ _ (Subalgebra.toSubmodule S),
mul_self, mul_comm (Subalgebra.toSubmodule T), ← mul_assoc, mul_self] at this
variable {R' : Type*} [Semiring R'] [MulSemiringAction R' A] [SMulCommClass R' R A]
/-- The action on a subalgebra corresponding to applying the action to every element.
This is available as an instance in the `Pointwise` locale. -/
protected def pointwiseMulAction : MulAction R' (Subalgebra R A) where
smul a S := S.map (MulSemiringAction.toAlgHom _ _ a)
one_smul S := (congr_arg (fun f => S.map f) (AlgHom.ext <| one_smul R')).trans S.map_id
mul_smul _a₁ _a₂ S :=
(congr_arg (fun f => S.map f) (AlgHom.ext <| mul_smul _ _)).trans (S.map_map _ _).symm
scoped[Pointwise] attribute [instance] Subalgebra.pointwiseMulAction
open Pointwise
@[simp]
theorem coe_pointwise_smul (m : R') (S : Subalgebra R A) : ↑(m • S) = m • (S : Set A) :=
rfl
@[simp]
theorem pointwise_smul_toSubsemiring (m : R') (S : Subalgebra R A) :
(m • S).toSubsemiring = m • S.toSubsemiring :=
rfl
@[simp]
theorem pointwise_smul_toSubmodule (m : R') (S : Subalgebra R A) :
Subalgebra.toSubmodule (m • S) = m • Subalgebra.toSubmodule S :=
rfl
@[simp]
theorem pointwise_smul_toSubring {R' R A : Type*} [Semiring R'] [CommRing R] [Ring A]
[MulSemiringAction R' A] [Algebra R A] [SMulCommClass R' R A] (m : R') (S : Subalgebra R A) :
(m • S).toSubring = m • S.toSubring :=
rfl
theorem smul_mem_pointwise_smul (m : R') (r : A) (S : Subalgebra R A) : r ∈ S → m • r ∈ m • S :=
(Set.smul_mem_smul_set : _ → _ ∈ m • (S : Set A))
instance : CovariantClass R' (Subalgebra R A) HSMul.hSMul LE.le :=
⟨fun _ _ => map_mono⟩
end Pointwise
end Subalgebra
|
Algebra\Algebra\Subalgebra\Prod.lean | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Riccardo Brasca
-/
import Mathlib.Algebra.Algebra.Prod
import Mathlib.Algebra.Algebra.Subalgebra.Basic
/-!
# Products of subalgebras
In this file we define the product of two subalgebras as a subalgebra of the product algebra.
## Main definitions
* `Subalgebra.prod`: the product of two subalgebras.
-/
namespace Subalgebra
open Algebra
variable {R A B : Type*} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B]
variable (S : Subalgebra R A) (S₁ : Subalgebra R B)
/-- The product of two subalgebras is a subalgebra. -/
def prod : Subalgebra R (A × B) :=
{ S.toSubsemiring.prod S₁.toSubsemiring with
carrier := S ×ˢ S₁
algebraMap_mem' := fun _ => ⟨algebraMap_mem _ _, algebraMap_mem _ _⟩ }
@[simp]
theorem coe_prod : (prod S S₁ : Set (A × B)) = (S : Set A) ×ˢ (S₁ : Set B) :=
rfl
open Subalgebra in
theorem prod_toSubmodule : toSubmodule (S.prod S₁) = (toSubmodule S).prod (toSubmodule S₁) := rfl
@[simp]
theorem mem_prod {S : Subalgebra R A} {S₁ : Subalgebra R B} {x : A × B} :
x ∈ prod S S₁ ↔ x.1 ∈ S ∧ x.2 ∈ S₁ := Set.mem_prod
@[simp]
theorem prod_top : (prod ⊤ ⊤ : Subalgebra R (A × B)) = ⊤ := by ext; simp
theorem prod_mono {S T : Subalgebra R A} {S₁ T₁ : Subalgebra R B} :
S ≤ T → S₁ ≤ T₁ → prod S S₁ ≤ prod T T₁ :=
Set.prod_mono
@[simp]
theorem prod_inf_prod {S T : Subalgebra R A} {S₁ T₁ : Subalgebra R B} :
S.prod S₁ ⊓ T.prod T₁ = (S ⊓ T).prod (S₁ ⊓ T₁) :=
SetLike.coe_injective Set.prod_inter_prod
end Subalgebra
|
Algebra\Algebra\Subalgebra\Rank.lean | /-
Copyright (c) 2024 Jz Pan. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jz Pan
-/
import Mathlib.LinearAlgebra.Dimension.Free
import Mathlib.LinearAlgebra.Dimension.Finite
import Mathlib.LinearAlgebra.FreeModule.StrongRankCondition
/-!
# Some results on the ranks of subalgebras
This file contains some results on the ranks of subalgebras,
which are corollaries of `rank_mul_rank`.
Since their proof essentially depends on the fact that a non-trivial commutative ring
satisfies strong rank condition, we put them into a separate file.
-/
open FiniteDimensional
namespace Subalgebra
variable {R S : Type*} [CommRing R] [CommRing S] [Algebra R S]
(A B : Subalgebra R S)
section
variable [Module.Free R A] [Module.Free A (Algebra.adjoin A (B : Set S))]
theorem rank_sup_eq_rank_left_mul_rank_of_free :
Module.rank R ↥(A ⊔ B) = Module.rank R A * Module.rank A (Algebra.adjoin A (B : Set S)) := by
rcases subsingleton_or_nontrivial R with _ | _
· haveI := Module.subsingleton R S; simp
nontriviality S using rank_subsingleton'
letI : Algebra A (Algebra.adjoin A (B : Set S)) := Subalgebra.algebra _
letI : SMul A (Algebra.adjoin A (B : Set S)) := Algebra.toSMul
haveI : IsScalarTower R A (Algebra.adjoin A (B : Set S)) :=
IsScalarTower.of_algebraMap_eq (congrFun rfl)
rw [rank_mul_rank R A (Algebra.adjoin A (B : Set S))]
change _ = Module.rank R ((Algebra.adjoin A (B : Set S)).restrictScalars R)
rw [Algebra.restrictScalars_adjoin]; rfl
theorem finrank_sup_eq_finrank_left_mul_finrank_of_free :
finrank R ↥(A ⊔ B) = finrank R A * finrank A (Algebra.adjoin A (B : Set S)) := by
simpa only [map_mul] using congr(Cardinal.toNat $(rank_sup_eq_rank_left_mul_rank_of_free A B))
theorem finrank_left_dvd_finrank_sup_of_free :
finrank R A ∣ finrank R ↥(A ⊔ B) := ⟨_, finrank_sup_eq_finrank_left_mul_finrank_of_free A B⟩
end
section
variable [Module.Free R B] [Module.Free B (Algebra.adjoin B (A : Set S))]
theorem rank_sup_eq_rank_right_mul_rank_of_free :
Module.rank R ↥(A ⊔ B) = Module.rank R B * Module.rank B (Algebra.adjoin B (A : Set S)) := by
rw [sup_comm, rank_sup_eq_rank_left_mul_rank_of_free]
theorem finrank_sup_eq_finrank_right_mul_finrank_of_free :
finrank R ↥(A ⊔ B) = finrank R B * finrank B (Algebra.adjoin B (A : Set S)) := by
rw [sup_comm, finrank_sup_eq_finrank_left_mul_finrank_of_free]
theorem finrank_right_dvd_finrank_sup_of_free :
finrank R B ∣ finrank R ↥(A ⊔ B) := ⟨_, finrank_sup_eq_finrank_right_mul_finrank_of_free A B⟩
end
end Subalgebra
|
Algebra\Algebra\Subalgebra\Tower.lean | /-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Anne Baanen
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.Algebra.Tower
/-!
# Subalgebras in towers of algebras
In this file we prove facts about subalgebras in towers of algebra.
An algebra tower A/S/R is expressed by having instances of `Algebra A S`,
`Algebra R S`, `Algebra R A` and `IsScalarTower R S A`, the later asserting the
compatibility condition `(r • s) • a = r • (s • a)`.
## Main results
* `IsScalarTower.Subalgebra`: if `A/S/R` is a tower and `S₀` is a subalgebra
between `S` and `R`, then `A/S/S₀` is a tower
* `IsScalarTower.Subalgebra'`: if `A/S/R` is a tower and `S₀` is a subalgebra
between `S` and `R`, then `A/S₀/R` is a tower
* `Subalgebra.restrictScalars`: turn an `S`-subalgebra of `A` into an `R`-subalgebra of `A`,
given that `A/S/R` is a tower
-/
open Pointwise
universe u v w u₁ v₁
variable (R : Type u) (S : Type v) (A : Type w) (B : Type u₁) (M : Type v₁)
namespace Algebra
variable [CommSemiring R] [Semiring A] [Algebra R A]
variable [AddCommMonoid M] [Module R M] [Module A M] [IsScalarTower R A M]
variable {A}
theorem lmul_algebraMap (x : R) : Algebra.lmul R A (algebraMap R A x) = Algebra.lsmul R R A x :=
Eq.symm <| LinearMap.ext <| smul_def x
end Algebra
namespace IsScalarTower
section Semiring
variable [CommSemiring R] [CommSemiring S] [Semiring A]
variable [Algebra R S] [Algebra S A]
instance subalgebra (S₀ : Subalgebra R S) : IsScalarTower S₀ S A :=
of_algebraMap_eq fun _ ↦ rfl
variable [Algebra R A] [IsScalarTower R S A]
instance subalgebra' (S₀ : Subalgebra R S) : IsScalarTower R S₀ A :=
@IsScalarTower.of_algebraMap_eq R S₀ A _ _ _ _ _ _ fun _ ↦
(IsScalarTower.algebraMap_apply R S A _ : _)
end Semiring
end IsScalarTower
namespace Subalgebra
open IsScalarTower
section Semiring
variable {S A B} [CommSemiring R] [CommSemiring S] [Semiring A] [Semiring B]
variable [Algebra R S] [Algebra S A] [Algebra R A] [Algebra S B] [Algebra R B]
variable [IsScalarTower R S A] [IsScalarTower R S B]
/-- Given a tower `A / ↥U / S / R` of algebras, where `U` is an `S`-subalgebra of `A`, reinterpret
`U` as an `R`-subalgebra of `A`. -/
def restrictScalars (U : Subalgebra S A) : Subalgebra R A :=
{ U with
algebraMap_mem' := fun x ↦ by
rw [algebraMap_apply R S A]
exact U.algebraMap_mem _ }
@[simp]
theorem coe_restrictScalars {U : Subalgebra S A} : (restrictScalars R U : Set A) = (U : Set A) :=
rfl
@[simp]
theorem restrictScalars_top : restrictScalars R (⊤ : Subalgebra S A) = ⊤ :=
SetLike.coe_injective <| by dsimp -- Porting note: why does `rfl` not work instead of `by dsimp`?
@[simp]
theorem restrictScalars_toSubmodule {U : Subalgebra S A} :
Subalgebra.toSubmodule (U.restrictScalars R) = U.toSubmodule.restrictScalars R :=
SetLike.coe_injective rfl
@[simp]
theorem mem_restrictScalars {U : Subalgebra S A} {x : A} : x ∈ restrictScalars R U ↔ x ∈ U :=
Iff.rfl
theorem restrictScalars_injective :
Function.Injective (restrictScalars R : Subalgebra S A → Subalgebra R A) := fun U V H ↦
ext fun x ↦ by rw [← mem_restrictScalars R, H, mem_restrictScalars]
/-- Produces an `R`-algebra map from `U.restrictScalars R` given an `S`-algebra map from `U`.
This is a special case of `AlgHom.restrictScalars` that can be helpful in elaboration. -/
@[simp]
def ofRestrictScalars (U : Subalgebra S A) (f : U →ₐ[S] B) : U.restrictScalars R →ₐ[R] B :=
f.restrictScalars R
end Semiring
section CommSemiring
@[simp]
lemma range_isScalarTower_toAlgHom [CommSemiring R] [CommSemiring A]
[Algebra R A] (S : Subalgebra R A) :
LinearMap.range (IsScalarTower.toAlgHom R S A) = Subalgebra.toSubmodule S := by
ext
simp only [← Submodule.range_subtype (Subalgebra.toSubmodule S), LinearMap.mem_range,
IsScalarTower.coe_toAlgHom', Subalgebra.mem_toSubmodule]
rfl
end CommSemiring
end Subalgebra
namespace IsScalarTower
open Subalgebra
variable [CommSemiring R] [CommSemiring S] [CommSemiring A]
variable [Algebra R S] [Algebra S A] [Algebra R A] [IsScalarTower R S A]
theorem adjoin_range_toAlgHom (t : Set A) :
(Algebra.adjoin (toAlgHom R S A).range t).restrictScalars R =
(Algebra.adjoin S t).restrictScalars R :=
Subalgebra.ext fun z ↦
show z ∈ Subsemiring.closure (Set.range (algebraMap (toAlgHom R S A).range A) ∪ t : Set A) ↔
z ∈ Subsemiring.closure (Set.range (algebraMap S A) ∪ t : Set A) by
suffices Set.range (algebraMap (toAlgHom R S A).range A) = Set.range (algebraMap S A) by
rw [this]
ext z
exact ⟨fun ⟨⟨_, y, h1⟩, h2⟩ ↦ ⟨y, h2 ▸ h1⟩, fun ⟨y, hy⟩ ↦ ⟨⟨z, y, hy⟩, rfl⟩⟩
end IsScalarTower
|
Algebra\Algebra\Subalgebra\Unitization.lean | /-
Copyright (c) 2023 Jireh Loreaux. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jireh Loreaux
-/
import Mathlib.Algebra.Algebra.Unitization
import Mathlib.Algebra.Star.NonUnitalSubalgebra
import Mathlib.Algebra.Star.Subalgebra
import Mathlib.GroupTheory.GroupAction.Ring
/-!
# Relating unital and non-unital substructures
This file relates various algebraic structures and provides maps (generally algebra homomorphisms),
from the unitization of a non-unital subobject into the full structure. The range of this map is
the unital closure of the non-unital subobject (e.g., `Algebra.adjoin`, `Subring.closure`,
`Subsemiring.closure` or `StarAlgebra.adjoin`). When the underlying scalar ring is a field, for
this map to be injective it suffices that the range omits `1`. In this setting we provide suitable
`AlgEquiv` (or `StarAlgEquiv`) onto the range.
## Main declarations
* `NonUnitalSubalgebra.unitization s : Unitization R s →ₐ[R] A`:
where `s` is a non-unital subalgebra of a unital `R`-algebra `A`, this is the natural algebra
homomorphism sending `(r, a)` to `r • 1 + a`. The range of this map is
`Algebra.adjoin R (s : Set A)`.
* `NonUnitalSubalgebra.unitizationAlgEquiv s : Unitization R s ≃ₐ[R] Algebra.adjoin R (s : Set A)`
when `R` is a field and `1 ∉ s`. This is `NonUnitalSubalgebra.unitization` upgraded to an
`AlgEquiv` onto its range.
* `NonUnitalSubsemiring.unitization : Unitization ℕ s →ₐ[ℕ] R`: the natural `ℕ`-algebra homomorphism
from the unitization of a non-unital subsemiring `s` into the ring containing it. The range of
this map is `subalgebraOfSubsemiring (Subsemiring.closure s)`.
This is just `NonUnitalSubalgebra.unitization s` but we provide a separate declaration because
there is an instance Lean can't find on its own due to `outParam`.
* `NonUnitalSubring.unitization : Unitization ℤ s →ₐ[ℤ] R`:
the natural `ℤ`-algebra homomorphism from the unitization of a non-unital subring `s` into the
ring containing it. The range of this map is `subalgebraOfSubring (Subring.closure s)`.
This is just `NonUnitalSubalgebra.unitization s` but we provide a separate declaration because
there is an instance Lean can't find on its own due to `outParam`.
* `NonUnitalStarSubalgebra s : Unitization R s →⋆ₐ[R] A`: a version of
`NonUnitalSubalgebra.unitization` for star algebras.
* `NonUnitalStarSubalgebra.unitizationStarAlgEquiv s :`
`Unitization R s ≃⋆ₐ[R] StarAlgebra.adjoin R (s : Set A)`:
a version of `NonUnitalSubalgebra.unitizationAlgEquiv` for star algebras.
-/
/-! ## Subalgebras -/
section Subalgebra
variable {R A : Type*} [CommSemiring R] [Semiring A] [Algebra R A]
/-- Turn a `Subalgebra` into a `NonUnitalSubalgebra` by forgetting that it contains `1`. -/
def Subalgebra.toNonUnitalSubalgebra (S : Subalgebra R A) : NonUnitalSubalgebra R A :=
{ S with
smul_mem' := fun r _x hx => S.smul_mem hx r }
theorem Subalgebra.one_mem_toNonUnitalSubalgebra (S : Subalgebra R A) :
(1 : A) ∈ S.toNonUnitalSubalgebra :=
S.one_mem
/-- Turn a non-unital subalgebra containing `1` into a subalgebra. -/
def NonUnitalSubalgebra.toSubalgebra (S : NonUnitalSubalgebra R A) (h1 : (1 : A) ∈ S) :
Subalgebra R A :=
{ S with
one_mem' := h1
algebraMap_mem' := fun r =>
(Algebra.algebraMap_eq_smul_one (R := R) (A := A) r).symm ▸ SMulMemClass.smul_mem r h1 }
theorem Subalgebra.toNonUnitalSubalgebra_toSubalgebra (S : Subalgebra R A) :
S.toNonUnitalSubalgebra.toSubalgebra S.one_mem = S := by cases S; rfl
theorem NonUnitalSubalgebra.toSubalgebra_toNonUnitalSubalgebra (S : NonUnitalSubalgebra R A)
(h1 : (1 : A) ∈ S) : (NonUnitalSubalgebra.toSubalgebra S h1).toNonUnitalSubalgebra = S := by
cases S; rfl
open Submodule in
lemma Algebra.adjoin_nonUnitalSubalgebra_eq_span (s : NonUnitalSubalgebra R A) :
Subalgebra.toSubmodule (adjoin R (s : Set A)) = span R {1} ⊔ s.toSubmodule := by
rw [adjoin_eq_span, Submonoid.closure_eq_one_union, span_union, ← NonUnitalAlgebra.adjoin_eq_span,
NonUnitalAlgebra.adjoin_eq]
variable (R)
lemma NonUnitalAlgebra.adjoin_le_algebra_adjoin (s : Set A) :
adjoin R s ≤ (Algebra.adjoin R s).toNonUnitalSubalgebra :=
adjoin_le Algebra.subset_adjoin
lemma Algebra.adjoin_nonUnitalSubalgebra (s : Set A) :
adjoin R (NonUnitalAlgebra.adjoin R s : Set A) = adjoin R s :=
le_antisymm
(adjoin_le <| NonUnitalAlgebra.adjoin_le_algebra_adjoin R s)
(adjoin_le <| (NonUnitalAlgebra.subset_adjoin R).trans subset_adjoin)
end Subalgebra
namespace Unitization
variable {R A C : Type*} [CommSemiring R] [NonUnitalSemiring A]
variable [Module R A] [SMulCommClass R A A] [IsScalarTower R A A] [Semiring C] [Algebra R C]
theorem lift_range_le {f : A →ₙₐ[R] C} {S : Subalgebra R C} :
(lift f).range ≤ S ↔ NonUnitalAlgHom.range f ≤ S.toNonUnitalSubalgebra := by
refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩
· rintro - ⟨x, rfl⟩
exact @h (f x) ⟨x, by simp⟩
· rintro - ⟨x, rfl⟩
induction x with
| _ r a => simpa using add_mem (algebraMap_mem S r) (h ⟨a, rfl⟩)
theorem lift_range (f : A →ₙₐ[R] C) :
(lift f).range = Algebra.adjoin R (NonUnitalAlgHom.range f : Set C) :=
eq_of_forall_ge_iff fun c ↦ by rw [lift_range_le, Algebra.adjoin_le_iff]; rfl
end Unitization
namespace NonUnitalSubalgebra
section Semiring
variable {R S A : Type*} [CommSemiring R] [Semiring A] [Algebra R A] [SetLike S A]
[hSA : NonUnitalSubsemiringClass S A] [hSRA : SMulMemClass S R A] (s : S)
/-- The natural `R`-algebra homomorphism from the unitization of a non-unital subalgebra into
the algebra containing it. -/
def unitization : Unitization R s →ₐ[R] A :=
Unitization.lift (NonUnitalSubalgebraClass.subtype s)
@[simp]
theorem unitization_apply (x : Unitization R s) :
unitization s x = algebraMap R A x.fst + x.snd :=
rfl
theorem unitization_range : (unitization s).range = Algebra.adjoin R (s : Set A) := by
rw [unitization, Unitization.lift_range]
simp only [NonUnitalAlgHom.coe_range, NonUnitalSubalgebraClass.coeSubtype,
Subtype.range_coe_subtype, SetLike.mem_coe]
rfl
end Semiring
/-- A sufficient condition for injectivity of `NonUnitalSubalgebra.unitization` when the scalars
are a commutative ring. When the scalars are a field, one should use the more natural
`NonUnitalStarSubalgebra.unitization_injective` whose hypothesis is easier to verify. -/
theorem _root_.AlgHomClass.unitization_injective' {F R S A : Type*} [CommRing R] [Ring A]
[Algebra R A] [SetLike S A] [hSA : NonUnitalSubringClass S A] [hSRA : SMulMemClass S R A]
(s : S) (h : ∀ r, r ≠ 0 → algebraMap R A r ∉ s)
[FunLike F (Unitization R s) A] [AlgHomClass F R (Unitization R s) A]
(f : F) (hf : ∀ x : s, f x = x) : Function.Injective f := by
refine (injective_iff_map_eq_zero f).mpr fun x hx => ?_
induction' x with r a
simp_rw [map_add, hf, ← Unitization.algebraMap_eq_inl, AlgHomClass.commutes] at hx
rw [add_eq_zero_iff_eq_neg] at hx ⊢
by_cases hr : r = 0
· ext <;> simp [hr] at hx ⊢
exact hx
· exact (h r hr <| hx ▸ (neg_mem a.property)).elim
/-- This is a generic version which allows us to prove both
`NonUnitalSubalgebra.unitization_injective` and `NonUnitalStarSubalgebra.unitization_injective`. -/
theorem _root_.AlgHomClass.unitization_injective {F R S A : Type*} [Field R] [Ring A]
[Algebra R A] [SetLike S A] [hSA : NonUnitalSubringClass S A] [hSRA : SMulMemClass S R A]
(s : S) (h1 : 1 ∉ s) [FunLike F (Unitization R s) A] [AlgHomClass F R (Unitization R s) A]
(f : F) (hf : ∀ x : s, f x = x) : Function.Injective f := by
refine AlgHomClass.unitization_injective' s (fun r hr hr' ↦ ?_) f hf
rw [Algebra.algebraMap_eq_smul_one] at hr'
exact h1 <| inv_smul_smul₀ hr (1 : A) ▸ SMulMemClass.smul_mem r⁻¹ hr'
section Field
variable {R S A : Type*} [Field R] [Ring A] [Algebra R A]
[SetLike S A] [hSA : NonUnitalSubringClass S A] [hSRA : SMulMemClass S R A] (s : S)
theorem unitization_injective (h1 : (1 : A) ∉ s) : Function.Injective (unitization s) :=
AlgHomClass.unitization_injective s h1 (unitization s) fun _ ↦ by simp
/-- If a `NonUnitalSubalgebra` over a field does not contain `1`, then its unitization is
isomorphic to its `Algebra.adjoin`. -/
@[simps! apply_coe]
noncomputable def unitizationAlgEquiv (h1 : (1 : A) ∉ s) :
Unitization R s ≃ₐ[R] Algebra.adjoin R (s : Set A) :=
let algHom : Unitization R s →ₐ[R] Algebra.adjoin R (s : Set A) :=
((unitization s).codRestrict _
fun x ↦ (unitization_range s).le <| AlgHom.mem_range_self _ x)
AlgEquiv.ofBijective algHom <| by
refine ⟨?_, fun x ↦ ?_⟩
· have := AlgHomClass.unitization_injective s h1
((Subalgebra.val _).comp algHom) fun _ ↦ by simp [algHom]
rw [AlgHom.coe_comp] at this
exact this.of_comp
· obtain (⟨a, ha⟩ : (x : A) ∈ (unitization s).range) :=
(unitization_range s).ge x.property
exact ⟨a, Subtype.ext ha⟩
end Field
end NonUnitalSubalgebra
/-! ## Subsemirings -/
section Subsemiring
variable {R : Type*} [NonAssocSemiring R]
/-- Turn a `Subsemiring` into a `NonUnitalSubsemiring` by forgetting that it contains `1`. -/
def Subsemiring.toNonUnitalSubsemiring (S : Subsemiring R) : NonUnitalSubsemiring R :=
{ S with }
theorem Subsemiring.one_mem_toNonUnitalSubsemiring (S : Subsemiring R) :
(1 : R) ∈ S.toNonUnitalSubsemiring :=
S.one_mem
/-- Turn a non-unital subsemiring containing `1` into a subsemiring. -/
def NonUnitalSubsemiring.toSubsemiring (S : NonUnitalSubsemiring R) (h1 : (1 : R) ∈ S) :
Subsemiring R :=
{ S with
one_mem' := h1 }
theorem Subsemiring.toNonUnitalSubsemiring_toSubsemiring (S : Subsemiring R) :
S.toNonUnitalSubsemiring.toSubsemiring S.one_mem = S := by cases S; rfl
theorem NonUnitalSubsemiring.toSubsemiring_toNonUnitalSubsemiring (S : NonUnitalSubsemiring R)
(h1 : (1 : R) ∈ S) : (NonUnitalSubsemiring.toSubsemiring S h1).toNonUnitalSubsemiring = S := by
cases S; rfl
end Subsemiring
namespace NonUnitalSubsemiring
variable {R S : Type*} [Semiring R] [SetLike S R] [hSR : NonUnitalSubsemiringClass S R] (s : S)
/-- The natural `ℕ`-algebra homomorphism from the unitization of a non-unital subsemiring to
its `Subsemiring.closure`. -/
def unitization : Unitization ℕ s →ₐ[ℕ] R :=
NonUnitalSubalgebra.unitization (hSRA := AddSubmonoidClass.nsmulMemClass) s
@[simp]
theorem unitization_apply (x : Unitization ℕ s) : unitization s x = x.fst + x.snd :=
rfl
theorem unitization_range :
(unitization s).range = subalgebraOfSubsemiring (Subsemiring.closure s) := by
have := AddSubmonoidClass.nsmulMemClass (S := S)
rw [unitization, NonUnitalSubalgebra.unitization_range (hSRA := this), Algebra.adjoin_nat]
end NonUnitalSubsemiring
/-! ## Subrings -/
section Subring
-- TODO: Maybe we could use `NonAssocRing` here but right now `Subring` takes a `Ring` argument.
variable {R : Type*} [Ring R]
/-- Turn a `Subring` into a `NonUnitalSubring` by forgetting that it contains `1`. -/
def Subring.toNonUnitalSubring (S : Subring R) : NonUnitalSubring R :=
{ S with }
theorem Subring.one_mem_toNonUnitalSubring (S : Subring R) : (1 : R) ∈ S.toNonUnitalSubring :=
S.one_mem
/-- Turn a non-unital subring containing `1` into a subring. -/
def NonUnitalSubring.toSubring (S : NonUnitalSubring R) (h1 : (1 : R) ∈ S) : Subring R :=
{ S with
one_mem' := h1 }
theorem Subring.toNonUnitalSubring_toSubring (S : Subring R) :
S.toNonUnitalSubring.toSubring S.one_mem = S := by cases S; rfl
theorem NonUnitalSubring.toSubring_toNonUnitalSubring (S : NonUnitalSubring R) (h1 : (1 : R) ∈ S) :
(NonUnitalSubring.toSubring S h1).toNonUnitalSubring = S := by cases S; rfl
end Subring
namespace NonUnitalSubring
variable {R S : Type*} [Ring R] [SetLike S R] [hSR : NonUnitalSubringClass S R] (s : S)
/-- The natural `ℤ`-algebra homomorphism from the unitization of a non-unital subring to
its `Subring.closure`. -/
def unitization : Unitization ℤ s →ₐ[ℤ] R :=
NonUnitalSubalgebra.unitization (hSRA := AddSubgroupClass.zsmulMemClass) s
@[simp]
theorem unitization_apply (x : Unitization ℤ s) : unitization s x = x.fst + x.snd :=
rfl
theorem unitization_range :
(unitization s).range = subalgebraOfSubring (Subring.closure s) := by
have := AddSubgroupClass.zsmulMemClass (S := S)
rw [unitization, NonUnitalSubalgebra.unitization_range (hSRA := this), Algebra.adjoin_int]
end NonUnitalSubring
/-! ## Star subalgebras -/
section StarSubalgebra
variable {R A : Type*} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A]
variable [Algebra R A] [StarModule R A]
/-- Turn a `StarSubalgebra` into a `NonUnitalStarSubalgebra` by forgetting that it contains `1`. -/
def StarSubalgebra.toNonUnitalStarSubalgebra (S : StarSubalgebra R A) :
NonUnitalStarSubalgebra R A :=
{ S with
carrier := S.carrier
smul_mem' := fun r _x hx => S.smul_mem hx r }
theorem StarSubalgebra.one_mem_toNonUnitalStarSubalgebra (S : StarSubalgebra R A) :
(1 : A) ∈ S.toNonUnitalStarSubalgebra :=
S.one_mem'
/-- Turn a non-unital star subalgebra containing `1` into a `StarSubalgebra`. -/
def NonUnitalStarSubalgebra.toStarSubalgebra (S : NonUnitalStarSubalgebra R A) (h1 : (1 : A) ∈ S) :
StarSubalgebra R A :=
{ S with
carrier := S.carrier
one_mem' := h1
algebraMap_mem' := fun r =>
(Algebra.algebraMap_eq_smul_one (R := R) (A := A) r).symm ▸ SMulMemClass.smul_mem r h1 }
theorem StarSubalgebra.toNonUnitalStarSubalgebra_toStarSubalgebra (S : StarSubalgebra R A) :
S.toNonUnitalStarSubalgebra.toStarSubalgebra S.one_mem' = S := by cases S; rfl
theorem NonUnitalStarSubalgebra.toStarSubalgebra_toNonUnitalStarSubalgebra
(S : NonUnitalStarSubalgebra R A) (h1 : (1 : A) ∈ S) :
(S.toStarSubalgebra h1).toNonUnitalStarSubalgebra = S := by
cases S; rfl
open Submodule in
lemma StarAlgebra.adjoin_nonUnitalStarSubalgebra_eq_span (s : NonUnitalStarSubalgebra R A) :
Subalgebra.toSubmodule (adjoin R (s : Set A)).toSubalgebra = span R {1} ⊔ s.toSubmodule := by
rw [adjoin_eq_span, Submonoid.closure_eq_one_union, span_union,
← NonUnitalStarAlgebra.adjoin_eq_span, NonUnitalStarAlgebra.adjoin_eq]
variable (R)
lemma NonUnitalStarAlgebra.adjoin_le_starAlgebra_adjoin (s : Set A) :
adjoin R s ≤ (StarAlgebra.adjoin R s).toNonUnitalStarSubalgebra :=
adjoin_le <| StarAlgebra.subset_adjoin R s
lemma StarAlgebra.adjoin_nonUnitalStarSubalgebra (s : Set A) :
adjoin R (NonUnitalStarAlgebra.adjoin R s : Set A) = adjoin R s :=
le_antisymm
(adjoin_le <| NonUnitalStarAlgebra.adjoin_le_starAlgebra_adjoin R s)
(adjoin_le <| (NonUnitalStarAlgebra.subset_adjoin R s).trans <| subset_adjoin R _)
end StarSubalgebra
namespace Unitization
variable {R A C : Type*} [CommSemiring R] [NonUnitalSemiring A] [StarRing R] [StarRing A]
variable [Module R A] [SMulCommClass R A A] [IsScalarTower R A A] [StarModule R A]
variable [Semiring C] [StarRing C] [Algebra R C] [StarModule R C]
theorem starLift_range_le
{f : A →⋆ₙₐ[R] C} {S : StarSubalgebra R C} :
(starLift f).range ≤ S ↔ NonUnitalStarAlgHom.range f ≤ S.toNonUnitalStarSubalgebra := by
refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩
· rintro - ⟨x, rfl⟩
exact @h (f x) ⟨x, by simp⟩
· rintro - ⟨x, rfl⟩
induction x with
| _ r a => simpa using add_mem (algebraMap_mem S r) (h ⟨a, rfl⟩)
theorem starLift_range (f : A →⋆ₙₐ[R] C) :
(starLift f).range = StarAlgebra.adjoin R (NonUnitalStarAlgHom.range f : Set C) :=
eq_of_forall_ge_iff fun c ↦ by
rw [starLift_range_le, StarAlgebra.adjoin_le_iff]
rfl
end Unitization
namespace NonUnitalStarSubalgebra
section Semiring
variable {R S A : Type*} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A]
[StarModule R A] [SetLike S A] [hSA : NonUnitalSubsemiringClass S A] [hSRA : SMulMemClass S R A]
[StarMemClass S A] (s : S)
/-- The natural star `R`-algebra homomorphism from the unitization of a non-unital star subalgebra
to its `StarAlgebra.adjoin`. -/
def unitization : Unitization R s →⋆ₐ[R] A :=
Unitization.starLift <| NonUnitalStarSubalgebraClass.subtype s
@[simp]
theorem unitization_apply (x : Unitization R s) : unitization s x = algebraMap R A x.fst + x.snd :=
rfl
theorem unitization_range : (unitization s).range = StarAlgebra.adjoin R s := by
rw [unitization, Unitization.starLift_range]
simp only [NonUnitalStarAlgHom.coe_range, NonUnitalStarSubalgebraClass.coeSubtype,
Subtype.range_coe_subtype]
rfl
end Semiring
section Field
variable {R S A : Type*} [Field R] [StarRing R] [Ring A] [StarRing A] [Algebra R A]
[StarModule R A] [SetLike S A] [hSA : NonUnitalSubringClass S A] [hSRA : SMulMemClass S R A]
[StarMemClass S A] (s : S)
theorem unitization_injective (h1 : (1 : A) ∉ s) : Function.Injective (unitization s) :=
AlgHomClass.unitization_injective s h1 (unitization s) fun _ ↦ by simp
/-- If a `NonUnitalStarSubalgebra` over a field does not contain `1`, then its unitization is
isomorphic to its `StarAlgebra.adjoin`. -/
@[simps! apply_coe]
noncomputable def unitizationStarAlgEquiv (h1 : (1 : A) ∉ s) :
Unitization R s ≃⋆ₐ[R] StarAlgebra.adjoin R (s : Set A) :=
let starAlgHom : Unitization R s →⋆ₐ[R] StarAlgebra.adjoin R (s : Set A) :=
((unitization s).codRestrict _
fun x ↦ (unitization_range s).le <| Set.mem_range_self x)
StarAlgEquiv.ofBijective starAlgHom <| by
refine ⟨?_, fun x ↦ ?_⟩
· have := AlgHomClass.unitization_injective s h1 ((StarSubalgebra.subtype _).comp starAlgHom)
fun _ ↦ by simp [starAlgHom]
rw [StarAlgHom.coe_comp] at this
exact this.of_comp
· obtain (⟨a, ha⟩ : (x : A) ∈ (unitization s).range) :=
(unitization_range s).ge x.property
exact ⟨a, Subtype.ext ha⟩
end Field
end NonUnitalStarSubalgebra
|
Algebra\Associated\Basic.lean | /-
Copyright (c) 2018 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Jens Wagemaker
-/
import Mathlib.Algebra.Group.Even
import Mathlib.Algebra.GroupWithZero.Divisibility
import Mathlib.Algebra.GroupWithZero.Hom
import Mathlib.Algebra.Group.Commute.Units
import Mathlib.Algebra.Group.Units.Hom
import Mathlib.Order.BoundedOrder
import Mathlib.Algebra.Ring.Units
/-!
# Associated, prime, and irreducible elements.
In this file we define the predicate `Prime p`
saying that an element of a commutative monoid with zero is prime.
Namely, `Prime p` means that `p` isn't zero, it isn't a unit,
and `p ∣ a * b → p ∣ a ∨ p ∣ b` for all `a`, `b`;
In decomposition monoids (e.g., `ℕ`, `ℤ`), this predicate is equivalent to `Irreducible`,
however this is not true in general.
We also define an equivalence relation `Associated`
saying that two elements of a monoid differ by a multiplication by a unit.
Then we show that the quotient type `Associates` is a monoid
and prove basic properties of this quotient.
-/
variable {α : Type*} {β : Type*} {γ : Type*} {δ : Type*}
section Prime
variable [CommMonoidWithZero α]
/-- An element `p` of a commutative monoid with zero (e.g., a ring) is called *prime*,
if it's not zero, not a unit, and `p ∣ a * b → p ∣ a ∨ p ∣ b` for all `a`, `b`. -/
def Prime (p : α) : Prop :=
p ≠ 0 ∧ ¬IsUnit p ∧ ∀ a b, p ∣ a * b → p ∣ a ∨ p ∣ b
namespace Prime
variable {p : α} (hp : Prime p)
theorem ne_zero : p ≠ 0 :=
hp.1
theorem not_unit : ¬IsUnit p :=
hp.2.1
theorem not_dvd_one : ¬p ∣ 1 :=
mt (isUnit_of_dvd_one ·) hp.not_unit
theorem ne_one : p ≠ 1 := fun h => hp.2.1 (h.symm ▸ isUnit_one)
theorem dvd_or_dvd (hp : Prime p) {a b : α} (h : p ∣ a * b) : p ∣ a ∨ p ∣ b :=
hp.2.2 a b h
theorem dvd_mul {a b : α} : p ∣ a * b ↔ p ∣ a ∨ p ∣ b :=
⟨hp.dvd_or_dvd, (Or.elim · (dvd_mul_of_dvd_left · _) (dvd_mul_of_dvd_right · _))⟩
theorem isPrimal (hp : Prime p) : IsPrimal p := fun _a _b dvd ↦ (hp.dvd_or_dvd dvd).elim
(fun h ↦ ⟨p, 1, h, one_dvd _, (mul_one p).symm⟩) fun h ↦ ⟨1, p, one_dvd _, h, (one_mul p).symm⟩
theorem not_dvd_mul {a b : α} (ha : ¬ p ∣ a) (hb : ¬ p ∣ b) : ¬ p ∣ a * b :=
hp.dvd_mul.not.mpr <| not_or.mpr ⟨ha, hb⟩
theorem dvd_of_dvd_pow (hp : Prime p) {a : α} {n : ℕ} (h : p ∣ a ^ n) : p ∣ a := by
induction' n with n ih
· rw [pow_zero] at h
have := isUnit_of_dvd_one h
have := not_unit hp
contradiction
rw [pow_succ'] at h
cases' dvd_or_dvd hp h with dvd_a dvd_pow
· assumption
exact ih dvd_pow
theorem dvd_pow_iff_dvd {a : α} {n : ℕ} (hn : n ≠ 0) : p ∣ a ^ n ↔ p ∣ a :=
⟨hp.dvd_of_dvd_pow, (dvd_pow · hn)⟩
end Prime
@[simp]
theorem not_prime_zero : ¬Prime (0 : α) := fun h => h.ne_zero rfl
@[simp]
theorem not_prime_one : ¬Prime (1 : α) := fun h => h.not_unit isUnit_one
section Map
variable [CommMonoidWithZero β] {F : Type*} {G : Type*} [FunLike F α β]
variable [MonoidWithZeroHomClass F α β] [FunLike G β α] [MulHomClass G β α]
variable (f : F) (g : G) {p : α}
theorem comap_prime (hinv : ∀ a, g (f a : β) = a) (hp : Prime (f p)) : Prime p :=
⟨fun h => hp.1 <| by simp [h], fun h => hp.2.1 <| h.map f, fun a b h => by
refine
(hp.2.2 (f a) (f b) <| by
convert map_dvd f h
simp).imp
?_ ?_ <;>
· intro h
convert ← map_dvd g h <;> apply hinv⟩
theorem MulEquiv.prime_iff (e : α ≃* β) : Prime p ↔ Prime (e p) :=
⟨fun h => (comap_prime e.symm e fun a => by simp) <| (e.symm_apply_apply p).substr h,
comap_prime e e.symm fun a => by simp⟩
end Map
end Prime
theorem Prime.left_dvd_or_dvd_right_of_dvd_mul [CancelCommMonoidWithZero α] {p : α} (hp : Prime p)
{a b : α} : a ∣ p * b → p ∣ a ∨ a ∣ b := by
rintro ⟨c, hc⟩
rcases hp.2.2 a c (hc ▸ dvd_mul_right _ _) with (h | ⟨x, rfl⟩)
· exact Or.inl h
· rw [mul_left_comm, mul_right_inj' hp.ne_zero] at hc
exact Or.inr (hc.symm ▸ dvd_mul_right _ _)
theorem Prime.pow_dvd_of_dvd_mul_left [CancelCommMonoidWithZero α] {p a b : α} (hp : Prime p)
(n : ℕ) (h : ¬p ∣ a) (h' : p ^ n ∣ a * b) : p ^ n ∣ b := by
induction' n with n ih
· rw [pow_zero]
exact one_dvd b
· obtain ⟨c, rfl⟩ := ih (dvd_trans (pow_dvd_pow p n.le_succ) h')
rw [pow_succ]
apply mul_dvd_mul_left _ ((hp.dvd_or_dvd _).resolve_left h)
rwa [← mul_dvd_mul_iff_left (pow_ne_zero n hp.ne_zero), ← pow_succ, mul_left_comm]
theorem Prime.pow_dvd_of_dvd_mul_right [CancelCommMonoidWithZero α] {p a b : α} (hp : Prime p)
(n : ℕ) (h : ¬p ∣ b) (h' : p ^ n ∣ a * b) : p ^ n ∣ a := by
rw [mul_comm] at h'
exact hp.pow_dvd_of_dvd_mul_left n h h'
theorem Prime.dvd_of_pow_dvd_pow_mul_pow_of_square_not_dvd [CancelCommMonoidWithZero α] {p a b : α}
{n : ℕ} (hp : Prime p) (hpow : p ^ n.succ ∣ a ^ n.succ * b ^ n) (hb : ¬p ^ 2 ∣ b) : p ∣ a := by
-- Suppose `p ∣ b`, write `b = p * x` and `hy : a ^ n.succ * b ^ n = p ^ n.succ * y`.
cases' hp.dvd_or_dvd ((dvd_pow_self p (Nat.succ_ne_zero n)).trans hpow) with H hbdiv
· exact hp.dvd_of_dvd_pow H
obtain ⟨x, rfl⟩ := hp.dvd_of_dvd_pow hbdiv
obtain ⟨y, hy⟩ := hpow
-- Then we can divide out a common factor of `p ^ n` from the equation `hy`.
have : a ^ n.succ * x ^ n = p * y := by
refine mul_left_cancel₀ (pow_ne_zero n hp.ne_zero) ?_
rw [← mul_assoc _ p, ← pow_succ, ← hy, mul_pow, ← mul_assoc (a ^ n.succ), mul_comm _ (p ^ n),
mul_assoc]
-- So `p ∣ a` (and we're done) or `p ∣ x`, which can't be the case since it implies `p^2 ∣ b`.
refine hp.dvd_of_dvd_pow ((hp.dvd_or_dvd ⟨_, this⟩).resolve_right fun hdvdx => hb ?_)
obtain ⟨z, rfl⟩ := hp.dvd_of_dvd_pow hdvdx
rw [pow_two, ← mul_assoc]
exact dvd_mul_right _ _
theorem prime_pow_succ_dvd_mul {α : Type*} [CancelCommMonoidWithZero α] {p x y : α} (h : Prime p)
{i : ℕ} (hxy : p ^ (i + 1) ∣ x * y) : p ^ (i + 1) ∣ x ∨ p ∣ y := by
rw [or_iff_not_imp_right]
intro hy
induction' i with i ih generalizing x
· rw [pow_one] at hxy ⊢
exact (h.dvd_or_dvd hxy).resolve_right hy
rw [pow_succ'] at hxy ⊢
obtain ⟨x', rfl⟩ := (h.dvd_or_dvd (dvd_of_mul_right_dvd hxy)).resolve_right hy
rw [mul_assoc] at hxy
exact mul_dvd_mul_left p (ih ((mul_dvd_mul_iff_left h.ne_zero).mp hxy))
/-- `Irreducible p` states that `p` is non-unit and only factors into units.
We explicitly avoid stating that `p` is non-zero, this would require a semiring. Assuming only a
monoid allows us to reuse irreducible for associated elements.
-/
structure Irreducible [Monoid α] (p : α) : Prop where
/-- `p` is not a unit -/
not_unit : ¬IsUnit p
/-- if `p` factors then one factor is a unit -/
isUnit_or_isUnit' : ∀ a b, p = a * b → IsUnit a ∨ IsUnit b
namespace Irreducible
theorem not_dvd_one [CommMonoid α] {p : α} (hp : Irreducible p) : ¬p ∣ 1 :=
mt (isUnit_of_dvd_one ·) hp.not_unit
theorem isUnit_or_isUnit [Monoid α] {p : α} (hp : Irreducible p) {a b : α} (h : p = a * b) :
IsUnit a ∨ IsUnit b :=
hp.isUnit_or_isUnit' a b h
end Irreducible
theorem irreducible_iff [Monoid α] {p : α} :
Irreducible p ↔ ¬IsUnit p ∧ ∀ a b, p = a * b → IsUnit a ∨ IsUnit b :=
⟨fun h => ⟨h.1, h.2⟩, fun h => ⟨h.1, h.2⟩⟩
@[simp]
theorem not_irreducible_one [Monoid α] : ¬Irreducible (1 : α) := by simp [irreducible_iff]
theorem Irreducible.ne_one [Monoid α] : ∀ {p : α}, Irreducible p → p ≠ 1
| _, hp, rfl => not_irreducible_one hp
@[simp]
theorem not_irreducible_zero [MonoidWithZero α] : ¬Irreducible (0 : α)
| ⟨hn0, h⟩ =>
have : IsUnit (0 : α) ∨ IsUnit (0 : α) := h 0 0 (mul_zero 0).symm
this.elim hn0 hn0
theorem Irreducible.ne_zero [MonoidWithZero α] : ∀ {p : α}, Irreducible p → p ≠ 0
| _, hp, rfl => not_irreducible_zero hp
theorem of_irreducible_mul {α} [Monoid α] {x y : α} : Irreducible (x * y) → IsUnit x ∨ IsUnit y
| ⟨_, h⟩ => h _ _ rfl
theorem not_irreducible_pow {α} [Monoid α] {x : α} {n : ℕ} (hn : n ≠ 1) :
¬ Irreducible (x ^ n) := by
cases n with
| zero => simp
| succ n =>
intro ⟨h₁, h₂⟩
have := h₂ _ _ (pow_succ _ _)
rw [isUnit_pow_iff (Nat.succ_ne_succ.mp hn), or_self] at this
exact h₁ (this.pow _)
theorem irreducible_or_factor {α} [Monoid α] (x : α) (h : ¬IsUnit x) :
Irreducible x ∨ ∃ a b, ¬IsUnit a ∧ ¬IsUnit b ∧ a * b = x := by
haveI := Classical.dec
refine or_iff_not_imp_right.2 fun H => ?_
simp? [h, irreducible_iff] at H ⊢ says
simp only [exists_and_left, not_exists, not_and, irreducible_iff, h, not_false_eq_true,
true_and] at H ⊢
refine fun a b h => by_contradiction fun o => ?_
simp? [not_or] at o says simp only [not_or] at o
exact H _ o.1 _ o.2 h.symm
/-- If `p` and `q` are irreducible, then `p ∣ q` implies `q ∣ p`. -/
theorem Irreducible.dvd_symm [Monoid α] {p q : α} (hp : Irreducible p) (hq : Irreducible q) :
p ∣ q → q ∣ p := by
rintro ⟨q', rfl⟩
rw [IsUnit.mul_right_dvd (Or.resolve_left (of_irreducible_mul hq) hp.not_unit)]
theorem Irreducible.dvd_comm [Monoid α] {p q : α} (hp : Irreducible p) (hq : Irreducible q) :
p ∣ q ↔ q ∣ p :=
⟨hp.dvd_symm hq, hq.dvd_symm hp⟩
section
variable [Monoid α]
theorem irreducible_units_mul (a : αˣ) (b : α) : Irreducible (↑a * b) ↔ Irreducible b := by
simp only [irreducible_iff, Units.isUnit_units_mul, and_congr_right_iff]
refine fun _ => ⟨fun h A B HAB => ?_, fun h A B HAB => ?_⟩
· rw [← a.isUnit_units_mul]
apply h
rw [mul_assoc, ← HAB]
· rw [← a⁻¹.isUnit_units_mul]
apply h
rw [mul_assoc, ← HAB, Units.inv_mul_cancel_left]
theorem irreducible_isUnit_mul {a b : α} (h : IsUnit a) : Irreducible (a * b) ↔ Irreducible b :=
let ⟨a, ha⟩ := h
ha ▸ irreducible_units_mul a b
theorem irreducible_mul_units (a : αˣ) (b : α) : Irreducible (b * ↑a) ↔ Irreducible b := by
simp only [irreducible_iff, Units.isUnit_mul_units, and_congr_right_iff]
refine fun _ => ⟨fun h A B HAB => ?_, fun h A B HAB => ?_⟩
· rw [← Units.isUnit_mul_units B a]
apply h
rw [← mul_assoc, ← HAB]
· rw [← Units.isUnit_mul_units B a⁻¹]
apply h
rw [← mul_assoc, ← HAB, Units.mul_inv_cancel_right]
theorem irreducible_mul_isUnit {a b : α} (h : IsUnit a) : Irreducible (b * a) ↔ Irreducible b :=
let ⟨a, ha⟩ := h
ha ▸ irreducible_mul_units a b
theorem irreducible_mul_iff {a b : α} :
Irreducible (a * b) ↔ Irreducible a ∧ IsUnit b ∨ Irreducible b ∧ IsUnit a := by
constructor
· refine fun h => Or.imp (fun h' => ⟨?_, h'⟩) (fun h' => ⟨?_, h'⟩) (h.isUnit_or_isUnit rfl).symm
· rwa [irreducible_mul_isUnit h'] at h
· rwa [irreducible_isUnit_mul h'] at h
· rintro (⟨ha, hb⟩ | ⟨hb, ha⟩)
· rwa [irreducible_mul_isUnit hb]
· rwa [irreducible_isUnit_mul ha]
end
section CommMonoid
variable [CommMonoid α] {a : α}
theorem Irreducible.not_square (ha : Irreducible a) : ¬IsSquare a := by
rw [isSquare_iff_exists_sq]
rintro ⟨b, rfl⟩
exact not_irreducible_pow (by decide) ha
theorem IsSquare.not_irreducible (ha : IsSquare a) : ¬Irreducible a := fun h => h.not_square ha
end CommMonoid
section CommMonoidWithZero
variable [CommMonoidWithZero α]
theorem Irreducible.prime_of_isPrimal {a : α}
(irr : Irreducible a) (primal : IsPrimal a) : Prime a :=
⟨irr.ne_zero, irr.not_unit, fun a b dvd ↦ by
obtain ⟨d₁, d₂, h₁, h₂, rfl⟩ := primal dvd
exact (of_irreducible_mul irr).symm.imp (·.mul_right_dvd.mpr h₁) (·.mul_left_dvd.mpr h₂)⟩
theorem Irreducible.prime [DecompositionMonoid α] {a : α} (irr : Irreducible a) : Prime a :=
irr.prime_of_isPrimal (DecompositionMonoid.primal a)
end CommMonoidWithZero
section CancelCommMonoidWithZero
variable [CancelCommMonoidWithZero α] {a p : α}
protected theorem Prime.irreducible (hp : Prime p) : Irreducible p :=
⟨hp.not_unit, fun a b ↦ by
rintro rfl
exact (hp.dvd_or_dvd dvd_rfl).symm.imp
(isUnit_of_dvd_one <| (mul_dvd_mul_iff_right <| right_ne_zero_of_mul hp.ne_zero).mp <|
dvd_mul_of_dvd_right · _)
(isUnit_of_dvd_one <| (mul_dvd_mul_iff_left <| left_ne_zero_of_mul hp.ne_zero).mp <|
dvd_mul_of_dvd_left · _)⟩
theorem irreducible_iff_prime [DecompositionMonoid α] {a : α} : Irreducible a ↔ Prime a :=
⟨Irreducible.prime, Prime.irreducible⟩
theorem succ_dvd_or_succ_dvd_of_succ_sum_dvd_mul (hp : Prime p) {a b : α} {k l : ℕ} :
p ^ k ∣ a → p ^ l ∣ b → p ^ (k + l + 1) ∣ a * b → p ^ (k + 1) ∣ a ∨ p ^ (l + 1) ∣ b :=
fun ⟨x, hx⟩ ⟨y, hy⟩ ⟨z, hz⟩ =>
have h : p ^ (k + l) * (x * y) = p ^ (k + l) * (p * z) := by
simpa [mul_comm, pow_add, hx, hy, mul_assoc, mul_left_comm] using hz
have hp0 : p ^ (k + l) ≠ 0 := pow_ne_zero _ hp.ne_zero
have hpd : p ∣ x * y := ⟨z, by rwa [mul_right_inj' hp0] at h⟩
(hp.dvd_or_dvd hpd).elim
(fun ⟨d, hd⟩ => Or.inl ⟨d, by simp [*, pow_succ, mul_comm, mul_left_comm, mul_assoc]⟩)
fun ⟨d, hd⟩ => Or.inr ⟨d, by simp [*, pow_succ, mul_comm, mul_left_comm, mul_assoc]⟩
theorem Prime.not_square (hp : Prime p) : ¬IsSquare p :=
hp.irreducible.not_square
theorem IsSquare.not_prime (ha : IsSquare a) : ¬Prime a := fun h => h.not_square ha
theorem not_prime_pow {n : ℕ} (hn : n ≠ 1) : ¬Prime (a ^ n) := fun hp =>
not_irreducible_pow hn hp.irreducible
end CancelCommMonoidWithZero
/-- Two elements of a `Monoid` are `Associated` if one of them is another one
multiplied by a unit on the right. -/
def Associated [Monoid α] (x y : α) : Prop :=
∃ u : αˣ, x * u = y
/-- Notation for two elements of a monoid are associated, i.e.
if one of them is another one multiplied by a unit on the right. -/
local infixl:50 " ~ᵤ " => Associated
namespace Associated
@[refl]
protected theorem refl [Monoid α] (x : α) : x ~ᵤ x :=
⟨1, by simp⟩
protected theorem rfl [Monoid α] {x : α} : x ~ᵤ x :=
.refl x
instance [Monoid α] : IsRefl α Associated :=
⟨Associated.refl⟩
@[symm]
protected theorem symm [Monoid α] : ∀ {x y : α}, x ~ᵤ y → y ~ᵤ x
| x, _, ⟨u, rfl⟩ => ⟨u⁻¹, by rw [mul_assoc, Units.mul_inv, mul_one]⟩
instance [Monoid α] : IsSymm α Associated :=
⟨fun _ _ => Associated.symm⟩
protected theorem comm [Monoid α] {x y : α} : x ~ᵤ y ↔ y ~ᵤ x :=
⟨Associated.symm, Associated.symm⟩
@[trans]
protected theorem trans [Monoid α] : ∀ {x y z : α}, x ~ᵤ y → y ~ᵤ z → x ~ᵤ z
| x, _, _, ⟨u, rfl⟩, ⟨v, rfl⟩ => ⟨u * v, by rw [Units.val_mul, mul_assoc]⟩
instance [Monoid α] : IsTrans α Associated :=
⟨fun _ _ _ => Associated.trans⟩
/-- The setoid of the relation `x ~ᵤ y` iff there is a unit `u` such that `x * u = y` -/
protected def setoid (α : Type*) [Monoid α] :
Setoid α where
r := Associated
iseqv := ⟨Associated.refl, Associated.symm, Associated.trans⟩
theorem map {M N : Type*} [Monoid M] [Monoid N] {F : Type*} [FunLike F M N] [MonoidHomClass F M N]
(f : F) {x y : M} (ha : Associated x y) : Associated (f x) (f y) := by
obtain ⟨u, ha⟩ := ha
exact ⟨Units.map f u, by rw [← ha, map_mul, Units.coe_map, MonoidHom.coe_coe]⟩
end Associated
attribute [local instance] Associated.setoid
theorem unit_associated_one [Monoid α] {u : αˣ} : (u : α) ~ᵤ 1 :=
⟨u⁻¹, Units.mul_inv u⟩
@[simp]
theorem associated_one_iff_isUnit [Monoid α] {a : α} : (a : α) ~ᵤ 1 ↔ IsUnit a :=
Iff.intro
(fun h =>
let ⟨c, h⟩ := h.symm
h ▸ ⟨c, (one_mul _).symm⟩)
fun ⟨c, h⟩ => Associated.symm ⟨c, by simp [h]⟩
@[simp]
theorem associated_zero_iff_eq_zero [MonoidWithZero α] (a : α) : a ~ᵤ 0 ↔ a = 0 :=
Iff.intro
(fun h => by
let ⟨u, h⟩ := h.symm
simpa using h.symm)
fun h => h ▸ Associated.refl a
theorem associated_one_of_mul_eq_one [CommMonoid α] {a : α} (b : α) (hab : a * b = 1) : a ~ᵤ 1 :=
show (Units.mkOfMulEqOne a b hab : α) ~ᵤ 1 from unit_associated_one
theorem associated_one_of_associated_mul_one [CommMonoid α] {a b : α} : a * b ~ᵤ 1 → a ~ᵤ 1
| ⟨u, h⟩ => associated_one_of_mul_eq_one (b * u) <| by simpa [mul_assoc] using h
theorem associated_mul_unit_left {β : Type*} [Monoid β] (a u : β) (hu : IsUnit u) :
Associated (a * u) a :=
let ⟨u', hu⟩ := hu
⟨u'⁻¹, hu ▸ Units.mul_inv_cancel_right _ _⟩
theorem associated_unit_mul_left {β : Type*} [CommMonoid β] (a u : β) (hu : IsUnit u) :
Associated (u * a) a := by
rw [mul_comm]
exact associated_mul_unit_left _ _ hu
theorem associated_mul_unit_right {β : Type*} [Monoid β] (a u : β) (hu : IsUnit u) :
Associated a (a * u) :=
(associated_mul_unit_left a u hu).symm
theorem associated_unit_mul_right {β : Type*} [CommMonoid β] (a u : β) (hu : IsUnit u) :
Associated a (u * a) :=
(associated_unit_mul_left a u hu).symm
theorem associated_mul_isUnit_left_iff {β : Type*} [Monoid β] {a u b : β} (hu : IsUnit u) :
Associated (a * u) b ↔ Associated a b :=
⟨(associated_mul_unit_right _ _ hu).trans, (associated_mul_unit_left _ _ hu).trans⟩
theorem associated_isUnit_mul_left_iff {β : Type*} [CommMonoid β] {u a b : β} (hu : IsUnit u) :
Associated (u * a) b ↔ Associated a b := by
rw [mul_comm]
exact associated_mul_isUnit_left_iff hu
theorem associated_mul_isUnit_right_iff {β : Type*} [Monoid β] {a b u : β} (hu : IsUnit u) :
Associated a (b * u) ↔ Associated a b :=
Associated.comm.trans <| (associated_mul_isUnit_left_iff hu).trans Associated.comm
theorem associated_isUnit_mul_right_iff {β : Type*} [CommMonoid β] {a u b : β} (hu : IsUnit u) :
Associated a (u * b) ↔ Associated a b :=
Associated.comm.trans <| (associated_isUnit_mul_left_iff hu).trans Associated.comm
@[simp]
theorem associated_mul_unit_left_iff {β : Type*} [Monoid β] {a b : β} {u : Units β} :
Associated (a * u) b ↔ Associated a b :=
associated_mul_isUnit_left_iff u.isUnit
@[simp]
theorem associated_unit_mul_left_iff {β : Type*} [CommMonoid β] {a b : β} {u : Units β} :
Associated (↑u * a) b ↔ Associated a b :=
associated_isUnit_mul_left_iff u.isUnit
@[simp]
theorem associated_mul_unit_right_iff {β : Type*} [Monoid β] {a b : β} {u : Units β} :
Associated a (b * u) ↔ Associated a b :=
associated_mul_isUnit_right_iff u.isUnit
@[simp]
theorem associated_unit_mul_right_iff {β : Type*} [CommMonoid β] {a b : β} {u : Units β} :
Associated a (↑u * b) ↔ Associated a b :=
associated_isUnit_mul_right_iff u.isUnit
theorem Associated.mul_left [Monoid α] (a : α) {b c : α} (h : b ~ᵤ c) : a * b ~ᵤ a * c := by
obtain ⟨d, rfl⟩ := h; exact ⟨d, mul_assoc _ _ _⟩
theorem Associated.mul_right [CommMonoid α] {a b : α} (h : a ~ᵤ b) (c : α) : a * c ~ᵤ b * c := by
obtain ⟨d, rfl⟩ := h; exact ⟨d, mul_right_comm _ _ _⟩
theorem Associated.mul_mul [CommMonoid α] {a₁ a₂ b₁ b₂ : α}
(h₁ : a₁ ~ᵤ b₁) (h₂ : a₂ ~ᵤ b₂) : a₁ * a₂ ~ᵤ b₁ * b₂ := (h₁.mul_right _).trans (h₂.mul_left _)
theorem Associated.pow_pow [CommMonoid α] {a b : α} {n : ℕ} (h : a ~ᵤ b) : a ^ n ~ᵤ b ^ n := by
induction' n with n ih
· simp [Associated.refl]
convert h.mul_mul ih <;> rw [pow_succ']
protected theorem Associated.dvd [Monoid α] {a b : α} : a ~ᵤ b → a ∣ b := fun ⟨u, hu⟩ =>
⟨u, hu.symm⟩
protected theorem Associated.dvd' [Monoid α] {a b : α} (h : a ~ᵤ b) : b ∣ a :=
h.symm.dvd
protected theorem Associated.dvd_dvd [Monoid α] {a b : α} (h : a ~ᵤ b) : a ∣ b ∧ b ∣ a :=
⟨h.dvd, h.symm.dvd⟩
theorem associated_of_dvd_dvd [CancelMonoidWithZero α] {a b : α} (hab : a ∣ b) (hba : b ∣ a) :
a ~ᵤ b := by
rcases hab with ⟨c, rfl⟩
rcases hba with ⟨d, a_eq⟩
by_cases ha0 : a = 0
· simp_all
have hac0 : a * c ≠ 0 := by
intro con
rw [con, zero_mul] at a_eq
apply ha0 a_eq
have : a * (c * d) = a * 1 := by rw [← mul_assoc, ← a_eq, mul_one]
have hcd : c * d = 1 := mul_left_cancel₀ ha0 this
have : a * c * (d * c) = a * c * 1 := by rw [← mul_assoc, ← a_eq, mul_one]
have hdc : d * c = 1 := mul_left_cancel₀ hac0 this
exact ⟨⟨c, d, hcd, hdc⟩, rfl⟩
theorem dvd_dvd_iff_associated [CancelMonoidWithZero α] {a b : α} : a ∣ b ∧ b ∣ a ↔ a ~ᵤ b :=
⟨fun ⟨h1, h2⟩ => associated_of_dvd_dvd h1 h2, Associated.dvd_dvd⟩
instance [CancelMonoidWithZero α] [DecidableRel ((· ∣ ·) : α → α → Prop)] :
DecidableRel ((· ~ᵤ ·) : α → α → Prop) := fun _ _ => decidable_of_iff _ dvd_dvd_iff_associated
theorem Associated.dvd_iff_dvd_left [Monoid α] {a b c : α} (h : a ~ᵤ b) : a ∣ c ↔ b ∣ c :=
let ⟨_, hu⟩ := h
hu ▸ Units.mul_right_dvd.symm
theorem Associated.dvd_iff_dvd_right [Monoid α] {a b c : α} (h : b ~ᵤ c) : a ∣ b ↔ a ∣ c :=
let ⟨_, hu⟩ := h
hu ▸ Units.dvd_mul_right.symm
theorem Associated.eq_zero_iff [MonoidWithZero α] {a b : α} (h : a ~ᵤ b) : a = 0 ↔ b = 0 := by
obtain ⟨u, rfl⟩ := h
rw [← Units.eq_mul_inv_iff_mul_eq, zero_mul]
theorem Associated.ne_zero_iff [MonoidWithZero α] {a b : α} (h : a ~ᵤ b) : a ≠ 0 ↔ b ≠ 0 :=
not_congr h.eq_zero_iff
theorem Associated.neg_left [Monoid α] [HasDistribNeg α] {a b : α} (h : Associated a b) :
Associated (-a) b :=
let ⟨u, hu⟩ := h; ⟨-u, by simp [hu]⟩
theorem Associated.neg_right [Monoid α] [HasDistribNeg α] {a b : α} (h : Associated a b) :
Associated a (-b) :=
h.symm.neg_left.symm
theorem Associated.neg_neg [Monoid α] [HasDistribNeg α] {a b : α} (h : Associated a b) :
Associated (-a) (-b) :=
h.neg_left.neg_right
protected theorem Associated.prime [CommMonoidWithZero α] {p q : α} (h : p ~ᵤ q) (hp : Prime p) :
Prime q :=
⟨h.ne_zero_iff.1 hp.ne_zero,
let ⟨u, hu⟩ := h
⟨fun ⟨v, hv⟩ => hp.not_unit ⟨v * u⁻¹, by simp [hv, hu.symm]⟩,
hu ▸ by
simp only [IsUnit.mul_iff, Units.isUnit, and_true, IsUnit.mul_right_dvd]
intro a b
exact hp.dvd_or_dvd⟩⟩
theorem prime_mul_iff [CancelCommMonoidWithZero α] {x y : α} :
Prime (x * y) ↔ (Prime x ∧ IsUnit y) ∨ (IsUnit x ∧ Prime y) := by
refine ⟨fun h ↦ ?_, ?_⟩
· rcases of_irreducible_mul h.irreducible with hx | hy
· exact Or.inr ⟨hx, (associated_unit_mul_left y x hx).prime h⟩
· exact Or.inl ⟨(associated_mul_unit_left x y hy).prime h, hy⟩
· rintro (⟨hx, hy⟩ | ⟨hx, hy⟩)
· exact (associated_mul_unit_left x y hy).symm.prime hx
· exact (associated_unit_mul_right y x hx).prime hy
@[simp]
lemma prime_pow_iff [CancelCommMonoidWithZero α] {p : α} {n : ℕ} :
Prime (p ^ n) ↔ Prime p ∧ n = 1 := by
refine ⟨fun hp ↦ ?_, fun ⟨hp, hn⟩ ↦ by simpa [hn]⟩
suffices n = 1 by aesop
cases' n with n
· simp at hp
· rw [Nat.succ.injEq]
rw [pow_succ', prime_mul_iff] at hp
rcases hp with ⟨hp, hpn⟩ | ⟨hp, hpn⟩
· by_contra contra
rw [isUnit_pow_iff contra] at hpn
exact hp.not_unit hpn
· exfalso
exact hpn.not_unit (hp.pow n)
theorem Irreducible.dvd_iff [Monoid α] {x y : α} (hx : Irreducible x) :
y ∣ x ↔ IsUnit y ∨ Associated x y := by
constructor
· rintro ⟨z, hz⟩
obtain (h|h) := hx.isUnit_or_isUnit hz
· exact Or.inl h
· rw [hz]
exact Or.inr (associated_mul_unit_left _ _ h)
· rintro (hy|h)
· exact hy.dvd
· exact h.symm.dvd
theorem Irreducible.associated_of_dvd [Monoid α] {p q : α} (p_irr : Irreducible p)
(q_irr : Irreducible q) (dvd : p ∣ q) : Associated p q :=
((q_irr.dvd_iff.mp dvd).resolve_left p_irr.not_unit).symm
theorem Irreducible.dvd_irreducible_iff_associated [Monoid α] {p q : α}
(pp : Irreducible p) (qp : Irreducible q) : p ∣ q ↔ Associated p q :=
⟨Irreducible.associated_of_dvd pp qp, Associated.dvd⟩
theorem Prime.associated_of_dvd [CancelCommMonoidWithZero α] {p q : α} (p_prime : Prime p)
(q_prime : Prime q) (dvd : p ∣ q) : Associated p q :=
p_prime.irreducible.associated_of_dvd q_prime.irreducible dvd
theorem Prime.dvd_prime_iff_associated [CancelCommMonoidWithZero α] {p q : α} (pp : Prime p)
(qp : Prime q) : p ∣ q ↔ Associated p q :=
pp.irreducible.dvd_irreducible_iff_associated qp.irreducible
theorem Associated.prime_iff [CommMonoidWithZero α] {p q : α} (h : p ~ᵤ q) : Prime p ↔ Prime q :=
⟨h.prime, h.symm.prime⟩
protected theorem Associated.isUnit [Monoid α] {a b : α} (h : a ~ᵤ b) : IsUnit a → IsUnit b :=
let ⟨u, hu⟩ := h
fun ⟨v, hv⟩ => ⟨v * u, by simp [hv, hu.symm]⟩
theorem Associated.isUnit_iff [Monoid α] {a b : α} (h : a ~ᵤ b) : IsUnit a ↔ IsUnit b :=
⟨h.isUnit, h.symm.isUnit⟩
theorem Irreducible.isUnit_iff_not_associated_of_dvd [Monoid α]
{x y : α} (hx : Irreducible x) (hy : y ∣ x) : IsUnit y ↔ ¬ Associated x y :=
⟨fun hy hxy => hx.1 (hxy.symm.isUnit hy), (hx.dvd_iff.mp hy).resolve_right⟩
protected theorem Associated.irreducible [Monoid α] {p q : α} (h : p ~ᵤ q) (hp : Irreducible p) :
Irreducible q :=
⟨mt h.symm.isUnit hp.1,
let ⟨u, hu⟩ := h
fun a b hab =>
have hpab : p = a * (b * (u⁻¹ : αˣ)) :=
calc
p = p * u * (u⁻¹ : αˣ) := by simp
_ = _ := by rw [hu]; simp [hab, mul_assoc]
(hp.isUnit_or_isUnit hpab).elim Or.inl fun ⟨v, hv⟩ => Or.inr ⟨v * u, by simp [hv]⟩⟩
protected theorem Associated.irreducible_iff [Monoid α] {p q : α} (h : p ~ᵤ q) :
Irreducible p ↔ Irreducible q :=
⟨h.irreducible, h.symm.irreducible⟩
theorem Associated.of_mul_left [CancelCommMonoidWithZero α] {a b c d : α} (h : a * b ~ᵤ c * d)
(h₁ : a ~ᵤ c) (ha : a ≠ 0) : b ~ᵤ d :=
let ⟨u, hu⟩ := h
let ⟨v, hv⟩ := Associated.symm h₁
⟨u * (v : αˣ),
mul_left_cancel₀ ha
(by
rw [← hv, mul_assoc c (v : α) d, mul_left_comm c, ← hu]
simp [hv.symm, mul_assoc, mul_comm, mul_left_comm])⟩
theorem Associated.of_mul_right [CancelCommMonoidWithZero α] {a b c d : α} :
a * b ~ᵤ c * d → b ~ᵤ d → b ≠ 0 → a ~ᵤ c := by
rw [mul_comm a, mul_comm c]; exact Associated.of_mul_left
theorem Associated.of_pow_associated_of_prime [CancelCommMonoidWithZero α] {p₁ p₂ : α} {k₁ k₂ : ℕ}
(hp₁ : Prime p₁) (hp₂ : Prime p₂) (hk₁ : 0 < k₁) (h : p₁ ^ k₁ ~ᵤ p₂ ^ k₂) : p₁ ~ᵤ p₂ := by
have : p₁ ∣ p₂ ^ k₂ := by
rw [← h.dvd_iff_dvd_right]
apply dvd_pow_self _ hk₁.ne'
rw [← hp₁.dvd_prime_iff_associated hp₂]
exact hp₁.dvd_of_dvd_pow this
theorem Associated.of_pow_associated_of_prime' [CancelCommMonoidWithZero α] {p₁ p₂ : α} {k₁ k₂ : ℕ}
(hp₁ : Prime p₁) (hp₂ : Prime p₂) (hk₂ : 0 < k₂) (h : p₁ ^ k₁ ~ᵤ p₂ ^ k₂) : p₁ ~ᵤ p₂ :=
(h.symm.of_pow_associated_of_prime hp₂ hp₁ hk₂).symm
/-- See also `Irreducible.coprime_iff_not_dvd`. -/
lemma Irreducible.isRelPrime_iff_not_dvd [Monoid α] {p n : α} (hp : Irreducible p) :
IsRelPrime p n ↔ ¬ p ∣ n := by
refine ⟨fun h contra ↦ hp.not_unit (h dvd_rfl contra), fun hpn d hdp hdn ↦ ?_⟩
contrapose! hpn
suffices Associated p d from this.dvd.trans hdn
exact (hp.dvd_iff.mp hdp).resolve_left hpn
lemma Irreducible.dvd_or_isRelPrime [Monoid α] {p n : α} (hp : Irreducible p) :
p ∣ n ∨ IsRelPrime p n := Classical.or_iff_not_imp_left.mpr hp.isRelPrime_iff_not_dvd.2
section UniqueUnits
variable [Monoid α] [Unique αˣ]
theorem associated_iff_eq {x y : α} : x ~ᵤ y ↔ x = y := by
constructor
· rintro ⟨c, rfl⟩
rw [units_eq_one c, Units.val_one, mul_one]
· rintro rfl
rfl
theorem associated_eq_eq : (Associated : α → α → Prop) = Eq := by
ext
rw [associated_iff_eq]
theorem prime_dvd_prime_iff_eq {M : Type*} [CancelCommMonoidWithZero M] [Unique Mˣ] {p q : M}
(pp : Prime p) (qp : Prime q) : p ∣ q ↔ p = q := by
rw [pp.dvd_prime_iff_associated qp, ← associated_eq_eq]
end UniqueUnits
section UniqueUnits₀
variable {R : Type*} [CancelCommMonoidWithZero R] [Unique Rˣ] {p₁ p₂ : R} {k₁ k₂ : ℕ}
theorem eq_of_prime_pow_eq (hp₁ : Prime p₁) (hp₂ : Prime p₂) (hk₁ : 0 < k₁)
(h : p₁ ^ k₁ = p₂ ^ k₂) : p₁ = p₂ := by
rw [← associated_iff_eq] at h ⊢
apply h.of_pow_associated_of_prime hp₁ hp₂ hk₁
theorem eq_of_prime_pow_eq' (hp₁ : Prime p₁) (hp₂ : Prime p₂) (hk₁ : 0 < k₂)
(h : p₁ ^ k₁ = p₂ ^ k₂) : p₁ = p₂ := by
rw [← associated_iff_eq] at h ⊢
apply h.of_pow_associated_of_prime' hp₁ hp₂ hk₁
end UniqueUnits₀
/-- The quotient of a monoid by the `Associated` relation. Two elements `x` and `y`
are associated iff there is a unit `u` such that `x * u = y`. There is a natural
monoid structure on `Associates α`. -/
abbrev Associates (α : Type*) [Monoid α] : Type _ :=
Quotient (Associated.setoid α)
namespace Associates
open Associated
/-- The canonical quotient map from a monoid `α` into the `Associates` of `α` -/
protected abbrev mk {α : Type*} [Monoid α] (a : α) : Associates α :=
⟦a⟧
instance [Monoid α] : Inhabited (Associates α) :=
⟨⟦1⟧⟩
theorem mk_eq_mk_iff_associated [Monoid α] {a b : α} : Associates.mk a = Associates.mk b ↔ a ~ᵤ b :=
Iff.intro Quotient.exact Quot.sound
theorem quotient_mk_eq_mk [Monoid α] (a : α) : ⟦a⟧ = Associates.mk a :=
rfl
theorem quot_mk_eq_mk [Monoid α] (a : α) : Quot.mk Setoid.r a = Associates.mk a :=
rfl
@[simp]
theorem quot_out [Monoid α] (a : Associates α) : Associates.mk (Quot.out a) = a := by
rw [← quot_mk_eq_mk, Quot.out_eq]
theorem mk_quot_out [Monoid α] (a : α) : Quot.out (Associates.mk a) ~ᵤ a := by
rw [← Associates.mk_eq_mk_iff_associated, Associates.quot_out]
theorem forall_associated [Monoid α] {p : Associates α → Prop} :
(∀ a, p a) ↔ ∀ a, p (Associates.mk a) :=
Iff.intro (fun h _ => h _) fun h a => Quotient.inductionOn a h
theorem mk_surjective [Monoid α] : Function.Surjective (@Associates.mk α _) :=
forall_associated.2 fun a => ⟨a, rfl⟩
instance [Monoid α] : One (Associates α) :=
⟨⟦1⟧⟩
@[simp]
theorem mk_one [Monoid α] : Associates.mk (1 : α) = 1 :=
rfl
theorem one_eq_mk_one [Monoid α] : (1 : Associates α) = Associates.mk 1 :=
rfl
@[simp]
theorem mk_eq_one [Monoid α] {a : α} : Associates.mk a = 1 ↔ IsUnit a := by
rw [← mk_one, mk_eq_mk_iff_associated, associated_one_iff_isUnit]
instance [Monoid α] : Bot (Associates α) :=
⟨1⟩
theorem bot_eq_one [Monoid α] : (⊥ : Associates α) = 1 :=
rfl
theorem exists_rep [Monoid α] (a : Associates α) : ∃ a0 : α, Associates.mk a0 = a :=
Quot.exists_rep a
instance [Monoid α] [Subsingleton α] :
Unique (Associates α) where
default := 1
uniq := forall_associated.2 fun _ ↦ mk_eq_one.2 <| isUnit_of_subsingleton _
theorem mk_injective [Monoid α] [Unique (Units α)] : Function.Injective (@Associates.mk α _) :=
fun _ _ h => associated_iff_eq.mp (Associates.mk_eq_mk_iff_associated.mp h)
section CommMonoid
variable [CommMonoid α]
instance instMul : Mul (Associates α) :=
⟨Quotient.map₂ (· * ·) fun _ _ h₁ _ _ h₂ ↦ h₁.mul_mul h₂⟩
theorem mk_mul_mk {x y : α} : Associates.mk x * Associates.mk y = Associates.mk (x * y) :=
rfl
instance instCommMonoid : CommMonoid (Associates α) where
one := 1
mul := (· * ·)
mul_one a' := Quotient.inductionOn a' fun a => show ⟦a * 1⟧ = ⟦a⟧ by simp
one_mul a' := Quotient.inductionOn a' fun a => show ⟦1 * a⟧ = ⟦a⟧ by simp
mul_assoc a' b' c' :=
Quotient.inductionOn₃ a' b' c' fun a b c =>
show ⟦a * b * c⟧ = ⟦a * (b * c)⟧ by rw [mul_assoc]
mul_comm a' b' :=
Quotient.inductionOn₂ a' b' fun a b => show ⟦a * b⟧ = ⟦b * a⟧ by rw [mul_comm]
instance instPreorder : Preorder (Associates α) where
le := Dvd.dvd
le_refl := dvd_refl
le_trans a b c := dvd_trans
/-- `Associates.mk` as a `MonoidHom`. -/
protected def mkMonoidHom : α →* Associates α where
toFun := Associates.mk
map_one' := mk_one
map_mul' _ _ := mk_mul_mk
@[simp]
theorem mkMonoidHom_apply (a : α) : Associates.mkMonoidHom a = Associates.mk a :=
rfl
theorem associated_map_mk {f : Associates α →* α} (hinv : Function.RightInverse f Associates.mk)
(a : α) : a ~ᵤ f (Associates.mk a) :=
Associates.mk_eq_mk_iff_associated.1 (hinv (Associates.mk a)).symm
theorem mk_pow (a : α) (n : ℕ) : Associates.mk (a ^ n) = Associates.mk a ^ n := by
induction n <;> simp [*, pow_succ, Associates.mk_mul_mk.symm]
theorem dvd_eq_le : ((· ∣ ·) : Associates α → Associates α → Prop) = (· ≤ ·) :=
rfl
theorem mul_eq_one_iff {x y : Associates α} : x * y = 1 ↔ x = 1 ∧ y = 1 :=
Iff.intro
(Quotient.inductionOn₂ x y fun a b h =>
have : a * b ~ᵤ 1 := Quotient.exact h
⟨Quotient.sound <| associated_one_of_associated_mul_one this,
Quotient.sound <| associated_one_of_associated_mul_one (b := a) (by rwa [mul_comm])⟩)
(by simp (config := { contextual := true }))
theorem units_eq_one (u : (Associates α)ˣ) : u = 1 :=
Units.ext (mul_eq_one_iff.1 u.val_inv).1
instance uniqueUnits : Unique (Associates α)ˣ where
default := 1
uniq := Associates.units_eq_one
@[simp]
theorem coe_unit_eq_one (u : (Associates α)ˣ) : (u : Associates α) = 1 := by
simp [eq_iff_true_of_subsingleton]
theorem isUnit_iff_eq_one (a : Associates α) : IsUnit a ↔ a = 1 :=
Iff.intro (fun ⟨_, h⟩ => h ▸ coe_unit_eq_one _) fun h => h.symm ▸ isUnit_one
theorem isUnit_iff_eq_bot {a : Associates α} : IsUnit a ↔ a = ⊥ := by
rw [Associates.isUnit_iff_eq_one, bot_eq_one]
theorem isUnit_mk {a : α} : IsUnit (Associates.mk a) ↔ IsUnit a :=
calc
IsUnit (Associates.mk a) ↔ a ~ᵤ 1 := by
rw [isUnit_iff_eq_one, one_eq_mk_one, mk_eq_mk_iff_associated]
_ ↔ IsUnit a := associated_one_iff_isUnit
section Order
theorem mul_mono {a b c d : Associates α} (h₁ : a ≤ b) (h₂ : c ≤ d) : a * c ≤ b * d :=
let ⟨x, hx⟩ := h₁
let ⟨y, hy⟩ := h₂
⟨x * y, by simp [hx, hy, mul_comm, mul_assoc, mul_left_comm]⟩
theorem one_le {a : Associates α} : 1 ≤ a :=
Dvd.intro _ (one_mul a)
theorem le_mul_right {a b : Associates α} : a ≤ a * b :=
⟨b, rfl⟩
theorem le_mul_left {a b : Associates α} : a ≤ b * a := by rw [mul_comm]; exact le_mul_right
instance instOrderBot : OrderBot (Associates α) where
bot := 1
bot_le _ := one_le
end Order
@[simp]
theorem mk_dvd_mk {a b : α} : Associates.mk a ∣ Associates.mk b ↔ a ∣ b := by
simp only [dvd_def, mk_surjective.exists, mk_mul_mk, mk_eq_mk_iff_associated,
Associated.comm (x := b)]
constructor
· rintro ⟨x, u, rfl⟩
exact ⟨_, mul_assoc ..⟩
· rintro ⟨c, rfl⟩
use c
theorem dvd_of_mk_le_mk {a b : α} : Associates.mk a ≤ Associates.mk b → a ∣ b :=
mk_dvd_mk.mp
theorem mk_le_mk_of_dvd {a b : α} : a ∣ b → Associates.mk a ≤ Associates.mk b :=
mk_dvd_mk.mpr
theorem mk_le_mk_iff_dvd {a b : α} : Associates.mk a ≤ Associates.mk b ↔ a ∣ b := mk_dvd_mk
@[deprecated (since := "2024-03-16")] alias mk_le_mk_iff_dvd_iff := mk_le_mk_iff_dvd
@[simp]
theorem isPrimal_mk {a : α} : IsPrimal (Associates.mk a) ↔ IsPrimal a := by
simp_rw [IsPrimal, forall_associated, mk_surjective.exists, mk_mul_mk, mk_dvd_mk]
constructor <;> intro h b c dvd <;> obtain ⟨a₁, a₂, h₁, h₂, eq⟩ := @h b c dvd
· obtain ⟨u, rfl⟩ := mk_eq_mk_iff_associated.mp eq.symm
exact ⟨a₁, a₂ * u, h₁, Units.mul_right_dvd.mpr h₂, mul_assoc _ _ _⟩
· exact ⟨a₁, a₂, h₁, h₂, congr_arg _ eq⟩
@[deprecated (since := "2024-03-16")] alias isPrimal_iff := isPrimal_mk
@[simp]
theorem decompositionMonoid_iff : DecompositionMonoid (Associates α) ↔ DecompositionMonoid α := by
simp_rw [_root_.decompositionMonoid_iff, forall_associated, isPrimal_mk]
instance instDecompositionMonoid [DecompositionMonoid α] : DecompositionMonoid (Associates α) :=
decompositionMonoid_iff.mpr ‹_›
@[simp]
theorem mk_isRelPrime_iff {a b : α} :
IsRelPrime (Associates.mk a) (Associates.mk b) ↔ IsRelPrime a b := by
simp_rw [IsRelPrime, forall_associated, mk_dvd_mk, isUnit_mk]
end CommMonoid
instance [Zero α] [Monoid α] : Zero (Associates α) :=
⟨⟦0⟧⟩
instance [Zero α] [Monoid α] : Top (Associates α) :=
⟨0⟩
@[simp] theorem mk_zero [Zero α] [Monoid α] : Associates.mk (0 : α) = 0 := rfl
section MonoidWithZero
variable [MonoidWithZero α]
@[simp]
theorem mk_eq_zero {a : α} : Associates.mk a = 0 ↔ a = 0 :=
⟨fun h => (associated_zero_iff_eq_zero a).1 <| Quotient.exact h, fun h => h.symm ▸ rfl⟩
@[simp]
theorem quot_out_zero : Quot.out (0 : Associates α) = 0 := by rw [← mk_eq_zero, quot_out]
theorem mk_ne_zero {a : α} : Associates.mk a ≠ 0 ↔ a ≠ 0 :=
not_congr mk_eq_zero
instance [Nontrivial α] : Nontrivial (Associates α) :=
⟨⟨1, 0, mk_ne_zero.2 one_ne_zero⟩⟩
theorem exists_non_zero_rep {a : Associates α} : a ≠ 0 → ∃ a0 : α, a0 ≠ 0 ∧ Associates.mk a0 = a :=
Quotient.inductionOn a fun b nz => ⟨b, mt (congr_arg Quotient.mk'') nz, rfl⟩
end MonoidWithZero
section CommMonoidWithZero
variable [CommMonoidWithZero α]
instance instCommMonoidWithZero : CommMonoidWithZero (Associates α) where
zero_mul := forall_associated.2 fun a ↦ by rw [← mk_zero, mk_mul_mk, zero_mul]
mul_zero := forall_associated.2 fun a ↦ by rw [← mk_zero, mk_mul_mk, mul_zero]
instance instOrderTop : OrderTop (Associates α) where
top := 0
le_top := dvd_zero
@[simp] protected theorem le_zero (a : Associates α) : a ≤ 0 := le_top
instance instBoundedOrder : BoundedOrder (Associates α) where
instance [DecidableRel ((· ∣ ·) : α → α → Prop)] :
DecidableRel ((· ∣ ·) : Associates α → Associates α → Prop) := fun a b =>
Quotient.recOnSubsingleton₂ a b fun _ _ => decidable_of_iff' _ mk_dvd_mk
theorem Prime.le_or_le {p : Associates α} (hp : Prime p) {a b : Associates α} (h : p ≤ a * b) :
p ≤ a ∨ p ≤ b :=
hp.2.2 a b h
@[simp]
theorem prime_mk {p : α} : Prime (Associates.mk p) ↔ Prime p := by
rw [Prime, _root_.Prime, forall_associated]
simp only [forall_associated, mk_ne_zero, isUnit_mk, mk_mul_mk, mk_dvd_mk]
@[simp]
theorem irreducible_mk {a : α} : Irreducible (Associates.mk a) ↔ Irreducible a := by
simp only [irreducible_iff, isUnit_mk, forall_associated, isUnit_mk, mk_mul_mk,
mk_eq_mk_iff_associated, Associated.comm (x := a)]
apply Iff.rfl.and
constructor
· rintro h x y rfl
exact h _ _ <| .refl _
· rintro h x y ⟨u, rfl⟩
simpa using h x (y * u) (mul_assoc _ _ _)
@[simp]
theorem mk_dvdNotUnit_mk_iff {a b : α} :
DvdNotUnit (Associates.mk a) (Associates.mk b) ↔ DvdNotUnit a b := by
simp only [DvdNotUnit, mk_ne_zero, mk_surjective.exists, isUnit_mk, mk_mul_mk,
mk_eq_mk_iff_associated, Associated.comm (x := b)]
refine Iff.rfl.and ?_
constructor
· rintro ⟨x, hx, u, rfl⟩
refine ⟨x * u, ?_, mul_assoc ..⟩
simpa
· rintro ⟨x, ⟨hx, rfl⟩⟩
use x
theorem dvdNotUnit_of_lt {a b : Associates α} (hlt : a < b) : DvdNotUnit a b := by
constructor
· rintro rfl
apply not_lt_of_le _ hlt
apply dvd_zero
rcases hlt with ⟨⟨x, rfl⟩, ndvd⟩
refine ⟨x, ?_, rfl⟩
contrapose! ndvd
rcases ndvd with ⟨u, rfl⟩
simp
theorem irreducible_iff_prime_iff :
(∀ a : α, Irreducible a ↔ Prime a) ↔ ∀ a : Associates α, Irreducible a ↔ Prime a := by
simp_rw [forall_associated, irreducible_mk, prime_mk]
end CommMonoidWithZero
section CancelCommMonoidWithZero
variable [CancelCommMonoidWithZero α]
instance instPartialOrder : PartialOrder (Associates α) where
le_antisymm := mk_surjective.forall₂.2 fun _a _b hab hba => mk_eq_mk_iff_associated.2 <|
associated_of_dvd_dvd (dvd_of_mk_le_mk hab) (dvd_of_mk_le_mk hba)
instance instCancelCommMonoidWithZero : CancelCommMonoidWithZero (Associates α) :=
{ (by infer_instance : CommMonoidWithZero (Associates α)) with
mul_left_cancel_of_ne_zero := by
rintro ⟨a⟩ ⟨b⟩ ⟨c⟩ ha h
rcases Quotient.exact' h with ⟨u, hu⟩
have hu : a * (b * ↑u) = a * c := by rwa [← mul_assoc]
exact Quotient.sound' ⟨u, mul_left_cancel₀ (mk_ne_zero.1 ha) hu⟩ }
theorem _root_.associates_irreducible_iff_prime [DecompositionMonoid α] {p : Associates α} :
Irreducible p ↔ Prime p := irreducible_iff_prime
instance : NoZeroDivisors (Associates α) := by infer_instance
theorem le_of_mul_le_mul_left (a b c : Associates α) (ha : a ≠ 0) : a * b ≤ a * c → b ≤ c
| ⟨d, hd⟩ => ⟨d, mul_left_cancel₀ ha <| by rwa [← mul_assoc]⟩
theorem one_or_eq_of_le_of_prime {p m : Associates α} (hp : Prime p) (hle : m ≤ p) :
m = 1 ∨ m = p := by
rcases mk_surjective p with ⟨p, rfl⟩
rcases mk_surjective m with ⟨m, rfl⟩
simpa [mk_eq_mk_iff_associated, Associated.comm, -Quotient.eq]
using (prime_mk.1 hp).irreducible.dvd_iff.mp (mk_le_mk_iff_dvd.1 hle)
theorem dvdNotUnit_iff_lt {a b : Associates α} : DvdNotUnit a b ↔ a < b :=
dvd_and_not_dvd_iff.symm
theorem le_one_iff {p : Associates α} : p ≤ 1 ↔ p = 1 := by rw [← Associates.bot_eq_one, le_bot_iff]
end CancelCommMonoidWithZero
end Associates
section CommMonoidWithZero
theorem DvdNotUnit.isUnit_of_irreducible_right [CommMonoidWithZero α] {p q : α}
(h : DvdNotUnit p q) (hq : Irreducible q) : IsUnit p := by
obtain ⟨_, x, hx, hx'⟩ := h
exact Or.resolve_right ((irreducible_iff.1 hq).right p x hx') hx
theorem not_irreducible_of_not_unit_dvdNotUnit [CommMonoidWithZero α] {p q : α} (hp : ¬IsUnit p)
(h : DvdNotUnit p q) : ¬Irreducible q :=
mt h.isUnit_of_irreducible_right hp
theorem DvdNotUnit.not_unit [CommMonoidWithZero α] {p q : α} (hp : DvdNotUnit p q) : ¬IsUnit q := by
obtain ⟨-, x, hx, rfl⟩ := hp
exact fun hc => hx (isUnit_iff_dvd_one.mpr (dvd_of_mul_left_dvd (isUnit_iff_dvd_one.mp hc)))
theorem dvdNotUnit_of_dvdNotUnit_associated [CommMonoidWithZero α] [Nontrivial α] {p q r : α}
(h : DvdNotUnit p q) (h' : Associated q r) : DvdNotUnit p r := by
obtain ⟨u, rfl⟩ := Associated.symm h'
obtain ⟨hp, x, hx⟩ := h
refine ⟨hp, x * ↑u⁻¹, DvdNotUnit.not_unit ⟨u⁻¹.ne_zero, x, hx.left, mul_comm _ _⟩, ?_⟩
rw [← mul_assoc, ← hx.right, mul_assoc, Units.mul_inv, mul_one]
end CommMonoidWithZero
section CancelCommMonoidWithZero
theorem isUnit_of_associated_mul [CancelCommMonoidWithZero α] {p b : α} (h : Associated (p * b) p)
(hp : p ≠ 0) : IsUnit b := by
cases' h with a ha
refine isUnit_of_mul_eq_one b a ((mul_right_inj' hp).mp ?_)
rwa [← mul_assoc, mul_one]
theorem DvdNotUnit.not_associated [CancelCommMonoidWithZero α] {p q : α} (h : DvdNotUnit p q) :
¬Associated p q := by
rintro ⟨a, rfl⟩
obtain ⟨hp, x, hx, hx'⟩ := h
rcases (mul_right_inj' hp).mp hx' with rfl
exact hx a.isUnit
theorem DvdNotUnit.ne [CancelCommMonoidWithZero α] {p q : α} (h : DvdNotUnit p q) : p ≠ q := by
by_contra hcontra
obtain ⟨hp, x, hx', hx''⟩ := h
conv_lhs at hx'' => rw [← hcontra, ← mul_one p]
rw [(mul_left_cancel₀ hp hx'').symm] at hx'
exact hx' isUnit_one
theorem pow_injective_of_not_unit [CancelCommMonoidWithZero α] {q : α} (hq : ¬IsUnit q)
(hq' : q ≠ 0) : Function.Injective fun n : ℕ => q ^ n := by
refine injective_of_lt_imp_ne fun n m h => DvdNotUnit.ne ⟨pow_ne_zero n hq', q ^ (m - n), ?_, ?_⟩
· exact not_isUnit_of_not_isUnit_dvd hq (dvd_pow (dvd_refl _) (Nat.sub_pos_of_lt h).ne')
· exact (pow_mul_pow_sub q h.le).symm
theorem dvd_prime_pow [CancelCommMonoidWithZero α] {p q : α} (hp : Prime p) (n : ℕ) :
q ∣ p ^ n ↔ ∃ i ≤ n, Associated q (p ^ i) := by
induction' n with n ih generalizing q
· simp [← isUnit_iff_dvd_one, associated_one_iff_isUnit]
refine ⟨fun h => ?_, fun ⟨i, hi, hq⟩ => hq.dvd.trans (pow_dvd_pow p hi)⟩
rw [pow_succ'] at h
rcases hp.left_dvd_or_dvd_right_of_dvd_mul h with (⟨q, rfl⟩ | hno)
· rw [mul_dvd_mul_iff_left hp.ne_zero, ih] at h
rcases h with ⟨i, hi, hq⟩
refine ⟨i + 1, Nat.succ_le_succ hi, (hq.mul_left p).trans ?_⟩
rw [pow_succ']
· obtain ⟨i, hi, hq⟩ := ih.mp hno
exact ⟨i, hi.trans n.le_succ, hq⟩
end CancelCommMonoidWithZero
assert_not_exists OrderedCommMonoid
assert_not_exists Multiset
|
Algebra\Associated\OrderedCommMonoid.lean | /-
Copyright (c) 2018 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Jens Wagemaker
-/
import Mathlib.Algebra.Associated.Basic
import Mathlib.Algebra.Order.Monoid.Canonical.Defs
/-!
# Associated, prime, and irreducible elements.
In this file we define the predicate `Prime p`
saying that an element of a commutative monoid with zero is prime.
Namely, `Prime p` means that `p` isn't zero, it isn't a unit,
and `p ∣ a * b → p ∣ a ∨ p ∣ b` for all `a`, `b`;
In decomposition monoids (e.g., `ℕ`, `ℤ`), this predicate is equivalent to `Irreducible`,
however this is not true in general.
We also define an equivalence relation `Associated`
saying that two elements of a monoid differ by a multiplication by a unit.
Then we show that the quotient type `Associates` is a monoid
and prove basic properties of this quotient.
-/
variable {α : Type*} [CancelCommMonoidWithZero α]
namespace Associates
instance instOrderedCommMonoid : OrderedCommMonoid (Associates α) where
mul_le_mul_left := fun a _ ⟨d, hd⟩ c => hd.symm ▸ mul_assoc c a d ▸ le_mul_right (α := α)
instance : CanonicallyOrderedCommMonoid (Associates α) where
exists_mul_of_le h := h
le_self_mul _ b := ⟨b, rfl⟩
bot_le _ := one_le
end Associates
|
Algebra\BigOperators\Associated.lean | /-
Copyright (c) 2018 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Jens Wagemaker, Anne Baanen
-/
import Mathlib.Algebra.Associated.Basic
import Mathlib.Algebra.BigOperators.Finsupp
/-!
# Products of associated, prime, and irreducible elements.
This file contains some theorems relating definitions in `Algebra.Associated`
and products of multisets, finsets, and finsupps.
-/
variable {α β γ δ : Type*}
-- the same local notation used in `Algebra.Associated`
local infixl:50 " ~ᵤ " => Associated
namespace Prime
variable [CommMonoidWithZero α] {p : α}
theorem exists_mem_multiset_dvd (hp : Prime p) {s : Multiset α} : p ∣ s.prod → ∃ a ∈ s, p ∣ a :=
Multiset.induction_on s (fun h => (hp.not_dvd_one h).elim) fun a s ih h =>
have : p ∣ a * s.prod := by simpa using h
match hp.dvd_or_dvd this with
| Or.inl h => ⟨a, Multiset.mem_cons_self a s, h⟩
| Or.inr h =>
let ⟨a, has, h⟩ := ih h
⟨a, Multiset.mem_cons_of_mem has, h⟩
theorem exists_mem_multiset_map_dvd (hp : Prime p) {s : Multiset β} {f : β → α} :
p ∣ (s.map f).prod → ∃ a ∈ s, p ∣ f a := fun h => by
simpa only [exists_prop, Multiset.mem_map, exists_exists_and_eq_and] using
hp.exists_mem_multiset_dvd h
theorem exists_mem_finset_dvd (hp : Prime p) {s : Finset β} {f : β → α} :
p ∣ s.prod f → ∃ i ∈ s, p ∣ f i :=
hp.exists_mem_multiset_map_dvd
end Prime
theorem Prod.associated_iff {M N : Type*} [Monoid M] [Monoid N] {x z : M × N} :
x ~ᵤ z ↔ x.1 ~ᵤ z.1 ∧ x.2 ~ᵤ z.2 :=
⟨fun ⟨u, hu⟩ => ⟨⟨(MulEquiv.prodUnits.toFun u).1, (Prod.eq_iff_fst_eq_snd_eq.1 hu).1⟩,
⟨(MulEquiv.prodUnits.toFun u).2, (Prod.eq_iff_fst_eq_snd_eq.1 hu).2⟩⟩,
fun ⟨⟨u₁, h₁⟩, ⟨u₂, h₂⟩⟩ =>
⟨MulEquiv.prodUnits.invFun (u₁, u₂), Prod.eq_iff_fst_eq_snd_eq.2 ⟨h₁, h₂⟩⟩⟩
theorem Associated.prod {M : Type*} [CommMonoid M] {ι : Type*} (s : Finset ι) (f : ι → M)
(g : ι → M) (h : ∀ i, i ∈ s → (f i) ~ᵤ (g i)) : (∏ i ∈ s, f i) ~ᵤ (∏ i ∈ s, g i) := by
induction s using Finset.induction with
| empty =>
simp only [Finset.prod_empty]
rfl
| @insert j s hjs IH =>
classical
convert_to (∏ i ∈ insert j s, f i) ~ᵤ (∏ i ∈ insert j s, g i)
rw [Finset.prod_insert hjs, Finset.prod_insert hjs]
exact Associated.mul_mul (h j (Finset.mem_insert_self j s))
(IH (fun i hi ↦ h i (Finset.mem_insert_of_mem hi)))
theorem exists_associated_mem_of_dvd_prod [CancelCommMonoidWithZero α] {p : α} (hp : Prime p)
{s : Multiset α} : (∀ r ∈ s, Prime r) → p ∣ s.prod → ∃ q ∈ s, p ~ᵤ q :=
Multiset.induction_on s (by simp [mt isUnit_iff_dvd_one.2 hp.not_unit]) fun a s ih hs hps => by
rw [Multiset.prod_cons] at hps
cases' hp.dvd_or_dvd hps with h h
· have hap := hs a (Multiset.mem_cons.2 (Or.inl rfl))
exact ⟨a, Multiset.mem_cons_self a _, hp.associated_of_dvd hap h⟩
· rcases ih (fun r hr => hs _ (Multiset.mem_cons.2 (Or.inr hr))) h with ⟨q, hq₁, hq₂⟩
exact ⟨q, Multiset.mem_cons.2 (Or.inr hq₁), hq₂⟩
theorem Multiset.prod_primes_dvd [CancelCommMonoidWithZero α]
[∀ a : α, DecidablePred (Associated a)] {s : Multiset α} (n : α) (h : ∀ a ∈ s, Prime a)
(div : ∀ a ∈ s, a ∣ n) (uniq : ∀ a, s.countP (Associated a) ≤ 1) : s.prod ∣ n := by
induction' s using Multiset.induction_on with a s induct n primes divs generalizing n
· simp only [Multiset.prod_zero, one_dvd]
· rw [Multiset.prod_cons]
obtain ⟨k, rfl⟩ : a ∣ n := div a (Multiset.mem_cons_self a s)
apply mul_dvd_mul_left a
refine induct _ (fun a ha => h a (Multiset.mem_cons_of_mem ha)) (fun b b_in_s => ?_)
fun a => (Multiset.countP_le_of_le _ (Multiset.le_cons_self _ _)).trans (uniq a)
have b_div_n := div b (Multiset.mem_cons_of_mem b_in_s)
have a_prime := h a (Multiset.mem_cons_self a s)
have b_prime := h b (Multiset.mem_cons_of_mem b_in_s)
refine (b_prime.dvd_or_dvd b_div_n).resolve_left fun b_div_a => ?_
have assoc := b_prime.associated_of_dvd a_prime b_div_a
have := uniq a
rw [Multiset.countP_cons_of_pos _ (Associated.refl _), Nat.succ_le_succ_iff, ← not_lt,
Multiset.countP_pos] at this
exact this ⟨b, b_in_s, assoc.symm⟩
theorem Finset.prod_primes_dvd [CancelCommMonoidWithZero α] [Unique αˣ] {s : Finset α} (n : α)
(h : ∀ a ∈ s, Prime a) (div : ∀ a ∈ s, a ∣ n) : (∏ p ∈ s, p) ∣ n := by
classical
exact
Multiset.prod_primes_dvd n (by simpa only [Multiset.map_id', Finset.mem_def] using h)
(by simpa only [Multiset.map_id', Finset.mem_def] using div)
(by
simp only [Multiset.map_id', associated_eq_eq, Multiset.countP_eq_card_filter,
← s.val.count_eq_card_filter_eq, ← Multiset.nodup_iff_count_le_one, s.nodup])
namespace Associates
section CommMonoid
variable [CommMonoid α]
theorem prod_mk {p : Multiset α} : (p.map Associates.mk).prod = Associates.mk p.prod :=
Multiset.induction_on p (by simp) fun a s ih => by simp [ih, Associates.mk_mul_mk]
theorem finset_prod_mk {p : Finset β} {f : β → α} :
(∏ i ∈ p, Associates.mk (f i)) = Associates.mk (∏ i ∈ p, f i) := by
-- Porting note: added
have : (fun i => Associates.mk (f i)) = Associates.mk ∘ f :=
funext fun x => Function.comp_apply
rw [Finset.prod_eq_multiset_prod, this, ← Multiset.map_map, prod_mk,
← Finset.prod_eq_multiset_prod]
theorem rel_associated_iff_map_eq_map {p q : Multiset α} :
Multiset.Rel Associated p q ↔ p.map Associates.mk = q.map Associates.mk := by
rw [← Multiset.rel_eq, Multiset.rel_map]
simp only [mk_eq_mk_iff_associated]
theorem prod_eq_one_iff {p : Multiset (Associates α)} :
p.prod = 1 ↔ ∀ a ∈ p, (a : Associates α) = 1 :=
Multiset.induction_on p (by simp)
(by simp (config := { contextual := true }) [mul_eq_one_iff, or_imp, forall_and])
theorem prod_le_prod {p q : Multiset (Associates α)} (h : p ≤ q) : p.prod ≤ q.prod := by
haveI := Classical.decEq (Associates α)
haveI := Classical.decEq α
suffices p.prod ≤ (p + (q - p)).prod by rwa [add_tsub_cancel_of_le h] at this
suffices p.prod * 1 ≤ p.prod * (q - p).prod by simpa
exact mul_mono (le_refl p.prod) one_le
end CommMonoid
section CancelCommMonoidWithZero
variable [CancelCommMonoidWithZero α]
theorem exists_mem_multiset_le_of_prime {s : Multiset (Associates α)} {p : Associates α}
(hp : Prime p) : p ≤ s.prod → ∃ a ∈ s, p ≤ a :=
Multiset.induction_on s (fun ⟨d, Eq⟩ => (hp.ne_one (mul_eq_one_iff.1 Eq.symm).1).elim)
fun a s ih h =>
have : p ≤ a * s.prod := by simpa using h
match Prime.le_or_le hp this with
| Or.inl h => ⟨a, Multiset.mem_cons_self a s, h⟩
| Or.inr h =>
let ⟨a, has, h⟩ := ih h
⟨a, Multiset.mem_cons_of_mem has, h⟩
end CancelCommMonoidWithZero
end Associates
namespace Multiset
theorem prod_ne_zero_of_prime [CancelCommMonoidWithZero α] [Nontrivial α] (s : Multiset α)
(h : ∀ x ∈ s, Prime x) : s.prod ≠ 0 :=
Multiset.prod_ne_zero fun h0 => Prime.ne_zero (h 0 h0) rfl
end Multiset
open Finset Finsupp
section CommMonoidWithZero
variable {M : Type*} [CommMonoidWithZero M]
theorem Prime.dvd_finset_prod_iff {S : Finset α} {p : M} (pp : Prime p) (g : α → M) :
p ∣ S.prod g ↔ ∃ a ∈ S, p ∣ g a :=
⟨pp.exists_mem_finset_dvd, fun ⟨_, ha1, ha2⟩ => dvd_trans ha2 (dvd_prod_of_mem g ha1)⟩
theorem Prime.not_dvd_finset_prod {S : Finset α} {p : M} (pp : Prime p) {g : α → M}
(hS : ∀ a ∈ S, ¬p ∣ g a) : ¬p ∣ S.prod g := by
exact mt (Prime.dvd_finset_prod_iff pp _).1 <| not_exists.2 fun a => not_and.2 (hS a)
theorem Prime.dvd_finsupp_prod_iff {f : α →₀ M} {g : α → M → ℕ} {p : ℕ} (pp : Prime p) :
p ∣ f.prod g ↔ ∃ a ∈ f.support, p ∣ g a (f a) :=
Prime.dvd_finset_prod_iff pp _
theorem Prime.not_dvd_finsupp_prod {f : α →₀ M} {g : α → M → ℕ} {p : ℕ} (pp : Prime p)
(hS : ∀ a ∈ f.support, ¬p ∣ g a (f a)) : ¬p ∣ f.prod g :=
Prime.not_dvd_finset_prod pp hS
end CommMonoidWithZero
|
Algebra\BigOperators\Fin.lean | /-
Copyright (c) 2020 Yury Kudryashov, Anne Baanen. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov, Anne Baanen
-/
import Mathlib.Algebra.BigOperators.Ring
import Mathlib.Algebra.Group.Action.Pi
import Mathlib.Data.Fintype.BigOperators
import Mathlib.Data.Fintype.Fin
import Mathlib.Logic.Equiv.Fin
/-!
# Big operators and `Fin`
Some results about products and sums over the type `Fin`.
The most important results are the induction formulas `Fin.prod_univ_castSucc`
and `Fin.prod_univ_succ`, and the formula `Fin.prod_const` for the product of a
constant function. These results have variants for sums instead of products.
## Main declarations
* `finFunctionFinEquiv`: An explicit equivalence between `Fin n → Fin m` and `Fin (m ^ n)`.
-/
open Finset
variable {α : Type*} {β : Type*}
namespace Finset
@[to_additive]
theorem prod_range [CommMonoid β] {n : ℕ} (f : ℕ → β) :
∏ i ∈ Finset.range n, f i = ∏ i : Fin n, f i :=
(Fin.prod_univ_eq_prod_range _ _).symm
end Finset
namespace Fin
@[to_additive]
theorem prod_ofFn [CommMonoid β] {n : ℕ} (f : Fin n → β) : (List.ofFn f).prod = ∏ i, f i := by
simp [prod_eq_multiset_prod]
@[to_additive]
theorem prod_univ_def [CommMonoid β] {n : ℕ} (f : Fin n → β) :
∏ i, f i = ((List.finRange n).map f).prod := by
rw [← List.ofFn_eq_map, prod_ofFn]
/-- A product of a function `f : Fin 0 → β` is `1` because `Fin 0` is empty -/
@[to_additive "A sum of a function `f : Fin 0 → β` is `0` because `Fin 0` is empty"]
theorem prod_univ_zero [CommMonoid β] (f : Fin 0 → β) : ∏ i, f i = 1 :=
rfl
/-- A product of a function `f : Fin (n + 1) → β` over all `Fin (n + 1)`
is the product of `f x`, for some `x : Fin (n + 1)` times the remaining product -/
@[to_additive "A sum of a function `f : Fin (n + 1) → β` over all `Fin (n + 1)` is the sum of
`f x`, for some `x : Fin (n + 1)` plus the remaining product"]
theorem prod_univ_succAbove [CommMonoid β] {n : ℕ} (f : Fin (n + 1) → β) (x : Fin (n + 1)) :
∏ i, f i = f x * ∏ i : Fin n, f (x.succAbove i) := by
rw [univ_succAbove, prod_cons, Finset.prod_map _ x.succAboveEmb]
rfl
/-- A product of a function `f : Fin (n + 1) → β` over all `Fin (n + 1)`
is the product of `f 0` plus the remaining product -/
@[to_additive "A sum of a function `f : Fin (n + 1) → β` over all `Fin (n + 1)` is the sum of
`f 0` plus the remaining product"]
theorem prod_univ_succ [CommMonoid β] {n : ℕ} (f : Fin (n + 1) → β) :
∏ i, f i = f 0 * ∏ i : Fin n, f i.succ :=
prod_univ_succAbove f 0
/-- A product of a function `f : Fin (n + 1) → β` over all `Fin (n + 1)`
is the product of `f (Fin.last n)` plus the remaining product -/
@[to_additive "A sum of a function `f : Fin (n + 1) → β` over all `Fin (n + 1)` is the sum of
`f (Fin.last n)` plus the remaining sum"]
theorem prod_univ_castSucc [CommMonoid β] {n : ℕ} (f : Fin (n + 1) → β) :
∏ i, f i = (∏ i : Fin n, f (Fin.castSucc i)) * f (last n) := by
simpa [mul_comm] using prod_univ_succAbove f (last n)
@[to_additive (attr := simp)]
theorem prod_univ_get [CommMonoid α] (l : List α) : ∏ i : Fin l.length, l[i.1] = l.prod := by
simp [Finset.prod_eq_multiset_prod]
@[to_additive (attr := simp)]
theorem prod_univ_get' [CommMonoid β] (l : List α) (f : α → β) :
∏ i : Fin l.length, f l[i.1] = (l.map f).prod := by
simp [Finset.prod_eq_multiset_prod]
@[to_additive]
theorem prod_cons [CommMonoid β] {n : ℕ} (x : β) (f : Fin n → β) :
(∏ i : Fin n.succ, (cons x f : Fin n.succ → β) i) = x * ∏ i : Fin n, f i := by
simp_rw [prod_univ_succ, cons_zero, cons_succ]
@[to_additive sum_univ_one]
theorem prod_univ_one [CommMonoid β] (f : Fin 1 → β) : ∏ i, f i = f 0 := by simp
@[to_additive (attr := simp)]
theorem prod_univ_two [CommMonoid β] (f : Fin 2 → β) : ∏ i, f i = f 0 * f 1 := by
simp [prod_univ_succ]
@[to_additive]
theorem prod_univ_two' [CommMonoid β] (f : α → β) (a b : α) :
∏ i, f (![a, b] i) = f a * f b :=
prod_univ_two _
@[to_additive]
theorem prod_univ_three [CommMonoid β] (f : Fin 3 → β) : ∏ i, f i = f 0 * f 1 * f 2 := by
rw [prod_univ_castSucc, prod_univ_two]
rfl
@[to_additive]
theorem prod_univ_four [CommMonoid β] (f : Fin 4 → β) : ∏ i, f i = f 0 * f 1 * f 2 * f 3 := by
rw [prod_univ_castSucc, prod_univ_three]
rfl
@[to_additive]
theorem prod_univ_five [CommMonoid β] (f : Fin 5 → β) :
∏ i, f i = f 0 * f 1 * f 2 * f 3 * f 4 := by
rw [prod_univ_castSucc, prod_univ_four]
rfl
@[to_additive]
theorem prod_univ_six [CommMonoid β] (f : Fin 6 → β) :
∏ i, f i = f 0 * f 1 * f 2 * f 3 * f 4 * f 5 := by
rw [prod_univ_castSucc, prod_univ_five]
rfl
@[to_additive]
theorem prod_univ_seven [CommMonoid β] (f : Fin 7 → β) :
∏ i, f i = f 0 * f 1 * f 2 * f 3 * f 4 * f 5 * f 6 := by
rw [prod_univ_castSucc, prod_univ_six]
rfl
@[to_additive]
theorem prod_univ_eight [CommMonoid β] (f : Fin 8 → β) :
∏ i, f i = f 0 * f 1 * f 2 * f 3 * f 4 * f 5 * f 6 * f 7 := by
rw [prod_univ_castSucc, prod_univ_seven]
rfl
theorem sum_pow_mul_eq_add_pow {n : ℕ} {R : Type*} [CommSemiring R] (a b : R) :
(∑ s : Finset (Fin n), a ^ s.card * b ^ (n - s.card)) = (a + b) ^ n := by
simpa using Fintype.sum_pow_mul_eq_add_pow (Fin n) a b
theorem prod_const [CommMonoid α] (n : ℕ) (x : α) : ∏ _i : Fin n, x = x ^ n := by simp
theorem sum_const [AddCommMonoid α] (n : ℕ) (x : α) : ∑ _i : Fin n, x = n • x := by simp
@[to_additive]
theorem prod_Ioi_zero {M : Type*} [CommMonoid M] {n : ℕ} {v : Fin n.succ → M} :
∏ i ∈ Ioi 0, v i = ∏ j : Fin n, v j.succ := by
rw [Ioi_zero_eq_map, Finset.prod_map, val_succEmb]
@[to_additive]
theorem prod_Ioi_succ {M : Type*} [CommMonoid M] {n : ℕ} (i : Fin n) (v : Fin n.succ → M) :
∏ j ∈ Ioi i.succ, v j = ∏ j ∈ Ioi i, v j.succ := by
rw [Ioi_succ, Finset.prod_map, val_succEmb]
@[to_additive]
theorem prod_congr' {M : Type*} [CommMonoid M] {a b : ℕ} (f : Fin b → M) (h : a = b) :
(∏ i : Fin a, f (cast h i)) = ∏ i : Fin b, f i := by
subst h
congr
@[to_additive]
theorem prod_univ_add {M : Type*} [CommMonoid M] {a b : ℕ} (f : Fin (a + b) → M) :
(∏ i : Fin (a + b), f i) = (∏ i : Fin a, f (castAdd b i)) * ∏ i : Fin b, f (natAdd a i) := by
rw [Fintype.prod_equiv finSumFinEquiv.symm f fun i => f (finSumFinEquiv.toFun i)]
· apply Fintype.prod_sum_type
· intro x
simp only [Equiv.toFun_as_coe, Equiv.apply_symm_apply]
@[to_additive]
theorem prod_trunc {M : Type*} [CommMonoid M] {a b : ℕ} (f : Fin (a + b) → M)
(hf : ∀ j : Fin b, f (natAdd a j) = 1) :
(∏ i : Fin (a + b), f i) = ∏ i : Fin a, f (castLE (Nat.le.intro rfl) i) := by
rw [prod_univ_add, Fintype.prod_eq_one _ hf, mul_one]
rfl
section PartialProd
variable [Monoid α] {n : ℕ}
/-- For `f = (a₁, ..., aₙ)` in `αⁿ`, `partialProd f` is `(1, a₁, a₁a₂, ..., a₁...aₙ)` in `αⁿ⁺¹`. -/
@[to_additive "For `f = (a₁, ..., aₙ)` in `αⁿ`, `partialSum f` is\n
`(0, a₁, a₁ + a₂, ..., a₁ + ... + aₙ)` in `αⁿ⁺¹`."]
def partialProd (f : Fin n → α) (i : Fin (n + 1)) : α :=
((List.ofFn f).take i).prod
@[to_additive (attr := simp)]
theorem partialProd_zero (f : Fin n → α) : partialProd f 0 = 1 := by simp [partialProd]
@[to_additive]
theorem partialProd_succ (f : Fin n → α) (j : Fin n) :
partialProd f j.succ = partialProd f (Fin.castSucc j) * f j := by
simp [partialProd, List.take_succ, List.ofFnNthVal, dif_pos j.is_lt]
@[to_additive]
theorem partialProd_succ' (f : Fin (n + 1) → α) (j : Fin (n + 1)) :
partialProd f j.succ = f 0 * partialProd (Fin.tail f) j := by
simp [partialProd]
rfl
@[to_additive]
theorem partialProd_left_inv {G : Type*} [Group G] (f : Fin (n + 1) → G) :
(f 0 • partialProd fun i : Fin n => (f i)⁻¹ * f i.succ) = f :=
funext fun x => Fin.inductionOn x (by simp) fun x hx => by
simp only [coe_eq_castSucc, Pi.smul_apply, smul_eq_mul] at hx ⊢
rw [partialProd_succ, ← mul_assoc, hx, mul_inv_cancel_left]
@[to_additive]
theorem partialProd_right_inv {G : Type*} [Group G] (f : Fin n → G) (i : Fin n) :
(partialProd f (Fin.castSucc i))⁻¹ * partialProd f i.succ = f i := by
cases' i with i hn
induction i with
| zero => simp [-Fin.succ_mk, partialProd_succ]
| succ i hi =>
specialize hi (lt_trans (Nat.lt_succ_self i) hn)
simp only [Fin.coe_eq_castSucc, Fin.succ_mk, Fin.castSucc_mk] at hi ⊢
rw [← Fin.succ_mk _ _ (lt_trans (Nat.lt_succ_self _) hn), ← Fin.succ_mk _ _ hn]
simp only [partialProd_succ, mul_inv_rev, Fin.castSucc_mk]
-- Porting note: was
-- assoc_rw [hi, inv_mul_cancel_left]
rw [← mul_assoc, mul_left_eq_self, mul_assoc, hi, mul_left_inv]
/-- Let `(g₀, g₁, ..., gₙ)` be a tuple of elements in `Gⁿ⁺¹`.
Then if `k < j`, this says `(g₀g₁...gₖ₋₁)⁻¹ * g₀g₁...gₖ = gₖ`.
If `k = j`, it says `(g₀g₁...gₖ₋₁)⁻¹ * g₀g₁...gₖ₊₁ = gₖgₖ₊₁`.
If `k > j`, it says `(g₀g₁...gₖ)⁻¹ * g₀g₁...gₖ₊₁ = gₖ₊₁.`
Useful for defining group cohomology. -/
@[to_additive
"Let `(g₀, g₁, ..., gₙ)` be a tuple of elements in `Gⁿ⁺¹`.
Then if `k < j`, this says `-(g₀ + g₁ + ... + gₖ₋₁) + (g₀ + g₁ + ... + gₖ) = gₖ`.
If `k = j`, it says `-(g₀ + g₁ + ... + gₖ₋₁) + (g₀ + g₁ + ... + gₖ₊₁) = gₖ + gₖ₊₁`.
If `k > j`, it says `-(g₀ + g₁ + ... + gₖ) + (g₀ + g₁ + ... + gₖ₊₁) = gₖ₊₁.`
Useful for defining group cohomology."]
theorem inv_partialProd_mul_eq_contractNth {G : Type*} [Group G] (g : Fin (n + 1) → G)
(j : Fin (n + 1)) (k : Fin n) :
(partialProd g (j.succ.succAbove (Fin.castSucc k)))⁻¹ * partialProd g (j.succAbove k).succ =
j.contractNth (· * ·) g k := by
rcases lt_trichotomy (k : ℕ) j with (h | h | h)
· rwa [succAbove_of_castSucc_lt, succAbove_of_castSucc_lt, partialProd_right_inv,
contractNth_apply_of_lt]
· assumption
· rw [castSucc_lt_iff_succ_le, succ_le_succ_iff, le_iff_val_le_val]
exact le_of_lt h
· rwa [succAbove_of_castSucc_lt, succAbove_of_le_castSucc, partialProd_succ,
castSucc_fin_succ, ← mul_assoc,
partialProd_right_inv, contractNth_apply_of_eq]
· simp [le_iff_val_le_val, ← h]
· rw [castSucc_lt_iff_succ_le, succ_le_succ_iff, le_iff_val_le_val]
exact le_of_eq h
· rwa [succAbove_of_le_castSucc, succAbove_of_le_castSucc, partialProd_succ, partialProd_succ,
castSucc_fin_succ, partialProd_succ, inv_mul_cancel_left, contractNth_apply_of_gt]
· exact le_iff_val_le_val.2 (le_of_lt h)
· rw [le_iff_val_le_val, val_succ]
exact Nat.succ_le_of_lt h
end PartialProd
end Fin
/-- Equivalence between `Fin n → Fin m` and `Fin (m ^ n)`. -/
@[simps!]
def finFunctionFinEquiv {m n : ℕ} : (Fin n → Fin m) ≃ Fin (m ^ n) :=
Equiv.ofRightInverseOfCardLE (le_of_eq <| by simp_rw [Fintype.card_fun, Fintype.card_fin])
(fun f => ⟨∑ i, f i * m ^ (i : ℕ), by
induction' n with n ih
· simp
cases m
· exact isEmptyElim (f <| Fin.last _)
simp_rw [Fin.sum_univ_castSucc, Fin.coe_castSucc, Fin.val_last]
refine (Nat.add_lt_add_of_lt_of_le (ih _) <| Nat.mul_le_mul_right _ (Fin.is_le _)).trans_eq ?_
rw [← one_add_mul (_ : ℕ), add_comm, pow_succ']⟩)
(fun a b => ⟨a / m ^ (b : ℕ) % m, by
cases' n with n
· exact b.elim0
cases' m with m
· rw [zero_pow n.succ_ne_zero] at a
exact a.elim0
· exact Nat.mod_lt _ m.succ_pos⟩)
fun a => by
dsimp
induction' n with n ih
· subsingleton [(finCongr <| pow_zero _).subsingleton]
simp_rw [Fin.forall_iff, Fin.ext_iff] at ih
ext
simp_rw [Fin.sum_univ_succ, Fin.val_zero, Fin.val_succ, pow_zero, Nat.div_one,
mul_one, pow_succ', ← Nat.div_div_eq_div_mul, mul_left_comm _ m, ← mul_sum]
rw [ih _ (Nat.div_lt_of_lt_mul ?_), Nat.mod_add_div]
-- Porting note: replaces `a.is_lt` in the wildcard above. Caused by a refactor of the `npow`
-- instance for `Fin`.
exact a.is_lt.trans_eq (pow_succ' _ _)
theorem finFunctionFinEquiv_apply {m n : ℕ} (f : Fin n → Fin m) :
(finFunctionFinEquiv f : ℕ) = ∑ i : Fin n, ↑(f i) * m ^ (i : ℕ) :=
rfl
theorem finFunctionFinEquiv_single {m n : ℕ} [NeZero m] (i : Fin n) (j : Fin m) :
(finFunctionFinEquiv (Pi.single i j) : ℕ) = j * m ^ (i : ℕ) := by
rw [finFunctionFinEquiv_apply, Fintype.sum_eq_single i, Pi.single_eq_same]
rintro x hx
rw [Pi.single_eq_of_ne hx, Fin.val_zero', zero_mul]
/-- Equivalence between `∀ i : Fin m, Fin (n i)` and `Fin (∏ i : Fin m, n i)`. -/
def finPiFinEquiv {m : ℕ} {n : Fin m → ℕ} : (∀ i : Fin m, Fin (n i)) ≃ Fin (∏ i : Fin m, n i) :=
Equiv.ofRightInverseOfCardLE (le_of_eq <| by simp_rw [Fintype.card_pi, Fintype.card_fin])
(fun f => ⟨∑ i, f i * ∏ j, n (Fin.castLE i.is_lt.le j), by
induction' m with m ih
· simp
rw [Fin.prod_univ_castSucc, Fin.sum_univ_castSucc]
suffices
∀ (n : Fin m → ℕ) (nn : ℕ) (f : ∀ i : Fin m, Fin (n i)) (fn : Fin nn),
((∑ i : Fin m, ↑(f i) * ∏ j : Fin i, n (Fin.castLE i.prop.le j)) + ↑fn * ∏ j, n j) <
(∏ i : Fin m, n i) * nn by
replace := this (Fin.init n) (n (Fin.last _)) (Fin.init f) (f (Fin.last _))
rw [← Fin.snoc_init_self f]
simp (config := { singlePass := true }) only [← Fin.snoc_init_self n]
simp_rw [Fin.snoc_castSucc, Fin.snoc_last, Fin.snoc_init_self n]
exact this
intro n nn f fn
cases nn
· exact isEmptyElim fn
refine (Nat.add_lt_add_of_lt_of_le (ih _) <| Nat.mul_le_mul_right _ (Fin.is_le _)).trans_eq ?_
rw [← one_add_mul (_ : ℕ), mul_comm, add_comm]⟩)
(fun a b => ⟨(a / ∏ j : Fin b, n (Fin.castLE b.is_lt.le j)) % n b, by
cases m
· exact b.elim0
cases' h : n b with nb
· rw [prod_eq_zero (Finset.mem_univ _) h] at a
exact isEmptyElim a
exact Nat.mod_lt _ nb.succ_pos⟩)
(by
intro a; revert a; dsimp only [Fin.val_mk]
refine Fin.consInduction ?_ ?_ n
· intro a
have : Subsingleton (Fin (∏ i : Fin 0, i.elim0)) :=
(finCongr <| prod_empty).subsingleton
subsingleton
· intro n x xs ih a
simp_rw [Fin.forall_iff, Fin.ext_iff] at ih
ext
simp_rw [Fin.sum_univ_succ, Fin.cons_succ]
have := fun i : Fin n =>
Fintype.prod_equiv (finCongr <| Fin.val_succ i)
(fun j => (Fin.cons x xs : _ → ℕ) (Fin.castLE (Fin.is_lt _).le j))
(fun j => (Fin.cons x xs : _ → ℕ) (Fin.castLE (Nat.succ_le_succ (Fin.is_lt _).le) j))
fun j => rfl
simp_rw [this]
clear this
dsimp only [Fin.val_zero]
simp_rw [Fintype.prod_empty, Nat.div_one, mul_one, Fin.cons_zero, Fin.prod_univ_succ]
change (_ + ∑ y : _, _ / (x * _) % _ * (x * _)) = _
simp_rw [← Nat.div_div_eq_div_mul, mul_left_comm (_ % _ : ℕ), ← mul_sum]
convert Nat.mod_add_div _ _
-- Porting note: new
refine (ih (a / x) (Nat.div_lt_of_lt_mul <| a.is_lt.trans_eq ?_))
exact Fin.prod_univ_succ _
-- Porting note: was:
/-
refine' Eq.trans _ (ih (a / x) (Nat.div_lt_of_lt_mul <| a.is_lt.trans_eq _))
swap
· convert Fin.prod_univ_succ (Fin.cons x xs : _ → ℕ)
simp_rw [Fin.cons_succ]
congr with i
congr with j
· cases j
rfl
· cases j
rfl-/)
theorem finPiFinEquiv_apply {m : ℕ} {n : Fin m → ℕ} (f : ∀ i : Fin m, Fin (n i)) :
(finPiFinEquiv f : ℕ) = ∑ i, f i * ∏ j, n (Fin.castLE i.is_lt.le j) := rfl
theorem finPiFinEquiv_single {m : ℕ} {n : Fin m → ℕ} [∀ i, NeZero (n i)] (i : Fin m)
(j : Fin (n i)) :
(finPiFinEquiv (Pi.single i j : ∀ i : Fin m, Fin (n i)) : ℕ) =
j * ∏ j, n (Fin.castLE i.is_lt.le j) := by
rw [finPiFinEquiv_apply, Fintype.sum_eq_single i, Pi.single_eq_same]
rintro x hx
rw [Pi.single_eq_of_ne hx, Fin.val_zero', zero_mul]
namespace List
section CommMonoid
variable [CommMonoid α]
@[to_additive]
theorem prod_take_ofFn {n : ℕ} (f : Fin n → α) (i : ℕ) :
((ofFn f).take i).prod = ∏ j ∈ Finset.univ.filter fun j : Fin n => j.val < i, f j := by
induction i with
| zero =>
simp
| succ i IH =>
by_cases h : i < n
· have : i < length (ofFn f) := by rwa [length_ofFn f]
rw [prod_take_succ _ _ this]
have A : ((Finset.univ : Finset (Fin n)).filter fun j => j.val < i + 1) =
((Finset.univ : Finset (Fin n)).filter fun j => j.val < i) ∪ {(⟨i, h⟩ : Fin n)} := by
ext ⟨_, _⟩
simp [Nat.lt_succ_iff_lt_or_eq]
have B : _root_.Disjoint (Finset.filter (fun j : Fin n => j.val < i) Finset.univ)
(singleton (⟨i, h⟩ : Fin n)) := by simp
rw [A, Finset.prod_union B, IH]
simp
· have A : (ofFn f).take i = (ofFn f).take i.succ := by
rw [← length_ofFn f] at h
have : length (ofFn f) ≤ i := not_lt.mp h
rw [take_of_length_le this, take_of_length_le (le_trans this (Nat.le_succ _))]
have B : ∀ j : Fin n, ((j : ℕ) < i.succ) = ((j : ℕ) < i) := by
intro j
have : (j : ℕ) < i := lt_of_lt_of_le j.2 (not_lt.mp h)
simp [this, lt_trans this (Nat.lt_succ_self _)]
simp [← A, B, IH]
@[to_additive]
theorem prod_ofFn {n : ℕ} {f : Fin n → α} : (ofFn f).prod = ∏ i, f i :=
Fin.prod_ofFn f
end CommMonoid
@[to_additive]
theorem alternatingProd_eq_finset_prod {G : Type*} [CommGroup G] :
∀ (L : List G), alternatingProd L = ∏ i : Fin L.length, L.get i ^ (-1 : ℤ) ^ (i : ℕ)
| [] => by
rw [alternatingProd, Finset.prod_eq_one]
rintro ⟨i, ⟨⟩⟩
| g::[] => by
show g = ∏ i : Fin 1, [g].get i ^ (-1 : ℤ) ^ (i : ℕ)
rw [Fin.prod_univ_succ]; simp
| g::h::L =>
calc g * h⁻¹ * L.alternatingProd
= g * h⁻¹ * ∏ i : Fin L.length, L.get i ^ (-1 : ℤ) ^ (i : ℕ) :=
congr_arg _ (alternatingProd_eq_finset_prod _)
_ = ∏ i : Fin (L.length + 2), List.get (g::h::L) i ^ (-1 : ℤ) ^ (i : ℕ) := by
{ rw [Fin.prod_univ_succ, Fin.prod_univ_succ, mul_assoc]
simp [pow_add]}
end List
|
Algebra\BigOperators\Finprod.lean | /-
Copyright (c) 2020 Kexing Ying and Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kexing Ying, Kevin Buzzard, Yury Kudryashov
-/
import Mathlib.Algebra.BigOperators.GroupWithZero.Finset
import Mathlib.Algebra.Group.FiniteSupport
import Mathlib.Algebra.Module.Defs
import Mathlib.Algebra.Order.BigOperators.Group.Finset
import Mathlib.Data.Set.Subsingleton
/-!
# Finite products and sums over types and sets
We define products and sums over types and subsets of types, with no finiteness hypotheses.
All infinite products and sums are defined to be junk values (i.e. one or zero).
This approach is sometimes easier to use than `Finset.sum`,
when issues arise with `Finset` and `Fintype` being data.
## Main definitions
We use the following variables:
* `α`, `β` - types with no structure;
* `s`, `t` - sets
* `M`, `N` - additive or multiplicative commutative monoids
* `f`, `g` - functions
Definitions in this file:
* `finsum f : M` : the sum of `f x` as `x` ranges over the support of `f`, if it's finite.
Zero otherwise.
* `finprod f : M` : the product of `f x` as `x` ranges over the multiplicative support of `f`, if
it's finite. One otherwise.
## Notation
* `∑ᶠ i, f i` and `∑ᶠ i : α, f i` for `finsum f`
* `∏ᶠ i, f i` and `∏ᶠ i : α, f i` for `finprod f`
This notation works for functions `f : p → M`, where `p : Prop`, so the following works:
* `∑ᶠ i ∈ s, f i`, where `f : α → M`, `s : Set α` : sum over the set `s`;
* `∑ᶠ n < 5, f n`, where `f : ℕ → M` : same as `f 0 + f 1 + f 2 + f 3 + f 4`;
* `∏ᶠ (n >= -2) (hn : n < 3), f n`, where `f : ℤ → M` : same as `f (-2) * f (-1) * f 0 * f 1 * f 2`.
## Implementation notes
`finsum` and `finprod` is "yet another way of doing finite sums and products in Lean". However
experiments in the wild (e.g. with matroids) indicate that it is a helpful approach in settings
where the user is not interested in computability and wants to do reasoning without running into
typeclass diamonds caused by the constructive finiteness used in definitions such as `Finset` and
`Fintype`. By sticking solely to `Set.Finite` we avoid these problems. We are aware that there are
other solutions but for beginner mathematicians this approach is easier in practice.
Another application is the construction of a partition of unity from a collection of “bump”
function. In this case the finite set depends on the point and it's convenient to have a definition
that does not mention the set explicitly.
The first arguments in all definitions and lemmas is the codomain of the function of the big
operator. This is necessary for the heuristic in `@[to_additive]`.
See the documentation of `to_additive.attr` for more information.
We did not add `IsFinite (X : Type) : Prop`, because it is simply `Nonempty (Fintype X)`.
## Tags
finsum, finprod, finite sum, finite product
-/
open Function Set
/-!
### Definition and relation to `Finset.sum` and `Finset.prod`
-/
-- Porting note: Used to be section Sort
section sort
variable {G M N : Type*} {α β ι : Sort*} [CommMonoid M] [CommMonoid N]
section
/- Note: we use classical logic only for these definitions, to ensure that we do not write lemmas
with `Classical.dec` in their statement. -/
open Classical in
/-- Sum of `f x` as `x` ranges over the elements of the support of `f`, if it's finite. Zero
otherwise. -/
noncomputable irreducible_def finsum (lemma := finsum_def') [AddCommMonoid M] (f : α → M) : M :=
if h : (support (f ∘ PLift.down)).Finite then ∑ i ∈ h.toFinset, f i.down else 0
open Classical in
/-- Product of `f x` as `x` ranges over the elements of the multiplicative support of `f`, if it's
finite. One otherwise. -/
@[to_additive existing]
noncomputable irreducible_def finprod (lemma := finprod_def') (f : α → M) : M :=
if h : (mulSupport (f ∘ PLift.down)).Finite then ∏ i ∈ h.toFinset, f i.down else 1
attribute [to_additive existing] finprod_def'
end
open Batteries.ExtendedBinder
/-- `∑ᶠ x, f x` is notation for `finsum f`. It is the sum of `f x`, where `x` ranges over the
support of `f`, if it's finite, zero otherwise. Taking the sum over multiple arguments or
conditions is possible, e.g. `∏ᶠ (x) (y), f x y` and `∏ᶠ (x) (h: x ∈ s), f x`-/
notation3"∑ᶠ "(...)", "r:67:(scoped f => finsum f) => r
/-- `∏ᶠ x, f x` is notation for `finprod f`. It is the product of `f x`, where `x` ranges over the
multiplicative support of `f`, if it's finite, one otherwise. Taking the product over multiple
arguments or conditions is possible, e.g. `∏ᶠ (x) (y), f x y` and `∏ᶠ (x) (h: x ∈ s), f x`-/
notation3"∏ᶠ "(...)", "r:67:(scoped f => finprod f) => r
-- Porting note: The following ports the lean3 notation for this file, but is currently very fickle.
-- syntax (name := bigfinsum) "∑ᶠ" extBinders ", " term:67 : term
-- macro_rules (kind := bigfinsum)
-- | `(∑ᶠ $x:ident, $p) => `(finsum (fun $x:ident ↦ $p))
-- | `(∑ᶠ $x:ident : $t, $p) => `(finsum (fun $x:ident : $t ↦ $p))
-- | `(∑ᶠ $x:ident $b:binderPred, $p) =>
-- `(finsum fun $x => (finsum (α := satisfies_binder_pred% $x $b) (fun _ => $p)))
-- | `(∑ᶠ ($x:ident) ($h:ident : $t), $p) =>
-- `(finsum fun ($x) => finsum (α := $t) (fun $h => $p))
-- | `(∑ᶠ ($x:ident : $_) ($h:ident : $t), $p) =>
-- `(finsum fun ($x) => finsum (α := $t) (fun $h => $p))
-- | `(∑ᶠ ($x:ident) ($y:ident), $p) =>
-- `(finsum fun $x => (finsum fun $y => $p))
-- | `(∑ᶠ ($x:ident) ($y:ident) ($h:ident : $t), $p) =>
-- `(finsum fun $x => (finsum fun $y => (finsum (α := $t) fun $h => $p)))
-- | `(∑ᶠ ($x:ident) ($y:ident) ($z:ident), $p) =>
-- `(finsum fun $x => (finsum fun $y => (finsum fun $z => $p)))
-- | `(∑ᶠ ($x:ident) ($y:ident) ($z:ident) ($h:ident : $t), $p) =>
-- `(finsum fun $x => (finsum fun $y => (finsum fun $z => (finsum (α := $t) fun $h => $p))))
--
--
-- syntax (name := bigfinprod) "∏ᶠ " extBinders ", " term:67 : term
-- macro_rules (kind := bigfinprod)
-- | `(∏ᶠ $x:ident, $p) => `(finprod (fun $x:ident ↦ $p))
-- | `(∏ᶠ $x:ident : $t, $p) => `(finprod (fun $x:ident : $t ↦ $p))
-- | `(∏ᶠ $x:ident $b:binderPred, $p) =>
-- `(finprod fun $x => (finprod (α := satisfies_binder_pred% $x $b) (fun _ => $p)))
-- | `(∏ᶠ ($x:ident) ($h:ident : $t), $p) =>
-- `(finprod fun ($x) => finprod (α := $t) (fun $h => $p))
-- | `(∏ᶠ ($x:ident : $_) ($h:ident : $t), $p) =>
-- `(finprod fun ($x) => finprod (α := $t) (fun $h => $p))
-- | `(∏ᶠ ($x:ident) ($y:ident), $p) =>
-- `(finprod fun $x => (finprod fun $y => $p))
-- | `(∏ᶠ ($x:ident) ($y:ident) ($h:ident : $t), $p) =>
-- `(finprod fun $x => (finprod fun $y => (finprod (α := $t) fun $h => $p)))
-- | `(∏ᶠ ($x:ident) ($y:ident) ($z:ident), $p) =>
-- `(finprod fun $x => (finprod fun $y => (finprod fun $z => $p)))
-- | `(∏ᶠ ($x:ident) ($y:ident) ($z:ident) ($h:ident : $t), $p) =>
-- `(finprod fun $x => (finprod fun $y => (finprod fun $z =>
-- (finprod (α := $t) fun $h => $p))))
@[to_additive]
theorem finprod_eq_prod_plift_of_mulSupport_toFinset_subset {f : α → M}
(hf : (mulSupport (f ∘ PLift.down)).Finite) {s : Finset (PLift α)} (hs : hf.toFinset ⊆ s) :
∏ᶠ i, f i = ∏ i ∈ s, f i.down := by
rw [finprod, dif_pos]
refine Finset.prod_subset hs fun x _ hxf => ?_
rwa [hf.mem_toFinset, nmem_mulSupport] at hxf
@[to_additive]
theorem finprod_eq_prod_plift_of_mulSupport_subset {f : α → M} {s : Finset (PLift α)}
(hs : mulSupport (f ∘ PLift.down) ⊆ s) : ∏ᶠ i, f i = ∏ i ∈ s, f i.down :=
finprod_eq_prod_plift_of_mulSupport_toFinset_subset (s.finite_toSet.subset hs) fun x hx => by
rw [Finite.mem_toFinset] at hx
exact hs hx
@[to_additive (attr := simp)]
theorem finprod_one : (∏ᶠ _ : α, (1 : M)) = 1 := by
have : (mulSupport fun x : PLift α => (fun _ => 1 : α → M) x.down) ⊆ (∅ : Finset (PLift α)) :=
fun x h => by simp at h
rw [finprod_eq_prod_plift_of_mulSupport_subset this, Finset.prod_empty]
@[to_additive]
theorem finprod_of_isEmpty [IsEmpty α] (f : α → M) : ∏ᶠ i, f i = 1 := by
rw [← finprod_one]
congr
simp [eq_iff_true_of_subsingleton]
@[to_additive (attr := simp)]
theorem finprod_false (f : False → M) : ∏ᶠ i, f i = 1 :=
finprod_of_isEmpty _
@[to_additive]
theorem finprod_eq_single (f : α → M) (a : α) (ha : ∀ x, x ≠ a → f x = 1) :
∏ᶠ x, f x = f a := by
have : mulSupport (f ∘ PLift.down) ⊆ ({PLift.up a} : Finset (PLift α)) := by
intro x
contrapose
simpa [PLift.eq_up_iff_down_eq] using ha x.down
rw [finprod_eq_prod_plift_of_mulSupport_subset this, Finset.prod_singleton]
@[to_additive]
theorem finprod_unique [Unique α] (f : α → M) : ∏ᶠ i, f i = f default :=
finprod_eq_single f default fun _x hx => (hx <| Unique.eq_default _).elim
@[to_additive (attr := simp)]
theorem finprod_true (f : True → M) : ∏ᶠ i, f i = f trivial :=
@finprod_unique M True _ ⟨⟨trivial⟩, fun _ => rfl⟩ f
@[to_additive]
theorem finprod_eq_dif {p : Prop} [Decidable p] (f : p → M) :
∏ᶠ i, f i = if h : p then f h else 1 := by
split_ifs with h
· haveI : Unique p := ⟨⟨h⟩, fun _ => rfl⟩
exact finprod_unique f
· haveI : IsEmpty p := ⟨h⟩
exact finprod_of_isEmpty f
@[to_additive]
theorem finprod_eq_if {p : Prop} [Decidable p] {x : M} : ∏ᶠ _ : p, x = if p then x else 1 :=
finprod_eq_dif fun _ => x
@[to_additive]
theorem finprod_congr {f g : α → M} (h : ∀ x, f x = g x) : finprod f = finprod g :=
congr_arg _ <| funext h
@[to_additive (attr := congr)]
theorem finprod_congr_Prop {p q : Prop} {f : p → M} {g : q → M} (hpq : p = q)
(hfg : ∀ h : q, f (hpq.mpr h) = g h) : finprod f = finprod g := by
subst q
exact finprod_congr hfg
/-- To prove a property of a finite product, it suffices to prove that the property is
multiplicative and holds on the factors. -/
@[to_additive
"To prove a property of a finite sum, it suffices to prove that the property is
additive and holds on the summands."]
theorem finprod_induction {f : α → M} (p : M → Prop) (hp₀ : p 1)
(hp₁ : ∀ x y, p x → p y → p (x * y)) (hp₂ : ∀ i, p (f i)) : p (∏ᶠ i, f i) := by
rw [finprod]
split_ifs
exacts [Finset.prod_induction _ _ hp₁ hp₀ fun i _ => hp₂ _, hp₀]
theorem finprod_nonneg {R : Type*} [OrderedCommSemiring R] {f : α → R} (hf : ∀ x, 0 ≤ f x) :
0 ≤ ∏ᶠ x, f x :=
finprod_induction (fun x => 0 ≤ x) zero_le_one (fun _ _ => mul_nonneg) hf
@[to_additive finsum_nonneg]
theorem one_le_finprod' {M : Type*} [OrderedCommMonoid M] {f : α → M} (hf : ∀ i, 1 ≤ f i) :
1 ≤ ∏ᶠ i, f i :=
finprod_induction _ le_rfl (fun _ _ => one_le_mul) hf
@[to_additive]
theorem MonoidHom.map_finprod_plift (f : M →* N) (g : α → M)
(h : (mulSupport <| g ∘ PLift.down).Finite) : f (∏ᶠ x, g x) = ∏ᶠ x, f (g x) := by
rw [finprod_eq_prod_plift_of_mulSupport_subset h.coe_toFinset.ge,
finprod_eq_prod_plift_of_mulSupport_subset, map_prod]
rw [h.coe_toFinset]
exact mulSupport_comp_subset f.map_one (g ∘ PLift.down)
@[to_additive]
theorem MonoidHom.map_finprod_Prop {p : Prop} (f : M →* N) (g : p → M) :
f (∏ᶠ x, g x) = ∏ᶠ x, f (g x) :=
f.map_finprod_plift g (Set.toFinite _)
@[to_additive]
theorem MonoidHom.map_finprod_of_preimage_one (f : M →* N) (hf : ∀ x, f x = 1 → x = 1) (g : α → M) :
f (∏ᶠ i, g i) = ∏ᶠ i, f (g i) := by
by_cases hg : (mulSupport <| g ∘ PLift.down).Finite; · exact f.map_finprod_plift g hg
rw [finprod, dif_neg, f.map_one, finprod, dif_neg]
exacts [Infinite.mono (fun x hx => mt (hf (g x.down)) hx) hg, hg]
@[to_additive]
theorem MonoidHom.map_finprod_of_injective (g : M →* N) (hg : Injective g) (f : α → M) :
g (∏ᶠ i, f i) = ∏ᶠ i, g (f i) :=
g.map_finprod_of_preimage_one (fun _ => (hg.eq_iff' g.map_one).mp) f
@[to_additive]
theorem MulEquiv.map_finprod (g : M ≃* N) (f : α → M) : g (∏ᶠ i, f i) = ∏ᶠ i, g (f i) :=
g.toMonoidHom.map_finprod_of_injective (EquivLike.injective g) f
/-- The `NoZeroSMulDivisors` makes sure that the result holds even when the support of `f` is
infinite. For a more usual version assuming `(support f).Finite` instead, see `finsum_smul'`. -/
theorem finsum_smul {R M : Type*} [Ring R] [AddCommGroup M] [Module R M] [NoZeroSMulDivisors R M]
(f : ι → R) (x : M) : (∑ᶠ i, f i) • x = ∑ᶠ i, f i • x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· exact ((smulAddHom R M).flip x).map_finsum_of_injective (smul_left_injective R hx) _
/-- The `NoZeroSMulDivisors` makes sure that the result holds even when the support of `f` is
infinite. For a more usual version assuming `(support f).Finite` instead, see `smul_finsum'`. -/
theorem smul_finsum {R M : Type*} [Ring R] [AddCommGroup M] [Module R M] [NoZeroSMulDivisors R M]
(c : R) (f : ι → M) : (c • ∑ᶠ i, f i) = ∑ᶠ i, c • f i := by
rcases eq_or_ne c 0 with (rfl | hc)
· simp
· exact (smulAddHom R M c).map_finsum_of_injective (smul_right_injective M hc) _
@[to_additive]
theorem finprod_inv_distrib [DivisionCommMonoid G] (f : α → G) : (∏ᶠ x, (f x)⁻¹) = (∏ᶠ x, f x)⁻¹ :=
((MulEquiv.inv G).map_finprod f).symm
end sort
-- Porting note: Used to be section Type
section type
variable {α β ι G M N : Type*} [CommMonoid M] [CommMonoid N]
@[to_additive]
theorem finprod_eq_mulIndicator_apply (s : Set α) (f : α → M) (a : α) :
∏ᶠ _ : a ∈ s, f a = mulIndicator s f a := by
classical convert finprod_eq_if (M := M) (p := a ∈ s) (x := f a)
@[to_additive (attr := simp)]
theorem finprod_mem_mulSupport (f : α → M) (a : α) : ∏ᶠ _ : f a ≠ 1, f a = f a := by
rw [← mem_mulSupport, finprod_eq_mulIndicator_apply, mulIndicator_mulSupport]
@[to_additive]
theorem finprod_mem_def (s : Set α) (f : α → M) : ∏ᶠ a ∈ s, f a = ∏ᶠ a, mulIndicator s f a :=
finprod_congr <| finprod_eq_mulIndicator_apply s f
@[to_additive]
theorem finprod_eq_prod_of_mulSupport_subset (f : α → M) {s : Finset α} (h : mulSupport f ⊆ s) :
∏ᶠ i, f i = ∏ i ∈ s, f i := by
have A : mulSupport (f ∘ PLift.down) = Equiv.plift.symm '' mulSupport f := by
rw [mulSupport_comp_eq_preimage]
exact (Equiv.plift.symm.image_eq_preimage _).symm
have : mulSupport (f ∘ PLift.down) ⊆ s.map Equiv.plift.symm.toEmbedding := by
rw [A, Finset.coe_map]
exact image_subset _ h
rw [finprod_eq_prod_plift_of_mulSupport_subset this]
simp only [Finset.prod_map, Equiv.coe_toEmbedding]
congr
@[to_additive]
theorem finprod_eq_prod_of_mulSupport_toFinset_subset (f : α → M) (hf : (mulSupport f).Finite)
{s : Finset α} (h : hf.toFinset ⊆ s) : ∏ᶠ i, f i = ∏ i ∈ s, f i :=
finprod_eq_prod_of_mulSupport_subset _ fun _ hx => h <| hf.mem_toFinset.2 hx
@[to_additive]
theorem finprod_eq_finset_prod_of_mulSupport_subset (f : α → M) {s : Finset α}
(h : mulSupport f ⊆ (s : Set α)) : ∏ᶠ i, f i = ∏ i ∈ s, f i :=
haveI h' : (s.finite_toSet.subset h).toFinset ⊆ s := by
simpa [← Finset.coe_subset, Set.coe_toFinset]
finprod_eq_prod_of_mulSupport_toFinset_subset _ _ h'
@[to_additive]
theorem finprod_def (f : α → M) [Decidable (mulSupport f).Finite] :
∏ᶠ i : α, f i = if h : (mulSupport f).Finite then ∏ i ∈ h.toFinset, f i else 1 := by
split_ifs with h
· exact finprod_eq_prod_of_mulSupport_toFinset_subset _ h (Finset.Subset.refl _)
· rw [finprod, dif_neg]
rw [mulSupport_comp_eq_preimage]
exact mt (fun hf => hf.of_preimage Equiv.plift.surjective) h
@[to_additive]
theorem finprod_of_infinite_mulSupport {f : α → M} (hf : (mulSupport f).Infinite) :
∏ᶠ i, f i = 1 := by classical rw [finprod_def, dif_neg hf]
@[to_additive]
theorem finprod_eq_prod (f : α → M) (hf : (mulSupport f).Finite) :
∏ᶠ i : α, f i = ∏ i ∈ hf.toFinset, f i := by classical rw [finprod_def, dif_pos hf]
@[to_additive]
theorem finprod_eq_prod_of_fintype [Fintype α] (f : α → M) : ∏ᶠ i : α, f i = ∏ i, f i :=
finprod_eq_prod_of_mulSupport_toFinset_subset _ (Set.toFinite _) <| Finset.subset_univ _
@[to_additive]
theorem finprod_cond_eq_prod_of_cond_iff (f : α → M) {p : α → Prop} {t : Finset α}
(h : ∀ {x}, f x ≠ 1 → (p x ↔ x ∈ t)) : (∏ᶠ (i) (_ : p i), f i) = ∏ i ∈ t, f i := by
set s := { x | p x }
have : mulSupport (s.mulIndicator f) ⊆ t := by
rw [Set.mulSupport_mulIndicator]
intro x hx
exact (h hx.2).1 hx.1
erw [finprod_mem_def, finprod_eq_prod_of_mulSupport_subset _ this]
refine Finset.prod_congr rfl fun x hx => mulIndicator_apply_eq_self.2 fun hxs => ?_
contrapose! hxs
exact (h hxs).2 hx
@[to_additive]
theorem finprod_cond_ne (f : α → M) (a : α) [DecidableEq α] (hf : (mulSupport f).Finite) :
(∏ᶠ (i) (_ : i ≠ a), f i) = ∏ i ∈ hf.toFinset.erase a, f i := by
apply finprod_cond_eq_prod_of_cond_iff
intro x hx
rw [Finset.mem_erase, Finite.mem_toFinset, mem_mulSupport]
exact ⟨fun h => And.intro h hx, fun h => h.1⟩
@[to_additive]
theorem finprod_mem_eq_prod_of_inter_mulSupport_eq (f : α → M) {s : Set α} {t : Finset α}
(h : s ∩ mulSupport f = t.toSet ∩ mulSupport f) : ∏ᶠ i ∈ s, f i = ∏ i ∈ t, f i :=
finprod_cond_eq_prod_of_cond_iff _ <| by
intro x hxf
rw [← mem_mulSupport] at hxf
refine ⟨fun hx => ?_, fun hx => ?_⟩
· refine ((mem_inter_iff x t (mulSupport f)).mp ?_).1
rw [← Set.ext_iff.mp h x, mem_inter_iff]
exact ⟨hx, hxf⟩
· refine ((mem_inter_iff x s (mulSupport f)).mp ?_).1
rw [Set.ext_iff.mp h x, mem_inter_iff]
exact ⟨hx, hxf⟩
@[to_additive]
theorem finprod_mem_eq_prod_of_subset (f : α → M) {s : Set α} {t : Finset α}
(h₁ : s ∩ mulSupport f ⊆ t) (h₂ : ↑t ⊆ s) : ∏ᶠ i ∈ s, f i = ∏ i ∈ t, f i :=
finprod_cond_eq_prod_of_cond_iff _ fun hx => ⟨fun h => h₁ ⟨h, hx⟩, fun h => h₂ h⟩
@[to_additive]
theorem finprod_mem_eq_prod (f : α → M) {s : Set α} (hf : (s ∩ mulSupport f).Finite) :
∏ᶠ i ∈ s, f i = ∏ i ∈ hf.toFinset, f i :=
finprod_mem_eq_prod_of_inter_mulSupport_eq _ <| by simp [inter_assoc]
@[to_additive]
theorem finprod_mem_eq_prod_filter (f : α → M) (s : Set α) [DecidablePred (· ∈ s)]
(hf : (mulSupport f).Finite) :
∏ᶠ i ∈ s, f i = ∏ i ∈ Finset.filter (· ∈ s) hf.toFinset, f i :=
finprod_mem_eq_prod_of_inter_mulSupport_eq _ <| by
ext x
simp [and_comm]
@[to_additive]
theorem finprod_mem_eq_toFinset_prod (f : α → M) (s : Set α) [Fintype s] :
∏ᶠ i ∈ s, f i = ∏ i ∈ s.toFinset, f i :=
finprod_mem_eq_prod_of_inter_mulSupport_eq _ <| by simp_rw [coe_toFinset s]
@[to_additive]
theorem finprod_mem_eq_finite_toFinset_prod (f : α → M) {s : Set α} (hs : s.Finite) :
∏ᶠ i ∈ s, f i = ∏ i ∈ hs.toFinset, f i :=
finprod_mem_eq_prod_of_inter_mulSupport_eq _ <| by rw [hs.coe_toFinset]
@[to_additive]
theorem finprod_mem_finset_eq_prod (f : α → M) (s : Finset α) : ∏ᶠ i ∈ s, f i = ∏ i ∈ s, f i :=
finprod_mem_eq_prod_of_inter_mulSupport_eq _ rfl
@[to_additive]
theorem finprod_mem_coe_finset (f : α → M) (s : Finset α) :
(∏ᶠ i ∈ (s : Set α), f i) = ∏ i ∈ s, f i :=
finprod_mem_eq_prod_of_inter_mulSupport_eq _ rfl
@[to_additive]
theorem finprod_mem_eq_one_of_infinite {f : α → M} {s : Set α} (hs : (s ∩ mulSupport f).Infinite) :
∏ᶠ i ∈ s, f i = 1 := by
rw [finprod_mem_def]
apply finprod_of_infinite_mulSupport
rwa [← mulSupport_mulIndicator] at hs
@[to_additive]
theorem finprod_mem_eq_one_of_forall_eq_one {f : α → M} {s : Set α} (h : ∀ x ∈ s, f x = 1) :
∏ᶠ i ∈ s, f i = 1 := by simp (config := { contextual := true }) [h]
@[to_additive]
theorem finprod_mem_inter_mulSupport (f : α → M) (s : Set α) :
∏ᶠ i ∈ s ∩ mulSupport f, f i = ∏ᶠ i ∈ s, f i := by
rw [finprod_mem_def, finprod_mem_def, mulIndicator_inter_mulSupport]
@[to_additive]
theorem finprod_mem_inter_mulSupport_eq (f : α → M) (s t : Set α)
(h : s ∩ mulSupport f = t ∩ mulSupport f) : ∏ᶠ i ∈ s, f i = ∏ᶠ i ∈ t, f i := by
rw [← finprod_mem_inter_mulSupport, h, finprod_mem_inter_mulSupport]
@[to_additive]
theorem finprod_mem_inter_mulSupport_eq' (f : α → M) (s t : Set α)
(h : ∀ x ∈ mulSupport f, x ∈ s ↔ x ∈ t) : ∏ᶠ i ∈ s, f i = ∏ᶠ i ∈ t, f i := by
apply finprod_mem_inter_mulSupport_eq
ext x
exact and_congr_left (h x)
@[to_additive]
theorem finprod_mem_univ (f : α → M) : ∏ᶠ i ∈ @Set.univ α, f i = ∏ᶠ i : α, f i :=
finprod_congr fun _ => finprod_true _
variable {f g : α → M} {a b : α} {s t : Set α}
@[to_additive]
theorem finprod_mem_congr (h₀ : s = t) (h₁ : ∀ x ∈ t, f x = g x) :
∏ᶠ i ∈ s, f i = ∏ᶠ i ∈ t, g i :=
h₀.symm ▸ finprod_congr fun i => finprod_congr_Prop rfl (h₁ i)
@[to_additive]
theorem finprod_eq_one_of_forall_eq_one {f : α → M} (h : ∀ x, f x = 1) : ∏ᶠ i, f i = 1 := by
simp (config := { contextual := true }) [h]
@[to_additive finsum_pos']
theorem one_lt_finprod' {M : Type*} [OrderedCancelCommMonoid M] {f : ι → M}
(h : ∀ i, 1 ≤ f i) (h' : ∃ i, 1 < f i) (hf : (mulSupport f).Finite) : 1 < ∏ᶠ i, f i := by
rcases h' with ⟨i, hi⟩
rw [finprod_eq_prod _ hf]
refine Finset.one_lt_prod' (fun i _ ↦ h i) ⟨i, ?_, hi⟩
simpa only [Finite.mem_toFinset, mem_mulSupport] using ne_of_gt hi
/-!
### Distributivity w.r.t. addition, subtraction, and (scalar) multiplication
-/
/-- If the multiplicative supports of `f` and `g` are finite, then the product of `f i * g i` equals
the product of `f i` multiplied by the product of `g i`. -/
@[to_additive
"If the additive supports of `f` and `g` are finite, then the sum of `f i + g i`
equals the sum of `f i` plus the sum of `g i`."]
theorem finprod_mul_distrib (hf : (mulSupport f).Finite) (hg : (mulSupport g).Finite) :
∏ᶠ i, f i * g i = (∏ᶠ i, f i) * ∏ᶠ i, g i := by
classical
rw [finprod_eq_prod_of_mulSupport_toFinset_subset f hf Finset.subset_union_left,
finprod_eq_prod_of_mulSupport_toFinset_subset g hg Finset.subset_union_right, ←
Finset.prod_mul_distrib]
refine finprod_eq_prod_of_mulSupport_subset _ ?_
simp only [Finset.coe_union, Finite.coe_toFinset, mulSupport_subset_iff,
mem_union, mem_mulSupport]
intro x
contrapose!
rintro ⟨hf, hg⟩
simp [hf, hg]
/-- If the multiplicative supports of `f` and `g` are finite, then the product of `f i / g i`
equals the product of `f i` divided by the product of `g i`. -/
@[to_additive
"If the additive supports of `f` and `g` are finite, then the sum of `f i - g i`
equals the sum of `f i` minus the sum of `g i`."]
theorem finprod_div_distrib [DivisionCommMonoid G] {f g : α → G} (hf : (mulSupport f).Finite)
(hg : (mulSupport g).Finite) : ∏ᶠ i, f i / g i = (∏ᶠ i, f i) / ∏ᶠ i, g i := by
simp only [div_eq_mul_inv, finprod_mul_distrib hf ((mulSupport_inv g).symm.rec hg),
finprod_inv_distrib]
/-- A more general version of `finprod_mem_mul_distrib` that only requires `s ∩ mulSupport f` and
`s ∩ mulSupport g` rather than `s` to be finite. -/
@[to_additive
"A more general version of `finsum_mem_add_distrib` that only requires `s ∩ support f`
and `s ∩ support g` rather than `s` to be finite."]
theorem finprod_mem_mul_distrib' (hf : (s ∩ mulSupport f).Finite) (hg : (s ∩ mulSupport g).Finite) :
∏ᶠ i ∈ s, f i * g i = (∏ᶠ i ∈ s, f i) * ∏ᶠ i ∈ s, g i := by
rw [← mulSupport_mulIndicator] at hf hg
simp only [finprod_mem_def, mulIndicator_mul, finprod_mul_distrib hf hg]
/-- The product of the constant function `1` over any set equals `1`. -/
@[to_additive "The sum of the constant function `0` over any set equals `0`."]
theorem finprod_mem_one (s : Set α) : (∏ᶠ i ∈ s, (1 : M)) = 1 := by simp
/-- If a function `f` equals `1` on a set `s`, then the product of `f i` over `i ∈ s` equals `1`. -/
@[to_additive
"If a function `f` equals `0` on a set `s`, then the product of `f i` over `i ∈ s`
equals `0`."]
theorem finprod_mem_of_eqOn_one (hf : s.EqOn f 1) : ∏ᶠ i ∈ s, f i = 1 := by
rw [← finprod_mem_one s]
exact finprod_mem_congr rfl hf
/-- If the product of `f i` over `i ∈ s` is not equal to `1`, then there is some `x ∈ s` such that
`f x ≠ 1`. -/
@[to_additive
"If the product of `f i` over `i ∈ s` is not equal to `0`, then there is some `x ∈ s`
such that `f x ≠ 0`."]
theorem exists_ne_one_of_finprod_mem_ne_one (h : ∏ᶠ i ∈ s, f i ≠ 1) : ∃ x ∈ s, f x ≠ 1 := by
by_contra! h'
exact h (finprod_mem_of_eqOn_one h')
/-- Given a finite set `s`, the product of `f i * g i` over `i ∈ s` equals the product of `f i`
over `i ∈ s` times the product of `g i` over `i ∈ s`. -/
@[to_additive
"Given a finite set `s`, the sum of `f i + g i` over `i ∈ s` equals the sum of `f i`
over `i ∈ s` plus the sum of `g i` over `i ∈ s`."]
theorem finprod_mem_mul_distrib (hs : s.Finite) :
∏ᶠ i ∈ s, f i * g i = (∏ᶠ i ∈ s, f i) * ∏ᶠ i ∈ s, g i :=
finprod_mem_mul_distrib' (hs.inter_of_left _) (hs.inter_of_left _)
@[to_additive]
theorem MonoidHom.map_finprod {f : α → M} (g : M →* N) (hf : (mulSupport f).Finite) :
g (∏ᶠ i, f i) = ∏ᶠ i, g (f i) :=
g.map_finprod_plift f <| hf.preimage Equiv.plift.injective.injOn
@[to_additive]
theorem finprod_pow (hf : (mulSupport f).Finite) (n : ℕ) : (∏ᶠ i, f i) ^ n = ∏ᶠ i, f i ^ n :=
(powMonoidHom n).map_finprod hf
/-- See also `finsum_smul` for a version that works even when the support of `f` is not finite,
but with slightly stronger typeclass requirements. -/
theorem finsum_smul' {R M : Type*} [Semiring R] [AddCommMonoid M] [Module R M] {f : ι → R}
(hf : (support f).Finite) (x : M) : (∑ᶠ i, f i) • x = ∑ᶠ i, f i • x :=
((smulAddHom R M).flip x).map_finsum hf
/-- See also `smul_finsum` for a version that works even when the support of `f` is not finite,
but with slightly stronger typeclass requirements. -/
theorem smul_finsum' {R M : Type*} [Semiring R] [AddCommMonoid M] [Module R M] (c : R) {f : ι → M}
(hf : (support f).Finite) : (c • ∑ᶠ i, f i) = ∑ᶠ i, c • f i :=
(smulAddHom R M c).map_finsum hf
/-- A more general version of `MonoidHom.map_finprod_mem` that requires `s ∩ mulSupport f` rather
than `s` to be finite. -/
@[to_additive
"A more general version of `AddMonoidHom.map_finsum_mem` that requires
`s ∩ support f` rather than `s` to be finite."]
theorem MonoidHom.map_finprod_mem' {f : α → M} (g : M →* N) (h₀ : (s ∩ mulSupport f).Finite) :
g (∏ᶠ j ∈ s, f j) = ∏ᶠ i ∈ s, g (f i) := by
rw [g.map_finprod]
· simp only [g.map_finprod_Prop]
· simpa only [finprod_eq_mulIndicator_apply, mulSupport_mulIndicator]
/-- Given a monoid homomorphism `g : M →* N` and a function `f : α → M`, the value of `g` at the
product of `f i` over `i ∈ s` equals the product of `g (f i)` over `s`. -/
@[to_additive
"Given an additive monoid homomorphism `g : M →* N` and a function `f : α → M`, the
value of `g` at the sum of `f i` over `i ∈ s` equals the sum of `g (f i)` over `s`."]
theorem MonoidHom.map_finprod_mem (f : α → M) (g : M →* N) (hs : s.Finite) :
g (∏ᶠ j ∈ s, f j) = ∏ᶠ i ∈ s, g (f i) :=
g.map_finprod_mem' (hs.inter_of_left _)
@[to_additive]
theorem MulEquiv.map_finprod_mem (g : M ≃* N) (f : α → M) {s : Set α} (hs : s.Finite) :
g (∏ᶠ i ∈ s, f i) = ∏ᶠ i ∈ s, g (f i) :=
g.toMonoidHom.map_finprod_mem f hs
@[to_additive]
theorem finprod_mem_inv_distrib [DivisionCommMonoid G] (f : α → G) (hs : s.Finite) :
(∏ᶠ x ∈ s, (f x)⁻¹) = (∏ᶠ x ∈ s, f x)⁻¹ :=
((MulEquiv.inv G).map_finprod_mem f hs).symm
/-- Given a finite set `s`, the product of `f i / g i` over `i ∈ s` equals the product of `f i`
over `i ∈ s` divided by the product of `g i` over `i ∈ s`. -/
@[to_additive
"Given a finite set `s`, the sum of `f i / g i` over `i ∈ s` equals the sum of `f i`
over `i ∈ s` minus the sum of `g i` over `i ∈ s`."]
theorem finprod_mem_div_distrib [DivisionCommMonoid G] (f g : α → G) (hs : s.Finite) :
∏ᶠ i ∈ s, f i / g i = (∏ᶠ i ∈ s, f i) / ∏ᶠ i ∈ s, g i := by
simp only [div_eq_mul_inv, finprod_mem_mul_distrib hs, finprod_mem_inv_distrib g hs]
/-!
### `∏ᶠ x ∈ s, f x` and set operations
-/
/-- The product of any function over an empty set is `1`. -/
@[to_additive "The sum of any function over an empty set is `0`."]
theorem finprod_mem_empty : (∏ᶠ i ∈ (∅ : Set α), f i) = 1 := by simp
/-- A set `s` is nonempty if the product of some function over `s` is not equal to `1`. -/
@[to_additive "A set `s` is nonempty if the sum of some function over `s` is not equal to `0`."]
theorem nonempty_of_finprod_mem_ne_one (h : ∏ᶠ i ∈ s, f i ≠ 1) : s.Nonempty :=
nonempty_iff_ne_empty.2 fun h' => h <| h'.symm ▸ finprod_mem_empty
/-- Given finite sets `s` and `t`, the product of `f i` over `i ∈ s ∪ t` times the product of
`f i` over `i ∈ s ∩ t` equals the product of `f i` over `i ∈ s` times the product of `f i`
over `i ∈ t`. -/
@[to_additive
"Given finite sets `s` and `t`, the sum of `f i` over `i ∈ s ∪ t` plus the sum of
`f i` over `i ∈ s ∩ t` equals the sum of `f i` over `i ∈ s` plus the sum of `f i`
over `i ∈ t`."]
theorem finprod_mem_union_inter (hs : s.Finite) (ht : t.Finite) :
((∏ᶠ i ∈ s ∪ t, f i) * ∏ᶠ i ∈ s ∩ t, f i) = (∏ᶠ i ∈ s, f i) * ∏ᶠ i ∈ t, f i := by
lift s to Finset α using hs; lift t to Finset α using ht
classical
rw [← Finset.coe_union, ← Finset.coe_inter]
simp only [finprod_mem_coe_finset, Finset.prod_union_inter]
/-- A more general version of `finprod_mem_union_inter` that requires `s ∩ mulSupport f` and
`t ∩ mulSupport f` rather than `s` and `t` to be finite. -/
@[to_additive
"A more general version of `finsum_mem_union_inter` that requires `s ∩ support f` and
`t ∩ support f` rather than `s` and `t` to be finite."]
theorem finprod_mem_union_inter' (hs : (s ∩ mulSupport f).Finite) (ht : (t ∩ mulSupport f).Finite) :
((∏ᶠ i ∈ s ∪ t, f i) * ∏ᶠ i ∈ s ∩ t, f i) = (∏ᶠ i ∈ s, f i) * ∏ᶠ i ∈ t, f i := by
rw [← finprod_mem_inter_mulSupport f s, ← finprod_mem_inter_mulSupport f t, ←
finprod_mem_union_inter hs ht, ← union_inter_distrib_right, finprod_mem_inter_mulSupport, ←
finprod_mem_inter_mulSupport f (s ∩ t)]
congr 2
rw [inter_left_comm, inter_assoc, inter_assoc, inter_self, inter_left_comm]
/-- A more general version of `finprod_mem_union` that requires `s ∩ mulSupport f` and
`t ∩ mulSupport f` rather than `s` and `t` to be finite. -/
@[to_additive
"A more general version of `finsum_mem_union` that requires `s ∩ support f` and
`t ∩ support f` rather than `s` and `t` to be finite."]
theorem finprod_mem_union' (hst : Disjoint s t) (hs : (s ∩ mulSupport f).Finite)
(ht : (t ∩ mulSupport f).Finite) : ∏ᶠ i ∈ s ∪ t, f i = (∏ᶠ i ∈ s, f i) * ∏ᶠ i ∈ t, f i := by
rw [← finprod_mem_union_inter' hs ht, disjoint_iff_inter_eq_empty.1 hst, finprod_mem_empty,
mul_one]
/-- Given two finite disjoint sets `s` and `t`, the product of `f i` over `i ∈ s ∪ t` equals the
product of `f i` over `i ∈ s` times the product of `f i` over `i ∈ t`. -/
@[to_additive
"Given two finite disjoint sets `s` and `t`, the sum of `f i` over `i ∈ s ∪ t` equals
the sum of `f i` over `i ∈ s` plus the sum of `f i` over `i ∈ t`."]
theorem finprod_mem_union (hst : Disjoint s t) (hs : s.Finite) (ht : t.Finite) :
∏ᶠ i ∈ s ∪ t, f i = (∏ᶠ i ∈ s, f i) * ∏ᶠ i ∈ t, f i :=
finprod_mem_union' hst (hs.inter_of_left _) (ht.inter_of_left _)
/-- A more general version of `finprod_mem_union'` that requires `s ∩ mulSupport f` and
`t ∩ mulSupport f` rather than `s` and `t` to be disjoint -/
@[to_additive
"A more general version of `finsum_mem_union'` that requires `s ∩ support f` and
`t ∩ support f` rather than `s` and `t` to be disjoint"]
theorem finprod_mem_union'' (hst : Disjoint (s ∩ mulSupport f) (t ∩ mulSupport f))
(hs : (s ∩ mulSupport f).Finite) (ht : (t ∩ mulSupport f).Finite) :
∏ᶠ i ∈ s ∪ t, f i = (∏ᶠ i ∈ s, f i) * ∏ᶠ i ∈ t, f i := by
rw [← finprod_mem_inter_mulSupport f s, ← finprod_mem_inter_mulSupport f t, ←
finprod_mem_union hst hs ht, ← union_inter_distrib_right, finprod_mem_inter_mulSupport]
/-- The product of `f i` over `i ∈ {a}` equals `f a`. -/
@[to_additive "The sum of `f i` over `i ∈ {a}` equals `f a`."]
theorem finprod_mem_singleton : (∏ᶠ i ∈ ({a} : Set α), f i) = f a := by
rw [← Finset.coe_singleton, finprod_mem_coe_finset, Finset.prod_singleton]
@[to_additive (attr := simp)]
theorem finprod_cond_eq_left : (∏ᶠ (i) (_ : i = a), f i) = f a :=
finprod_mem_singleton
@[to_additive (attr := simp)]
theorem finprod_cond_eq_right : (∏ᶠ (i) (_ : a = i), f i) = f a := by simp [@eq_comm _ a]
/-- A more general version of `finprod_mem_insert` that requires `s ∩ mulSupport f` rather than `s`
to be finite. -/
@[to_additive
"A more general version of `finsum_mem_insert` that requires `s ∩ support f` rather
than `s` to be finite."]
theorem finprod_mem_insert' (f : α → M) (h : a ∉ s) (hs : (s ∩ mulSupport f).Finite) :
∏ᶠ i ∈ insert a s, f i = f a * ∏ᶠ i ∈ s, f i := by
rw [insert_eq, finprod_mem_union' _ _ hs, finprod_mem_singleton]
· rwa [disjoint_singleton_left]
· exact (finite_singleton a).inter_of_left _
/-- Given a finite set `s` and an element `a ∉ s`, the product of `f i` over `i ∈ insert a s` equals
`f a` times the product of `f i` over `i ∈ s`. -/
@[to_additive
"Given a finite set `s` and an element `a ∉ s`, the sum of `f i` over `i ∈ insert a s`
equals `f a` plus the sum of `f i` over `i ∈ s`."]
theorem finprod_mem_insert (f : α → M) (h : a ∉ s) (hs : s.Finite) :
∏ᶠ i ∈ insert a s, f i = f a * ∏ᶠ i ∈ s, f i :=
finprod_mem_insert' f h <| hs.inter_of_left _
/-- If `f a = 1` when `a ∉ s`, then the product of `f i` over `i ∈ insert a s` equals the product of
`f i` over `i ∈ s`. -/
@[to_additive
"If `f a = 0` when `a ∉ s`, then the sum of `f i` over `i ∈ insert a s` equals the sum
of `f i` over `i ∈ s`."]
theorem finprod_mem_insert_of_eq_one_if_not_mem (h : a ∉ s → f a = 1) :
∏ᶠ i ∈ insert a s, f i = ∏ᶠ i ∈ s, f i := by
refine finprod_mem_inter_mulSupport_eq' _ _ _ fun x hx => ⟨?_, Or.inr⟩
rintro (rfl | hxs)
exacts [not_imp_comm.1 h hx, hxs]
/-- If `f a = 1`, then the product of `f i` over `i ∈ insert a s` equals the product of `f i` over
`i ∈ s`. -/
@[to_additive
"If `f a = 0`, then the sum of `f i` over `i ∈ insert a s` equals the sum of `f i`
over `i ∈ s`."]
theorem finprod_mem_insert_one (h : f a = 1) : ∏ᶠ i ∈ insert a s, f i = ∏ᶠ i ∈ s, f i :=
finprod_mem_insert_of_eq_one_if_not_mem fun _ => h
/-- If the multiplicative support of `f` is finite, then for every `x` in the domain of `f`, `f x`
divides `finprod f`. -/
theorem finprod_mem_dvd {f : α → N} (a : α) (hf : (mulSupport f).Finite) : f a ∣ finprod f := by
by_cases ha : a ∈ mulSupport f
· rw [finprod_eq_prod_of_mulSupport_toFinset_subset f hf (Set.Subset.refl _)]
exact Finset.dvd_prod_of_mem f ((Finite.mem_toFinset hf).mpr ha)
· rw [nmem_mulSupport.mp ha]
exact one_dvd (finprod f)
/-- The product of `f i` over `i ∈ {a, b}`, `a ≠ b`, is equal to `f a * f b`. -/
@[to_additive "The sum of `f i` over `i ∈ {a, b}`, `a ≠ b`, is equal to `f a + f b`."]
theorem finprod_mem_pair (h : a ≠ b) : (∏ᶠ i ∈ ({a, b} : Set α), f i) = f a * f b := by
rw [finprod_mem_insert, finprod_mem_singleton]
exacts [h, finite_singleton b]
/-- The product of `f y` over `y ∈ g '' s` equals the product of `f (g i)` over `s`
provided that `g` is injective on `s ∩ mulSupport (f ∘ g)`. -/
@[to_additive
"The sum of `f y` over `y ∈ g '' s` equals the sum of `f (g i)` over `s` provided that
`g` is injective on `s ∩ support (f ∘ g)`."]
theorem finprod_mem_image' {s : Set β} {g : β → α} (hg : (s ∩ mulSupport (f ∘ g)).InjOn g) :
∏ᶠ i ∈ g '' s, f i = ∏ᶠ j ∈ s, f (g j) := by
classical
by_cases hs : (s ∩ mulSupport (f ∘ g)).Finite
· have hg : ∀ x ∈ hs.toFinset, ∀ y ∈ hs.toFinset, g x = g y → x = y := by
simpa only [hs.mem_toFinset]
have := finprod_mem_eq_prod (comp f g) hs
unfold Function.comp at this
rw [this, ← Finset.prod_image hg]
refine finprod_mem_eq_prod_of_inter_mulSupport_eq f ?_
rw [Finset.coe_image, hs.coe_toFinset, ← image_inter_mulSupport_eq, inter_assoc, inter_self]
· unfold Function.comp at hs
rw [finprod_mem_eq_one_of_infinite hs, finprod_mem_eq_one_of_infinite]
rwa [image_inter_mulSupport_eq, infinite_image_iff hg]
/-- The product of `f y` over `y ∈ g '' s` equals the product of `f (g i)` over `s` provided that
`g` is injective on `s`. -/
@[to_additive
"The sum of `f y` over `y ∈ g '' s` equals the sum of `f (g i)` over `s` provided that
`g` is injective on `s`."]
theorem finprod_mem_image {s : Set β} {g : β → α} (hg : s.InjOn g) :
∏ᶠ i ∈ g '' s, f i = ∏ᶠ j ∈ s, f (g j) :=
finprod_mem_image' <| hg.mono inter_subset_left
/-- The product of `f y` over `y ∈ Set.range g` equals the product of `f (g i)` over all `i`
provided that `g` is injective on `mulSupport (f ∘ g)`. -/
@[to_additive
"The sum of `f y` over `y ∈ Set.range g` equals the sum of `f (g i)` over all `i`
provided that `g` is injective on `support (f ∘ g)`."]
theorem finprod_mem_range' {g : β → α} (hg : (mulSupport (f ∘ g)).InjOn g) :
∏ᶠ i ∈ range g, f i = ∏ᶠ j, f (g j) := by
rw [← image_univ, finprod_mem_image', finprod_mem_univ]
rwa [univ_inter]
/-- The product of `f y` over `y ∈ Set.range g` equals the product of `f (g i)` over all `i`
provided that `g` is injective. -/
@[to_additive
"The sum of `f y` over `y ∈ Set.range g` equals the sum of `f (g i)` over all `i`
provided that `g` is injective."]
theorem finprod_mem_range {g : β → α} (hg : Injective g) : ∏ᶠ i ∈ range g, f i = ∏ᶠ j, f (g j) :=
finprod_mem_range' hg.injOn
/-- See also `Finset.prod_bij`. -/
@[to_additive "See also `Finset.sum_bij`."]
theorem finprod_mem_eq_of_bijOn {s : Set α} {t : Set β} {f : α → M} {g : β → M} (e : α → β)
(he₀ : s.BijOn e t) (he₁ : ∀ x ∈ s, f x = g (e x)) : ∏ᶠ i ∈ s, f i = ∏ᶠ j ∈ t, g j := by
rw [← Set.BijOn.image_eq he₀, finprod_mem_image he₀.2.1]
exact finprod_mem_congr rfl he₁
/-- See `finprod_comp`, `Fintype.prod_bijective` and `Finset.prod_bij`. -/
@[to_additive "See `finsum_comp`, `Fintype.sum_bijective` and `Finset.sum_bij`."]
theorem finprod_eq_of_bijective {f : α → M} {g : β → M} (e : α → β) (he₀ : Bijective e)
(he₁ : ∀ x, f x = g (e x)) : ∏ᶠ i, f i = ∏ᶠ j, g j := by
rw [← finprod_mem_univ f, ← finprod_mem_univ g]
exact finprod_mem_eq_of_bijOn _ (bijective_iff_bijOn_univ.mp he₀) fun x _ => he₁ x
/-- See also `finprod_eq_of_bijective`, `Fintype.prod_bijective` and `Finset.prod_bij`. -/
@[to_additive "See also `finsum_eq_of_bijective`, `Fintype.sum_bijective` and `Finset.sum_bij`."]
theorem finprod_comp {g : β → M} (e : α → β) (he₀ : Function.Bijective e) :
(∏ᶠ i, g (e i)) = ∏ᶠ j, g j :=
finprod_eq_of_bijective e he₀ fun _ => rfl
@[to_additive]
theorem finprod_comp_equiv (e : α ≃ β) {f : β → M} : (∏ᶠ i, f (e i)) = ∏ᶠ i', f i' :=
finprod_comp e e.bijective
@[to_additive]
theorem finprod_set_coe_eq_finprod_mem (s : Set α) : ∏ᶠ j : s, f j = ∏ᶠ i ∈ s, f i := by
rw [← finprod_mem_range, Subtype.range_coe]
exact Subtype.coe_injective
@[to_additive]
theorem finprod_subtype_eq_finprod_cond (p : α → Prop) :
∏ᶠ j : Subtype p, f j = ∏ᶠ (i) (_ : p i), f i :=
finprod_set_coe_eq_finprod_mem { i | p i }
@[to_additive]
theorem finprod_mem_inter_mul_diff' (t : Set α) (h : (s ∩ mulSupport f).Finite) :
((∏ᶠ i ∈ s ∩ t, f i) * ∏ᶠ i ∈ s \ t, f i) = ∏ᶠ i ∈ s, f i := by
rw [← finprod_mem_union', inter_union_diff]
· rw [disjoint_iff_inf_le]
exact fun x hx => hx.2.2 hx.1.2
exacts [h.subset fun x hx => ⟨hx.1.1, hx.2⟩, h.subset fun x hx => ⟨hx.1.1, hx.2⟩]
@[to_additive]
theorem finprod_mem_inter_mul_diff (t : Set α) (h : s.Finite) :
((∏ᶠ i ∈ s ∩ t, f i) * ∏ᶠ i ∈ s \ t, f i) = ∏ᶠ i ∈ s, f i :=
finprod_mem_inter_mul_diff' _ <| h.inter_of_left _
/-- A more general version of `finprod_mem_mul_diff` that requires `t ∩ mulSupport f` rather than
`t` to be finite. -/
@[to_additive
"A more general version of `finsum_mem_add_diff` that requires `t ∩ support f` rather
than `t` to be finite."]
theorem finprod_mem_mul_diff' (hst : s ⊆ t) (ht : (t ∩ mulSupport f).Finite) :
((∏ᶠ i ∈ s, f i) * ∏ᶠ i ∈ t \ s, f i) = ∏ᶠ i ∈ t, f i := by
rw [← finprod_mem_inter_mul_diff' _ ht, inter_eq_self_of_subset_right hst]
/-- Given a finite set `t` and a subset `s` of `t`, the product of `f i` over `i ∈ s`
times the product of `f i` over `t \ s` equals the product of `f i` over `i ∈ t`. -/
@[to_additive
"Given a finite set `t` and a subset `s` of `t`, the sum of `f i` over `i ∈ s` plus
the sum of `f i` over `t \\ s` equals the sum of `f i` over `i ∈ t`."]
theorem finprod_mem_mul_diff (hst : s ⊆ t) (ht : t.Finite) :
((∏ᶠ i ∈ s, f i) * ∏ᶠ i ∈ t \ s, f i) = ∏ᶠ i ∈ t, f i :=
finprod_mem_mul_diff' hst (ht.inter_of_left _)
/-- Given a family of pairwise disjoint finite sets `t i` indexed by a finite type, the product of
`f a` over the union `⋃ i, t i` is equal to the product over all indexes `i` of the products of
`f a` over `a ∈ t i`. -/
@[to_additive
"Given a family of pairwise disjoint finite sets `t i` indexed by a finite type, the
sum of `f a` over the union `⋃ i, t i` is equal to the sum over all indexes `i` of the
sums of `f a` over `a ∈ t i`."]
theorem finprod_mem_iUnion [Finite ι] {t : ι → Set α} (h : Pairwise (Disjoint on t))
(ht : ∀ i, (t i).Finite) : ∏ᶠ a ∈ ⋃ i : ι, t i, f a = ∏ᶠ i, ∏ᶠ a ∈ t i, f a := by
cases nonempty_fintype ι
lift t to ι → Finset α using ht
classical
rw [← biUnion_univ, ← Finset.coe_univ, ← Finset.coe_biUnion, finprod_mem_coe_finset,
Finset.prod_biUnion]
· simp only [finprod_mem_coe_finset, finprod_eq_prod_of_fintype]
· exact fun x _ y _ hxy => Finset.disjoint_coe.1 (h hxy)
/-- Given a family of sets `t : ι → Set α`, a finite set `I` in the index type such that all sets
`t i`, `i ∈ I`, are finite, if all `t i`, `i ∈ I`, are pairwise disjoint, then the product of `f a`
over `a ∈ ⋃ i ∈ I, t i` is equal to the product over `i ∈ I` of the products of `f a` over
`a ∈ t i`. -/
@[to_additive
"Given a family of sets `t : ι → Set α`, a finite set `I` in the index type such that
all sets `t i`, `i ∈ I`, are finite, if all `t i`, `i ∈ I`, are pairwise disjoint, then the
sum of `f a` over `a ∈ ⋃ i ∈ I, t i` is equal to the sum over `i ∈ I` of the sums of `f a`
over `a ∈ t i`."]
theorem finprod_mem_biUnion {I : Set ι} {t : ι → Set α} (h : I.PairwiseDisjoint t) (hI : I.Finite)
(ht : ∀ i ∈ I, (t i).Finite) : ∏ᶠ a ∈ ⋃ x ∈ I, t x, f a = ∏ᶠ i ∈ I, ∏ᶠ j ∈ t i, f j := by
haveI := hI.fintype
rw [biUnion_eq_iUnion, finprod_mem_iUnion, ← finprod_set_coe_eq_finprod_mem]
exacts [fun x y hxy => h x.2 y.2 (Subtype.coe_injective.ne hxy), fun b => ht b b.2]
/-- If `t` is a finite set of pairwise disjoint finite sets, then the product of `f a`
over `a ∈ ⋃₀ t` is the product over `s ∈ t` of the products of `f a` over `a ∈ s`. -/
@[to_additive
"If `t` is a finite set of pairwise disjoint finite sets, then the sum of `f a` over
`a ∈ ⋃₀ t` is the sum over `s ∈ t` of the sums of `f a` over `a ∈ s`."]
theorem finprod_mem_sUnion {t : Set (Set α)} (h : t.PairwiseDisjoint id) (ht₀ : t.Finite)
(ht₁ : ∀ x ∈ t, Set.Finite x) : ∏ᶠ a ∈ ⋃₀ t, f a = ∏ᶠ s ∈ t, ∏ᶠ a ∈ s, f a := by
rw [Set.sUnion_eq_biUnion]
exact finprod_mem_biUnion h ht₀ ht₁
@[to_additive]
theorem mul_finprod_cond_ne (a : α) (hf : (mulSupport f).Finite) :
(f a * ∏ᶠ (i) (_ : i ≠ a), f i) = ∏ᶠ i, f i := by
classical
rw [finprod_eq_prod _ hf]
have h : ∀ x : α, f x ≠ 1 → (x ≠ a ↔ x ∈ hf.toFinset \ {a}) := by
intro x hx
rw [Finset.mem_sdiff, Finset.mem_singleton, Finite.mem_toFinset, mem_mulSupport]
exact ⟨fun h => And.intro hx h, fun h => h.2⟩
rw [finprod_cond_eq_prod_of_cond_iff f (fun hx => h _ hx), Finset.sdiff_singleton_eq_erase]
by_cases ha : a ∈ mulSupport f
· apply Finset.mul_prod_erase _ _ ((Finite.mem_toFinset _).mpr ha)
· rw [mem_mulSupport, not_not] at ha
rw [ha, one_mul]
apply Finset.prod_erase _ ha
/-- If `s : Set α` and `t : Set β` are finite sets, then taking the product over `s` commutes with
taking the product over `t`. -/
@[to_additive
"If `s : Set α` and `t : Set β` are finite sets, then summing over `s` commutes with
summing over `t`."]
theorem finprod_mem_comm {s : Set α} {t : Set β} (f : α → β → M) (hs : s.Finite) (ht : t.Finite) :
(∏ᶠ i ∈ s, ∏ᶠ j ∈ t, f i j) = ∏ᶠ j ∈ t, ∏ᶠ i ∈ s, f i j := by
lift s to Finset α using hs; lift t to Finset β using ht
simp only [finprod_mem_coe_finset]
exact Finset.prod_comm
/-- To prove a property of a finite product, it suffices to prove that the property is
multiplicative and holds on factors. -/
@[to_additive
"To prove a property of a finite sum, it suffices to prove that the property is
additive and holds on summands."]
theorem finprod_mem_induction (p : M → Prop) (hp₀ : p 1) (hp₁ : ∀ x y, p x → p y → p (x * y))
(hp₂ : ∀ x ∈ s, p <| f x) : p (∏ᶠ i ∈ s, f i) :=
finprod_induction _ hp₀ hp₁ fun x => finprod_induction _ hp₀ hp₁ <| hp₂ x
theorem finprod_cond_nonneg {R : Type*} [OrderedCommSemiring R] {p : α → Prop} {f : α → R}
(hf : ∀ x, p x → 0 ≤ f x) : 0 ≤ ∏ᶠ (x) (_ : p x), f x :=
finprod_nonneg fun x => finprod_nonneg <| hf x
@[to_additive]
theorem single_le_finprod {M : Type*} [OrderedCommMonoid M] (i : α) {f : α → M}
(hf : (mulSupport f).Finite) (h : ∀ j, 1 ≤ f j) : f i ≤ ∏ᶠ j, f j := by
classical calc
f i ≤ ∏ j ∈ insert i hf.toFinset, f j :=
Finset.single_le_prod' (fun j _ => h j) (Finset.mem_insert_self _ _)
_ = ∏ᶠ j, f j :=
(finprod_eq_prod_of_mulSupport_toFinset_subset _ hf (Finset.subset_insert _ _)).symm
theorem finprod_eq_zero {M₀ : Type*} [CommMonoidWithZero M₀] (f : α → M₀) (x : α) (hx : f x = 0)
(hf : (mulSupport f).Finite) : ∏ᶠ x, f x = 0 := by
nontriviality
rw [finprod_eq_prod f hf]
refine Finset.prod_eq_zero (hf.mem_toFinset.2 ?_) hx
simp [hx]
@[to_additive]
theorem finprod_prod_comm (s : Finset β) (f : α → β → M)
(h : ∀ b ∈ s, (mulSupport fun a => f a b).Finite) :
(∏ᶠ a : α, ∏ b ∈ s, f a b) = ∏ b ∈ s, ∏ᶠ a : α, f a b := by
have hU :
(mulSupport fun a => ∏ b ∈ s, f a b) ⊆
(s.finite_toSet.biUnion fun b hb => h b (Finset.mem_coe.1 hb)).toFinset := by
rw [Finite.coe_toFinset]
intro x hx
simp only [exists_prop, mem_iUnion, Ne, mem_mulSupport, Finset.mem_coe]
contrapose! hx
rw [mem_mulSupport, not_not, Finset.prod_congr rfl hx, Finset.prod_const_one]
rw [finprod_eq_prod_of_mulSupport_subset _ hU, Finset.prod_comm]
refine Finset.prod_congr rfl fun b hb => (finprod_eq_prod_of_mulSupport_subset _ ?_).symm
intro a ha
simp only [Finite.coe_toFinset, mem_iUnion]
exact ⟨b, hb, ha⟩
@[to_additive]
theorem prod_finprod_comm (s : Finset α) (f : α → β → M) (h : ∀ a ∈ s, (mulSupport (f a)).Finite) :
(∏ a ∈ s, ∏ᶠ b : β, f a b) = ∏ᶠ b : β, ∏ a ∈ s, f a b :=
(finprod_prod_comm s (fun b a => f a b) h).symm
theorem mul_finsum {R : Type*} [Semiring R] (f : α → R) (r : R) (h : (support f).Finite) :
(r * ∑ᶠ a : α, f a) = ∑ᶠ a : α, r * f a :=
(AddMonoidHom.mulLeft r).map_finsum h
theorem finsum_mul {R : Type*} [Semiring R] (f : α → R) (r : R) (h : (support f).Finite) :
(∑ᶠ a : α, f a) * r = ∑ᶠ a : α, f a * r :=
(AddMonoidHom.mulRight r).map_finsum h
@[to_additive]
theorem Finset.mulSupport_of_fiberwise_prod_subset_image [DecidableEq β] (s : Finset α) (f : α → M)
(g : α → β) : (mulSupport fun b => (s.filter fun a => g a = b).prod f) ⊆ s.image g := by
simp only [Finset.coe_image, Set.mem_image, Finset.mem_coe, Function.support_subset_iff]
intro b h
suffices (s.filter fun a : α => g a = b).Nonempty by
simpa only [s.fiber_nonempty_iff_mem_image g b, Finset.mem_image, exists_prop]
exact Finset.nonempty_of_prod_ne_one h
/-- Note that `b ∈ (s.filter (fun ab => Prod.fst ab = a)).image Prod.snd` iff `(a, b) ∈ s` so
we can simplify the right hand side of this lemma. However the form stated here is more useful for
iterating this lemma, e.g., if we have `f : α × β × γ → M`. -/
@[to_additive
"Note that `b ∈ (s.filter (fun ab => Prod.fst ab = a)).image Prod.snd` iff `(a, b) ∈ s` so
we can simplify the right hand side of this lemma. However the form stated here is more
useful for iterating this lemma, e.g., if we have `f : α × β × γ → M`."]
theorem finprod_mem_finset_product' [DecidableEq α] [DecidableEq β] (s : Finset (α × β))
(f : α × β → M) :
(∏ᶠ (ab) (_ : ab ∈ s), f ab) =
∏ᶠ (a) (b) (_ : b ∈ (s.filter fun ab => Prod.fst ab = a).image Prod.snd), f (a, b) := by
have (a) :
∏ i ∈ (s.filter fun ab => Prod.fst ab = a).image Prod.snd, f (a, i) =
(s.filter (Prod.fst · = a)).prod f := by
refine Finset.prod_nbij' (fun b ↦ (a, b)) Prod.snd ?_ ?_ ?_ ?_ ?_ <;> aesop
rw [finprod_mem_finset_eq_prod]
simp_rw [finprod_mem_finset_eq_prod, this]
rw [finprod_eq_prod_of_mulSupport_subset _
(s.mulSupport_of_fiberwise_prod_subset_image f Prod.fst),
← Finset.prod_fiberwise_of_maps_to (t := Finset.image Prod.fst s) _ f]
-- `finish` could close the goal here
simp only [Finset.mem_image]
exact fun x hx => ⟨x, hx, rfl⟩
/-- See also `finprod_mem_finset_product'`. -/
@[to_additive "See also `finsum_mem_finset_product'`."]
theorem finprod_mem_finset_product (s : Finset (α × β)) (f : α × β → M) :
(∏ᶠ (ab) (_ : ab ∈ s), f ab) = ∏ᶠ (a) (b) (_ : (a, b) ∈ s), f (a, b) := by
classical
rw [finprod_mem_finset_product']
simp
@[to_additive]
theorem finprod_mem_finset_product₃ {γ : Type*} (s : Finset (α × β × γ)) (f : α × β × γ → M) :
(∏ᶠ (abc) (_ : abc ∈ s), f abc) = ∏ᶠ (a) (b) (c) (_ : (a, b, c) ∈ s), f (a, b, c) := by
classical
rw [finprod_mem_finset_product']
simp_rw [finprod_mem_finset_product']
simp
@[to_additive]
theorem finprod_curry (f : α × β → M) (hf : (mulSupport f).Finite) :
∏ᶠ ab, f ab = ∏ᶠ (a) (b), f (a, b) := by
have h₁ : ∀ a, ∏ᶠ _ : a ∈ hf.toFinset, f a = f a := by simp
have h₂ : ∏ᶠ a, f a = ∏ᶠ (a) (_ : a ∈ hf.toFinset), f a := by simp
simp_rw [h₂, finprod_mem_finset_product, h₁]
@[to_additive]
theorem finprod_curry₃ {γ : Type*} (f : α × β × γ → M) (h : (mulSupport f).Finite) :
∏ᶠ abc, f abc = ∏ᶠ (a) (b) (c), f (a, b, c) := by
rw [finprod_curry f h]
congr
ext a
rw [finprod_curry]
simp [h]
@[to_additive]
theorem finprod_dmem {s : Set α} [DecidablePred (· ∈ s)] (f : ∀ a : α, a ∈ s → M) :
(∏ᶠ (a : α) (h : a ∈ s), f a h) = ∏ᶠ (a : α) (_ : a ∈ s), if h' : a ∈ s then f a h' else 1 :=
finprod_congr fun _ => finprod_congr fun ha => (dif_pos ha).symm
@[to_additive]
theorem finprod_emb_domain' {f : α → β} (hf : Injective f) [DecidablePred (· ∈ Set.range f)]
(g : α → M) :
(∏ᶠ b : β, if h : b ∈ Set.range f then g (Classical.choose h) else 1) = ∏ᶠ a : α, g a := by
simp_rw [← finprod_eq_dif]
rw [finprod_dmem, finprod_mem_range hf, finprod_congr fun a => _]
intro a
rw [dif_pos (Set.mem_range_self a), hf (Classical.choose_spec (Set.mem_range_self a))]
@[to_additive]
theorem finprod_emb_domain (f : α ↪ β) [DecidablePred (· ∈ Set.range f)] (g : α → M) :
(∏ᶠ b : β, if h : b ∈ Set.range f then g (Classical.choose h) else 1) = ∏ᶠ a : α, g a :=
finprod_emb_domain' f.injective g
end type
|
Algebra\BigOperators\Finsupp.lean | /-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.BigOperators.Pi
import Mathlib.Algebra.BigOperators.Ring
import Mathlib.Algebra.BigOperators.Fin
import Mathlib.Algebra.Group.Submonoid.Membership
import Mathlib.Data.Finsupp.Fin
import Mathlib.Data.Finsupp.Indicator
/-!
# Big operators for finsupps
This file contains theorems relevant to big operators in finitely supported functions.
-/
noncomputable section
open Finset Function
variable {α ι γ A B C : Type*} [AddCommMonoid A] [AddCommMonoid B] [AddCommMonoid C]
variable {t : ι → A → C}
variable {s : Finset α} {f : α → ι →₀ A} (i : ι)
variable (g : ι →₀ A) (k : ι → A → γ → B) (x : γ)
variable {β M M' N P G H R S : Type*}
namespace Finsupp
/-!
### Declarations about `Finsupp.sum` and `Finsupp.prod`
In most of this section, the domain `β` is assumed to be an `AddMonoid`.
-/
section SumProd
/-- `prod f g` is the product of `g a (f a)` over the support of `f`. -/
@[to_additive "`sum f g` is the sum of `g a (f a)` over the support of `f`. "]
def prod [Zero M] [CommMonoid N] (f : α →₀ M) (g : α → M → N) : N :=
∏ a ∈ f.support, g a (f a)
variable [Zero M] [Zero M'] [CommMonoid N]
@[to_additive]
theorem prod_of_support_subset (f : α →₀ M) {s : Finset α} (hs : f.support ⊆ s) (g : α → M → N)
(h : ∀ i ∈ s, g i 0 = 1) : f.prod g = ∏ x ∈ s, g x (f x) := by
refine Finset.prod_subset hs fun x hxs hx => h x hxs ▸ (congr_arg (g x) ?_)
exact not_mem_support_iff.1 hx
@[to_additive]
theorem prod_fintype [Fintype α] (f : α →₀ M) (g : α → M → N) (h : ∀ i, g i 0 = 1) :
f.prod g = ∏ i, g i (f i) :=
f.prod_of_support_subset (subset_univ _) g fun x _ => h x
@[to_additive (attr := simp)]
theorem prod_single_index {a : α} {b : M} {h : α → M → N} (h_zero : h a 0 = 1) :
(single a b).prod h = h a b :=
calc
(single a b).prod h = ∏ x ∈ {a}, h x (single a b x) :=
prod_of_support_subset _ support_single_subset h fun x hx =>
(mem_singleton.1 hx).symm ▸ h_zero
_ = h a b := by simp
@[to_additive]
theorem prod_mapRange_index {f : M → M'} {hf : f 0 = 0} {g : α →₀ M} {h : α → M' → N}
(h0 : ∀ a, h a 0 = 1) : (mapRange f hf g).prod h = g.prod fun a b => h a (f b) :=
Finset.prod_subset support_mapRange fun _ _ H => by rw [not_mem_support_iff.1 H, h0]
@[to_additive (attr := simp)]
theorem prod_zero_index {h : α → M → N} : (0 : α →₀ M).prod h = 1 :=
rfl
@[to_additive]
theorem prod_comm (f : α →₀ M) (g : β →₀ M') (h : α → M → β → M' → N) :
(f.prod fun x v => g.prod fun x' v' => h x v x' v') =
g.prod fun x' v' => f.prod fun x v => h x v x' v' :=
Finset.prod_comm
@[to_additive (attr := simp)]
theorem prod_ite_eq [DecidableEq α] (f : α →₀ M) (a : α) (b : α → M → N) :
(f.prod fun x v => ite (a = x) (b x v) 1) = ite (a ∈ f.support) (b a (f a)) 1 := by
dsimp [Finsupp.prod]
rw [f.support.prod_ite_eq]
/- Porting note: simpnf linter, added aux lemma below
Left-hand side simplifies from
Finsupp.sum f fun x v => if a = x then v else 0
to
if ↑f a = 0 then 0 else ↑f a
-/
-- @[simp]
theorem sum_ite_self_eq [DecidableEq α] {N : Type*} [AddCommMonoid N] (f : α →₀ N) (a : α) :
(f.sum fun x v => ite (a = x) v 0) = f a := by
classical
convert f.sum_ite_eq a fun _ => id
simp [ite_eq_right_iff.2 Eq.symm]
-- Porting note: Added this thm to replace the simp in the previous one. Need to add [DecidableEq N]
@[simp]
theorem sum_ite_self_eq_aux [DecidableEq α] {N : Type*} [AddCommMonoid N] (f : α →₀ N) (a : α) :
(if a ∈ f.support then f a else 0) = f a := by
simp only [mem_support_iff, ne_eq, ite_eq_left_iff, not_not]
exact fun h ↦ h.symm
/-- A restatement of `prod_ite_eq` with the equality test reversed. -/
@[to_additive (attr := simp) "A restatement of `sum_ite_eq` with the equality test reversed."]
theorem prod_ite_eq' [DecidableEq α] (f : α →₀ M) (a : α) (b : α → M → N) :
(f.prod fun x v => ite (x = a) (b x v) 1) = ite (a ∈ f.support) (b a (f a)) 1 := by
dsimp [Finsupp.prod]
rw [f.support.prod_ite_eq']
-- Porting note (#10618): simp can prove this
-- @[simp]
theorem sum_ite_self_eq' [DecidableEq α] {N : Type*} [AddCommMonoid N] (f : α →₀ N) (a : α) :
(f.sum fun x v => ite (x = a) v 0) = f a := by
classical
convert f.sum_ite_eq' a fun _ => id
simp [ite_eq_right_iff.2 Eq.symm]
@[simp]
theorem prod_pow [Fintype α] (f : α →₀ ℕ) (g : α → N) :
(f.prod fun a b => g a ^ b) = ∏ a, g a ^ f a :=
f.prod_fintype _ fun _ ↦ pow_zero _
/-- If `g` maps a second argument of 0 to 1, then multiplying it over the
result of `onFinset` is the same as multiplying it over the original `Finset`. -/
@[to_additive
"If `g` maps a second argument of 0 to 0, summing it over the
result of `onFinset` is the same as summing it over the original `Finset`."]
theorem onFinset_prod {s : Finset α} {f : α → M} {g : α → M → N} (hf : ∀ a, f a ≠ 0 → a ∈ s)
(hg : ∀ a, g a 0 = 1) : (onFinset s f hf).prod g = ∏ a ∈ s, g a (f a) :=
Finset.prod_subset support_onFinset_subset <| by simp (config := { contextual := true }) [*]
/-- Taking a product over `f : α →₀ M` is the same as multiplying the value on a single element
`y ∈ f.support` by the product over `erase y f`. -/
@[to_additive
" Taking a sum over `f : α →₀ M` is the same as adding the value on a
single element `y ∈ f.support` to the sum over `erase y f`. "]
theorem mul_prod_erase (f : α →₀ M) (y : α) (g : α → M → N) (hyf : y ∈ f.support) :
g y (f y) * (erase y f).prod g = f.prod g := by
classical
rw [Finsupp.prod, Finsupp.prod, ← Finset.mul_prod_erase _ _ hyf, Finsupp.support_erase,
Finset.prod_congr rfl]
intro h hx
rw [Finsupp.erase_ne (ne_of_mem_erase hx)]
/-- Generalization of `Finsupp.mul_prod_erase`: if `g` maps a second argument of 0 to 1,
then its product over `f : α →₀ M` is the same as multiplying the value on any element
`y : α` by the product over `erase y f`. -/
@[to_additive
" Generalization of `Finsupp.add_sum_erase`: if `g` maps a second argument of 0
to 0, then its sum over `f : α →₀ M` is the same as adding the value on any element
`y : α` to the sum over `erase y f`. "]
theorem mul_prod_erase' (f : α →₀ M) (y : α) (g : α → M → N) (hg : ∀ i : α, g i 0 = 1) :
g y (f y) * (erase y f).prod g = f.prod g := by
classical
by_cases hyf : y ∈ f.support
· exact Finsupp.mul_prod_erase f y g hyf
· rw [not_mem_support_iff.mp hyf, hg y, erase_of_not_mem_support hyf, one_mul]
@[to_additive]
theorem _root_.SubmonoidClass.finsupp_prod_mem {S : Type*} [SetLike S N] [SubmonoidClass S N]
(s : S) (f : α →₀ M) (g : α → M → N) (h : ∀ c, f c ≠ 0 → g c (f c) ∈ s) : f.prod g ∈ s :=
prod_mem fun _i hi => h _ (Finsupp.mem_support_iff.mp hi)
@[to_additive]
theorem prod_congr {f : α →₀ M} {g1 g2 : α → M → N} (h : ∀ x ∈ f.support, g1 x (f x) = g2 x (f x)) :
f.prod g1 = f.prod g2 :=
Finset.prod_congr rfl h
@[to_additive]
theorem prod_eq_single {f : α →₀ M} (a : α) {g : α → M → N}
(h₀ : ∀ b, f b ≠ 0 → b ≠ a → g b (f b) = 1) (h₁ : f a = 0 → g a 0 = 1) :
f.prod g = g a (f a) := by
refine Finset.prod_eq_single a (fun b hb₁ hb₂ => ?_) (fun h => ?_)
· exact h₀ b (mem_support_iff.mp hb₁) hb₂
· simp only [not_mem_support_iff] at h
rw [h]
exact h₁ h
end SumProd
section CommMonoidWithZero
variable [Zero α] [CommMonoidWithZero β] [Nontrivial β] [NoZeroDivisors β]
{f : ι →₀ α} (a : α) {g : ι → α → β}
@[simp]
lemma prod_eq_zero_iff : f.prod g = 0 ↔ ∃ i ∈ f.support, g i (f i) = 0 := Finset.prod_eq_zero_iff
lemma prod_ne_zero_iff : f.prod g ≠ 0 ↔ ∀ i ∈ f.support, g i (f i) ≠ 0 := Finset.prod_ne_zero_iff
end CommMonoidWithZero
end Finsupp
@[to_additive]
theorem map_finsupp_prod [Zero M] [CommMonoid N] [CommMonoid P] {H : Type*}
[FunLike H N P] [MonoidHomClass H N P]
(h : H) (f : α →₀ M) (g : α → M → N) : h (f.prod g) = f.prod fun a b => h (g a b) :=
map_prod h _ _
-- Porting note: inserted ⇑ on the rhs
@[to_additive]
theorem MonoidHom.coe_finsupp_prod [Zero β] [Monoid N] [CommMonoid P] (f : α →₀ β)
(g : α → β → N →* P) : ⇑(f.prod g) = f.prod fun i fi => ⇑(g i fi) :=
MonoidHom.coe_finset_prod _ _
@[to_additive (attr := simp)]
theorem MonoidHom.finsupp_prod_apply [Zero β] [Monoid N] [CommMonoid P] (f : α →₀ β)
(g : α → β → N →* P) (x : N) : f.prod g x = f.prod fun i fi => g i fi x :=
MonoidHom.finset_prod_apply _ _ _
namespace Finsupp
theorem single_multiset_sum [AddCommMonoid M] (s : Multiset M) (a : α) :
single a s.sum = (s.map (single a)).sum :=
Multiset.induction_on s (single_zero _) fun a s ih => by
rw [Multiset.sum_cons, single_add, ih, Multiset.map_cons, Multiset.sum_cons]
theorem single_finset_sum [AddCommMonoid M] (s : Finset ι) (f : ι → M) (a : α) :
single a (∑ b ∈ s, f b) = ∑ b ∈ s, single a (f b) := by
trans
· apply single_multiset_sum
· rw [Multiset.map_map]
rfl
theorem single_sum [Zero M] [AddCommMonoid N] (s : ι →₀ M) (f : ι → M → N) (a : α) :
single a (s.sum f) = s.sum fun d c => single a (f d c) :=
single_finset_sum _ _ _
@[to_additive]
theorem prod_neg_index [AddGroup G] [CommMonoid M] {g : α →₀ G} {h : α → G → M}
(h0 : ∀ a, h a 0 = 1) : (-g).prod h = g.prod fun a b => h a (-b) :=
prod_mapRange_index h0
end Finsupp
namespace Finsupp
theorem finset_sum_apply [AddCommMonoid N] (S : Finset ι) (f : ι → α →₀ N) (a : α) :
(∑ i ∈ S, f i) a = ∑ i ∈ S, f i a :=
map_sum (applyAddHom a) _ _
@[simp]
theorem sum_apply [Zero M] [AddCommMonoid N] {f : α →₀ M} {g : α → M → β →₀ N} {a₂ : β} :
(f.sum g) a₂ = f.sum fun a₁ b => g a₁ b a₂ :=
finset_sum_apply _ _ _
-- Porting note: inserted ⇑ on the rhs
theorem coe_finset_sum [AddCommMonoid N] (S : Finset ι) (f : ι → α →₀ N) :
⇑(∑ i ∈ S, f i) = ∑ i ∈ S, ⇑(f i) :=
map_sum (coeFnAddHom : (α →₀ N) →+ _) _ _
-- Porting note: inserted ⇑ on the rhs
theorem coe_sum [Zero M] [AddCommMonoid N] (f : α →₀ M) (g : α → M → β →₀ N) :
⇑(f.sum g) = f.sum fun a₁ b => ⇑(g a₁ b) :=
coe_finset_sum _ _
theorem support_sum [DecidableEq β] [Zero M] [AddCommMonoid N] {f : α →₀ M} {g : α → M → β →₀ N} :
(f.sum g).support ⊆ f.support.biUnion fun a => (g a (f a)).support := by
have : ∀ c, (f.sum fun a b => g a b c) ≠ 0 → ∃ a, f a ≠ 0 ∧ ¬(g a (f a)) c = 0 := fun a₁ h =>
let ⟨a, ha, ne⟩ := Finset.exists_ne_zero_of_sum_ne_zero h
⟨a, mem_support_iff.mp ha, ne⟩
simpa only [Finset.subset_iff, mem_support_iff, Finset.mem_biUnion, sum_apply, exists_prop]
theorem support_finset_sum [DecidableEq β] [AddCommMonoid M] {s : Finset α} {f : α → β →₀ M} :
(Finset.sum s f).support ⊆ s.biUnion fun x => (f x).support := by
rw [← Finset.sup_eq_biUnion]
induction' s using Finset.cons_induction_on with a s ha ih
· rfl
· rw [Finset.sum_cons, Finset.sup_cons]
exact support_add.trans (Finset.union_subset_union (Finset.Subset.refl _) ih)
@[simp]
theorem sum_zero [Zero M] [AddCommMonoid N] {f : α →₀ M} : (f.sum fun _ _ => (0 : N)) = 0 :=
Finset.sum_const_zero
@[to_additive (attr := simp)]
theorem prod_mul [Zero M] [CommMonoid N] {f : α →₀ M} {h₁ h₂ : α → M → N} :
(f.prod fun a b => h₁ a b * h₂ a b) = f.prod h₁ * f.prod h₂ :=
Finset.prod_mul_distrib
@[to_additive (attr := simp)]
theorem prod_inv [Zero M] [CommGroup G] {f : α →₀ M} {h : α → M → G} :
(f.prod fun a b => (h a b)⁻¹) = (f.prod h)⁻¹ :=
(map_prod (MonoidHom.id G)⁻¹ _ _).symm
@[simp]
theorem sum_sub [Zero M] [AddCommGroup G] {f : α →₀ M} {h₁ h₂ : α → M → G} :
(f.sum fun a b => h₁ a b - h₂ a b) = f.sum h₁ - f.sum h₂ :=
Finset.sum_sub_distrib
/-- Taking the product under `h` is an additive-to-multiplicative homomorphism of finsupps,
if `h` is an additive-to-multiplicative homomorphism on the support.
This is a more general version of `Finsupp.prod_add_index'`; the latter has simpler hypotheses. -/
@[to_additive
"Taking the product under `h` is an additive homomorphism of finsupps, if `h` is an
additive homomorphism on the support. This is a more general version of
`Finsupp.sum_add_index'`; the latter has simpler hypotheses."]
theorem prod_add_index [DecidableEq α] [AddZeroClass M] [CommMonoid N] {f g : α →₀ M}
{h : α → M → N} (h_zero : ∀ a ∈ f.support ∪ g.support, h a 0 = 1)
(h_add : ∀ a ∈ f.support ∪ g.support, ∀ (b₁ b₂), h a (b₁ + b₂) = h a b₁ * h a b₂) :
(f + g).prod h = f.prod h * g.prod h := by
rw [Finsupp.prod_of_support_subset f subset_union_left h h_zero,
Finsupp.prod_of_support_subset g subset_union_right h h_zero, ←
Finset.prod_mul_distrib, Finsupp.prod_of_support_subset (f + g) Finsupp.support_add h h_zero]
exact Finset.prod_congr rfl fun x hx => by apply h_add x hx
/-- Taking the product under `h` is an additive-to-multiplicative homomorphism of finsupps,
if `h` is an additive-to-multiplicative homomorphism.
This is a more specialized version of `Finsupp.prod_add_index` with simpler hypotheses. -/
@[to_additive
"Taking the sum under `h` is an additive homomorphism of finsupps,if `h` is an additive
homomorphism. This is a more specific version of `Finsupp.sum_add_index` with simpler
hypotheses."]
theorem prod_add_index' [AddZeroClass M] [CommMonoid N] {f g : α →₀ M} {h : α → M → N}
(h_zero : ∀ a, h a 0 = 1) (h_add : ∀ a b₁ b₂, h a (b₁ + b₂) = h a b₁ * h a b₂) :
(f + g).prod h = f.prod h * g.prod h := by
classical exact prod_add_index (fun a _ => h_zero a) fun a _ => h_add a
@[simp]
theorem sum_hom_add_index [AddZeroClass M] [AddCommMonoid N] {f g : α →₀ M} (h : α → M →+ N) :
((f + g).sum fun x => h x) = (f.sum fun x => h x) + g.sum fun x => h x :=
sum_add_index' (fun a => (h a).map_zero) fun a => (h a).map_add
@[simp]
theorem prod_hom_add_index [AddZeroClass M] [CommMonoid N] {f g : α →₀ M}
(h : α → Multiplicative M →* N) :
((f + g).prod fun a b => h a (Multiplicative.ofAdd b)) =
(f.prod fun a b => h a (Multiplicative.ofAdd b)) *
g.prod fun a b => h a (Multiplicative.ofAdd b) :=
prod_add_index' (fun a => (h a).map_one) fun a => (h a).map_mul
/-- The canonical isomorphism between families of additive monoid homomorphisms `α → (M →+ N)`
and monoid homomorphisms `(α →₀ M) →+ N`. -/
def liftAddHom [AddZeroClass M] [AddCommMonoid N] : (α → M →+ N) ≃+ ((α →₀ M) →+ N) where
toFun F :=
{ toFun := fun f ↦ f.sum fun x ↦ F x
map_zero' := Finset.sum_empty
map_add' := fun _ _ => sum_add_index' (fun x => (F x).map_zero) fun x => (F x).map_add }
invFun F x := F.comp (singleAddHom x)
left_inv F := by
ext
simp [singleAddHom]
right_inv F := by
-- Porting note: This was `ext` and used the wrong lemma
apply Finsupp.addHom_ext'
simp [singleAddHom, AddMonoidHom.comp, Function.comp]
map_add' F G := by
ext x
exact sum_add
@[simp]
theorem liftAddHom_apply [AddCommMonoid M] [AddCommMonoid N] (F : α → M →+ N) (f : α →₀ M) :
(liftAddHom (α := α) (M := M) (N := N)) F f = f.sum fun x => F x :=
rfl
@[simp]
theorem liftAddHom_symm_apply [AddCommMonoid M] [AddCommMonoid N] (F : (α →₀ M) →+ N) (x : α) :
(liftAddHom (α := α) (M := M) (N := N)).symm F x = F.comp (singleAddHom x) :=
rfl
theorem liftAddHom_symm_apply_apply [AddCommMonoid M] [AddCommMonoid N] (F : (α →₀ M) →+ N) (x : α)
(y : M) : (liftAddHom (α := α) (M := M) (N := N)).symm F x y = F (single x y) :=
rfl
@[simp]
theorem liftAddHom_singleAddHom [AddCommMonoid M] :
(liftAddHom (α := α) (M := M) (N := α →₀ M)) (singleAddHom : α → M →+ α →₀ M) =
AddMonoidHom.id _ :=
liftAddHom.toEquiv.apply_eq_iff_eq_symm_apply.2 rfl
@[simp]
theorem sum_single [AddCommMonoid M] (f : α →₀ M) : f.sum single = f :=
DFunLike.congr_fun liftAddHom_singleAddHom f
/-- The `Finsupp` version of `Finset.univ_sum_single` -/
@[simp]
theorem univ_sum_single [Fintype α] [AddCommMonoid M] (f : α →₀ M) :
∑ a : α, single a (f a) = f := by
classical
refine DFunLike.coe_injective ?_
simp_rw [coe_finset_sum, single_eq_pi_single, Finset.univ_sum_single]
@[simp]
theorem univ_sum_single_apply [AddCommMonoid M] [Fintype α] (i : α) (m : M) :
∑ j : α, single i m j = m := by
-- Porting note: rewrite due to leaky classical in lean3
classical rw [single, coe_mk, Finset.sum_pi_single']
simp
@[simp]
theorem univ_sum_single_apply' [AddCommMonoid M] [Fintype α] (i : α) (m : M) :
∑ j : α, single j m i = m := by
-- Porting note: rewrite due to leaky classical in lean3
simp_rw [single, coe_mk]
classical rw [Finset.sum_pi_single]
simp
theorem equivFunOnFinite_symm_eq_sum [Fintype α] [AddCommMonoid M] (f : α → M) :
equivFunOnFinite.symm f = ∑ a, Finsupp.single a (f a) := by
rw [← univ_sum_single (equivFunOnFinite.symm f)]
ext
simp
-- Porting note (#10618): simp can prove this
-- @[simp]
theorem liftAddHom_apply_single [AddCommMonoid M] [AddCommMonoid N] (f : α → M →+ N) (a : α)
(b : M) : (liftAddHom (α := α) (M := M) (N := N)) f (single a b) = f a b :=
sum_single_index (f a).map_zero
@[simp]
theorem liftAddHom_comp_single [AddCommMonoid M] [AddCommMonoid N] (f : α → M →+ N) (a : α) :
((liftAddHom (α := α) (M := M) (N := N)) f).comp (singleAddHom a) = f a :=
AddMonoidHom.ext fun b => liftAddHom_apply_single f a b
theorem comp_liftAddHom [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] (g : N →+ P)
(f : α → M →+ N) :
g.comp ((liftAddHom (α := α) (M := M) (N := N)) f) =
(liftAddHom (α := α) (M := M) (N := P)) fun a => g.comp (f a) :=
liftAddHom.symm_apply_eq.1 <|
funext fun a => by
rw [liftAddHom_symm_apply, AddMonoidHom.comp_assoc, liftAddHom_comp_single]
theorem sum_sub_index [AddCommGroup β] [AddCommGroup γ] {f g : α →₀ β} {h : α → β → γ}
(h_sub : ∀ a b₁ b₂, h a (b₁ - b₂) = h a b₁ - h a b₂) : (f - g).sum h = f.sum h - g.sum h :=
((liftAddHom (α := α) (M := β) (N := γ)) fun a =>
AddMonoidHom.ofMapSub (h a) (h_sub a)).map_sub f g
@[to_additive]
theorem prod_embDomain [Zero M] [CommMonoid N] {v : α →₀ M} {f : α ↪ β} {g : β → M → N} :
(v.embDomain f).prod g = v.prod fun a b => g (f a) b := by
rw [prod, prod, support_embDomain, Finset.prod_map]
simp_rw [embDomain_apply]
@[to_additive]
theorem prod_finset_sum_index [AddCommMonoid M] [CommMonoid N] {s : Finset ι} {g : ι → α →₀ M}
{h : α → M → N} (h_zero : ∀ a, h a 0 = 1) (h_add : ∀ a b₁ b₂, h a (b₁ + b₂) = h a b₁ * h a b₂) :
(∏ i ∈ s, (g i).prod h) = (∑ i ∈ s, g i).prod h :=
Finset.cons_induction_on s rfl fun a s has ih => by
rw [prod_cons, ih, sum_cons, prod_add_index' h_zero h_add]
@[to_additive]
theorem prod_sum_index [AddCommMonoid M] [AddCommMonoid N] [CommMonoid P] {f : α →₀ M}
{g : α → M → β →₀ N} {h : β → N → P} (h_zero : ∀ a, h a 0 = 1)
(h_add : ∀ a b₁ b₂, h a (b₁ + b₂) = h a b₁ * h a b₂) :
(f.sum g).prod h = f.prod fun a b => (g a b).prod h :=
(prod_finset_sum_index h_zero h_add).symm
theorem multiset_sum_sum_index [AddCommMonoid M] [AddCommMonoid N] (f : Multiset (α →₀ M))
(h : α → M → N) (h₀ : ∀ a, h a 0 = 0)
(h₁ : ∀ (a : α) (b₁ b₂ : M), h a (b₁ + b₂) = h a b₁ + h a b₂) :
f.sum.sum h = (f.map fun g : α →₀ M => g.sum h).sum :=
Multiset.induction_on f rfl fun a s ih => by
rw [Multiset.sum_cons, Multiset.map_cons, Multiset.sum_cons, sum_add_index' h₀ h₁, ih]
theorem support_sum_eq_biUnion {α : Type*} {ι : Type*} {M : Type*} [DecidableEq α]
[AddCommMonoid M] {g : ι → α →₀ M} (s : Finset ι)
(h : ∀ i₁ i₂, i₁ ≠ i₂ → Disjoint (g i₁).support (g i₂).support) :
(∑ i ∈ s, g i).support = s.biUnion fun i => (g i).support := by
classical
-- Porting note: apply Finset.induction_on s was not working; refine does.
refine Finset.induction_on s ?_ ?_
· simp
· intro i s hi
simp only [hi, sum_insert, not_false_iff, biUnion_insert]
intro hs
rw [Finsupp.support_add_eq, hs]
rw [hs, Finset.disjoint_biUnion_right]
intro j hj
exact h _ _ (ne_of_mem_of_not_mem hj hi).symm
theorem multiset_map_sum [Zero M] {f : α →₀ M} {m : β → γ} {h : α → M → Multiset β} :
Multiset.map m (f.sum h) = f.sum fun a b => (h a b).map m :=
map_sum (Multiset.mapAddMonoidHom m) _ f.support
theorem multiset_sum_sum [Zero M] [AddCommMonoid N] {f : α →₀ M} {h : α → M → Multiset N} :
Multiset.sum (f.sum h) = f.sum fun a b => Multiset.sum (h a b) :=
map_sum Multiset.sumAddMonoidHom _ f.support
/-- For disjoint `f1` and `f2`, and function `g`, the product of the products of `g`
over `f1` and `f2` equals the product of `g` over `f1 + f2` -/
@[to_additive
"For disjoint `f1` and `f2`, and function `g`, the sum of the sums of `g`
over `f1` and `f2` equals the sum of `g` over `f1 + f2`"]
theorem prod_add_index_of_disjoint [AddCommMonoid M] {f1 f2 : α →₀ M}
(hd : Disjoint f1.support f2.support) {β : Type*} [CommMonoid β] (g : α → M → β) :
(f1 + f2).prod g = f1.prod g * f2.prod g := by
have :
∀ {f1 f2 : α →₀ M},
Disjoint f1.support f2.support → (∏ x ∈ f1.support, g x (f1 x + f2 x)) = f1.prod g :=
fun hd =>
Finset.prod_congr rfl fun x hx => by
simp only [not_mem_support_iff.mp (disjoint_left.mp hd hx), add_zero]
classical simp_rw [← this hd, ← this hd.symm, add_comm (f2 _), Finsupp.prod, support_add_eq hd,
prod_union hd, add_apply]
theorem prod_dvd_prod_of_subset_of_dvd [AddCommMonoid M] [CommMonoid N] {f1 f2 : α →₀ M}
{g1 g2 : α → M → N} (h1 : f1.support ⊆ f2.support)
(h2 : ∀ a : α, a ∈ f1.support → g1 a (f1 a) ∣ g2 a (f2 a)) : f1.prod g1 ∣ f2.prod g2 := by
classical
simp only [Finsupp.prod, Finsupp.prod_mul]
rw [← sdiff_union_of_subset h1, prod_union sdiff_disjoint]
apply dvd_mul_of_dvd_right
apply prod_dvd_prod_of_dvd
exact h2
lemma indicator_eq_sum_attach_single [AddCommMonoid M] {s : Finset α} (f : ∀ a ∈ s, M) :
indicator s f = ∑ x ∈ s.attach, single ↑x (f x x.2) := by
rw [← sum_single (indicator s f), sum, sum_subset (support_indicator_subset _ _), ← sum_attach]
· refine Finset.sum_congr rfl (fun _ _ => ?_)
rw [indicator_of_mem]
· intro i _ hi
rw [not_mem_support_iff.mp hi, single_zero]
lemma indicator_eq_sum_single [AddCommMonoid M] (s : Finset α) (f : α → M) :
indicator s (fun x _ ↦ f x) = ∑ x ∈ s, single x (f x) :=
(indicator_eq_sum_attach_single _).trans <| sum_attach _ fun x ↦ single x (f x)
@[to_additive (attr := simp)]
lemma prod_indicator_index_eq_prod_attach [Zero M] [CommMonoid N]
{s : Finset α} (f : ∀ a ∈ s, M) {h : α → M → N} (h_zero : ∀ a ∈ s, h a 0 = 1) :
(indicator s f).prod h = ∏ x ∈ s.attach, h ↑x (f x x.2) := by
rw [prod_of_support_subset _ (support_indicator_subset _ _) h h_zero, ← prod_attach]
refine Finset.prod_congr rfl (fun _ _ => ?_)
rw [indicator_of_mem]
@[to_additive (attr := simp)]
lemma prod_indicator_index [Zero M] [CommMonoid N]
{s : Finset α} (f : α → M) {h : α → M → N} (h_zero : ∀ a ∈ s, h a 0 = 1) :
(indicator s (fun x _ ↦ f x)).prod h = ∏ x ∈ s, h x (f x) :=
(prod_indicator_index_eq_prod_attach _ h_zero).trans <| prod_attach _ fun x ↦ h x (f x)
lemma sum_cons [AddCommMonoid M] (n : ℕ) (σ : Fin n →₀ M) (i : M) :
(sum (cons i σ) fun _ e ↦ e) = i + sum σ (fun _ e ↦ e) := by
rw [sum_fintype _ _ (fun _ => rfl), sum_fintype _ _ (fun _ => rfl)]
exact Fin.sum_cons i σ
lemma sum_cons' [AddCommMonoid M] [AddCommMonoid N] (n : ℕ) (σ : Fin n →₀ M) (i : M)
(f : Fin (n+1) → M → N) (h : ∀ x, f x 0 = 0) :
(sum (Finsupp.cons i σ) f) = f 0 i + sum σ (Fin.tail f) := by
rw [sum_fintype _ _ (fun _ => by apply h), sum_fintype _ _ (fun _ => by apply h)]
simp_rw [Fin.sum_univ_succ, cons_zero, cons_succ]
congr
@[to_additive]
lemma prod_mul_eq_prod_mul_of_exists [Zero M] [CommMonoid N]
{f : α →₀ M} {g : α → M → N} {n₁ n₂ : N}
(a : α) (ha : a ∈ f.support)
(h : g a (f a) * n₁ = g a (f a) * n₂) :
f.prod g * n₁ = f.prod g * n₂ := by
classical
exact Finset.prod_mul_eq_prod_mul_of_exists a ha h
end Finsupp
theorem Finset.sum_apply' : (∑ k ∈ s, f k) i = ∑ k ∈ s, f k i :=
map_sum (Finsupp.applyAddHom i) f s
theorem Finsupp.sum_apply' : g.sum k x = g.sum fun i b => k i b x :=
Finset.sum_apply _ _ _
theorem Finsupp.sum_sum_index' (h0 : ∀ i, t i 0 = 0) (h1 : ∀ i x y, t i (x + y) = t i x + t i y) :
(∑ x ∈ s, f x).sum t = ∑ x ∈ s, (f x).sum t := by
classical
exact Finset.induction_on s rfl fun a s has ih => by
simp_rw [Finset.sum_insert has, Finsupp.sum_add_index' h0 h1, ih]
section
variable [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S]
theorem Finsupp.sum_mul (b : S) (s : α →₀ R) {f : α → R → S} :
s.sum f * b = s.sum fun a c => f a c * b := by simp only [Finsupp.sum, Finset.sum_mul]
theorem Finsupp.mul_sum (b : S) (s : α →₀ R) {f : α → R → S} :
b * s.sum f = s.sum fun a c => b * f a c := by simp only [Finsupp.sum, Finset.mul_sum]
end
namespace Nat
-- Porting note: Needed to replace pow with (· ^ ·)
/-- If `0 : ℕ` is not in the support of `f : ℕ →₀ ℕ` then `0 < ∏ x ∈ f.support, x ^ (f x)`. -/
theorem prod_pow_pos_of_zero_not_mem_support {f : ℕ →₀ ℕ} (nhf : 0 ∉ f.support) :
0 < f.prod (· ^ ·) :=
Nat.pos_iff_ne_zero.mpr <| Finset.prod_ne_zero_iff.mpr fun _ hf =>
pow_ne_zero _ fun H => by subst H; exact nhf hf
end Nat
|
Algebra\BigOperators\Intervals.lean | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl
-/
import Mathlib.Algebra.BigOperators.Group.Finset
import Mathlib.Algebra.Order.Interval.Finset
import Mathlib.Order.Interval.Finset.Nat
import Mathlib.Tactic.Linarith
/-!
# Results about big operators over intervals
We prove results about big operators over intervals.
-/
open Nat
variable {α M : Type*}
namespace Finset
section PartialOrder
variable [PartialOrder α] [CommMonoid M] {f : α → M} {a b : α}
section LocallyFiniteOrder
variable [LocallyFiniteOrder α]
@[to_additive]
lemma mul_prod_Ico_eq_prod_Icc (h : a ≤ b) : f b * ∏ x ∈ Ico a b, f x = ∏ x ∈ Icc a b, f x := by
rw [Icc_eq_cons_Ico h, prod_cons]
@[to_additive]
lemma prod_Ico_mul_eq_prod_Icc (h : a ≤ b) : (∏ x ∈ Ico a b, f x) * f b = ∏ x ∈ Icc a b, f x := by
rw [mul_comm, mul_prod_Ico_eq_prod_Icc h]
@[to_additive]
lemma mul_prod_Ioc_eq_prod_Icc (h : a ≤ b) : f a * ∏ x ∈ Ioc a b, f x = ∏ x ∈ Icc a b, f x := by
rw [Icc_eq_cons_Ioc h, prod_cons]
@[to_additive]
lemma prod_Ioc_mul_eq_prod_Icc (h : a ≤ b) : (∏ x ∈ Ioc a b, f x) * f a = ∏ x ∈ Icc a b, f x := by
rw [mul_comm, mul_prod_Ioc_eq_prod_Icc h]
end LocallyFiniteOrder
section LocallyFiniteOrderTop
variable [LocallyFiniteOrderTop α]
@[to_additive]
lemma mul_prod_Ioi_eq_prod_Ici (a : α) : f a * ∏ x ∈ Ioi a, f x = ∏ x ∈ Ici a, f x := by
rw [Ici_eq_cons_Ioi, prod_cons]
@[to_additive]
lemma prod_Ioi_mul_eq_prod_Ici (a : α) : (∏ x ∈ Ioi a, f x) * f a = ∏ x ∈ Ici a, f x := by
rw [mul_comm, mul_prod_Ioi_eq_prod_Ici]
end LocallyFiniteOrderTop
section LocallyFiniteOrderBot
variable [LocallyFiniteOrderBot α]
@[to_additive]
lemma mul_prod_Iio_eq_prod_Iic (a : α) : f a * ∏ x ∈ Iio a, f x = ∏ x ∈ Iic a, f x := by
rw [Iic_eq_cons_Iio, prod_cons]
@[to_additive]
lemma prod_Iio_mul_eq_prod_Iic (a : α) : (∏ x ∈ Iio a, f x) * f a = ∏ x ∈ Iic a, f x := by
rw [mul_comm, mul_prod_Iio_eq_prod_Iic]
end LocallyFiniteOrderBot
end PartialOrder
section LinearOrder
variable [Fintype α] [LinearOrder α] [LocallyFiniteOrderTop α] [LocallyFiniteOrderBot α]
[CommMonoid M]
@[to_additive]
lemma prod_prod_Ioi_mul_eq_prod_prod_off_diag (f : α → α → M) :
∏ i, ∏ j ∈ Ioi i, f j i * f i j = ∏ i, ∏ j ∈ {i}ᶜ, f j i := by
simp_rw [← Ioi_disjUnion_Iio, prod_disjUnion, prod_mul_distrib]
congr 1
rw [prod_sigma', prod_sigma']
refine prod_nbij' (fun i ↦ ⟨i.2, i.1⟩) (fun i ↦ ⟨i.2, i.1⟩) ?_ ?_ ?_ ?_ ?_ <;> simp
end LinearOrder
section Generic
variable [CommMonoid M] {s₂ s₁ s : Finset α} {a : α} {g f : α → M}
@[to_additive]
theorem prod_Ico_add' [OrderedCancelAddCommMonoid α] [ExistsAddOfLE α] [LocallyFiniteOrder α]
(f : α → M) (a b c : α) : (∏ x ∈ Ico a b, f (x + c)) = ∏ x ∈ Ico (a + c) (b + c), f x := by
rw [← map_add_right_Ico, prod_map]
rfl
@[to_additive]
theorem prod_Ico_add [OrderedCancelAddCommMonoid α] [ExistsAddOfLE α] [LocallyFiniteOrder α]
(f : α → M) (a b c : α) : (∏ x ∈ Ico a b, f (c + x)) = ∏ x ∈ Ico (a + c) (b + c), f x := by
convert prod_Ico_add' f a b c using 2
rw [add_comm]
@[to_additive]
theorem prod_Ico_succ_top {a b : ℕ} (hab : a ≤ b) (f : ℕ → M) :
(∏ k ∈ Ico a (b + 1), f k) = (∏ k ∈ Ico a b, f k) * f b := by
rw [Nat.Ico_succ_right_eq_insert_Ico hab, prod_insert right_not_mem_Ico, mul_comm]
@[to_additive]
theorem prod_eq_prod_Ico_succ_bot {a b : ℕ} (hab : a < b) (f : ℕ → M) :
∏ k ∈ Ico a b, f k = f a * ∏ k ∈ Ico (a + 1) b, f k := by
have ha : a ∉ Ico (a + 1) b := by simp
rw [← prod_insert ha, Nat.Ico_insert_succ_left hab]
@[to_additive]
theorem prod_Ico_consecutive (f : ℕ → M) {m n k : ℕ} (hmn : m ≤ n) (hnk : n ≤ k) :
((∏ i ∈ Ico m n, f i) * ∏ i ∈ Ico n k, f i) = ∏ i ∈ Ico m k, f i :=
Ico_union_Ico_eq_Ico hmn hnk ▸ Eq.symm (prod_union (Ico_disjoint_Ico_consecutive m n k))
@[to_additive]
theorem prod_Ioc_consecutive (f : ℕ → M) {m n k : ℕ} (hmn : m ≤ n) (hnk : n ≤ k) :
((∏ i ∈ Ioc m n, f i) * ∏ i ∈ Ioc n k, f i) = ∏ i ∈ Ioc m k, f i := by
rw [← Ioc_union_Ioc_eq_Ioc hmn hnk, prod_union]
apply disjoint_left.2 fun x hx h'x => _
intros x hx h'x
exact lt_irrefl _ ((mem_Ioc.1 h'x).1.trans_le (mem_Ioc.1 hx).2)
@[to_additive]
theorem prod_Ioc_succ_top {a b : ℕ} (hab : a ≤ b) (f : ℕ → M) :
(∏ k ∈ Ioc a (b + 1), f k) = (∏ k ∈ Ioc a b, f k) * f (b + 1) := by
rw [← prod_Ioc_consecutive _ hab (Nat.le_succ b), Nat.Ioc_succ_singleton, prod_singleton]
@[to_additive]
theorem prod_Icc_succ_top {a b : ℕ} (hab : a ≤ b + 1) (f : ℕ → M) :
(∏ k in Icc a (b + 1), f k) = (∏ k in Icc a b, f k) * f (b + 1) := by
rw [← Nat.Ico_succ_right, prod_Ico_succ_top hab, Nat.Ico_succ_right]
@[to_additive]
theorem prod_range_mul_prod_Ico (f : ℕ → M) {m n : ℕ} (h : m ≤ n) :
((∏ k ∈ range m, f k) * ∏ k ∈ Ico m n, f k) = ∏ k ∈ range n, f k :=
Nat.Ico_zero_eq_range ▸ Nat.Ico_zero_eq_range ▸ prod_Ico_consecutive f m.zero_le h
@[to_additive]
theorem prod_Ico_eq_mul_inv {δ : Type*} [CommGroup δ] (f : ℕ → δ) {m n : ℕ} (h : m ≤ n) :
∏ k ∈ Ico m n, f k = (∏ k ∈ range n, f k) * (∏ k ∈ range m, f k)⁻¹ :=
eq_mul_inv_iff_mul_eq.2 <| by (rw [mul_comm]; exact prod_range_mul_prod_Ico f h)
@[to_additive]
theorem prod_Ico_eq_div {δ : Type*} [CommGroup δ] (f : ℕ → δ) {m n : ℕ} (h : m ≤ n) :
∏ k ∈ Ico m n, f k = (∏ k ∈ range n, f k) / ∏ k ∈ range m, f k := by
simpa only [div_eq_mul_inv] using prod_Ico_eq_mul_inv f h
@[to_additive]
theorem prod_range_div_prod_range {α : Type*} [CommGroup α] {f : ℕ → α} {n m : ℕ} (hnm : n ≤ m) :
((∏ k ∈ range m, f k) / ∏ k ∈ range n, f k) =
∏ k ∈ (range m).filter fun k => n ≤ k, f k := by
rw [← prod_Ico_eq_div f hnm]
congr
apply Finset.ext
simp only [mem_Ico, mem_filter, mem_range, *]
tauto
/-- The two ways of summing over `(i, j)` in the range `a ≤ i ≤ j < b` are equal. -/
theorem sum_Ico_Ico_comm {M : Type*} [AddCommMonoid M] (a b : ℕ) (f : ℕ → ℕ → M) :
(∑ i ∈ Finset.Ico a b, ∑ j ∈ Finset.Ico i b, f i j) =
∑ j ∈ Finset.Ico a b, ∑ i ∈ Finset.Ico a (j + 1), f i j := by
rw [Finset.sum_sigma', Finset.sum_sigma']
refine sum_nbij' (fun x ↦ ⟨x.2, x.1⟩) (fun x ↦ ⟨x.2, x.1⟩) ?_ ?_ (fun _ _ ↦ rfl) (fun _ _ ↦ rfl)
(fun _ _ ↦ rfl) <;>
simp only [Finset.mem_Ico, Sigma.forall, Finset.mem_sigma] <;>
rintro a b ⟨⟨h₁, h₂⟩, ⟨h₃, h₄⟩⟩ <;>
omega
/-- The two ways of summing over `(i, j)` in the range `a ≤ i < j < b` are equal. -/
theorem sum_Ico_Ico_comm' {M : Type*} [AddCommMonoid M] (a b : ℕ) (f : ℕ → ℕ → M) :
(∑ i ∈ Finset.Ico a b, ∑ j ∈ Finset.Ico (i + 1) b, f i j) =
∑ j ∈ Finset.Ico a b, ∑ i ∈ Finset.Ico a j, f i j := by
rw [Finset.sum_sigma', Finset.sum_sigma']
refine sum_nbij' (fun x ↦ ⟨x.2, x.1⟩) (fun x ↦ ⟨x.2, x.1⟩) ?_ ?_ (fun _ _ ↦ rfl) (fun _ _ ↦ rfl)
(fun _ _ ↦ rfl) <;>
simp only [Finset.mem_Ico, Sigma.forall, Finset.mem_sigma] <;>
rintro a b ⟨⟨h₁, h₂⟩, ⟨h₃, h₄⟩⟩ <;>
omega
@[to_additive]
theorem prod_Ico_eq_prod_range (f : ℕ → M) (m n : ℕ) :
∏ k ∈ Ico m n, f k = ∏ k ∈ range (n - m), f (m + k) := by
by_cases h : m ≤ n
· rw [← Nat.Ico_zero_eq_range, prod_Ico_add, zero_add, tsub_add_cancel_of_le h]
· replace h : n ≤ m := le_of_not_ge h
rw [Ico_eq_empty_of_le h, tsub_eq_zero_iff_le.mpr h, range_zero, prod_empty, prod_empty]
theorem prod_Ico_reflect (f : ℕ → M) (k : ℕ) {m n : ℕ} (h : m ≤ n + 1) :
(∏ j ∈ Ico k m, f (n - j)) = ∏ j ∈ Ico (n + 1 - m) (n + 1 - k), f j := by
have : ∀ i < m, i ≤ n := by
intro i hi
exact (add_le_add_iff_right 1).1 (le_trans (Nat.lt_iff_add_one_le.1 hi) h)
cases' lt_or_le k m with hkm hkm
· rw [← Nat.Ico_image_const_sub_eq_Ico (this _ hkm)]
refine (prod_image ?_).symm
simp only [mem_Ico]
rintro i ⟨_, im⟩ j ⟨_, jm⟩ Hij
rw [← tsub_tsub_cancel_of_le (this _ im), Hij, tsub_tsub_cancel_of_le (this _ jm)]
· have : n + 1 - k ≤ n + 1 - m := by
rw [tsub_le_tsub_iff_left h]
exact hkm
simp only [hkm, Ico_eq_empty_of_le, prod_empty, tsub_le_iff_right, Ico_eq_empty_of_le
this]
theorem sum_Ico_reflect {δ : Type*} [AddCommMonoid δ] (f : ℕ → δ) (k : ℕ) {m n : ℕ}
(h : m ≤ n + 1) : (∑ j ∈ Ico k m, f (n - j)) = ∑ j ∈ Ico (n + 1 - m) (n + 1 - k), f j :=
@prod_Ico_reflect (Multiplicative δ) _ f k m n h
theorem prod_range_reflect (f : ℕ → M) (n : ℕ) :
(∏ j ∈ range n, f (n - 1 - j)) = ∏ j ∈ range n, f j := by
cases n
· simp
· simp only [← Nat.Ico_zero_eq_range, Nat.succ_sub_succ_eq_sub, tsub_zero]
rw [prod_Ico_reflect _ _ le_rfl]
simp
theorem sum_range_reflect {δ : Type*} [AddCommMonoid δ] (f : ℕ → δ) (n : ℕ) :
(∑ j ∈ range n, f (n - 1 - j)) = ∑ j ∈ range n, f j :=
@prod_range_reflect (Multiplicative δ) _ f n
@[simp]
theorem prod_Ico_id_eq_factorial : ∀ n : ℕ, (∏ x ∈ Ico 1 (n + 1), x) = n !
| 0 => rfl
| n + 1 => by
rw [prod_Ico_succ_top <| Nat.succ_le_succ <| Nat.zero_le n, Nat.factorial_succ,
prod_Ico_id_eq_factorial n, Nat.succ_eq_add_one, mul_comm]
@[simp]
theorem prod_range_add_one_eq_factorial : ∀ n : ℕ, (∏ x ∈ range n, (x + 1)) = n !
| 0 => rfl
| n + 1 => by simp [factorial, Finset.range_succ, prod_range_add_one_eq_factorial n]
section GaussSum
/-- Gauss' summation formula -/
theorem sum_range_id_mul_two (n : ℕ) : (∑ i ∈ range n, i) * 2 = n * (n - 1) :=
calc
(∑ i ∈ range n, i) * 2 = (∑ i ∈ range n, i) + ∑ i ∈ range n, (n - 1 - i) := by
rw [sum_range_reflect (fun i => i) n, mul_two]
_ = ∑ i ∈ range n, (i + (n - 1 - i)) := sum_add_distrib.symm
_ = ∑ i ∈ range n, (n - 1) :=
sum_congr rfl fun i hi => add_tsub_cancel_of_le <| Nat.le_sub_one_of_lt <| mem_range.1 hi
_ = n * (n - 1) := by rw [sum_const, card_range, Nat.nsmul_eq_mul]
/-- Gauss' summation formula -/
theorem sum_range_id (n : ℕ) : ∑ i ∈ range n, i = n * (n - 1) / 2 := by
rw [← sum_range_id_mul_two n, Nat.mul_div_cancel _ zero_lt_two]
end GaussSum
@[to_additive]
lemma prod_range_diag_flip (n : ℕ) (f : ℕ → ℕ → M) :
(∏ m ∈ range n, ∏ k ∈ range (m + 1), f k (m - k)) =
∏ m ∈ range n, ∏ k ∈ range (n - m), f m k := by
rw [prod_sigma', prod_sigma']
refine prod_nbij' (fun a ↦ ⟨a.2, a.1 - a.2⟩) (fun a ↦ ⟨a.1 + a.2, a.1⟩) ?_ ?_ ?_ ?_ ?_ <;>
simp (config := { contextual := true }) only [mem_sigma, mem_range, lt_tsub_iff_left,
Nat.lt_succ_iff, le_add_iff_nonneg_right, Nat.zero_le, and_true, and_imp, imp_self,
implies_true, Sigma.forall, forall_const, add_tsub_cancel_of_le, Sigma.mk.inj_iff,
add_tsub_cancel_left, heq_eq_eq]
exact fun a b han hba ↦ lt_of_le_of_lt hba han
end Generic
section Nat
variable {M : Type*}
variable (f g : ℕ → M) {m n : ℕ}
section Group
variable [CommGroup M]
@[to_additive]
theorem prod_range_succ_div_prod : ((∏ i ∈ range (n + 1), f i) / ∏ i ∈ range n, f i) = f n :=
div_eq_iff_eq_mul'.mpr <| prod_range_succ f n
@[to_additive]
theorem prod_range_succ_div_top : (∏ i ∈ range (n + 1), f i) / f n = ∏ i ∈ range n, f i :=
div_eq_iff_eq_mul.mpr <| prod_range_succ f n
@[to_additive]
theorem prod_Ico_div_bot (hmn : m < n) : (∏ i ∈ Ico m n, f i) / f m = ∏ i ∈ Ico (m + 1) n, f i :=
div_eq_iff_eq_mul'.mpr <| prod_eq_prod_Ico_succ_bot hmn _
@[to_additive]
theorem prod_Ico_succ_div_top (hmn : m ≤ n) :
(∏ i ∈ Ico m (n + 1), f i) / f n = ∏ i ∈ Ico m n, f i :=
div_eq_iff_eq_mul.mpr <| prod_Ico_succ_top hmn _
end Group
end Nat
end Finset
|
Algebra\BigOperators\Module.lean | /-
Copyright (c) 2022 Dylan MacKenzie. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Dylan MacKenzie
-/
import Mathlib.Algebra.BigOperators.Intervals
import Mathlib.Algebra.Module.Defs
import Mathlib.Tactic.Abel
/-!
# Summation by parts
-/
namespace Finset
variable {R M : Type*} [Ring R] [AddCommGroup M] [Module R M] (f : ℕ → R) (g : ℕ → M) {m n : ℕ}
-- The partial sum of `g`, starting from zero
local notation "G " n:80 => ∑ i ∈ range n, g i
/-- **Summation by parts**, also known as **Abel's lemma** or an **Abel transformation** -/
theorem sum_Ico_by_parts (hmn : m < n) :
∑ i ∈ Ico m n, f i • g i =
f (n - 1) • G n - f m • G m - ∑ i ∈ Ico m (n - 1), (f (i + 1) - f i) • G (i + 1) := by
have h₁ : (∑ i ∈ Ico (m + 1) n, f i • G i) = ∑ i ∈ Ico m (n - 1), f (i + 1) • G (i + 1) := by
rw [← Nat.sub_add_cancel (Nat.one_le_of_lt hmn), ← sum_Ico_add']
simp only [tsub_le_iff_right, add_le_iff_nonpos_left, nonpos_iff_eq_zero,
tsub_eq_zero_iff_le, add_tsub_cancel_right]
have h₂ :
(∑ i ∈ Ico (m + 1) n, f i • G (i + 1)) =
(∑ i ∈ Ico m (n - 1), f i • G (i + 1)) + f (n - 1) • G n - f m • G (m + 1) := by
rw [← sum_Ico_sub_bot _ hmn, ← sum_Ico_succ_sub_top _ (Nat.le_sub_one_of_lt hmn),
Nat.sub_add_cancel (pos_of_gt hmn), sub_add_cancel]
rw [sum_eq_sum_Ico_succ_bot hmn]
-- Porting note: the following used to be done with `conv`
have h₃ : (Finset.sum (Ico (m + 1) n) fun i => f i • g i) =
(Finset.sum (Ico (m + 1) n) fun i =>
f i • ((Finset.sum (Finset.range (i + 1)) g) -
(Finset.sum (Finset.range i) g))) := by
congr; funext; rw [← sum_range_succ_sub_sum g]
rw [h₃]
simp_rw [smul_sub, sum_sub_distrib, h₂, h₁]
-- Porting note: the following used to be done with `conv`
have h₄ : ((((Finset.sum (Ico m (n - 1)) fun i => f i • Finset.sum (range (i + 1)) fun i => g i) +
f (n - 1) • Finset.sum (range n) fun i => g i) -
f m • Finset.sum (range (m + 1)) fun i => g i) -
Finset.sum (Ico m (n - 1)) fun i => f (i + 1) • Finset.sum (range (i + 1)) fun i => g i) =
f (n - 1) • (range n).sum g - f m • (range (m + 1)).sum g +
Finset.sum (Ico m (n - 1)) (fun i => f i • (range (i + 1)).sum g -
f (i + 1) • (range (i + 1)).sum g) := by
rw [← add_sub, add_comm, ← add_sub, ← sum_sub_distrib]
rw [h₄]
have : ∀ i, f i • G (i + 1) - f (i + 1) • G (i + 1) = -((f (i + 1) - f i) • G (i + 1)) := by
intro i
rw [sub_smul]
abel
simp_rw [this, sum_neg_distrib, sum_range_succ, smul_add]
abel
variable (n)
/-- **Summation by parts** for ranges -/
theorem sum_range_by_parts :
∑ i ∈ range n, f i • g i =
f (n - 1) • G n - ∑ i ∈ range (n - 1), (f (i + 1) - f i) • G (i + 1) := by
by_cases hn : n = 0
· simp [hn]
· rw [range_eq_Ico, sum_Ico_by_parts f g (Nat.pos_of_ne_zero hn), sum_range_zero, smul_zero,
sub_zero, range_eq_Ico]
end Finset
|
Algebra\BigOperators\NatAntidiagonal.lean | /-
Copyright (c) 2020 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import Mathlib.Algebra.BigOperators.Group.Finset
import Mathlib.Data.Finset.NatAntidiagonal
/-!
# Big operators for `NatAntidiagonal`
This file contains theorems relevant to big operators over `Finset.NatAntidiagonal`.
-/
variable {M N : Type*} [CommMonoid M] [AddCommMonoid N]
namespace Finset
namespace Nat
theorem prod_antidiagonal_succ {n : ℕ} {f : ℕ × ℕ → M} :
(∏ p ∈ antidiagonal (n + 1), f p)
= f (0, n + 1) * ∏ p ∈ antidiagonal n, f (p.1 + 1, p.2) := by
rw [antidiagonal_succ, prod_cons, prod_map]; rfl
theorem sum_antidiagonal_succ {n : ℕ} {f : ℕ × ℕ → N} :
(∑ p ∈ antidiagonal (n + 1), f p) = f (0, n + 1) + ∑ p ∈ antidiagonal n, f (p.1 + 1, p.2) :=
@prod_antidiagonal_succ (Multiplicative N) _ _ _
@[to_additive]
theorem prod_antidiagonal_swap {n : ℕ} {f : ℕ × ℕ → M} :
∏ p ∈ antidiagonal n, f p.swap = ∏ p ∈ antidiagonal n, f p := by
conv_lhs => rw [← map_swap_antidiagonal, Finset.prod_map]
rfl
theorem prod_antidiagonal_succ' {n : ℕ} {f : ℕ × ℕ → M} : (∏ p ∈ antidiagonal (n + 1), f p) =
f (n + 1, 0) * ∏ p ∈ antidiagonal n, f (p.1, p.2 + 1) := by
rw [← prod_antidiagonal_swap, prod_antidiagonal_succ, ← prod_antidiagonal_swap]
rfl
theorem sum_antidiagonal_succ' {n : ℕ} {f : ℕ × ℕ → N} :
(∑ p ∈ antidiagonal (n + 1), f p) = f (n + 1, 0) + ∑ p ∈ antidiagonal n, f (p.1, p.2 + 1) :=
@prod_antidiagonal_succ' (Multiplicative N) _ _ _
@[to_additive]
theorem prod_antidiagonal_subst {n : ℕ} {f : ℕ × ℕ → ℕ → M} :
∏ p ∈ antidiagonal n, f p n = ∏ p ∈ antidiagonal n, f p (p.1 + p.2) :=
prod_congr rfl fun p hp ↦ by rw [mem_antidiagonal.mp hp]
@[to_additive]
theorem prod_antidiagonal_eq_prod_range_succ_mk {M : Type*} [CommMonoid M] (f : ℕ × ℕ → M)
(n : ℕ) : ∏ ij ∈ antidiagonal n, f ij = ∏ k ∈ range n.succ, f (k, n - k) :=
Finset.prod_map (range n.succ) ⟨fun i ↦ (i, n - i), fun _ _ h ↦ (Prod.mk.inj h).1⟩ f
/-- This lemma matches more generally than `Finset.Nat.prod_antidiagonal_eq_prod_range_succ_mk` when
using `rw ← `. -/
@[to_additive "This lemma matches more generally than
`Finset.Nat.sum_antidiagonal_eq_sum_range_succ_mk` when using `rw ← `."]
theorem prod_antidiagonal_eq_prod_range_succ {M : Type*} [CommMonoid M] (f : ℕ → ℕ → M) (n : ℕ) :
∏ ij ∈ antidiagonal n, f ij.1 ij.2 = ∏ k ∈ range n.succ, f k (n - k) :=
prod_antidiagonal_eq_prod_range_succ_mk _ _
end Nat
end Finset
|
Algebra\BigOperators\Option.lean | /-
Copyright (c) 2021 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov
-/
import Mathlib.Algebra.BigOperators.Group.Finset
import Mathlib.Data.Finset.Option
/-!
# Lemmas about products and sums over finite sets in `Option α`
In this file we prove formulas for products and sums over `Finset.insertNone s` and
`Finset.eraseNone s`.
-/
open Function
namespace Finset
variable {α M : Type*} [CommMonoid M]
@[to_additive (attr := simp)]
theorem prod_insertNone (f : Option α → M) (s : Finset α) :
∏ x ∈ insertNone s, f x = f none * ∏ x ∈ s, f (some x) := by simp [insertNone]
@[to_additive]
theorem mul_prod_eq_prod_insertNone (f : α → M) (x : M) (s : Finset α) :
x * ∏ i ∈ s, f i = ∏ i ∈ insertNone s, i.elim x f :=
(prod_insertNone (fun i => i.elim x f) _).symm
@[to_additive]
theorem prod_eraseNone (f : α → M) (s : Finset (Option α)) :
∏ x ∈ eraseNone s, f x = ∏ x ∈ s, Option.elim' 1 f x := by
classical calc
∏ x ∈ eraseNone s, f x = ∏ x ∈ (eraseNone s).map Embedding.some, Option.elim' 1 f x :=
(prod_map (eraseNone s) Embedding.some <| Option.elim' 1 f).symm
_ = ∏ x ∈ s.erase none, Option.elim' 1 f x := by rw [map_some_eraseNone]
_ = ∏ x ∈ s, Option.elim' 1 f x := prod_erase _ rfl
end Finset
|
Algebra\BigOperators\Pi.lean | /-
Copyright (c) 2018 Simon Hudon. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon, Patrick Massot
-/
import Mathlib.Algebra.BigOperators.Group.Finset
import Mathlib.Algebra.Group.Action.Pi
import Mathlib.Algebra.Ring.Pi
/-!
# Big operators for Pi Types
This file contains theorems relevant to big operators in binary and arbitrary product
of monoids and groups
-/
namespace Pi
@[to_additive]
theorem list_prod_apply {α : Type*} {β : α → Type*} [∀ a, Monoid (β a)] (a : α)
(l : List (∀ a, β a)) : l.prod a = (l.map fun f : ∀ a, β a ↦ f a).prod :=
map_list_prod (evalMonoidHom β a) _
@[to_additive]
theorem multiset_prod_apply {α : Type*} {β : α → Type*} [∀ a, CommMonoid (β a)] (a : α)
(s : Multiset (∀ a, β a)) : s.prod a = (s.map fun f : ∀ a, β a ↦ f a).prod :=
(evalMonoidHom β a).map_multiset_prod _
end Pi
@[to_additive (attr := simp)]
theorem Finset.prod_apply {α : Type*} {β : α → Type*} {γ} [∀ a, CommMonoid (β a)] (a : α)
(s : Finset γ) (g : γ → ∀ a, β a) : (∏ c ∈ s, g c) a = ∏ c ∈ s, g c a :=
map_prod (Pi.evalMonoidHom β a) _ _
/-- An 'unapplied' analogue of `Finset.prod_apply`. -/
@[to_additive "An 'unapplied' analogue of `Finset.sum_apply`."]
theorem Finset.prod_fn {α : Type*} {β : α → Type*} {γ} [∀ a, CommMonoid (β a)] (s : Finset γ)
(g : γ → ∀ a, β a) : ∏ c ∈ s, g c = fun a ↦ ∏ c ∈ s, g c a :=
funext fun _ ↦ Finset.prod_apply _ _ _
@[to_additive]
theorem Fintype.prod_apply {α : Type*} {β : α → Type*} {γ : Type*} [Fintype γ]
[∀ a, CommMonoid (β a)] (a : α) (g : γ → ∀ a, β a) : (∏ c, g c) a = ∏ c, g c a :=
Finset.prod_apply a Finset.univ g
@[to_additive prod_mk_sum]
theorem prod_mk_prod {α β γ : Type*} [CommMonoid α] [CommMonoid β] (s : Finset γ) (f : γ → α)
(g : γ → β) : (∏ x ∈ s, f x, ∏ x ∈ s, g x) = ∏ x ∈ s, (f x, g x) :=
haveI := Classical.decEq γ
Finset.induction_on s rfl (by simp (config := { contextual := true }) [Prod.ext_iff])
/-- decomposing `x : ι → R` as a sum along the canonical basis -/
theorem pi_eq_sum_univ {ι : Type*} [Fintype ι] [DecidableEq ι] {R : Type*} [Semiring R]
(x : ι → R) : x = ∑ i, (x i) • fun j => if i = j then (1 : R) else 0 := by
ext
simp
section MulSingle
variable {I : Type*} [DecidableEq I] {Z : I → Type*}
variable [∀ i, CommMonoid (Z i)]
@[to_additive]
theorem Finset.univ_prod_mulSingle [Fintype I] (f : ∀ i, Z i) :
(∏ i, Pi.mulSingle i (f i)) = f := by
ext a
simp
@[to_additive]
theorem MonoidHom.functions_ext [Finite I] (G : Type*) [CommMonoid G] (g h : (∀ i, Z i) →* G)
(H : ∀ i x, g (Pi.mulSingle i x) = h (Pi.mulSingle i x)) : g = h := by
cases nonempty_fintype I
ext k
rw [← Finset.univ_prod_mulSingle k, map_prod, map_prod]
simp only [H]
/-- This is used as the ext lemma instead of `MonoidHom.functions_ext` for reasons explained in
note [partially-applied ext lemmas]. -/
@[to_additive (attr := ext)
"\nThis is used as the ext lemma instead of `AddMonoidHom.functions_ext` for reasons
explained in note [partially-applied ext lemmas]."]
theorem MonoidHom.functions_ext' [Finite I] (M : Type*) [CommMonoid M] (g h : (∀ i, Z i) →* M)
(H : ∀ i, g.comp (MonoidHom.mulSingle Z i) = h.comp (MonoidHom.mulSingle Z i)) : g = h :=
g.functions_ext M h fun i => DFunLike.congr_fun (H i)
end MulSingle
section RingHom
open Pi
variable {I : Type*} [DecidableEq I] {f : I → Type*}
variable [∀ i, NonAssocSemiring (f i)]
@[ext]
theorem RingHom.functions_ext [Finite I] (G : Type*) [NonAssocSemiring G] (g h : (∀ i, f i) →+* G)
(H : ∀ (i : I) (x : f i), g (single i x) = h (single i x)) : g = h :=
RingHom.coe_addMonoidHom_injective <|
@AddMonoidHom.functions_ext I _ f _ _ G _ (g : (∀ i, f i) →+ G) h H
end RingHom
namespace Prod
variable {α β γ : Type*} [CommMonoid α] [CommMonoid β] {s : Finset γ} {f : γ → α × β}
@[to_additive]
theorem fst_prod : (∏ c ∈ s, f c).1 = ∏ c ∈ s, (f c).1 :=
map_prod (MonoidHom.fst α β) f s
@[to_additive]
theorem snd_prod : (∏ c ∈ s, f c).2 = ∏ c ∈ s, (f c).2 :=
map_prod (MonoidHom.snd α β) f s
end Prod
|
Algebra\BigOperators\Ring.lean | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl
-/
import Mathlib.Algebra.BigOperators.GroupWithZero.Finset
import Mathlib.Algebra.BigOperators.Ring.Multiset
import Mathlib.Algebra.Field.Defs
import Mathlib.Data.Fintype.Powerset
import Mathlib.Data.Int.Cast.Lemmas
/-!
# Results about big operators with values in a (semi)ring
We prove results about big operators that involve some interaction between
multiplicative and additive structures on the values being combined.
-/
open Fintype
variable {ι ι' α β γ : Type*} {κ : ι → Type*} {s s₁ s₂ : Finset ι} {i : ι} {a : α} {f g : ι → α}
namespace Finset
section AddCommMonoidWithOne
variable [AddCommMonoidWithOne α]
lemma natCast_card_filter (p) [DecidablePred p] (s : Finset ι) :
((filter p s).card : α) = ∑ a ∈ s, if p a then (1 : α) else 0 := by
rw [sum_ite, sum_const_zero, add_zero, sum_const, nsmul_one]
@[simp] lemma sum_boole (p) [DecidablePred p] (s : Finset ι) :
(∑ x ∈ s, if p x then 1 else 0 : α) = (s.filter p).card :=
(natCast_card_filter _ _).symm
end AddCommMonoidWithOne
section NonUnitalNonAssocSemiring
variable [NonUnitalNonAssocSemiring α]
lemma sum_mul (s : Finset ι) (f : ι → α) (a : α) :
(∑ i ∈ s, f i) * a = ∑ i ∈ s, f i * a := map_sum (AddMonoidHom.mulRight a) _ s
lemma mul_sum (s : Finset ι) (f : ι → α) (a : α) :
a * ∑ i ∈ s, f i = ∑ i ∈ s, a * f i := map_sum (AddMonoidHom.mulLeft a) _ s
lemma sum_mul_sum {κ : Type*} (s : Finset ι) (t : Finset κ) (f : ι → α) (g : κ → α) :
(∑ i ∈ s, f i) * ∑ j ∈ t, g j = ∑ i ∈ s, ∑ j ∈ t, f i * g j := by
simp_rw [sum_mul, ← mul_sum]
lemma _root_.Fintype.sum_mul_sum {κ : Type*} [Fintype ι] [Fintype κ] (f : ι → α) (g : κ → α) :
(∑ i, f i) * ∑ j, g j = ∑ i, ∑ j, f i * g j :=
Finset.sum_mul_sum _ _ _ _
lemma _root_.Commute.sum_right (s : Finset ι) (f : ι → α) (b : α)
(h : ∀ i ∈ s, Commute b (f i)) : Commute b (∑ i ∈ s, f i) :=
(Commute.multiset_sum_right _ _) fun b hb => by
obtain ⟨i, hi, rfl⟩ := Multiset.mem_map.mp hb
exact h _ hi
lemma _root_.Commute.sum_left (s : Finset ι) (f : ι → α) (b : α)
(h : ∀ i ∈ s, Commute (f i) b) : Commute (∑ i ∈ s, f i) b :=
((Commute.sum_right _ _ _) fun _i hi => (h _ hi).symm).symm
lemma sum_range_succ_mul_sum_range_succ (m n : ℕ) (f g : ℕ → α) :
(∑ i ∈ range (m + 1), f i) * ∑ i ∈ range (n + 1), g i =
(∑ i ∈ range m, f i) * ∑ i ∈ range n, g i +
f m * ∑ i ∈ range n, g i + (∑ i ∈ range m, f i) * g n + f m * g n := by
simp only [add_mul, mul_add, add_assoc, sum_range_succ]
end NonUnitalNonAssocSemiring
section NonUnitalSemiring
variable [NonUnitalSemiring α]
lemma dvd_sum (h : ∀ i ∈ s, a ∣ f i) : a ∣ ∑ i ∈ s, f i :=
Multiset.dvd_sum fun y hy => by rcases Multiset.mem_map.1 hy with ⟨x, hx, rfl⟩; exact h x hx
end NonUnitalSemiring
section NonAssocSemiring
variable [NonAssocSemiring α] [DecidableEq ι]
lemma sum_mul_boole (s : Finset ι) (f : ι → α) (i : ι) :
∑ j ∈ s, f j * ite (i = j) 1 0 = ite (i ∈ s) (f i) 0 := by simp
lemma sum_boole_mul (s : Finset ι) (f : ι → α) (i : ι) :
∑ j ∈ s, ite (i = j) 1 0 * f j = ite (i ∈ s) (f i) 0 := by simp
end NonAssocSemiring
section CommSemiring
variable [CommSemiring α]
/-- If `f = g = h` everywhere but at `i`, where `f i = g i + h i`, then the product of `f` over `s`
is the sum of the products of `g` and `h`. -/
theorem prod_add_prod_eq {s : Finset ι} {i : ι} {f g h : ι → α} (hi : i ∈ s)
(h1 : g i + h i = f i) (h2 : ∀ j ∈ s, j ≠ i → g j = f j) (h3 : ∀ j ∈ s, j ≠ i → h j = f j) :
(∏ i ∈ s, g i) + ∏ i ∈ s, h i = ∏ i ∈ s, f i := by
classical
simp_rw [prod_eq_mul_prod_diff_singleton hi, ← h1, right_distrib]
congr 2 <;> apply prod_congr rfl <;> simpa
section DecidableEq
variable [DecidableEq ι]
/-- The product over a sum can be written as a sum over the product of sets, `Finset.Pi`.
`Finset.prod_univ_sum` is an alternative statement when the product is over `univ`. -/
lemma prod_sum (s : Finset ι) (t : ∀ i, Finset (κ i)) (f : ∀ i, κ i → α) :
∏ a ∈ s, ∑ b ∈ t a, f a b = ∑ p ∈ s.pi t, ∏ x ∈ s.attach, f x.1 (p x.1 x.2) := by
classical
induction' s using Finset.induction with a s ha ih
· rw [pi_empty, sum_singleton]
rfl
· have h₁ : ∀ x ∈ t a, ∀ y ∈ t a, x ≠ y →
Disjoint (image (Pi.cons s a x) (pi s t)) (image (Pi.cons s a y) (pi s t)) := by
intro x _ y _ h
simp only [disjoint_iff_ne, mem_image]
rintro _ ⟨p₂, _, eq₂⟩ _ ⟨p₃, _, eq₃⟩ eq
have : Pi.cons s a x p₂ a (mem_insert_self _ _)
= Pi.cons s a y p₃ a (mem_insert_self _ _) := by rw [eq₂, eq₃, eq]
rw [Pi.cons_same, Pi.cons_same] at this
exact h this
rw [prod_insert ha, pi_insert ha, ih, sum_mul, sum_biUnion h₁]
refine sum_congr rfl fun b _ => ?_
have h₂ : ∀ p₁ ∈ pi s t, ∀ p₂ ∈ pi s t, Pi.cons s a b p₁ = Pi.cons s a b p₂ → p₁ = p₂ :=
fun p₁ _ p₂ _ eq => Pi.cons_injective ha eq
rw [sum_image h₂, mul_sum]
refine sum_congr rfl fun g _ => ?_
rw [attach_insert, prod_insert, prod_image]
· simp only [Pi.cons_same]
congr with ⟨v, hv⟩
congr
exact (Pi.cons_ne (by rintro rfl; exact ha hv)).symm
· exact fun _ _ _ _ => Subtype.eq ∘ Subtype.mk.inj
· simpa only [mem_image, mem_attach, Subtype.mk.injEq, true_and,
Subtype.exists, exists_prop, exists_eq_right] using ha
/-- The product over `univ` of a sum can be written as a sum over the product of sets,
`Fintype.piFinset`. `Finset.prod_sum` is an alternative statement when the product is not
over `univ`. -/
lemma prod_univ_sum [Fintype ι] (t : ∀ i, Finset (κ i)) (f : ∀ i, κ i → α) :
∏ i, ∑ j ∈ t i, f i j = ∑ x ∈ piFinset t, ∏ i, f i (x i) := by
simp only [prod_attach_univ, prod_sum, Finset.sum_univ_pi]
lemma sum_prod_piFinset {κ : Type*} [Fintype ι] (s : Finset κ) (g : ι → κ → α) :
∑ f ∈ piFinset fun _ : ι ↦ s, ∏ i, g i (f i) = ∏ i, ∑ j ∈ s, g i j := by
rw [← prod_univ_sum]
lemma sum_pow' (s : Finset ι') (f : ι' → α) (n : ℕ) :
(∑ a ∈ s, f a) ^ n = ∑ p ∈ piFinset fun _i : Fin n ↦ s, ∏ i, f (p i) := by
convert @prod_univ_sum (Fin n) _ _ _ _ _ (fun _i ↦ s) fun _i d ↦ f d; simp
/-- The product of `f a + g a` over all of `s` is the sum over the powerset of `s` of the product of
`f` over a subset `t` times the product of `g` over the complement of `t` -/
theorem prod_add (f g : ι → α) (s : Finset ι) :
∏ i ∈ s, (f i + g i) = ∑ t ∈ s.powerset, (∏ i ∈ t, f i) * ∏ i ∈ s \ t, g i := by
classical
calc
∏ i ∈ s, (f i + g i) =
∏ i ∈ s, ∑ p ∈ ({True, False} : Finset Prop), if p then f i else g i := by simp
_ = ∑ p ∈ (s.pi fun _ => {True, False} : Finset (∀ a ∈ s, Prop)),
∏ a ∈ s.attach, if p a.1 a.2 then f a.1 else g a.1 := prod_sum _ _ _
_ = ∑ t ∈ s.powerset, (∏ a ∈ t, f a) * ∏ a ∈ s \ t, g a :=
sum_bij'
(fun f _ ↦ s.filter fun a ↦ ∃ h : a ∈ s, f a h)
(fun t _ a _ => a ∈ t)
(by simp)
(by simp [Classical.em])
(by simp_rw [mem_filter, Function.funext_iff, eq_iff_iff, mem_pi, mem_insert]; tauto)
(by simp_rw [ext_iff, @mem_filter _ _ (id _), mem_powerset]; tauto)
(fun a _ ↦ by
simp only [prod_ite, filter_attach', prod_map, Function.Embedding.coeFn_mk,
Subtype.map_coe, id_eq, prod_attach, filter_congr_decidable]
congr 2 with x
simp only [mem_filter, mem_sdiff, not_and, not_exists, and_congr_right_iff]
tauto)
end DecidableEq
/-- `∏ i, (f i + g i) = (∏ i, f i) + ∑ i, g i * (∏ j < i, f j + g j) * (∏ j > i, f j)`. -/
theorem prod_add_ordered [LinearOrder ι] (s : Finset ι) (f g : ι → α) :
∏ i ∈ s, (f i + g i) =
(∏ i ∈ s, f i) +
∑ i ∈ s,
g i * (∏ j ∈ s.filter (· < i), (f j + g j)) * ∏ j ∈ s.filter fun j => i < j, f j := by
refine Finset.induction_on_max s (by simp) ?_
clear s
intro a s ha ihs
have ha' : a ∉ s := fun ha' => lt_irrefl a (ha a ha')
rw [prod_insert ha', prod_insert ha', sum_insert ha', filter_insert, if_neg (lt_irrefl a),
filter_true_of_mem ha, ihs, add_mul, mul_add, mul_add, add_assoc]
congr 1
rw [add_comm]
congr 1
· rw [filter_false_of_mem, prod_empty, mul_one]
exact (forall_mem_insert _ _ _).2 ⟨lt_irrefl a, fun i hi => (ha i hi).not_lt⟩
· rw [mul_sum]
refine sum_congr rfl fun i hi => ?_
rw [filter_insert, if_neg (ha i hi).not_lt, filter_insert, if_pos (ha i hi), prod_insert,
mul_left_comm]
exact mt (fun ha => (mem_filter.1 ha).1) ha'
/-- Summing `a^s.card * b^(n-s.card)` over all finite subsets `s` of a `Finset`
gives `(a + b)^s.card`. -/
theorem sum_pow_mul_eq_add_pow (a b : α) (s : Finset ι) :
(∑ t ∈ s.powerset, a ^ t.card * b ^ (s.card - t.card)) = (a + b) ^ s.card := by
classical
rw [← prod_const, prod_add]
refine Finset.sum_congr rfl fun t ht => ?_
rw [prod_const, prod_const, ← card_sdiff (mem_powerset.1 ht)]
/-- Summing `a^s.card * b^(n-s.card)` over all finite subsets `s` of a fintype of cardinality `n`
gives `(a + b)^n`. The "good" proof involves expanding along all coordinates using the fact that
`x^n` is multilinear, but multilinear maps are only available now over rings, so we give instead
a proof reducing to the usual binomial theorem to have a result over semirings. -/
lemma _root_.Fintype.sum_pow_mul_eq_add_pow (ι : Type*) [Fintype ι] (a b : α) :
∑ s : Finset ι, a ^ s.card * b ^ (Fintype.card ι - s.card) = (a + b) ^ Fintype.card ι :=
Finset.sum_pow_mul_eq_add_pow _ _ _
@[norm_cast]
theorem prod_natCast (s : Finset ι) (f : ι → ℕ) : ↑(∏ i ∈ s, f i : ℕ) = ∏ i ∈ s, (f i : α) :=
map_prod (Nat.castRingHom α) f s
end CommSemiring
section CommRing
variable [CommRing α]
/-- `∏ i, (f i - g i) = (∏ i, f i) - ∑ i, g i * (∏ j < i, f j - g j) * (∏ j > i, f j)`. -/
lemma prod_sub_ordered [LinearOrder ι] (s : Finset ι) (f g : ι → α) :
∏ i ∈ s, (f i - g i) =
(∏ i ∈ s, f i) -
∑ i ∈ s,
g i * (∏ j ∈ s.filter (· < i), (f j - g j)) * ∏ j ∈ s.filter fun j => i < j, f j := by
simp only [sub_eq_add_neg]
convert prod_add_ordered s f fun i => -g i
simp
/-- `∏ i, (1 - f i) = 1 - ∑ i, f i * (∏ j < i, 1 - f j)`. This formula is useful in construction of
a partition of unity from a collection of “bump” functions. -/
theorem prod_one_sub_ordered [LinearOrder ι] (s : Finset ι) (f : ι → α) :
∏ i ∈ s, (1 - f i) = 1 - ∑ i ∈ s, f i * ∏ j ∈ s.filter (· < i), (1 - f j) := by
rw [prod_sub_ordered]
simp
theorem prod_range_natCast_sub (n k : ℕ) :
∏ i ∈ range k, (n - i : α) = (∏ i ∈ range k, (n - i) : ℕ) := by
rw [prod_natCast]
rcases le_or_lt k n with hkn | hnk
· exact prod_congr rfl fun i hi => (Nat.cast_sub <| (mem_range.1 hi).le.trans hkn).symm
· rw [← mem_range] at hnk
rw [prod_eq_zero hnk, prod_eq_zero hnk] <;> simp
@[deprecated (since := "2024-05-27")] alias prod_range_cast_nat_sub := prod_range_natCast_sub
end CommRing
section DivisionSemiring
variable [DivisionSemiring α]
lemma sum_div (s : Finset ι) (f : ι → α) (a : α) :
(∑ i ∈ s, f i) / a = ∑ i ∈ s, f i / a := by simp only [div_eq_mul_inv, sum_mul]
end DivisionSemiring
end Finset
open Finset
namespace Fintype
variable {ι κ α : Type*} [Fintype ι] [Fintype κ] [CommSemiring α]
lemma sum_pow (f : ι → α) (n : ℕ) : (∑ a, f a) ^ n = ∑ p : Fin n → ι, ∏ i, f (p i) := by
simp [sum_pow']
variable [DecidableEq ι]
/-- A product of sums can be written as a sum of products. -/
lemma prod_sum {κ : ι → Type*} [∀ i, Fintype (κ i)] (f : ∀ i, κ i → α) :
∏ i, ∑ j, f i j = ∑ x : ∀ i, κ i, ∏ i, f i (x i) := Finset.prod_univ_sum _ _
lemma prod_add (f g : ι → α) : ∏ a, (f a + g a) = ∑ t, (∏ a ∈ t, f a) * ∏ a ∈ tᶜ, g a := by
simpa [compl_eq_univ_sdiff] using Finset.prod_add f g univ
end Fintype
namespace Nat
variable {ι : Type*} {s : Finset ι} {f : ι → ℕ} {n : ℕ}
protected lemma sum_div (hf : ∀ i ∈ s, n ∣ f i) : (∑ i ∈ s, f i) / n = ∑ i ∈ s, f i / n := by
obtain rfl | hn := n.eq_zero_or_pos
· simp
rw [Nat.div_eq_iff_eq_mul_left hn (dvd_sum hf), sum_mul]
refine sum_congr rfl fun s hs ↦ ?_
rw [Nat.div_mul_cancel (hf _ hs)]
@[simp, norm_cast]
lemma cast_list_sum [AddMonoidWithOne β] (s : List ℕ) : (↑s.sum : β) = (s.map (↑)).sum :=
map_list_sum (castAddMonoidHom β) _
@[simp, norm_cast]
lemma cast_list_prod [Semiring β] (s : List ℕ) : (↑s.prod : β) = (s.map (↑)).prod :=
map_list_prod (castRingHom β) _
@[simp, norm_cast]
lemma cast_multiset_sum [AddCommMonoidWithOne β] (s : Multiset ℕ) :
(↑s.sum : β) = (s.map (↑)).sum :=
map_multiset_sum (castAddMonoidHom β) _
@[simp, norm_cast]
lemma cast_multiset_prod [CommSemiring β] (s : Multiset ℕ) : (↑s.prod : β) = (s.map (↑)).prod :=
map_multiset_prod (castRingHom β) _
@[simp, norm_cast]
lemma cast_sum [AddCommMonoidWithOne β] (s : Finset α) (f : α → ℕ) :
↑(∑ x ∈ s, f x : ℕ) = ∑ x ∈ s, (f x : β) :=
map_sum (castAddMonoidHom β) _ _
@[simp, norm_cast]
lemma cast_prod [CommSemiring β] (f : α → ℕ) (s : Finset α) :
(↑(∏ i ∈ s, f i) : β) = ∏ i ∈ s, (f i : β) :=
map_prod (castRingHom β) _ _
end Nat
namespace Int
variable {ι : Type*} {s : Finset ι} {f : ι → ℤ} {n : ℤ}
protected lemma sum_div (hf : ∀ i ∈ s, n ∣ f i) : (∑ i ∈ s, f i) / n = ∑ i ∈ s, f i / n := by
obtain rfl | hn := eq_or_ne n 0
· simp
rw [Int.ediv_eq_iff_eq_mul_left hn (dvd_sum hf), sum_mul]
refine sum_congr rfl fun s hs ↦ ?_
rw [Int.ediv_mul_cancel (hf _ hs)]
@[simp, norm_cast]
lemma cast_list_sum [AddGroupWithOne β] (s : List ℤ) : (↑s.sum : β) = (s.map (↑)).sum :=
map_list_sum (castAddHom β) _
@[simp, norm_cast]
lemma cast_list_prod [Ring β] (s : List ℤ) : (↑s.prod : β) = (s.map (↑)).prod :=
map_list_prod (castRingHom β) _
@[simp, norm_cast]
lemma cast_multiset_sum [AddCommGroupWithOne β] (s : Multiset ℤ) :
(↑s.sum : β) = (s.map (↑)).sum :=
map_multiset_sum (castAddHom β) _
@[simp, norm_cast]
lemma cast_multiset_prod {R : Type*} [CommRing R] (s : Multiset ℤ) :
(↑s.prod : R) = (s.map (↑)).prod :=
map_multiset_prod (castRingHom R) _
@[simp, norm_cast]
lemma cast_sum [AddCommGroupWithOne β] (s : Finset α) (f : α → ℤ) :
↑(∑ x ∈ s, f x : ℤ) = ∑ x ∈ s, (f x : β) :=
map_sum (castAddHom β) _ _
@[simp, norm_cast]
lemma cast_prod {R : Type*} [CommRing R] (f : α → ℤ) (s : Finset α) :
(↑(∏ i ∈ s, f i) : R) = ∏ i ∈ s, (f i : R) :=
map_prod (Int.castRingHom R) _ _
end Int
|
Algebra\BigOperators\RingEquiv.lean | /-
Copyright (c) 2018 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Callum Sutton, Yury Kudryashov
-/
import Mathlib.Algebra.BigOperators.Group.Finset
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Algebra.Ring.Opposite
/-!
# Results about mapping big operators across ring equivalences
-/
namespace RingEquiv
variable {α R S : Type*}
protected theorem map_list_prod [Semiring R] [Semiring S] (f : R ≃+* S) (l : List R) :
f l.prod = (l.map f).prod := map_list_prod f l
protected theorem map_list_sum [NonAssocSemiring R] [NonAssocSemiring S] (f : R ≃+* S)
(l : List R) : f l.sum = (l.map f).sum := map_list_sum f l
/-- An isomorphism into the opposite ring acts on the product by acting on the reversed elements -/
protected theorem unop_map_list_prod [Semiring R] [Semiring S] (f : R ≃+* Sᵐᵒᵖ) (l : List R) :
MulOpposite.unop (f l.prod) = (l.map (MulOpposite.unop ∘ f)).reverse.prod :=
unop_map_list_prod f l
protected theorem map_multiset_prod [CommSemiring R] [CommSemiring S] (f : R ≃+* S)
(s : Multiset R) : f s.prod = (s.map f).prod :=
map_multiset_prod f s
protected theorem map_multiset_sum [NonAssocSemiring R] [NonAssocSemiring S] (f : R ≃+* S)
(s : Multiset R) : f s.sum = (s.map f).sum :=
map_multiset_sum f s
protected theorem map_prod [CommSemiring R] [CommSemiring S] (g : R ≃+* S) (f : α → R)
(s : Finset α) : g (∏ x ∈ s, f x) = ∏ x ∈ s, g (f x) :=
map_prod g f s
protected theorem map_sum [NonAssocSemiring R] [NonAssocSemiring S] (g : R ≃+* S) (f : α → R)
(s : Finset α) : g (∑ x ∈ s, f x) = ∑ x ∈ s, g (f x) :=
map_sum g f s
end RingEquiv
|
Algebra\BigOperators\WithTop.lean | /-
Copyright (c) 2024 Zhouhang Zhou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Zhouhang Zhou, Yaël Dillies
-/
import Mathlib.Algebra.BigOperators.Group.Finset
import Mathlib.Algebra.Order.Ring.WithTop
/-!
# Sums in `WithTop`
This file proves results about finite sums over monoids extended by a bottom or top element.
-/
open Finset
variable {ι α : Type*}
namespace WithTop
section AddCommMonoid
variable [AddCommMonoid α] {s : Finset ι} {f : ι → WithTop α}
@[simp, norm_cast] lemma coe_sum (s : Finset ι) (f : ι → α) :
∑ i ∈ s, f i = ∑ i ∈ s, (f i : WithTop α) := map_sum addHom f s
/-- A sum is infinite iff one term is infinite. -/
lemma sum_eq_top_iff : ∑ i ∈ s, f i = ⊤ ↔ ∃ i ∈ s, f i = ⊤ := by
induction s using Finset.cons_induction <;> simp [*]
variable [LT α]
/-- A sum is finite iff all terms are finite. -/
lemma sum_lt_top_iff : ∑ i ∈ s, f i < ⊤ ↔ ∀ i ∈ s, f i < ⊤ := by
simp only [WithTop.lt_top_iff_ne_top, ne_eq, sum_eq_top_iff, not_exists, not_and]
/-- A sum of finite terms is finite. -/
lemma sum_lt_top (h : ∀ i ∈ s, f i ≠ ⊤) : ∑ i ∈ s, f i < ⊤ :=
sum_lt_top_iff.2 fun i hi ↦ WithTop.lt_top_iff_ne_top.2 (h i hi)
end AddCommMonoid
/-- A product of finite terms is finite. -/
lemma prod_lt_top [CommMonoidWithZero α] [NoZeroDivisors α] [Nontrivial α] [DecidableEq α] [LT α]
{s : Finset ι} {f : ι → WithTop α} (h : ∀ i ∈ s, f i ≠ ⊤) : ∏ i ∈ s, f i < ⊤ :=
prod_induction f (· < ⊤) (fun _ _ h₁ h₂ ↦ mul_lt_top' h₁ h₂) (coe_lt_top 1)
fun a ha ↦ WithTop.lt_top_iff_ne_top.2 (h a ha)
end WithTop
namespace WithBot
section AddCommMonoid
variable [AddCommMonoid α] {s : Finset ι} {f : ι → WithBot α}
@[simp, norm_cast] lemma coe_sum (s : Finset ι) (f : ι → α) :
∑ i ∈ s, f i = ∑ i ∈ s, (f i : WithBot α) := map_sum addHom f s
/-- A sum is infinite iff one term is infinite. -/
lemma sum_eq_bot_iff : ∑ i ∈ s, f i = ⊥ ↔ ∃ i ∈ s, f i = ⊥ := by
induction s using Finset.cons_induction <;> simp [*]
variable [LT α]
/-- A sum is finite iff all terms are finite. -/
lemma bot_lt_sum_iff : ⊥ < ∑ i ∈ s, f i ↔ ∀ i ∈ s, ⊥ < f i := by
simp only [WithBot.bot_lt_iff_ne_bot, ne_eq, sum_eq_bot_iff, not_exists, not_and]
/-- A sum of finite terms is finite. -/
lemma sum_lt_bot (h : ∀ i ∈ s, f i ≠ ⊥) : ⊥ < ∑ i ∈ s, f i :=
bot_lt_sum_iff.2 fun i hi ↦ WithBot.bot_lt_iff_ne_bot.2 (h i hi)
end AddCommMonoid
/-- A product of finite terms is finite. -/
lemma prod_lt_bot [CommMonoidWithZero α] [NoZeroDivisors α] [Nontrivial α] [DecidableEq α] [LT α]
{s : Finset ι} {f : ι → WithBot α} (h : ∀ i ∈ s, f i ≠ ⊥) : ⊥ < ∏ i ∈ s, f i :=
prod_induction f (⊥ < ·) (fun _ _ h₁ h₂ ↦ bot_lt_mul' h₁ h₂) (bot_lt_coe 1)
fun a ha ↦ WithBot.bot_lt_iff_ne_bot.2 (h a ha)
end WithBot
|
Algebra\BigOperators\Group\Finset.lean | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl
-/
import Mathlib.Algebra.Group.Indicator
import Mathlib.Data.Finset.Piecewise
import Mathlib.Data.Finset.Preimage
import Mathlib.Data.Finset.Sym
import Mathlib.Data.Sym.Sym2.Order
/-!
# Big operators
In this file we define products and sums indexed by finite sets (specifically, `Finset`).
## Notation
We introduce the following notation.
Let `s` be a `Finset α`, and `f : α → β` a function.
* `∏ x ∈ s, f x` is notation for `Finset.prod s f` (assuming `β` is a `CommMonoid`)
* `∑ x ∈ s, f x` is notation for `Finset.sum s f` (assuming `β` is an `AddCommMonoid`)
* `∏ x, f x` is notation for `Finset.prod Finset.univ f`
(assuming `α` is a `Fintype` and `β` is a `CommMonoid`)
* `∑ x, f x` is notation for `Finset.sum Finset.univ f`
(assuming `α` is a `Fintype` and `β` is an `AddCommMonoid`)
## Implementation Notes
The first arguments in all definitions and lemmas is the codomain of the function of the big
operator. This is necessary for the heuristic in `@[to_additive]`.
See the documentation of `to_additive.attr` for more information.
-/
-- TODO
-- assert_not_exists AddCommMonoidWithOne
assert_not_exists MonoidWithZero
assert_not_exists MulAction
variable {ι κ α β γ : Type*}
open Fin Function
namespace Finset
/-- `∏ x ∈ s, f x` is the product of `f x` as `x` ranges over the elements of the finite set `s`.
When the index type is a `Fintype`, the notation `∏ x, f x`, is a shorthand for
`∏ x ∈ Finset.univ, f x`. -/
@[to_additive "`∑ x ∈ s, f x` is the sum of `f x` as `x` ranges over the elements
of the finite set `s`.
When the index type is a `Fintype`, the notation `∑ x, f x`, is a shorthand for
`∑ x ∈ Finset.univ, f x`."]
protected def prod [CommMonoid β] (s : Finset α) (f : α → β) : β :=
(s.1.map f).prod
@[to_additive (attr := simp)]
theorem prod_mk [CommMonoid β] (s : Multiset α) (hs : s.Nodup) (f : α → β) :
(⟨s, hs⟩ : Finset α).prod f = (s.map f).prod :=
rfl
@[to_additive (attr := simp)]
theorem prod_val [CommMonoid α] (s : Finset α) : s.1.prod = s.prod id := by
rw [Finset.prod, Multiset.map_id]
end Finset
library_note "operator precedence of big operators"/--
There is no established mathematical convention
for the operator precedence of big operators like `∏` and `∑`.
We will have to make a choice.
Online discussions, such as https://math.stackexchange.com/q/185538/30839
seem to suggest that `∏` and `∑` should have the same precedence,
and that this should be somewhere between `*` and `+`.
The latter have precedence levels `70` and `65` respectively,
and we therefore choose the level `67`.
In practice, this means that parentheses should be placed as follows:
```lean
∑ k ∈ K, (a k + b k) = ∑ k ∈ K, a k + ∑ k ∈ K, b k →
∏ k ∈ K, a k * b k = (∏ k ∈ K, a k) * (∏ k ∈ K, b k)
```
(Example taken from page 490 of Knuth's *Concrete Mathematics*.)
-/
namespace BigOperators
open Batteries.ExtendedBinder Lean Meta
-- TODO: contribute this modification back to `extBinder`
/-- A `bigOpBinder` is like an `extBinder` and has the form `x`, `x : ty`, or `x pred`
where `pred` is a `binderPred` like `< 2`.
Unlike `extBinder`, `x` is a term. -/
syntax bigOpBinder := term:max ((" : " term) <|> binderPred)?
/-- A BigOperator binder in parentheses -/
syntax bigOpBinderParenthesized := " (" bigOpBinder ")"
/-- A list of parenthesized binders -/
syntax bigOpBinderCollection := bigOpBinderParenthesized+
/-- A single (unparenthesized) binder, or a list of parenthesized binders -/
syntax bigOpBinders := bigOpBinderCollection <|> (ppSpace bigOpBinder)
/-- Collects additional binder/Finset pairs for the given `bigOpBinder`.
Note: this is not extensible at the moment, unlike the usual `bigOpBinder` expansions. -/
def processBigOpBinder (processed : (Array (Term × Term)))
(binder : TSyntax ``bigOpBinder) : MacroM (Array (Term × Term)) :=
set_option hygiene false in
withRef binder do
match binder with
| `(bigOpBinder| $x:term) =>
match x with
| `(($a + $b = $n)) => -- Maybe this is too cute.
return processed |>.push (← `(⟨$a, $b⟩), ← `(Finset.Nat.antidiagonal $n))
| _ => return processed |>.push (x, ← ``(Finset.univ))
| `(bigOpBinder| $x : $t) => return processed |>.push (x, ← ``((Finset.univ : Finset $t)))
| `(bigOpBinder| $x ∈ $s) => return processed |>.push (x, ← `(finset% $s))
| `(bigOpBinder| $x < $n) => return processed |>.push (x, ← `(Finset.Iio $n))
| `(bigOpBinder| $x ≤ $n) => return processed |>.push (x, ← `(Finset.Iic $n))
| `(bigOpBinder| $x > $n) => return processed |>.push (x, ← `(Finset.Ioi $n))
| `(bigOpBinder| $x ≥ $n) => return processed |>.push (x, ← `(Finset.Ici $n))
| _ => Macro.throwUnsupported
/-- Collects the binder/Finset pairs for the given `bigOpBinders`. -/
def processBigOpBinders (binders : TSyntax ``bigOpBinders) :
MacroM (Array (Term × Term)) :=
match binders with
| `(bigOpBinders| $b:bigOpBinder) => processBigOpBinder #[] b
| `(bigOpBinders| $[($bs:bigOpBinder)]*) => bs.foldlM processBigOpBinder #[]
| _ => Macro.throwUnsupported
/-- Collect the binderIdents into a `⟨...⟩` expression. -/
def bigOpBindersPattern (processed : (Array (Term × Term))) :
MacroM Term := do
let ts := processed.map Prod.fst
if ts.size == 1 then
return ts[0]!
else
`(⟨$ts,*⟩)
/-- Collect the terms into a product of sets. -/
def bigOpBindersProd (processed : (Array (Term × Term))) :
MacroM Term := do
if processed.isEmpty then
`((Finset.univ : Finset Unit))
else if processed.size == 1 then
return processed[0]!.2
else
processed.foldrM (fun s p => `(SProd.sprod $(s.2) $p)) processed.back.2
(start := processed.size - 1)
/--
- `∑ x, f x` is notation for `Finset.sum Finset.univ f`. It is the sum of `f x`,
where `x` ranges over the finite domain of `f`.
- `∑ x ∈ s, f x` is notation for `Finset.sum s f`. It is the sum of `f x`,
where `x` ranges over the finite set `s` (either a `Finset` or a `Set` with a `Fintype` instance).
- `∑ x ∈ s with p x, f x` is notation for `Finset.sum (Finset.filter p s) f`.
- `∑ (x ∈ s) (y ∈ t), f x y` is notation for `Finset.sum (s ×ˢ t) (fun ⟨x, y⟩ ↦ f x y)`.
These support destructuring, for example `∑ ⟨x, y⟩ ∈ s ×ˢ t, f x y`.
Notation: `"∑" bigOpBinders* ("with" term)? "," term` -/
syntax (name := bigsum) "∑ " bigOpBinders ("with " term)? ", " term:67 : term
/--
- `∏ x, f x` is notation for `Finset.prod Finset.univ f`. It is the product of `f x`,
where `x` ranges over the finite domain of `f`.
- `∏ x ∈ s, f x` is notation for `Finset.prod s f`. It is the product of `f x`,
where `x` ranges over the finite set `s` (either a `Finset` or a `Set` with a `Fintype` instance).
- `∏ x ∈ s with p x, f x` is notation for `Finset.prod (Finset.filter p s) f`.
- `∏ (x ∈ s) (y ∈ t), f x y` is notation for `Finset.prod (s ×ˢ t) (fun ⟨x, y⟩ ↦ f x y)`.
These support destructuring, for example `∏ ⟨x, y⟩ ∈ s ×ˢ t, f x y`.
Notation: `"∏" bigOpBinders* ("with" term)? "," term` -/
syntax (name := bigprod) "∏ " bigOpBinders ("with " term)? ", " term:67 : term
macro_rules (kind := bigsum)
| `(∑ $bs:bigOpBinders $[with $p?]?, $v) => do
let processed ← processBigOpBinders bs
let x ← bigOpBindersPattern processed
let s ← bigOpBindersProd processed
match p? with
| some p => `(Finset.sum (Finset.filter (fun $x ↦ $p) $s) (fun $x ↦ $v))
| none => `(Finset.sum $s (fun $x ↦ $v))
macro_rules (kind := bigprod)
| `(∏ $bs:bigOpBinders $[with $p?]?, $v) => do
let processed ← processBigOpBinders bs
let x ← bigOpBindersPattern processed
let s ← bigOpBindersProd processed
match p? with
| some p => `(Finset.prod (Finset.filter (fun $x ↦ $p) $s) (fun $x ↦ $v))
| none => `(Finset.prod $s (fun $x ↦ $v))
/-- (Deprecated, use `∑ x ∈ s, f x`)
`∑ x in s, f x` is notation for `Finset.sum s f`. It is the sum of `f x`,
where `x` ranges over the finite set `s`. -/
syntax (name := bigsumin) "∑ " extBinder " in " term ", " term:67 : term
macro_rules (kind := bigsumin)
| `(∑ $x:ident in $s, $r) => `(∑ $x:ident ∈ $s, $r)
| `(∑ $x:ident : $t in $s, $r) => `(∑ $x:ident ∈ ($s : Finset $t), $r)
/-- (Deprecated, use `∏ x ∈ s, f x`)
`∏ x in s, f x` is notation for `Finset.prod s f`. It is the product of `f x`,
where `x` ranges over the finite set `s`. -/
syntax (name := bigprodin) "∏ " extBinder " in " term ", " term:67 : term
macro_rules (kind := bigprodin)
| `(∏ $x:ident in $s, $r) => `(∏ $x:ident ∈ $s, $r)
| `(∏ $x:ident : $t in $s, $r) => `(∏ $x:ident ∈ ($s : Finset $t), $r)
open Lean Meta Parser.Term PrettyPrinter.Delaborator SubExpr
open Batteries.ExtendedBinder
/-- Delaborator for `Finset.prod`. The `pp.piBinderTypes` option controls whether
to show the domain type when the product is over `Finset.univ`. -/
@[delab app.Finset.prod] def delabFinsetProd : Delab :=
whenPPOption getPPNotation <| withOverApp 5 <| do
let #[_, _, _, s, f] := (← getExpr).getAppArgs | failure
guard <| f.isLambda
let ppDomain ← getPPOption getPPPiBinderTypes
let (i, body) ← withAppArg <| withBindingBodyUnusedName fun i => do
return (i, ← delab)
if s.isAppOfArity ``Finset.univ 2 then
let binder ←
if ppDomain then
let ty ← withNaryArg 0 delab
`(bigOpBinder| $(.mk i):ident : $ty)
else
`(bigOpBinder| $(.mk i):ident)
`(∏ $binder:bigOpBinder, $body)
else
let ss ← withNaryArg 3 <| delab
`(∏ $(.mk i):ident ∈ $ss, $body)
/-- Delaborator for `Finset.sum`. The `pp.piBinderTypes` option controls whether
to show the domain type when the sum is over `Finset.univ`. -/
@[delab app.Finset.sum] def delabFinsetSum : Delab :=
whenPPOption getPPNotation <| withOverApp 5 <| do
let #[_, _, _, s, f] := (← getExpr).getAppArgs | failure
guard <| f.isLambda
let ppDomain ← getPPOption getPPPiBinderTypes
let (i, body) ← withAppArg <| withBindingBodyUnusedName fun i => do
return (i, ← delab)
if s.isAppOfArity ``Finset.univ 2 then
let binder ←
if ppDomain then
let ty ← withNaryArg 0 delab
`(bigOpBinder| $(.mk i):ident : $ty)
else
`(bigOpBinder| $(.mk i):ident)
`(∑ $binder:bigOpBinder, $body)
else
let ss ← withNaryArg 3 <| delab
`(∑ $(.mk i):ident ∈ $ss, $body)
end BigOperators
namespace Finset
variable {s s₁ s₂ : Finset α} {a : α} {f g : α → β}
@[to_additive]
theorem prod_eq_multiset_prod [CommMonoid β] (s : Finset α) (f : α → β) :
∏ x ∈ s, f x = (s.1.map f).prod :=
rfl
@[to_additive (attr := simp)]
lemma prod_map_val [CommMonoid β] (s : Finset α) (f : α → β) : (s.1.map f).prod = ∏ a ∈ s, f a :=
rfl
@[to_additive]
theorem prod_eq_fold [CommMonoid β] (s : Finset α) (f : α → β) :
∏ x ∈ s, f x = s.fold ((· * ·) : β → β → β) 1 f :=
rfl
@[simp]
theorem sum_multiset_singleton (s : Finset α) : (s.sum fun x => {x}) = s.val := by
simp only [sum_eq_multiset_sum, Multiset.sum_map_singleton]
end Finset
@[to_additive (attr := simp)]
theorem map_prod [CommMonoid β] [CommMonoid γ] {G : Type*} [FunLike G β γ] [MonoidHomClass G β γ]
(g : G) (f : α → β) (s : Finset α) : g (∏ x ∈ s, f x) = ∏ x ∈ s, g (f x) := by
simp only [Finset.prod_eq_multiset_prod, map_multiset_prod, Multiset.map_map]; rfl
@[to_additive]
theorem MonoidHom.coe_finset_prod [MulOneClass β] [CommMonoid γ] (f : α → β →* γ) (s : Finset α) :
⇑(∏ x ∈ s, f x) = ∏ x ∈ s, ⇑(f x) :=
map_prod (MonoidHom.coeFn β γ) _ _
/-- See also `Finset.prod_apply`, with the same conclusion but with the weaker hypothesis
`f : α → β → γ` -/
@[to_additive (attr := simp)
"See also `Finset.sum_apply`, with the same conclusion but with the weaker hypothesis
`f : α → β → γ`"]
theorem MonoidHom.finset_prod_apply [MulOneClass β] [CommMonoid γ] (f : α → β →* γ) (s : Finset α)
(b : β) : (∏ x ∈ s, f x) b = ∏ x ∈ s, f x b :=
map_prod (MonoidHom.eval b) _ _
variable {s s₁ s₂ : Finset α} {a : α} {f g : α → β}
namespace Finset
section CommMonoid
variable [CommMonoid β]
@[to_additive (attr := simp)]
theorem prod_empty : ∏ x ∈ ∅, f x = 1 :=
rfl
@[to_additive]
theorem prod_of_isEmpty [IsEmpty α] (s : Finset α) : ∏ i ∈ s, f i = 1 := by
rw [eq_empty_of_isEmpty s, prod_empty]
@[deprecated (since := "2024-06-11")] alias prod_of_empty := prod_of_isEmpty
@[deprecated (since := "2024-06-11")] alias sum_of_empty := sum_of_isEmpty
@[to_additive (attr := simp)]
theorem prod_cons (h : a ∉ s) : ∏ x ∈ cons a s h, f x = f a * ∏ x ∈ s, f x :=
fold_cons h
@[to_additive (attr := simp)]
theorem prod_insert [DecidableEq α] : a ∉ s → ∏ x ∈ insert a s, f x = f a * ∏ x ∈ s, f x :=
fold_insert
/-- The product of `f` over `insert a s` is the same as
the product over `s`, as long as `a` is in `s` or `f a = 1`. -/
@[to_additive (attr := simp) "The sum of `f` over `insert a s` is the same as
the sum over `s`, as long as `a` is in `s` or `f a = 0`."]
theorem prod_insert_of_eq_one_if_not_mem [DecidableEq α] (h : a ∉ s → f a = 1) :
∏ x ∈ insert a s, f x = ∏ x ∈ s, f x := by
by_cases hm : a ∈ s
· simp_rw [insert_eq_of_mem hm]
· rw [prod_insert hm, h hm, one_mul]
/-- The product of `f` over `insert a s` is the same as
the product over `s`, as long as `f a = 1`. -/
@[to_additive (attr := simp) "The sum of `f` over `insert a s` is the same as
the sum over `s`, as long as `f a = 0`."]
theorem prod_insert_one [DecidableEq α] (h : f a = 1) : ∏ x ∈ insert a s, f x = ∏ x ∈ s, f x :=
prod_insert_of_eq_one_if_not_mem fun _ => h
@[to_additive]
theorem prod_insert_div {M : Type*} [CommGroup M] [DecidableEq α] (ha : a ∉ s) {f : α → M} :
(∏ x ∈ insert a s, f x) / f a = ∏ x ∈ s, f x := by simp [ha]
@[to_additive (attr := simp)]
theorem prod_singleton (f : α → β) (a : α) : ∏ x ∈ singleton a, f x = f a :=
Eq.trans fold_singleton <| mul_one _
@[to_additive]
theorem prod_pair [DecidableEq α] {a b : α} (h : a ≠ b) :
(∏ x ∈ ({a, b} : Finset α), f x) = f a * f b := by
rw [prod_insert (not_mem_singleton.2 h), prod_singleton]
@[to_additive (attr := simp)]
theorem prod_const_one : (∏ _x ∈ s, (1 : β)) = 1 := by
simp only [Finset.prod, Multiset.map_const', Multiset.prod_replicate, one_pow]
@[to_additive (attr := simp)]
theorem prod_image [DecidableEq α] {s : Finset γ} {g : γ → α} :
(∀ x ∈ s, ∀ y ∈ s, g x = g y → x = y) → ∏ x ∈ s.image g, f x = ∏ x ∈ s, f (g x) :=
fold_image
@[to_additive (attr := simp)]
theorem prod_map (s : Finset α) (e : α ↪ γ) (f : γ → β) :
∏ x ∈ s.map e, f x = ∏ x ∈ s, f (e x) := by
rw [Finset.prod, Finset.map_val, Multiset.map_map]; rfl
@[to_additive]
lemma prod_attach (s : Finset α) (f : α → β) : ∏ x ∈ s.attach, f x = ∏ x ∈ s, f x := by
classical rw [← prod_image Subtype.coe_injective.injOn, attach_image_val]
@[to_additive (attr := congr)]
theorem prod_congr (h : s₁ = s₂) : (∀ x ∈ s₂, f x = g x) → s₁.prod f = s₂.prod g := by
rw [h]; exact fold_congr
@[to_additive]
theorem prod_eq_one {f : α → β} {s : Finset α} (h : ∀ x ∈ s, f x = 1) : ∏ x ∈ s, f x = 1 :=
calc
∏ x ∈ s, f x = ∏ _x ∈ s, 1 := Finset.prod_congr rfl h
_ = 1 := Finset.prod_const_one
@[to_additive]
theorem prod_disjUnion (h) :
∏ x ∈ s₁.disjUnion s₂ h, f x = (∏ x ∈ s₁, f x) * ∏ x ∈ s₂, f x := by
refine Eq.trans ?_ (fold_disjUnion h)
rw [one_mul]
rfl
@[to_additive]
theorem prod_disjiUnion (s : Finset ι) (t : ι → Finset α) (h) :
∏ x ∈ s.disjiUnion t h, f x = ∏ i ∈ s, ∏ x ∈ t i, f x := by
refine Eq.trans ?_ (fold_disjiUnion h)
dsimp [Finset.prod, Multiset.prod, Multiset.fold, Finset.disjUnion, Finset.fold]
congr
exact prod_const_one.symm
@[to_additive]
theorem prod_union_inter [DecidableEq α] :
(∏ x ∈ s₁ ∪ s₂, f x) * ∏ x ∈ s₁ ∩ s₂, f x = (∏ x ∈ s₁, f x) * ∏ x ∈ s₂, f x :=
fold_union_inter
@[to_additive]
theorem prod_union [DecidableEq α] (h : Disjoint s₁ s₂) :
∏ x ∈ s₁ ∪ s₂, f x = (∏ x ∈ s₁, f x) * ∏ x ∈ s₂, f x := by
rw [← prod_union_inter, disjoint_iff_inter_eq_empty.mp h]; exact (mul_one _).symm
@[to_additive]
theorem prod_filter_mul_prod_filter_not
(s : Finset α) (p : α → Prop) [DecidablePred p] [∀ x, Decidable (¬p x)] (f : α → β) :
(∏ x ∈ s.filter p, f x) * ∏ x ∈ s.filter fun x => ¬p x, f x = ∏ x ∈ s, f x := by
have := Classical.decEq α
rw [← prod_union (disjoint_filter_filter_neg s s p), filter_union_filter_neg_eq]
section ToList
@[to_additive (attr := simp)]
theorem prod_to_list (s : Finset α) (f : α → β) : (s.toList.map f).prod = s.prod f := by
rw [Finset.prod, ← Multiset.prod_coe, ← Multiset.map_coe, Finset.coe_toList]
end ToList
@[to_additive]
theorem _root_.Equiv.Perm.prod_comp (σ : Equiv.Perm α) (s : Finset α) (f : α → β)
(hs : { a | σ a ≠ a } ⊆ s) : (∏ x ∈ s, f (σ x)) = ∏ x ∈ s, f x := by
convert (prod_map s σ.toEmbedding f).symm
exact (map_perm hs).symm
@[to_additive]
theorem _root_.Equiv.Perm.prod_comp' (σ : Equiv.Perm α) (s : Finset α) (f : α → α → β)
(hs : { a | σ a ≠ a } ⊆ s) : (∏ x ∈ s, f (σ x) x) = ∏ x ∈ s, f x (σ.symm x) := by
convert σ.prod_comp s (fun x => f x (σ.symm x)) hs
rw [Equiv.symm_apply_apply]
/-- A product over all subsets of `s ∪ {x}` is obtained by multiplying the product over all subsets
of `s`, and over all subsets of `s` to which one adds `x`. -/
@[to_additive "A sum over all subsets of `s ∪ {x}` is obtained by summing the sum over all subsets
of `s`, and over all subsets of `s` to which one adds `x`."]
lemma prod_powerset_insert [DecidableEq α] (ha : a ∉ s) (f : Finset α → β) :
∏ t ∈ (insert a s).powerset, f t =
(∏ t ∈ s.powerset, f t) * ∏ t ∈ s.powerset, f (insert a t) := by
rw [powerset_insert, prod_union, prod_image]
· exact insert_erase_invOn.2.injOn.mono fun t ht ↦ not_mem_mono (mem_powerset.1 ht) ha
· aesop (add simp [disjoint_left, insert_subset_iff])
/-- A product over all subsets of `s ∪ {x}` is obtained by multiplying the product over all subsets
of `s`, and over all subsets of `s` to which one adds `x`. -/
@[to_additive "A sum over all subsets of `s ∪ {x}` is obtained by summing the sum over all subsets
of `s`, and over all subsets of `s` to which one adds `x`."]
lemma prod_powerset_cons (ha : a ∉ s) (f : Finset α → β) :
∏ t ∈ (s.cons a ha).powerset, f t = (∏ t ∈ s.powerset, f t) *
∏ t ∈ s.powerset.attach, f (cons a t $ not_mem_mono (mem_powerset.1 t.2) ha) := by
classical
simp_rw [cons_eq_insert]
rw [prod_powerset_insert ha, prod_attach _ fun t ↦ f (insert a t)]
/-- A product over `powerset s` is equal to the double product over sets of subsets of `s` with
`card s = k`, for `k = 1, ..., card s`. -/
@[to_additive "A sum over `powerset s` is equal to the double sum over sets of subsets of `s` with
`card s = k`, for `k = 1, ..., card s`"]
lemma prod_powerset (s : Finset α) (f : Finset α → β) :
∏ t ∈ powerset s, f t = ∏ j ∈ range (card s + 1), ∏ t ∈ powersetCard j s, f t := by
rw [powerset_card_disjiUnion, prod_disjiUnion]
end CommMonoid
end Finset
section
open Finset
variable [Fintype α] [CommMonoid β]
@[to_additive]
theorem IsCompl.prod_mul_prod {s t : Finset α} (h : IsCompl s t) (f : α → β) :
(∏ i ∈ s, f i) * ∏ i ∈ t, f i = ∏ i, f i :=
(Finset.prod_disjUnion h.disjoint).symm.trans <| by
classical rw [Finset.disjUnion_eq_union, ← Finset.sup_eq_union, h.sup_eq_top]; rfl
end
namespace Finset
section CommMonoid
variable [CommMonoid β]
/-- Multiplying the products of a function over `s` and over `sᶜ` gives the whole product.
For a version expressed with subtypes, see `Fintype.prod_subtype_mul_prod_subtype`. -/
@[to_additive "Adding the sums of a function over `s` and over `sᶜ` gives the whole sum.
For a version expressed with subtypes, see `Fintype.sum_subtype_add_sum_subtype`. "]
theorem prod_mul_prod_compl [Fintype α] [DecidableEq α] (s : Finset α) (f : α → β) :
(∏ i ∈ s, f i) * ∏ i ∈ sᶜ, f i = ∏ i, f i :=
IsCompl.prod_mul_prod isCompl_compl f
@[to_additive]
theorem prod_compl_mul_prod [Fintype α] [DecidableEq α] (s : Finset α) (f : α → β) :
(∏ i ∈ sᶜ, f i) * ∏ i ∈ s, f i = ∏ i, f i :=
(@isCompl_compl _ s _).symm.prod_mul_prod f
@[to_additive]
theorem prod_sdiff [DecidableEq α] (h : s₁ ⊆ s₂) :
(∏ x ∈ s₂ \ s₁, f x) * ∏ x ∈ s₁, f x = ∏ x ∈ s₂, f x := by
rw [← prod_union sdiff_disjoint, sdiff_union_of_subset h]
@[to_additive]
theorem prod_subset_one_on_sdiff [DecidableEq α] (h : s₁ ⊆ s₂) (hg : ∀ x ∈ s₂ \ s₁, g x = 1)
(hfg : ∀ x ∈ s₁, f x = g x) : ∏ i ∈ s₁, f i = ∏ i ∈ s₂, g i := by
rw [← prod_sdiff h, prod_eq_one hg, one_mul]
exact prod_congr rfl hfg
@[to_additive]
theorem prod_subset (h : s₁ ⊆ s₂) (hf : ∀ x ∈ s₂, x ∉ s₁ → f x = 1) :
∏ x ∈ s₁, f x = ∏ x ∈ s₂, f x :=
haveI := Classical.decEq α
prod_subset_one_on_sdiff h (by simpa) fun _ _ => rfl
@[to_additive (attr := simp)]
theorem prod_disj_sum (s : Finset α) (t : Finset γ) (f : α ⊕ γ → β) :
∏ x ∈ s.disjSum t, f x = (∏ x ∈ s, f (Sum.inl x)) * ∏ x ∈ t, f (Sum.inr x) := by
rw [← map_inl_disjUnion_map_inr, prod_disjUnion, prod_map, prod_map]
rfl
@[to_additive]
theorem prod_sum_elim (s : Finset α) (t : Finset γ) (f : α → β) (g : γ → β) :
∏ x ∈ s.disjSum t, Sum.elim f g x = (∏ x ∈ s, f x) * ∏ x ∈ t, g x := by simp
@[to_additive]
theorem prod_biUnion [DecidableEq α] {s : Finset γ} {t : γ → Finset α}
(hs : Set.PairwiseDisjoint (↑s) t) : ∏ x ∈ s.biUnion t, f x = ∏ x ∈ s, ∏ i ∈ t x, f i := by
rw [← disjiUnion_eq_biUnion _ _ hs, prod_disjiUnion]
/-- Product over a sigma type equals the product of fiberwise products. For rewriting
in the reverse direction, use `Finset.prod_sigma'`. -/
@[to_additive "Sum over a sigma type equals the sum of fiberwise sums. For rewriting
in the reverse direction, use `Finset.sum_sigma'`"]
theorem prod_sigma {σ : α → Type*} (s : Finset α) (t : ∀ a, Finset (σ a)) (f : Sigma σ → β) :
∏ x ∈ s.sigma t, f x = ∏ a ∈ s, ∏ s ∈ t a, f ⟨a, s⟩ := by
simp_rw [← disjiUnion_map_sigma_mk, prod_disjiUnion, prod_map, Function.Embedding.sigmaMk_apply]
@[to_additive]
theorem prod_sigma' {σ : α → Type*} (s : Finset α) (t : ∀ a, Finset (σ a)) (f : ∀ a, σ a → β) :
(∏ a ∈ s, ∏ s ∈ t a, f a s) = ∏ x ∈ s.sigma t, f x.1 x.2 :=
Eq.symm <| prod_sigma s t fun x => f x.1 x.2
section bij
variable {ι κ α : Type*} [CommMonoid α] {s : Finset ι} {t : Finset κ} {f : ι → α} {g : κ → α}
/-- Reorder a product.
The difference with `Finset.prod_bij'` is that the bijection is specified as a surjective injection,
rather than by an inverse function.
The difference with `Finset.prod_nbij` is that the bijection is allowed to use membership of the
domain of the product, rather than being a non-dependent function. -/
@[to_additive "Reorder a sum.
The difference with `Finset.sum_bij'` is that the bijection is specified as a surjective injection,
rather than by an inverse function.
The difference with `Finset.sum_nbij` is that the bijection is allowed to use membership of the
domain of the sum, rather than being a non-dependent function."]
theorem prod_bij (i : ∀ a ∈ s, κ) (hi : ∀ a ha, i a ha ∈ t)
(i_inj : ∀ a₁ ha₁ a₂ ha₂, i a₁ ha₁ = i a₂ ha₂ → a₁ = a₂)
(i_surj : ∀ b ∈ t, ∃ a ha, i a ha = b) (h : ∀ a ha, f a = g (i a ha)) :
∏ x ∈ s, f x = ∏ x ∈ t, g x :=
congr_arg Multiset.prod (Multiset.map_eq_map_of_bij_of_nodup f g s.2 t.2 i hi i_inj i_surj h)
/-- Reorder a product.
The difference with `Finset.prod_bij` is that the bijection is specified with an inverse, rather
than as a surjective injection.
The difference with `Finset.prod_nbij'` is that the bijection and its inverse are allowed to use
membership of the domains of the products, rather than being non-dependent functions. -/
@[to_additive "Reorder a sum.
The difference with `Finset.sum_bij` is that the bijection is specified with an inverse, rather than
as a surjective injection.
The difference with `Finset.sum_nbij'` is that the bijection and its inverse are allowed to use
membership of the domains of the sums, rather than being non-dependent functions."]
theorem prod_bij' (i : ∀ a ∈ s, κ) (j : ∀ a ∈ t, ι) (hi : ∀ a ha, i a ha ∈ t)
(hj : ∀ a ha, j a ha ∈ s) (left_inv : ∀ a ha, j (i a ha) (hi a ha) = a)
(right_inv : ∀ a ha, i (j a ha) (hj a ha) = a) (h : ∀ a ha, f a = g (i a ha)) :
∏ x ∈ s, f x = ∏ x ∈ t, g x := by
refine prod_bij i hi (fun a1 h1 a2 h2 eq ↦ ?_) (fun b hb ↦ ⟨_, hj b hb, right_inv b hb⟩) h
rw [← left_inv a1 h1, ← left_inv a2 h2]
simp only [eq]
/-- Reorder a product.
The difference with `Finset.prod_nbij'` is that the bijection is specified as a surjective
injection, rather than by an inverse function.
The difference with `Finset.prod_bij` is that the bijection is a non-dependent function, rather than
being allowed to use membership of the domain of the product. -/
@[to_additive "Reorder a sum.
The difference with `Finset.sum_nbij'` is that the bijection is specified as a surjective injection,
rather than by an inverse function.
The difference with `Finset.sum_bij` is that the bijection is a non-dependent function, rather than
being allowed to use membership of the domain of the sum."]
lemma prod_nbij (i : ι → κ) (hi : ∀ a ∈ s, i a ∈ t) (i_inj : (s : Set ι).InjOn i)
(i_surj : (s : Set ι).SurjOn i t) (h : ∀ a ∈ s, f a = g (i a)) :
∏ x ∈ s, f x = ∏ x ∈ t, g x :=
prod_bij (fun a _ ↦ i a) hi i_inj (by simpa using i_surj) h
/-- Reorder a product.
The difference with `Finset.prod_nbij` is that the bijection is specified with an inverse, rather
than as a surjective injection.
The difference with `Finset.prod_bij'` is that the bijection and its inverse are non-dependent
functions, rather than being allowed to use membership of the domains of the products.
The difference with `Finset.prod_equiv` is that bijectivity is only required to hold on the domains
of the products, rather than on the entire types.
-/
@[to_additive "Reorder a sum.
The difference with `Finset.sum_nbij` is that the bijection is specified with an inverse, rather
than as a surjective injection.
The difference with `Finset.sum_bij'` is that the bijection and its inverse are non-dependent
functions, rather than being allowed to use membership of the domains of the sums.
The difference with `Finset.sum_equiv` is that bijectivity is only required to hold on the domains
of the sums, rather than on the entire types."]
lemma prod_nbij' (i : ι → κ) (j : κ → ι) (hi : ∀ a ∈ s, i a ∈ t) (hj : ∀ a ∈ t, j a ∈ s)
(left_inv : ∀ a ∈ s, j (i a) = a) (right_inv : ∀ a ∈ t, i (j a) = a)
(h : ∀ a ∈ s, f a = g (i a)) : ∏ x ∈ s, f x = ∏ x ∈ t, g x :=
prod_bij' (fun a _ ↦ i a) (fun b _ ↦ j b) hi hj left_inv right_inv h
/-- Specialization of `Finset.prod_nbij'` that automatically fills in most arguments.
See `Fintype.prod_equiv` for the version where `s` and `t` are `univ`. -/
@[to_additive "`Specialization of `Finset.sum_nbij'` that automatically fills in most arguments.
See `Fintype.sum_equiv` for the version where `s` and `t` are `univ`."]
lemma prod_equiv (e : ι ≃ κ) (hst : ∀ i, i ∈ s ↔ e i ∈ t) (hfg : ∀ i ∈ s, f i = g (e i)) :
∏ i ∈ s, f i = ∏ i ∈ t, g i := by refine prod_nbij' e e.symm ?_ ?_ ?_ ?_ hfg <;> simp [hst]
/-- Specialization of `Finset.prod_bij` that automatically fills in most arguments.
See `Fintype.prod_bijective` for the version where `s` and `t` are `univ`. -/
@[to_additive "`Specialization of `Finset.sum_bij` that automatically fills in most arguments.
See `Fintype.sum_bijective` for the version where `s` and `t` are `univ`."]
lemma prod_bijective (e : ι → κ) (he : e.Bijective) (hst : ∀ i, i ∈ s ↔ e i ∈ t)
(hfg : ∀ i ∈ s, f i = g (e i)) :
∏ i ∈ s, f i = ∏ i ∈ t, g i := prod_equiv (.ofBijective e he) hst hfg
@[to_additive]
lemma prod_of_injOn (e : ι → κ) (he : Set.InjOn e s) (hest : Set.MapsTo e s t)
(h' : ∀ i ∈ t, i ∉ e '' s → g i = 1) (h : ∀ i ∈ s, f i = g (e i)) :
∏ i ∈ s, f i = ∏ j ∈ t, g j := by
classical
exact (prod_nbij e (fun a ↦ mem_image_of_mem e) he (by simp [Set.surjOn_image]) h).trans <|
prod_subset (image_subset_iff.2 hest) <| by simpa using h'
variable [DecidableEq κ]
@[to_additive]
lemma prod_fiberwise_eq_prod_filter (s : Finset ι) (t : Finset κ) (g : ι → κ) (f : ι → α) :
∏ j ∈ t, ∏ i ∈ s.filter fun i ↦ g i = j, f i = ∏ i ∈ s.filter fun i ↦ g i ∈ t, f i := by
rw [← prod_disjiUnion, disjiUnion_filter_eq]
@[to_additive]
lemma prod_fiberwise_eq_prod_filter' (s : Finset ι) (t : Finset κ) (g : ι → κ) (f : κ → α) :
∏ j ∈ t, ∏ _i ∈ s.filter fun i ↦ g i = j, f j = ∏ i ∈ s.filter fun i ↦ g i ∈ t, f (g i) := by
calc
_ = ∏ j ∈ t, ∏ i ∈ s.filter fun i ↦ g i = j, f (g i) :=
prod_congr rfl fun j _ ↦ prod_congr rfl fun i hi ↦ by rw [(mem_filter.1 hi).2]
_ = _ := prod_fiberwise_eq_prod_filter _ _ _ _
@[to_additive]
lemma prod_fiberwise_of_maps_to {g : ι → κ} (h : ∀ i ∈ s, g i ∈ t) (f : ι → α) :
∏ j ∈ t, ∏ i ∈ s.filter fun i ↦ g i = j, f i = ∏ i ∈ s, f i := by
rw [← prod_disjiUnion, disjiUnion_filter_eq_of_maps_to h]
@[to_additive]
lemma prod_fiberwise_of_maps_to' {g : ι → κ} (h : ∀ i ∈ s, g i ∈ t) (f : κ → α) :
∏ j ∈ t, ∏ _i ∈ s.filter fun i ↦ g i = j, f j = ∏ i ∈ s, f (g i) := by
calc
_ = ∏ y ∈ t, ∏ x ∈ s.filter fun x ↦ g x = y, f (g x) :=
prod_congr rfl fun y _ ↦ prod_congr rfl fun x hx ↦ by rw [(mem_filter.1 hx).2]
_ = _ := prod_fiberwise_of_maps_to h _
variable [Fintype κ]
@[to_additive]
lemma prod_fiberwise (s : Finset ι) (g : ι → κ) (f : ι → α) :
∏ j, ∏ i ∈ s.filter fun i ↦ g i = j, f i = ∏ i ∈ s, f i :=
prod_fiberwise_of_maps_to (fun _ _ ↦ mem_univ _) _
@[to_additive]
lemma prod_fiberwise' (s : Finset ι) (g : ι → κ) (f : κ → α) :
∏ j, ∏ _i ∈ s.filter fun i ↦ g i = j, f j = ∏ i ∈ s, f (g i) :=
prod_fiberwise_of_maps_to' (fun _ _ ↦ mem_univ _) _
end bij
/-- Taking a product over `univ.pi t` is the same as taking the product over `Fintype.piFinset t`.
`univ.pi t` and `Fintype.piFinset t` are essentially the same `Finset`, but differ
in the type of their element, `univ.pi t` is a `Finset (Π a ∈ univ, t a)` and
`Fintype.piFinset t` is a `Finset (Π a, t a)`. -/
@[to_additive "Taking a sum over `univ.pi t` is the same as taking the sum over
`Fintype.piFinset t`. `univ.pi t` and `Fintype.piFinset t` are essentially the same `Finset`,
but differ in the type of their element, `univ.pi t` is a `Finset (Π a ∈ univ, t a)` and
`Fintype.piFinset t` is a `Finset (Π a, t a)`."]
lemma prod_univ_pi [DecidableEq ι] [Fintype ι] {κ : ι → Type*} (t : ∀ i, Finset (κ i))
(f : (∀ i ∈ (univ : Finset ι), κ i) → β) :
∏ x ∈ univ.pi t, f x = ∏ x ∈ Fintype.piFinset t, f fun a _ ↦ x a := by
apply prod_nbij' (fun x i ↦ x i $ mem_univ _) (fun x i _ ↦ x i) <;> simp
@[to_additive (attr := simp)]
lemma prod_diag [DecidableEq α] (s : Finset α) (f : α × α → β) :
∏ i ∈ s.diag, f i = ∏ i ∈ s, f (i, i) := by
apply prod_nbij' Prod.fst (fun i ↦ (i, i)) <;> simp
@[to_additive]
theorem prod_finset_product (r : Finset (γ × α)) (s : Finset γ) (t : γ → Finset α)
(h : ∀ p : γ × α, p ∈ r ↔ p.1 ∈ s ∧ p.2 ∈ t p.1) {f : γ × α → β} :
∏ p ∈ r, f p = ∏ c ∈ s, ∏ a ∈ t c, f (c, a) := by
refine Eq.trans ?_ (prod_sigma s t fun p => f (p.1, p.2))
apply prod_equiv (Equiv.sigmaEquivProd _ _).symm <;> simp [h]
@[to_additive]
theorem prod_finset_product' (r : Finset (γ × α)) (s : Finset γ) (t : γ → Finset α)
(h : ∀ p : γ × α, p ∈ r ↔ p.1 ∈ s ∧ p.2 ∈ t p.1) {f : γ → α → β} :
∏ p ∈ r, f p.1 p.2 = ∏ c ∈ s, ∏ a ∈ t c, f c a :=
prod_finset_product r s t h
@[to_additive]
theorem prod_finset_product_right (r : Finset (α × γ)) (s : Finset γ) (t : γ → Finset α)
(h : ∀ p : α × γ, p ∈ r ↔ p.2 ∈ s ∧ p.1 ∈ t p.2) {f : α × γ → β} :
∏ p ∈ r, f p = ∏ c ∈ s, ∏ a ∈ t c, f (a, c) := by
refine Eq.trans ?_ (prod_sigma s t fun p => f (p.2, p.1))
apply prod_equiv ((Equiv.prodComm _ _).trans (Equiv.sigmaEquivProd _ _).symm) <;> simp [h]
@[to_additive]
theorem prod_finset_product_right' (r : Finset (α × γ)) (s : Finset γ) (t : γ → Finset α)
(h : ∀ p : α × γ, p ∈ r ↔ p.2 ∈ s ∧ p.1 ∈ t p.2) {f : α → γ → β} :
∏ p ∈ r, f p.1 p.2 = ∏ c ∈ s, ∏ a ∈ t c, f a c :=
prod_finset_product_right r s t h
@[to_additive]
theorem prod_image' [DecidableEq α] {s : Finset γ} {g : γ → α} (h : γ → β)
(eq : ∀ c ∈ s, f (g c) = ∏ x ∈ s.filter fun c' => g c' = g c, h x) :
∏ x ∈ s.image g, f x = ∏ x ∈ s, h x :=
calc
∏ x ∈ s.image g, f x = ∏ x ∈ s.image g, ∏ x ∈ s.filter fun c' => g c' = x, h x :=
(prod_congr rfl) fun _x hx =>
let ⟨c, hcs, hc⟩ := mem_image.1 hx
hc ▸ eq c hcs
_ = ∏ x ∈ s, h x := prod_fiberwise_of_maps_to (fun _x => mem_image_of_mem g) _
@[to_additive]
theorem prod_mul_distrib : ∏ x ∈ s, f x * g x = (∏ x ∈ s, f x) * ∏ x ∈ s, g x :=
Eq.trans (by rw [one_mul]; rfl) fold_op_distrib
@[to_additive]
lemma prod_mul_prod_comm (f g h i : α → β) :
(∏ a ∈ s, f a * g a) * ∏ a ∈ s, h a * i a = (∏ a ∈ s, f a * h a) * ∏ a ∈ s, g a * i a := by
simp_rw [prod_mul_distrib, mul_mul_mul_comm]
@[to_additive]
theorem prod_product {s : Finset γ} {t : Finset α} {f : γ × α → β} :
∏ x ∈ s ×ˢ t, f x = ∏ x ∈ s, ∏ y ∈ t, f (x, y) :=
prod_finset_product (s ×ˢ t) s (fun _a => t) fun _p => mem_product
/-- An uncurried version of `Finset.prod_product`. -/
@[to_additive "An uncurried version of `Finset.sum_product`"]
theorem prod_product' {s : Finset γ} {t : Finset α} {f : γ → α → β} :
∏ x ∈ s ×ˢ t, f x.1 x.2 = ∏ x ∈ s, ∏ y ∈ t, f x y :=
prod_product
@[to_additive]
theorem prod_product_right {s : Finset γ} {t : Finset α} {f : γ × α → β} :
∏ x ∈ s ×ˢ t, f x = ∏ y ∈ t, ∏ x ∈ s, f (x, y) :=
prod_finset_product_right (s ×ˢ t) t (fun _a => s) fun _p => mem_product.trans and_comm
/-- An uncurried version of `Finset.prod_product_right`. -/
@[to_additive "An uncurried version of `Finset.sum_product_right`"]
theorem prod_product_right' {s : Finset γ} {t : Finset α} {f : γ → α → β} :
∏ x ∈ s ×ˢ t, f x.1 x.2 = ∏ y ∈ t, ∏ x ∈ s, f x y :=
prod_product_right
/-- Generalization of `Finset.prod_comm` to the case when the inner `Finset`s depend on the outer
variable. -/
@[to_additive "Generalization of `Finset.sum_comm` to the case when the inner `Finset`s depend on
the outer variable."]
theorem prod_comm' {s : Finset γ} {t : γ → Finset α} {t' : Finset α} {s' : α → Finset γ}
(h : ∀ x y, x ∈ s ∧ y ∈ t x ↔ x ∈ s' y ∧ y ∈ t') {f : γ → α → β} :
(∏ x ∈ s, ∏ y ∈ t x, f x y) = ∏ y ∈ t', ∏ x ∈ s' y, f x y := by
classical
have : ∀ z : γ × α, (z ∈ s.biUnion fun x => (t x).map <| Function.Embedding.sectr x _) ↔
z.1 ∈ s ∧ z.2 ∈ t z.1 := by
rintro ⟨x, y⟩
simp only [mem_biUnion, mem_map, Function.Embedding.sectr_apply, Prod.mk.injEq,
exists_eq_right, ← and_assoc]
exact
(prod_finset_product' _ _ _ this).symm.trans
((prod_finset_product_right' _ _ _) fun ⟨x, y⟩ => (this _).trans ((h x y).trans and_comm))
@[to_additive]
theorem prod_comm {s : Finset γ} {t : Finset α} {f : γ → α → β} :
(∏ x ∈ s, ∏ y ∈ t, f x y) = ∏ y ∈ t, ∏ x ∈ s, f x y :=
prod_comm' fun _ _ => Iff.rfl
@[to_additive]
theorem prod_hom_rel [CommMonoid γ] {r : β → γ → Prop} {f : α → β} {g : α → γ} {s : Finset α}
(h₁ : r 1 1) (h₂ : ∀ a b c, r b c → r (f a * b) (g a * c)) :
r (∏ x ∈ s, f x) (∏ x ∈ s, g x) := by
delta Finset.prod
apply Multiset.prod_hom_rel <;> assumption
@[to_additive]
theorem prod_filter_of_ne {p : α → Prop} [DecidablePred p] (hp : ∀ x ∈ s, f x ≠ 1 → p x) :
∏ x ∈ s.filter p, f x = ∏ x ∈ s, f x :=
(prod_subset (filter_subset _ _)) fun x => by
classical
rw [not_imp_comm, mem_filter]
exact fun h₁ h₂ => ⟨h₁, by simpa using hp _ h₁ h₂⟩
-- If we use `[DecidableEq β]` here, some rewrites fail because they find a wrong `Decidable`
-- instance first; `{∀ x, Decidable (f x ≠ 1)}` doesn't work with `rw ← prod_filter_ne_one`
@[to_additive]
theorem prod_filter_ne_one (s : Finset α) [∀ x, Decidable (f x ≠ 1)] :
∏ x ∈ s.filter fun x => f x ≠ 1, f x = ∏ x ∈ s, f x :=
prod_filter_of_ne fun _ _ => id
@[to_additive]
theorem prod_filter (p : α → Prop) [DecidablePred p] (f : α → β) :
∏ a ∈ s.filter p, f a = ∏ a ∈ s, if p a then f a else 1 :=
calc
∏ a ∈ s.filter p, f a = ∏ a ∈ s.filter p, if p a then f a else 1 :=
prod_congr rfl fun a h => by rw [if_pos]; simpa using (mem_filter.1 h).2
_ = ∏ a ∈ s, if p a then f a else 1 := by
{ refine prod_subset (filter_subset _ s) fun x hs h => ?_
rw [mem_filter, not_and] at h
exact if_neg (by simpa using h hs) }
@[to_additive]
theorem prod_eq_single_of_mem {s : Finset α} {f : α → β} (a : α) (h : a ∈ s)
(h₀ : ∀ b ∈ s, b ≠ a → f b = 1) : ∏ x ∈ s, f x = f a := by
haveI := Classical.decEq α
calc
∏ x ∈ s, f x = ∏ x ∈ {a}, f x := by
{ refine (prod_subset ?_ ?_).symm
· intro _ H
rwa [mem_singleton.1 H]
· simpa only [mem_singleton] }
_ = f a := prod_singleton _ _
@[to_additive]
theorem prod_eq_single {s : Finset α} {f : α → β} (a : α) (h₀ : ∀ b ∈ s, b ≠ a → f b = 1)
(h₁ : a ∉ s → f a = 1) : ∏ x ∈ s, f x = f a :=
haveI := Classical.decEq α
by_cases (prod_eq_single_of_mem a · h₀) fun this =>
(prod_congr rfl fun b hb => h₀ b hb <| by rintro rfl; exact this hb).trans <|
prod_const_one.trans (h₁ this).symm
@[to_additive]
lemma prod_union_eq_left [DecidableEq α] (hs : ∀ a ∈ s₂, a ∉ s₁ → f a = 1) :
∏ a ∈ s₁ ∪ s₂, f a = ∏ a ∈ s₁, f a :=
Eq.symm <|
prod_subset subset_union_left fun _a ha ha' ↦ hs _ ((mem_union.1 ha).resolve_left ha') ha'
@[to_additive]
lemma prod_union_eq_right [DecidableEq α] (hs : ∀ a ∈ s₁, a ∉ s₂ → f a = 1) :
∏ a ∈ s₁ ∪ s₂, f a = ∏ a ∈ s₂, f a := by rw [union_comm, prod_union_eq_left hs]
@[to_additive]
theorem prod_eq_mul_of_mem {s : Finset α} {f : α → β} (a b : α) (ha : a ∈ s) (hb : b ∈ s)
(hn : a ≠ b) (h₀ : ∀ c ∈ s, c ≠ a ∧ c ≠ b → f c = 1) : ∏ x ∈ s, f x = f a * f b := by
haveI := Classical.decEq α; let s' := ({a, b} : Finset α)
have hu : s' ⊆ s := by
refine insert_subset_iff.mpr ?_
apply And.intro ha
apply singleton_subset_iff.mpr hb
have hf : ∀ c ∈ s, c ∉ s' → f c = 1 := by
intro c hc hcs
apply h₀ c hc
apply not_or.mp
intro hab
apply hcs
rw [mem_insert, mem_singleton]
exact hab
rw [← prod_subset hu hf]
exact Finset.prod_pair hn
@[to_additive]
theorem prod_eq_mul {s : Finset α} {f : α → β} (a b : α) (hn : a ≠ b)
(h₀ : ∀ c ∈ s, c ≠ a ∧ c ≠ b → f c = 1) (ha : a ∉ s → f a = 1) (hb : b ∉ s → f b = 1) :
∏ x ∈ s, f x = f a * f b := by
haveI := Classical.decEq α; by_cases h₁ : a ∈ s <;> by_cases h₂ : b ∈ s
· exact prod_eq_mul_of_mem a b h₁ h₂ hn h₀
· rw [hb h₂, mul_one]
apply prod_eq_single_of_mem a h₁
exact fun c hc hca => h₀ c hc ⟨hca, ne_of_mem_of_not_mem hc h₂⟩
· rw [ha h₁, one_mul]
apply prod_eq_single_of_mem b h₂
exact fun c hc hcb => h₀ c hc ⟨ne_of_mem_of_not_mem hc h₁, hcb⟩
· rw [ha h₁, hb h₂, mul_one]
exact
_root_.trans
(prod_congr rfl fun c hc =>
h₀ c hc ⟨ne_of_mem_of_not_mem hc h₁, ne_of_mem_of_not_mem hc h₂⟩)
prod_const_one
-- Porting note: simpNF linter complains that LHS doesn't simplify, but it does
/-- A product over `s.subtype p` equals one over `s.filter p`. -/
@[to_additive (attr := simp, nolint simpNF)
"A sum over `s.subtype p` equals one over `s.filter p`."]
theorem prod_subtype_eq_prod_filter (f : α → β) {p : α → Prop} [DecidablePred p] :
∏ x ∈ s.subtype p, f x = ∏ x ∈ s.filter p, f x := by
conv_lhs => erw [← prod_map (s.subtype p) (Function.Embedding.subtype _) f]
exact prod_congr (subtype_map _) fun x _hx => rfl
/-- If all elements of a `Finset` satisfy the predicate `p`, a product
over `s.subtype p` equals that product over `s`. -/
@[to_additive "If all elements of a `Finset` satisfy the predicate `p`, a sum
over `s.subtype p` equals that sum over `s`."]
theorem prod_subtype_of_mem (f : α → β) {p : α → Prop} [DecidablePred p] (h : ∀ x ∈ s, p x) :
∏ x ∈ s.subtype p, f x = ∏ x ∈ s, f x := by
rw [prod_subtype_eq_prod_filter, filter_true_of_mem]
simpa using h
/-- A product of a function over a `Finset` in a subtype equals a
product in the main type of a function that agrees with the first
function on that `Finset`. -/
@[to_additive "A sum of a function over a `Finset` in a subtype equals a
sum in the main type of a function that agrees with the first
function on that `Finset`."]
theorem prod_subtype_map_embedding {p : α → Prop} {s : Finset { x // p x }} {f : { x // p x } → β}
{g : α → β} (h : ∀ x : { x // p x }, x ∈ s → g x = f x) :
(∏ x ∈ s.map (Function.Embedding.subtype _), g x) = ∏ x ∈ s, f x := by
rw [Finset.prod_map]
exact Finset.prod_congr rfl h
variable (f s)
@[to_additive]
theorem prod_coe_sort_eq_attach (f : s → β) : ∏ i : s, f i = ∏ i ∈ s.attach, f i :=
rfl
@[to_additive]
theorem prod_coe_sort : ∏ i : s, f i = ∏ i ∈ s, f i := prod_attach _ _
@[to_additive]
theorem prod_finset_coe (f : α → β) (s : Finset α) : (∏ i : (s : Set α), f i) = ∏ i ∈ s, f i :=
prod_coe_sort s f
variable {f s}
@[to_additive]
theorem prod_subtype {p : α → Prop} {F : Fintype (Subtype p)} (s : Finset α) (h : ∀ x, x ∈ s ↔ p x)
(f : α → β) : ∏ a ∈ s, f a = ∏ a : Subtype p, f a := by
have : (· ∈ s) = p := Set.ext h
subst p
rw [← prod_coe_sort]
congr!
@[to_additive]
lemma prod_preimage' (f : ι → κ) [DecidablePred (· ∈ Set.range f)] (s : Finset κ) (hf) (g : κ → β) :
∏ x ∈ s.preimage f hf, g (f x) = ∏ x ∈ s.filter (· ∈ Set.range f), g x := by
classical
calc
∏ x ∈ preimage s f hf, g (f x) = ∏ x ∈ image f (preimage s f hf), g x :=
Eq.symm <| prod_image <| by simpa only [mem_preimage, Set.InjOn] using hf
_ = ∏ x ∈ s.filter fun x => x ∈ Set.range f, g x := by rw [image_preimage]
@[to_additive]
lemma prod_preimage (f : ι → κ) (s : Finset κ) (hf) (g : κ → β)
(hg : ∀ x ∈ s, x ∉ Set.range f → g x = 1) :
∏ x ∈ s.preimage f hf, g (f x) = ∏ x ∈ s, g x := by
classical rw [prod_preimage', prod_filter_of_ne]; exact fun x hx ↦ Not.imp_symm (hg x hx)
@[to_additive]
lemma prod_preimage_of_bij (f : ι → κ) (s : Finset κ) (hf : Set.BijOn f (f ⁻¹' ↑s) ↑s) (g : κ → β) :
∏ x ∈ s.preimage f hf.injOn, g (f x) = ∏ x ∈ s, g x :=
prod_preimage _ _ hf.injOn g fun _ hs h_f ↦ (h_f <| hf.subset_range hs).elim
@[to_additive]
theorem prod_set_coe (s : Set α) [Fintype s] : (∏ i : s, f i) = ∏ i ∈ s.toFinset, f i :=
(Finset.prod_subtype s.toFinset (fun _ ↦ Set.mem_toFinset) f).symm
/-- The product of a function `g` defined only on a set `s` is equal to
the product of a function `f` defined everywhere,
as long as `f` and `g` agree on `s`, and `f = 1` off `s`. -/
@[to_additive "The sum of a function `g` defined only on a set `s` is equal to
the sum of a function `f` defined everywhere,
as long as `f` and `g` agree on `s`, and `f = 0` off `s`."]
theorem prod_congr_set {α : Type*} [CommMonoid α] {β : Type*} [Fintype β] (s : Set β)
[DecidablePred (· ∈ s)] (f : β → α) (g : s → α) (w : ∀ (x : β) (h : x ∈ s), f x = g ⟨x, h⟩)
(w' : ∀ x : β, x ∉ s → f x = 1) : Finset.univ.prod f = Finset.univ.prod g := by
rw [← @Finset.prod_subset _ _ s.toFinset Finset.univ f _ (by simp)]
· rw [Finset.prod_subtype]
· apply Finset.prod_congr rfl
exact fun ⟨x, h⟩ _ => w x h
· simp
· rintro x _ h
exact w' x (by simpa using h)
@[to_additive]
theorem prod_apply_dite {s : Finset α} {p : α → Prop} {hp : DecidablePred p}
[DecidablePred fun x => ¬p x] (f : ∀ x : α, p x → γ) (g : ∀ x : α, ¬p x → γ) (h : γ → β) :
(∏ x ∈ s, h (if hx : p x then f x hx else g x hx)) =
(∏ x ∈ (s.filter p).attach, h (f x.1 <| by simpa using (mem_filter.mp x.2).2)) *
∏ x ∈ (s.filter fun x => ¬p x).attach, h (g x.1 <| by simpa using (mem_filter.mp x.2).2) :=
calc
(∏ x ∈ s, h (if hx : p x then f x hx else g x hx)) =
(∏ x ∈ s.filter p, h (if hx : p x then f x hx else g x hx)) *
∏ x ∈ s.filter (¬p ·), h (if hx : p x then f x hx else g x hx) :=
(prod_filter_mul_prod_filter_not s p _).symm
_ = (∏ x ∈ (s.filter p).attach, h (if hx : p x.1 then f x.1 hx else g x.1 hx)) *
∏ x ∈ (s.filter (¬p ·)).attach, h (if hx : p x.1 then f x.1 hx else g x.1 hx) :=
congr_arg₂ _ (prod_attach _ _).symm (prod_attach _ _).symm
_ = (∏ x ∈ (s.filter p).attach, h (f x.1 <| by simpa using (mem_filter.mp x.2).2)) *
∏ x ∈ (s.filter (¬p ·)).attach, h (g x.1 <| by simpa using (mem_filter.mp x.2).2) :=
congr_arg₂ _ (prod_congr rfl fun x _hx ↦
congr_arg h (dif_pos <| by simpa using (mem_filter.mp x.2).2))
(prod_congr rfl fun x _hx => congr_arg h (dif_neg <| by simpa using (mem_filter.mp x.2).2))
@[to_additive]
theorem prod_apply_ite {s : Finset α} {p : α → Prop} {_hp : DecidablePred p} (f g : α → γ)
(h : γ → β) :
(∏ x ∈ s, h (if p x then f x else g x)) =
(∏ x ∈ s.filter p, h (f x)) * ∏ x ∈ s.filter fun x => ¬p x, h (g x) :=
(prod_apply_dite _ _ _).trans <| congr_arg₂ _ (prod_attach _ (h ∘ f)) (prod_attach _ (h ∘ g))
@[to_additive]
theorem prod_dite {s : Finset α} {p : α → Prop} {hp : DecidablePred p} (f : ∀ x : α, p x → β)
(g : ∀ x : α, ¬p x → β) :
∏ x ∈ s, (if hx : p x then f x hx else g x hx) =
(∏ x ∈ (s.filter p).attach, f x.1 (by simpa using (mem_filter.mp x.2).2)) *
∏ x ∈ (s.filter fun x => ¬p x).attach, g x.1 (by simpa using (mem_filter.mp x.2).2) := by
simp [prod_apply_dite _ _ fun x => x]
@[to_additive]
theorem prod_ite {s : Finset α} {p : α → Prop} {hp : DecidablePred p} (f g : α → β) :
∏ x ∈ s, (if p x then f x else g x) =
(∏ x ∈ s.filter p, f x) * ∏ x ∈ s.filter fun x => ¬p x, g x := by
simp [prod_apply_ite _ _ fun x => x]
@[to_additive]
lemma prod_dite_of_false {p : α → Prop} {_ : DecidablePred p} (h : ∀ i ∈ s, ¬ p i)
(f : ∀ i, p i → β) (g : ∀ i, ¬ p i → β) :
∏ i ∈ s, (if hi : p i then f i hi else g i hi) = ∏ i : s, g i.1 (h _ i.2) := by
refine prod_bij' (fun x hx => ⟨x, hx⟩) (fun x _ ↦ x) ?_ ?_ ?_ ?_ ?_ <;> aesop
@[to_additive]
lemma prod_ite_of_false {p : α → Prop} {_ : DecidablePred p} (h : ∀ x ∈ s, ¬p x) (f g : α → β) :
∏ x ∈ s, (if p x then f x else g x) = ∏ x ∈ s, g x :=
(prod_dite_of_false h _ _).trans (prod_attach _ _)
@[to_additive]
lemma prod_dite_of_true {p : α → Prop} {_ : DecidablePred p} (h : ∀ i ∈ s, p i) (f : ∀ i, p i → β)
(g : ∀ i, ¬ p i → β) :
∏ i ∈ s, (if hi : p i then f i hi else g i hi) = ∏ i : s, f i.1 (h _ i.2) := by
refine prod_bij' (fun x hx => ⟨x, hx⟩) (fun x _ ↦ x) ?_ ?_ ?_ ?_ ?_ <;> aesop
@[to_additive]
lemma prod_ite_of_true {p : α → Prop} {_ : DecidablePred p} (h : ∀ x ∈ s, p x) (f g : α → β) :
∏ x ∈ s, (if p x then f x else g x) = ∏ x ∈ s, f x :=
(prod_dite_of_true h _ _).trans (prod_attach _ _)
@[to_additive]
theorem prod_apply_ite_of_false {p : α → Prop} {hp : DecidablePred p} (f g : α → γ) (k : γ → β)
(h : ∀ x ∈ s, ¬p x) : (∏ x ∈ s, k (if p x then f x else g x)) = ∏ x ∈ s, k (g x) := by
simp_rw [apply_ite k]
exact prod_ite_of_false h _ _
@[to_additive]
theorem prod_apply_ite_of_true {p : α → Prop} {hp : DecidablePred p} (f g : α → γ) (k : γ → β)
(h : ∀ x ∈ s, p x) : (∏ x ∈ s, k (if p x then f x else g x)) = ∏ x ∈ s, k (f x) := by
simp_rw [apply_ite k]
exact prod_ite_of_true h _ _
@[to_additive]
theorem prod_extend_by_one [DecidableEq α] (s : Finset α) (f : α → β) :
∏ i ∈ s, (if i ∈ s then f i else 1) = ∏ i ∈ s, f i :=
(prod_congr rfl) fun _i hi => if_pos hi
@[to_additive (attr := simp)]
theorem prod_ite_mem [DecidableEq α] (s t : Finset α) (f : α → β) :
∏ i ∈ s, (if i ∈ t then f i else 1) = ∏ i ∈ s ∩ t, f i := by
rw [← Finset.prod_filter, Finset.filter_mem_eq_inter]
@[to_additive (attr := simp)]
theorem prod_dite_eq [DecidableEq α] (s : Finset α) (a : α) (b : ∀ x : α, a = x → β) :
∏ x ∈ s, (if h : a = x then b x h else 1) = ite (a ∈ s) (b a rfl) 1 := by
split_ifs with h
· rw [Finset.prod_eq_single a, dif_pos rfl]
· intros _ _ h
rw [dif_neg]
exact h.symm
· simp [h]
· rw [Finset.prod_eq_one]
intros
rw [dif_neg]
rintro rfl
contradiction
@[to_additive (attr := simp)]
theorem prod_dite_eq' [DecidableEq α] (s : Finset α) (a : α) (b : ∀ x : α, x = a → β) :
∏ x ∈ s, (if h : x = a then b x h else 1) = ite (a ∈ s) (b a rfl) 1 := by
split_ifs with h
· rw [Finset.prod_eq_single a, dif_pos rfl]
· intros _ _ h
rw [dif_neg]
exact h
· simp [h]
· rw [Finset.prod_eq_one]
intros
rw [dif_neg]
rintro rfl
contradiction
@[to_additive (attr := simp)]
theorem prod_ite_eq [DecidableEq α] (s : Finset α) (a : α) (b : α → β) :
(∏ x ∈ s, ite (a = x) (b x) 1) = ite (a ∈ s) (b a) 1 :=
prod_dite_eq s a fun x _ => b x
/-- A product taken over a conditional whose condition is an equality test on the index and whose
alternative is `1` has value either the term at that index or `1`.
The difference with `Finset.prod_ite_eq` is that the arguments to `Eq` are swapped. -/
@[to_additive (attr := simp) "A sum taken over a conditional whose condition is an equality
test on the index and whose alternative is `0` has value either the term at that index or `0`.
The difference with `Finset.sum_ite_eq` is that the arguments to `Eq` are swapped."]
theorem prod_ite_eq' [DecidableEq α] (s : Finset α) (a : α) (b : α → β) :
(∏ x ∈ s, ite (x = a) (b x) 1) = ite (a ∈ s) (b a) 1 :=
prod_dite_eq' s a fun x _ => b x
@[to_additive]
theorem prod_ite_index (p : Prop) [Decidable p] (s t : Finset α) (f : α → β) :
∏ x ∈ if p then s else t, f x = if p then ∏ x ∈ s, f x else ∏ x ∈ t, f x :=
apply_ite (fun s => ∏ x ∈ s, f x) _ _ _
@[to_additive (attr := simp)]
theorem prod_ite_irrel (p : Prop) [Decidable p] (s : Finset α) (f g : α → β) :
∏ x ∈ s, (if p then f x else g x) = if p then ∏ x ∈ s, f x else ∏ x ∈ s, g x := by
split_ifs with h <;> rfl
@[to_additive (attr := simp)]
theorem prod_dite_irrel (p : Prop) [Decidable p] (s : Finset α) (f : p → α → β) (g : ¬p → α → β) :
∏ x ∈ s, (if h : p then f h x else g h x) =
if h : p then ∏ x ∈ s, f h x else ∏ x ∈ s, g h x := by
split_ifs with h <;> rfl
@[to_additive (attr := simp)]
theorem prod_pi_mulSingle' [DecidableEq α] (a : α) (x : β) (s : Finset α) :
∏ a' ∈ s, Pi.mulSingle a x a' = if a ∈ s then x else 1 :=
prod_dite_eq' _ _ _
@[to_additive (attr := simp)]
theorem prod_pi_mulSingle {β : α → Type*} [DecidableEq α] [∀ a, CommMonoid (β a)] (a : α)
(f : ∀ a, β a) (s : Finset α) :
(∏ a' ∈ s, Pi.mulSingle a' (f a') a) = if a ∈ s then f a else 1 :=
prod_dite_eq _ _ _
@[to_additive]
lemma mulSupport_prod (s : Finset ι) (f : ι → α → β) :
mulSupport (fun x ↦ ∏ i ∈ s, f i x) ⊆ ⋃ i ∈ s, mulSupport (f i) := by
simp only [mulSupport_subset_iff', Set.mem_iUnion, not_exists, nmem_mulSupport]
exact fun x ↦ prod_eq_one
section indicator
open Set
variable {κ : Type*}
/-- Consider a product of `g i (f i)` over a finset. Suppose `g` is a function such as
`n ↦ (· ^ n)`, which maps a second argument of `1` to `1`. Then if `f` is replaced by the
corresponding multiplicative indicator function, the finset may be replaced by a possibly larger
finset without changing the value of the product. -/
@[to_additive "Consider a sum of `g i (f i)` over a finset. Suppose `g` is a function such as
`n ↦ (n • ·)`, which maps a second argument of `0` to `0` (or a weighted sum of `f i * h i` or
`f i • h i`, where `f` gives the weights that are multiplied by some other function `h`). Then if
`f` is replaced by the corresponding indicator function, the finset may be replaced by a possibly
larger finset without changing the value of the sum."]
lemma prod_mulIndicator_subset_of_eq_one [One α] (f : ι → α) (g : ι → α → β) {s t : Finset ι}
(h : s ⊆ t) (hg : ∀ a, g a 1 = 1) :
∏ i ∈ t, g i (mulIndicator ↑s f i) = ∏ i ∈ s, g i (f i) := by
calc
_ = ∏ i ∈ s, g i (mulIndicator ↑s f i) := by rw [prod_subset h fun i _ hn ↦ by simp [hn, hg]]
-- Porting note: This did not use to need the implicit argument
_ = _ := prod_congr rfl fun i hi ↦ congr_arg _ <| mulIndicator_of_mem (α := ι) hi f
/-- Taking the product of an indicator function over a possibly larger finset is the same as
taking the original function over the original finset. -/
@[to_additive "Summing an indicator function over a possibly larger `Finset` is the same as summing
the original function over the original finset."]
lemma prod_mulIndicator_subset (f : ι → β) {s t : Finset ι} (h : s ⊆ t) :
∏ i ∈ t, mulIndicator (↑s) f i = ∏ i ∈ s, f i :=
prod_mulIndicator_subset_of_eq_one _ (fun _ ↦ id) h fun _ ↦ rfl
@[to_additive]
lemma prod_mulIndicator_eq_prod_filter (s : Finset ι) (f : ι → κ → β) (t : ι → Set κ) (g : ι → κ)
[DecidablePred fun i ↦ g i ∈ t i] :
∏ i ∈ s, mulIndicator (t i) (f i) (g i) = ∏ i ∈ s.filter fun i ↦ g i ∈ t i, f i (g i) := by
refine (prod_filter_mul_prod_filter_not s (fun i ↦ g i ∈ t i) _).symm.trans <|
Eq.trans (congr_arg₂ (· * ·) ?_ ?_) (mul_one _)
· exact prod_congr rfl fun x hx ↦ mulIndicator_of_mem (mem_filter.1 hx).2 _
· exact prod_eq_one fun x hx ↦ mulIndicator_of_not_mem (mem_filter.1 hx).2 _
@[to_additive]
lemma prod_mulIndicator_eq_prod_inter [DecidableEq ι] (s t : Finset ι) (f : ι → β) :
∏ i ∈ s, (t : Set ι).mulIndicator f i = ∏ i ∈ s ∩ t, f i := by
rw [← filter_mem_eq_inter, prod_mulIndicator_eq_prod_filter]; rfl
@[to_additive]
lemma mulIndicator_prod (s : Finset ι) (t : Set κ) (f : ι → κ → β) :
mulIndicator t (∏ i ∈ s, f i) = ∏ i ∈ s, mulIndicator t (f i) :=
map_prod (mulIndicatorHom _ _) _ _
variable {κ : Type*}
@[to_additive]
lemma mulIndicator_biUnion (s : Finset ι) (t : ι → Set κ) {f : κ → β} :
((s : Set ι).PairwiseDisjoint t) →
mulIndicator (⋃ i ∈ s, t i) f = fun a ↦ ∏ i ∈ s, mulIndicator (t i) f a := by
classical
refine Finset.induction_on s (by simp) fun i s hi ih hs ↦ funext fun j ↦ ?_
rw [prod_insert hi, set_biUnion_insert, mulIndicator_union_of_not_mem_inter,
ih (hs.subset <| subset_insert _ _)]
simp only [not_exists, exists_prop, mem_iUnion, mem_inter_iff, not_and]
exact fun hji i' hi' hji' ↦ (ne_of_mem_of_not_mem hi' hi).symm <|
hs.elim_set (mem_insert_self _ _) (mem_insert_of_mem hi') _ hji hji'
@[to_additive]
lemma mulIndicator_biUnion_apply (s : Finset ι) (t : ι → Set κ) {f : κ → β}
(h : (s : Set ι).PairwiseDisjoint t) (x : κ) :
mulIndicator (⋃ i ∈ s, t i) f x = ∏ i ∈ s, mulIndicator (t i) f x := by
rw [mulIndicator_biUnion s t h]
end indicator
@[to_additive]
theorem prod_bij_ne_one {s : Finset α} {t : Finset γ} {f : α → β} {g : γ → β}
(i : ∀ a ∈ s, f a ≠ 1 → γ) (hi : ∀ a h₁ h₂, i a h₁ h₂ ∈ t)
(i_inj : ∀ a₁ h₁₁ h₁₂ a₂ h₂₁ h₂₂, i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂ → a₁ = a₂)
(i_surj : ∀ b ∈ t, g b ≠ 1 → ∃ a h₁ h₂, i a h₁ h₂ = b) (h : ∀ a h₁ h₂, f a = g (i a h₁ h₂)) :
∏ x ∈ s, f x = ∏ x ∈ t, g x := by
classical
calc
∏ x ∈ s, f x = ∏ x ∈ s.filter fun x => f x ≠ 1, f x := by rw [prod_filter_ne_one]
_ = ∏ x ∈ t.filter fun x => g x ≠ 1, g x :=
prod_bij (fun a ha => i a (mem_filter.mp ha).1 <| by simpa using (mem_filter.mp ha).2)
?_ ?_ ?_ ?_
_ = ∏ x ∈ t, g x := prod_filter_ne_one _
· intros a ha
refine (mem_filter.mp ha).elim ?_
intros h₁ h₂
refine (mem_filter.mpr ⟨hi a h₁ _, ?_⟩)
specialize h a h₁ fun H ↦ by rw [H] at h₂; simp at h₂
rwa [← h]
· intros a₁ ha₁ a₂ ha₂
refine (mem_filter.mp ha₁).elim fun _ha₁₁ _ha₁₂ ↦ ?_
refine (mem_filter.mp ha₂).elim fun _ha₂₁ _ha₂₂ ↦ ?_
apply i_inj
· intros b hb
refine (mem_filter.mp hb).elim fun h₁ h₂ ↦ ?_
obtain ⟨a, ha₁, ha₂, eq⟩ := i_surj b h₁ fun H ↦ by rw [H] at h₂; simp at h₂
exact ⟨a, mem_filter.mpr ⟨ha₁, ha₂⟩, eq⟩
· refine (fun a ha => (mem_filter.mp ha).elim fun h₁ h₂ ↦ ?_)
exact h a h₁ fun H ↦ by rw [H] at h₂; simp at h₂
@[to_additive]
theorem nonempty_of_prod_ne_one (h : ∏ x ∈ s, f x ≠ 1) : s.Nonempty :=
s.eq_empty_or_nonempty.elim (fun H => False.elim <| h <| H.symm ▸ prod_empty) id
@[to_additive]
theorem exists_ne_one_of_prod_ne_one (h : ∏ x ∈ s, f x ≠ 1) : ∃ a ∈ s, f a ≠ 1 := by
classical
rw [← prod_filter_ne_one] at h
rcases nonempty_of_prod_ne_one h with ⟨x, hx⟩
exact ⟨x, (mem_filter.1 hx).1, by simpa using (mem_filter.1 hx).2⟩
@[to_additive]
theorem prod_range_succ_comm (f : ℕ → β) (n : ℕ) :
(∏ x ∈ range (n + 1), f x) = f n * ∏ x ∈ range n, f x := by
rw [range_succ, prod_insert not_mem_range_self]
@[to_additive]
theorem prod_range_succ (f : ℕ → β) (n : ℕ) :
(∏ x ∈ range (n + 1), f x) = (∏ x ∈ range n, f x) * f n := by
simp only [mul_comm, prod_range_succ_comm]
@[to_additive]
theorem prod_range_succ' (f : ℕ → β) :
∀ n : ℕ, (∏ k ∈ range (n + 1), f k) = (∏ k ∈ range n, f (k + 1)) * f 0
| 0 => prod_range_succ _ _
| n + 1 => by rw [prod_range_succ _ n, mul_right_comm, ← prod_range_succ' _ n, prod_range_succ]
@[to_additive]
theorem eventually_constant_prod {u : ℕ → β} {N : ℕ} (hu : ∀ n ≥ N, u n = 1) {n : ℕ} (hn : N ≤ n) :
(∏ k ∈ range n, u k) = ∏ k ∈ range N, u k := by
obtain ⟨m, rfl : n = N + m⟩ := Nat.exists_eq_add_of_le hn
clear hn
induction' m with m hm
· simp
· simp [← add_assoc, prod_range_succ, hm, hu]
@[to_additive]
theorem prod_range_add (f : ℕ → β) (n m : ℕ) :
(∏ x ∈ range (n + m), f x) = (∏ x ∈ range n, f x) * ∏ x ∈ range m, f (n + x) := by
induction' m with m hm
· simp
· erw [Nat.add_succ, prod_range_succ, prod_range_succ, hm, mul_assoc]
@[to_additive]
theorem prod_range_add_div_prod_range {α : Type*} [CommGroup α] (f : ℕ → α) (n m : ℕ) :
(∏ k ∈ range (n + m), f k) / ∏ k ∈ range n, f k = ∏ k ∈ Finset.range m, f (n + k) :=
div_eq_of_eq_mul' (prod_range_add f n m)
@[to_additive]
theorem prod_range_zero (f : ℕ → β) : ∏ k ∈ range 0, f k = 1 := by rw [range_zero, prod_empty]
@[to_additive sum_range_one]
theorem prod_range_one (f : ℕ → β) : ∏ k ∈ range 1, f k = f 0 := by
rw [range_one, prod_singleton]
open List
@[to_additive]
theorem prod_list_map_count [DecidableEq α] (l : List α) {M : Type*} [CommMonoid M] (f : α → M) :
(l.map f).prod = ∏ m ∈ l.toFinset, f m ^ l.count m := by
induction' l with a s IH; · simp only [map_nil, prod_nil, count_nil, pow_zero, prod_const_one]
simp only [List.map, List.prod_cons, toFinset_cons, IH]
by_cases has : a ∈ s.toFinset
· rw [insert_eq_of_mem has, ← insert_erase has, prod_insert (not_mem_erase _ _),
prod_insert (not_mem_erase _ _), ← mul_assoc, count_cons_self, pow_succ']
congr 1
refine prod_congr rfl fun x hx => ?_
rw [count_cons_of_ne (ne_of_mem_erase hx)]
rw [prod_insert has, count_cons_self, count_eq_zero_of_not_mem (mt mem_toFinset.2 has), pow_one]
congr 1
refine prod_congr rfl fun x hx => ?_
rw [count_cons_of_ne]
rintro rfl
exact has hx
@[to_additive]
theorem prod_list_count [DecidableEq α] [CommMonoid α] (s : List α) :
s.prod = ∏ m ∈ s.toFinset, m ^ s.count m := by simpa using prod_list_map_count s id
@[to_additive]
theorem prod_list_count_of_subset [DecidableEq α] [CommMonoid α] (m : List α) (s : Finset α)
(hs : m.toFinset ⊆ s) : m.prod = ∏ i ∈ s, i ^ m.count i := by
rw [prod_list_count]
refine prod_subset hs fun x _ hx => ?_
rw [mem_toFinset] at hx
rw [count_eq_zero_of_not_mem hx, pow_zero]
theorem sum_filter_count_eq_countP [DecidableEq α] (p : α → Prop) [DecidablePred p] (l : List α) :
∑ x ∈ l.toFinset.filter p, l.count x = l.countP p := by
simp [Finset.sum, sum_map_count_dedup_filter_eq_countP p l]
open Multiset
@[to_additive]
theorem prod_multiset_map_count [DecidableEq α] (s : Multiset α) {M : Type*} [CommMonoid M]
(f : α → M) : (s.map f).prod = ∏ m ∈ s.toFinset, f m ^ s.count m := by
refine Quot.induction_on s fun l => ?_
simp [prod_list_map_count l f]
@[to_additive]
theorem prod_multiset_count [DecidableEq α] [CommMonoid α] (s : Multiset α) :
s.prod = ∏ m ∈ s.toFinset, m ^ s.count m := by
convert prod_multiset_map_count s id
rw [Multiset.map_id]
@[to_additive]
theorem prod_multiset_count_of_subset [DecidableEq α] [CommMonoid α] (m : Multiset α) (s : Finset α)
(hs : m.toFinset ⊆ s) : m.prod = ∏ i ∈ s, i ^ m.count i := by
revert hs
refine Quot.induction_on m fun l => ?_
simp only [quot_mk_to_coe'', prod_coe, coe_count]
apply prod_list_count_of_subset l s
@[to_additive]
theorem prod_mem_multiset [DecidableEq α] (m : Multiset α) (f : { x // x ∈ m } → β) (g : α → β)
(hfg : ∀ x, f x = g x) : ∏ x : { x // x ∈ m }, f x = ∏ x ∈ m.toFinset, g x := by
refine prod_bij' (fun x _ ↦ x) (fun x hx ↦ ⟨x, Multiset.mem_toFinset.1 hx⟩) ?_ ?_ ?_ ?_ ?_ <;>
simp [hfg]
/-- To prove a property of a product, it suffices to prove that
the property is multiplicative and holds on factors. -/
@[to_additive "To prove a property of a sum, it suffices to prove that
the property is additive and holds on summands."]
theorem prod_induction {M : Type*} [CommMonoid M] (f : α → M) (p : M → Prop)
(hom : ∀ a b, p a → p b → p (a * b)) (unit : p 1) (base : ∀ x ∈ s, p <| f x) :
p <| ∏ x ∈ s, f x :=
Multiset.prod_induction _ _ hom unit (Multiset.forall_mem_map_iff.mpr base)
/-- To prove a property of a product, it suffices to prove that
the property is multiplicative and holds on factors. -/
@[to_additive "To prove a property of a sum, it suffices to prove that
the property is additive and holds on summands."]
theorem prod_induction_nonempty {M : Type*} [CommMonoid M] (f : α → M) (p : M → Prop)
(hom : ∀ a b, p a → p b → p (a * b)) (nonempty : s.Nonempty) (base : ∀ x ∈ s, p <| f x) :
p <| ∏ x ∈ s, f x :=
Multiset.prod_induction_nonempty p hom (by simp [nonempty_iff_ne_empty.mp nonempty])
(Multiset.forall_mem_map_iff.mpr base)
/-- For any product along `{0, ..., n - 1}` of a commutative-monoid-valued function, we can verify
that it's equal to a different function just by checking ratios of adjacent terms.
This is a multiplicative discrete analogue of the fundamental theorem of calculus. -/
@[to_additive "For any sum along `{0, ..., n - 1}` of a commutative-monoid-valued function, we can
verify that it's equal to a different function just by checking differences of adjacent terms.
This is a discrete analogue of the fundamental theorem of calculus."]
theorem prod_range_induction (f s : ℕ → β) (base : s 0 = 1)
(step : ∀ n, s (n + 1) = s n * f n) (n : ℕ) :
∏ k ∈ Finset.range n, f k = s n := by
induction' n with k hk
· rw [Finset.prod_range_zero, base]
· simp only [hk, Finset.prod_range_succ, step, mul_comm]
/-- A telescoping product along `{0, ..., n - 1}` of a commutative group valued function reduces to
the ratio of the last and first factors. -/
@[to_additive "A telescoping sum along `{0, ..., n - 1}` of an additive commutative group valued
function reduces to the difference of the last and first terms."]
theorem prod_range_div {M : Type*} [CommGroup M] (f : ℕ → M) (n : ℕ) :
(∏ i ∈ range n, f (i + 1) / f i) = f n / f 0 := by apply prod_range_induction <;> simp
@[to_additive]
theorem prod_range_div' {M : Type*} [CommGroup M] (f : ℕ → M) (n : ℕ) :
(∏ i ∈ range n, f i / f (i + 1)) = f 0 / f n := by apply prod_range_induction <;> simp
@[to_additive]
theorem eq_prod_range_div {M : Type*} [CommGroup M] (f : ℕ → M) (n : ℕ) :
f n = f 0 * ∏ i ∈ range n, f (i + 1) / f i := by rw [prod_range_div, mul_div_cancel]
@[to_additive]
theorem eq_prod_range_div' {M : Type*} [CommGroup M] (f : ℕ → M) (n : ℕ) :
f n = ∏ i ∈ range (n + 1), if i = 0 then f 0 else f i / f (i - 1) := by
conv_lhs => rw [Finset.eq_prod_range_div f]
simp [Finset.prod_range_succ', mul_comm]
/-- A telescoping sum along `{0, ..., n-1}` of an `ℕ`-valued function
reduces to the difference of the last and first terms
when the function we are summing is monotone.
-/
theorem sum_range_tsub [CanonicallyOrderedAddCommMonoid α] [Sub α] [OrderedSub α]
[ContravariantClass α α (· + ·) (· ≤ ·)] {f : ℕ → α} (h : Monotone f) (n : ℕ) :
∑ i ∈ range n, (f (i + 1) - f i) = f n - f 0 := by
apply sum_range_induction
case base => apply tsub_self
case step =>
intro n
have h₁ : f n ≤ f (n + 1) := h (Nat.le_succ _)
have h₂ : f 0 ≤ f n := h (Nat.zero_le _)
rw [tsub_add_eq_add_tsub h₂, add_tsub_cancel_of_le h₁]
@[to_additive (attr := simp)]
theorem prod_const (b : β) : ∏ _x ∈ s, b = b ^ s.card :=
(congr_arg _ <| s.val.map_const b).trans <| Multiset.prod_replicate s.card b
@[to_additive sum_eq_card_nsmul]
theorem prod_eq_pow_card {b : β} (hf : ∀ a ∈ s, f a = b) : ∏ a ∈ s, f a = b ^ s.card :=
(prod_congr rfl hf).trans <| prod_const _
@[to_additive card_nsmul_add_sum]
theorem pow_card_mul_prod {b : β} : b ^ s.card * ∏ a ∈ s, f a = ∏ a ∈ s, b * f a :=
(Finset.prod_const b).symm ▸ prod_mul_distrib.symm
@[to_additive sum_add_card_nsmul]
theorem prod_mul_pow_card {b : β} : (∏ a ∈ s, f a) * b ^ s.card = ∏ a ∈ s, f a * b :=
(Finset.prod_const b).symm ▸ prod_mul_distrib.symm
@[to_additive]
theorem pow_eq_prod_const (b : β) : ∀ n, b ^ n = ∏ _k ∈ range n, b := by simp
@[to_additive]
theorem prod_pow (s : Finset α) (n : ℕ) (f : α → β) : ∏ x ∈ s, f x ^ n = (∏ x ∈ s, f x) ^ n :=
Multiset.prod_map_pow
@[to_additive sum_nsmul_assoc]
lemma prod_pow_eq_pow_sum (s : Finset ι) (f : ι → ℕ) (a : β) :
∏ i ∈ s, a ^ f i = a ^ ∑ i ∈ s, f i :=
cons_induction (by simp) (fun _ _ _ _ ↦ by simp [prod_cons, sum_cons, pow_add, *]) s
/-- A product over `Finset.powersetCard` which only depends on the size of the sets is constant. -/
@[to_additive
"A sum over `Finset.powersetCard` which only depends on the size of the sets is constant."]
lemma prod_powersetCard (n : ℕ) (s : Finset α) (f : ℕ → β) :
∏ t ∈ powersetCard n s, f t.card = f n ^ s.card.choose n := by
rw [prod_eq_pow_card, card_powersetCard]; rintro a ha; rw [(mem_powersetCard.1 ha).2]
@[to_additive]
theorem prod_flip {n : ℕ} (f : ℕ → β) :
(∏ r ∈ range (n + 1), f (n - r)) = ∏ k ∈ range (n + 1), f k := by
induction' n with n ih
· rw [prod_range_one, prod_range_one]
· rw [prod_range_succ', prod_range_succ _ (Nat.succ n)]
simp [← ih]
@[to_additive]
theorem prod_involution {s : Finset α} {f : α → β} :
∀ (g : ∀ a ∈ s, α) (_ : ∀ a ha, f a * f (g a ha) = 1) (_ : ∀ a ha, f a ≠ 1 → g a ha ≠ a)
(g_mem : ∀ a ha, g a ha ∈ s) (_ : ∀ a ha, g (g a ha) (g_mem a ha) = a),
∏ x ∈ s, f x = 1 := by
haveI := Classical.decEq α; haveI := Classical.decEq β
exact
Finset.strongInductionOn s fun s ih g h g_ne g_mem g_inv =>
s.eq_empty_or_nonempty.elim (fun hs => hs.symm ▸ rfl) fun ⟨x, hx⟩ =>
have hmem : ∀ y ∈ (s.erase x).erase (g x hx), y ∈ s := fun y hy =>
mem_of_mem_erase (mem_of_mem_erase hy)
have g_inj : ∀ {x hx y hy}, g x hx = g y hy → x = y := fun {x hx y hy} h => by
rw [← g_inv x hx, ← g_inv y hy]; simp [h]
have ih' : (∏ y ∈ erase (erase s x) (g x hx), f y) = (1 : β) :=
ih ((s.erase x).erase (g x hx))
⟨Subset.trans (erase_subset _ _) (erase_subset _ _), fun h =>
not_mem_erase (g x hx) (s.erase x) (h (g_mem x hx))⟩
(fun y hy => g y (hmem y hy)) (fun y hy => h y (hmem y hy))
(fun y hy => g_ne y (hmem y hy))
(fun y hy =>
mem_erase.2
⟨fun h : g y _ = g x hx => by simp [g_inj h] at hy,
mem_erase.2
⟨fun h : g y _ = x => by
have : y = g x hx := g_inv y (hmem y hy) ▸ by simp [h]
simp [this] at hy, g_mem y (hmem y hy)⟩⟩)
fun y hy => g_inv y (hmem y hy)
if hx1 : f x = 1 then
ih' ▸
Eq.symm
(prod_subset hmem fun y hy hy₁ =>
have : y = x ∨ y = g x hx := by
simpa [hy, -not_and, mem_erase, not_and_or, or_comm] using hy₁
this.elim (fun hy => hy.symm ▸ hx1) fun hy =>
h x hx ▸ hy ▸ hx1.symm ▸ (one_mul _).symm)
else by
rw [← insert_erase hx, prod_insert (not_mem_erase _ _), ←
insert_erase (mem_erase.2 ⟨g_ne x hx hx1, g_mem x hx⟩),
prod_insert (not_mem_erase _ _), ih', mul_one, h x hx]
/-- The product of the composition of functions `f` and `g`, is the product over `b ∈ s.image g` of
`f b` to the power of the cardinality of the fibre of `b`. See also `Finset.prod_image`. -/
@[to_additive "The sum of the composition of functions `f` and `g`, is the sum over `b ∈ s.image g`
of `f b` times of the cardinality of the fibre of `b`. See also `Finset.sum_image`."]
theorem prod_comp [DecidableEq γ] (f : γ → β) (g : α → γ) :
∏ a ∈ s, f (g a) = ∏ b ∈ s.image g, f b ^ (s.filter fun a => g a = b).card := by
simp_rw [← prod_const, prod_fiberwise_of_maps_to' fun _ ↦ mem_image_of_mem _]
@[to_additive]
theorem prod_piecewise [DecidableEq α] (s t : Finset α) (f g : α → β) :
(∏ x ∈ s, (t.piecewise f g) x) = (∏ x ∈ s ∩ t, f x) * ∏ x ∈ s \ t, g x := by
erw [prod_ite, filter_mem_eq_inter, ← sdiff_eq_filter]
@[to_additive]
theorem prod_inter_mul_prod_diff [DecidableEq α] (s t : Finset α) (f : α → β) :
(∏ x ∈ s ∩ t, f x) * ∏ x ∈ s \ t, f x = ∏ x ∈ s, f x := by
convert (s.prod_piecewise t f f).symm
simp (config := { unfoldPartialApp := true }) [Finset.piecewise]
@[to_additive]
theorem prod_eq_mul_prod_diff_singleton [DecidableEq α] {s : Finset α} {i : α} (h : i ∈ s)
(f : α → β) : ∏ x ∈ s, f x = f i * ∏ x ∈ s \ {i}, f x := by
convert (s.prod_inter_mul_prod_diff {i} f).symm
simp [h]
@[to_additive]
theorem prod_eq_prod_diff_singleton_mul [DecidableEq α] {s : Finset α} {i : α} (h : i ∈ s)
(f : α → β) : ∏ x ∈ s, f x = (∏ x ∈ s \ {i}, f x) * f i := by
rw [prod_eq_mul_prod_diff_singleton h, mul_comm]
@[to_additive]
theorem _root_.Fintype.prod_eq_mul_prod_compl [DecidableEq α] [Fintype α] (a : α) (f : α → β) :
∏ i, f i = f a * ∏ i ∈ {a}ᶜ, f i :=
prod_eq_mul_prod_diff_singleton (mem_univ a) f
@[to_additive]
theorem _root_.Fintype.prod_eq_prod_compl_mul [DecidableEq α] [Fintype α] (a : α) (f : α → β) :
∏ i, f i = (∏ i ∈ {a}ᶜ, f i) * f a :=
prod_eq_prod_diff_singleton_mul (mem_univ a) f
theorem dvd_prod_of_mem (f : α → β) {a : α} {s : Finset α} (ha : a ∈ s) : f a ∣ ∏ i ∈ s, f i := by
classical
rw [Finset.prod_eq_mul_prod_diff_singleton ha]
exact dvd_mul_right _ _
/-- A product can be partitioned into a product of products, each equivalent under a setoid. -/
@[to_additive "A sum can be partitioned into a sum of sums, each equivalent under a setoid."]
theorem prod_partition (R : Setoid α) [DecidableRel R.r] :
∏ x ∈ s, f x = ∏ xbar ∈ s.image Quotient.mk'', ∏ y ∈ s.filter (⟦·⟧ = xbar), f y := by
refine (Finset.prod_image' f fun x _hx => ?_).symm
rfl
/-- If we can partition a product into subsets that cancel out, then the whole product cancels. -/
@[to_additive "If we can partition a sum into subsets that cancel out, then the whole sum cancels."]
theorem prod_cancels_of_partition_cancels (R : Setoid α) [DecidableRel R.r]
(h : ∀ x ∈ s, ∏ a ∈ s.filter fun y => y ≈ x, f a = 1) : ∏ x ∈ s, f x = 1 := by
rw [prod_partition R, ← Finset.prod_eq_one]
intro xbar xbar_in_s
obtain ⟨x, x_in_s, rfl⟩ := mem_image.mp xbar_in_s
simp only [← Quotient.eq] at h
exact h x x_in_s
@[to_additive]
theorem prod_update_of_not_mem [DecidableEq α] {s : Finset α} {i : α} (h : i ∉ s) (f : α → β)
(b : β) : ∏ x ∈ s, Function.update f i b x = ∏ x ∈ s, f x := by
apply prod_congr rfl
intros j hj
have : j ≠ i := by
rintro rfl
exact h hj
simp [this]
@[to_additive]
theorem prod_update_of_mem [DecidableEq α] {s : Finset α} {i : α} (h : i ∈ s) (f : α → β) (b : β) :
∏ x ∈ s, Function.update f i b x = b * ∏ x ∈ s \ singleton i, f x := by
rw [update_eq_piecewise, prod_piecewise]
simp [h]
/-- If a product of a `Finset` of size at most 1 has a given value, so
do the terms in that product. -/
@[to_additive eq_of_card_le_one_of_sum_eq "If a sum of a `Finset` of size at most 1 has a given
value, so do the terms in that sum."]
theorem eq_of_card_le_one_of_prod_eq {s : Finset α} (hc : s.card ≤ 1) {f : α → β} {b : β}
(h : ∏ x ∈ s, f x = b) : ∀ x ∈ s, f x = b := by
intro x hx
by_cases hc0 : s.card = 0
· exact False.elim (card_ne_zero_of_mem hx hc0)
· have h1 : s.card = 1 := le_antisymm hc (Nat.one_le_of_lt (Nat.pos_of_ne_zero hc0))
rw [card_eq_one] at h1
cases' h1 with x2 hx2
rw [hx2, mem_singleton] at hx
simp_rw [hx2] at h
rw [hx]
rw [prod_singleton] at h
exact h
/-- Taking a product over `s : Finset α` is the same as multiplying the value on a single element
`f a` by the product of `s.erase a`.
See `Multiset.prod_map_erase` for the `Multiset` version. -/
@[to_additive "Taking a sum over `s : Finset α` is the same as adding the value on a single element
`f a` to the sum over `s.erase a`.
See `Multiset.sum_map_erase` for the `Multiset` version."]
theorem mul_prod_erase [DecidableEq α] (s : Finset α) (f : α → β) {a : α} (h : a ∈ s) :
(f a * ∏ x ∈ s.erase a, f x) = ∏ x ∈ s, f x := by
rw [← prod_insert (not_mem_erase a s), insert_erase h]
/-- A variant of `Finset.mul_prod_erase` with the multiplication swapped. -/
@[to_additive "A variant of `Finset.add_sum_erase` with the addition swapped."]
theorem prod_erase_mul [DecidableEq α] (s : Finset α) (f : α → β) {a : α} (h : a ∈ s) :
(∏ x ∈ s.erase a, f x) * f a = ∏ x ∈ s, f x := by rw [mul_comm, mul_prod_erase s f h]
/-- If a function applied at a point is 1, a product is unchanged by
removing that point, if present, from a `Finset`. -/
@[to_additive "If a function applied at a point is 0, a sum is unchanged by
removing that point, if present, from a `Finset`."]
theorem prod_erase [DecidableEq α] (s : Finset α) {f : α → β} {a : α} (h : f a = 1) :
∏ x ∈ s.erase a, f x = ∏ x ∈ s, f x := by
rw [← sdiff_singleton_eq_erase]
refine prod_subset sdiff_subset fun x hx hnx => ?_
rw [sdiff_singleton_eq_erase] at hnx
rwa [eq_of_mem_of_not_mem_erase hx hnx]
/-- See also `Finset.prod_boole`. -/
@[to_additive "See also `Finset.sum_boole`."]
theorem prod_ite_one (s : Finset α) (p : α → Prop) [DecidablePred p]
(h : ∀ i ∈ s, ∀ j ∈ s, p i → p j → i = j) (a : β) :
∏ i ∈ s, ite (p i) a 1 = ite (∃ i ∈ s, p i) a 1 := by
split_ifs with h
· obtain ⟨i, hi, hpi⟩ := h
rw [prod_eq_single_of_mem _ hi, if_pos hpi]
exact fun j hj hji ↦ if_neg fun hpj ↦ hji <| h _ hj _ hi hpj hpi
· push_neg at h
rw [prod_eq_one]
exact fun i hi => if_neg (h i hi)
@[to_additive]
theorem prod_erase_lt_of_one_lt {γ : Type*} [DecidableEq α] [OrderedCommMonoid γ]
[CovariantClass γ γ (· * ·) (· < ·)] {s : Finset α} {d : α} (hd : d ∈ s) {f : α → γ}
(hdf : 1 < f d) : ∏ m ∈ s.erase d, f m < ∏ m ∈ s, f m := by
conv in ∏ m ∈ s, f m => rw [← Finset.insert_erase hd]
rw [Finset.prod_insert (Finset.not_mem_erase d s)]
exact lt_mul_of_one_lt_left' _ hdf
/-- If a product is 1 and the function is 1 except possibly at one
point, it is 1 everywhere on the `Finset`. -/
@[to_additive "If a sum is 0 and the function is 0 except possibly at one
point, it is 0 everywhere on the `Finset`."]
theorem eq_one_of_prod_eq_one {s : Finset α} {f : α → β} {a : α} (hp : ∏ x ∈ s, f x = 1)
(h1 : ∀ x ∈ s, x ≠ a → f x = 1) : ∀ x ∈ s, f x = 1 := by
intro x hx
classical
by_cases h : x = a
· rw [h]
rw [h] at hx
rw [← prod_subset (singleton_subset_iff.2 hx) fun t ht ha => h1 t ht (not_mem_singleton.1 ha),
prod_singleton] at hp
exact hp
· exact h1 x hx h
@[to_additive sum_boole_nsmul]
theorem prod_pow_boole [DecidableEq α] (s : Finset α) (f : α → β) (a : α) :
(∏ x ∈ s, f x ^ ite (a = x) 1 0) = ite (a ∈ s) (f a) 1 := by simp
theorem prod_dvd_prod_of_dvd {S : Finset α} (g1 g2 : α → β) (h : ∀ a ∈ S, g1 a ∣ g2 a) :
S.prod g1 ∣ S.prod g2 := by
classical
induction' S using Finset.induction_on' with a T _haS _hTS haT IH
· simp
· rw [Finset.prod_insert haT, prod_insert haT]
exact mul_dvd_mul (h a <| T.mem_insert_self a) <| IH fun b hb ↦ h b <| mem_insert_of_mem hb
theorem prod_dvd_prod_of_subset {ι M : Type*} [CommMonoid M] (s t : Finset ι) (f : ι → M)
(h : s ⊆ t) : (∏ i ∈ s, f i) ∣ ∏ i ∈ t, f i :=
Multiset.prod_dvd_prod_of_le <| Multiset.map_le_map <| by simpa
@[to_additive]
lemma prod_mul_eq_prod_mul_of_exists {s : Finset α} {f : α → β} {b₁ b₂ : β}
(a : α) (ha : a ∈ s) (h : f a * b₁ = f a * b₂) :
(∏ a ∈ s, f a) * b₁ = (∏ a ∈ s, f a) * b₂ := by
classical
rw [← insert_erase ha]
simp only [mem_erase, ne_eq, not_true_eq_false, false_and, not_false_eq_true, prod_insert]
rw [mul_assoc, mul_comm, mul_assoc, mul_comm b₁, h, ← mul_assoc, mul_comm _ (f a)]
@[to_additive]
lemma isSquare_prod {s : Finset ι} [CommMonoid α] (f : ι → α)
(h : ∀ c ∈ s, IsSquare (f c)) : IsSquare (∏ i ∈ s, f i) := by
rw [isSquare_iff_exists_sq]
use (∏ (x : s), ((isSquare_iff_exists_sq _).mp (h _ x.2)).choose)
rw [@sq, ← Finset.prod_mul_distrib, ← Finset.prod_coe_sort]
congr
ext i
rw [← @sq]
exact ((isSquare_iff_exists_sq _).mp (h _ i.2)).choose_spec
end CommMonoid
section CancelCommMonoid
variable [DecidableEq ι] [CancelCommMonoid α] {s t : Finset ι} {f : ι → α}
@[to_additive]
lemma prod_sdiff_eq_prod_sdiff_iff :
∏ i ∈ s \ t, f i = ∏ i ∈ t \ s, f i ↔ ∏ i ∈ s, f i = ∏ i ∈ t, f i :=
eq_comm.trans $ eq_iff_eq_of_mul_eq_mul $ by
rw [← prod_union disjoint_sdiff_self_left, ← prod_union disjoint_sdiff_self_left,
sdiff_union_self_eq_union, sdiff_union_self_eq_union, union_comm]
@[to_additive]
lemma prod_sdiff_ne_prod_sdiff_iff :
∏ i ∈ s \ t, f i ≠ ∏ i ∈ t \ s, f i ↔ ∏ i ∈ s, f i ≠ ∏ i ∈ t, f i :=
prod_sdiff_eq_prod_sdiff_iff.not
end CancelCommMonoid
theorem card_eq_sum_ones (s : Finset α) : s.card = ∑ x ∈ s, 1 := by simp
theorem sum_const_nat {m : ℕ} {f : α → ℕ} (h₁ : ∀ x ∈ s, f x = m) :
∑ x ∈ s, f x = card s * m := by
rw [← Nat.nsmul_eq_mul, ← sum_const]
apply sum_congr rfl h₁
lemma sum_card_fiberwise_eq_card_filter {κ : Type*} [DecidableEq κ] (s : Finset ι) (t : Finset κ)
(g : ι → κ) : ∑ j ∈ t, (s.filter fun i ↦ g i = j).card = (s.filter fun i ↦ g i ∈ t).card := by
simpa only [card_eq_sum_ones] using sum_fiberwise_eq_sum_filter _ _ _ _
lemma card_filter (p) [DecidablePred p] (s : Finset α) :
(filter p s).card = ∑ a ∈ s, ite (p a) 1 0 := by simp [sum_ite]
section Opposite
open MulOpposite
/-- Moving to the opposite additive commutative monoid commutes with summing. -/
@[simp]
theorem op_sum [AddCommMonoid β] {s : Finset α} (f : α → β) :
op (∑ x ∈ s, f x) = ∑ x ∈ s, op (f x) :=
map_sum (opAddEquiv : β ≃+ βᵐᵒᵖ) _ _
@[simp]
theorem unop_sum [AddCommMonoid β] {s : Finset α} (f : α → βᵐᵒᵖ) :
unop (∑ x ∈ s, f x) = ∑ x ∈ s, unop (f x) :=
map_sum (opAddEquiv : β ≃+ βᵐᵒᵖ).symm _ _
end Opposite
section DivisionCommMonoid
variable [DivisionCommMonoid β]
@[to_additive (attr := simp)]
theorem prod_inv_distrib : (∏ x ∈ s, (f x)⁻¹) = (∏ x ∈ s, f x)⁻¹ :=
Multiset.prod_map_inv
@[to_additive (attr := simp)]
theorem prod_div_distrib : ∏ x ∈ s, f x / g x = (∏ x ∈ s, f x) / ∏ x ∈ s, g x :=
Multiset.prod_map_div
@[to_additive]
theorem prod_zpow (f : α → β) (s : Finset α) (n : ℤ) : ∏ a ∈ s, f a ^ n = (∏ a ∈ s, f a) ^ n :=
Multiset.prod_map_zpow
end DivisionCommMonoid
section CommGroup
variable [CommGroup β] [DecidableEq α]
@[to_additive (attr := simp)]
theorem prod_sdiff_eq_div (h : s₁ ⊆ s₂) :
∏ x ∈ s₂ \ s₁, f x = (∏ x ∈ s₂, f x) / ∏ x ∈ s₁, f x := by
rw [eq_div_iff_mul_eq', prod_sdiff h]
@[to_additive]
theorem prod_sdiff_div_prod_sdiff :
(∏ x ∈ s₂ \ s₁, f x) / ∏ x ∈ s₁ \ s₂, f x = (∏ x ∈ s₂, f x) / ∏ x ∈ s₁, f x := by
simp [← Finset.prod_sdiff (@inf_le_left _ _ s₁ s₂), ← Finset.prod_sdiff (@inf_le_right _ _ s₁ s₂)]
@[to_additive (attr := simp)]
theorem prod_erase_eq_div {a : α} (h : a ∈ s) :
∏ x ∈ s.erase a, f x = (∏ x ∈ s, f x) / f a := by
rw [eq_div_iff_mul_eq', prod_erase_mul _ _ h]
end CommGroup
@[simp]
theorem card_sigma {σ : α → Type*} (s : Finset α) (t : ∀ a, Finset (σ a)) :
card (s.sigma t) = ∑ a ∈ s, card (t a) :=
Multiset.card_sigma _ _
@[simp]
theorem card_disjiUnion (s : Finset α) (t : α → Finset β) (h) :
(s.disjiUnion t h).card = s.sum fun i => (t i).card :=
Multiset.card_bind _ _
theorem card_biUnion [DecidableEq β] {s : Finset α} {t : α → Finset β}
(h : ∀ x ∈ s, ∀ y ∈ s, x ≠ y → Disjoint (t x) (t y)) :
(s.biUnion t).card = ∑ u ∈ s, card (t u) :=
calc
(s.biUnion t).card = ∑ i ∈ s.biUnion t, 1 := card_eq_sum_ones _
_ = ∑ a ∈ s, ∑ _i ∈ t a, 1 := Finset.sum_biUnion h
_ = ∑ u ∈ s, card (t u) := by simp_rw [card_eq_sum_ones]
theorem card_biUnion_le [DecidableEq β] {s : Finset α} {t : α → Finset β} :
(s.biUnion t).card ≤ ∑ a ∈ s, (t a).card :=
haveI := Classical.decEq α
Finset.induction_on s (by simp) fun a s has ih =>
calc
((insert a s).biUnion t).card ≤ (t a).card + (s.biUnion t).card := by
{ rw [biUnion_insert]; exact Finset.card_union_le _ _ }
_ ≤ ∑ a ∈ insert a s, card (t a) := by rw [sum_insert has]; exact Nat.add_le_add_left ih _
theorem card_eq_sum_card_fiberwise [DecidableEq β] {f : α → β} {s : Finset α} {t : Finset β}
(H : ∀ x ∈ s, f x ∈ t) : s.card = ∑ a ∈ t, (s.filter fun x => f x = a).card := by
simp only [card_eq_sum_ones, sum_fiberwise_of_maps_to H]
theorem card_eq_sum_card_image [DecidableEq β] (f : α → β) (s : Finset α) :
s.card = ∑ a ∈ s.image f, (s.filter fun x => f x = a).card :=
card_eq_sum_card_fiberwise fun _ => mem_image_of_mem _
theorem mem_sum {f : α → Multiset β} (s : Finset α) (b : β) :
(b ∈ ∑ x ∈ s, f x) ↔ ∃ a ∈ s, b ∈ f a := by
classical
refine s.induction_on (by simp) ?_
intro a t hi ih
simp [sum_insert hi, ih, or_and_right, exists_or]
@[to_additive]
theorem prod_unique_nonempty {α β : Type*} [CommMonoid β] [Unique α] (s : Finset α) (f : α → β)
(h : s.Nonempty) : ∏ x ∈ s, f x = f default := by
rw [h.eq_singleton_default, Finset.prod_singleton]
theorem sum_nat_mod (s : Finset α) (n : ℕ) (f : α → ℕ) :
(∑ i ∈ s, f i) % n = (∑ i ∈ s, f i % n) % n :=
(Multiset.sum_nat_mod _ _).trans <| by rw [Finset.sum, Multiset.map_map]; rfl
theorem prod_nat_mod (s : Finset α) (n : ℕ) (f : α → ℕ) :
(∏ i ∈ s, f i) % n = (∏ i ∈ s, f i % n) % n :=
(Multiset.prod_nat_mod _ _).trans <| by rw [Finset.prod, Multiset.map_map]; rfl
theorem sum_int_mod (s : Finset α) (n : ℤ) (f : α → ℤ) :
(∑ i ∈ s, f i) % n = (∑ i ∈ s, f i % n) % n :=
(Multiset.sum_int_mod _ _).trans <| by rw [Finset.sum, Multiset.map_map]; rfl
theorem prod_int_mod (s : Finset α) (n : ℤ) (f : α → ℤ) :
(∏ i ∈ s, f i) % n = (∏ i ∈ s, f i % n) % n :=
(Multiset.prod_int_mod _ _).trans <| by rw [Finset.prod, Multiset.map_map]; rfl
end Finset
namespace Fintype
variable {ι κ α : Type*} [Fintype ι] [Fintype κ]
open Finset
section CommMonoid
variable [CommMonoid α]
/-- `Fintype.prod_bijective` is a variant of `Finset.prod_bij` that accepts `Function.Bijective`.
See `Function.Bijective.prod_comp` for a version without `h`. -/
@[to_additive "`Fintype.sum_bijective` is a variant of `Finset.sum_bij` that accepts
`Function.Bijective`.
See `Function.Bijective.sum_comp` for a version without `h`. "]
lemma prod_bijective (e : ι → κ) (he : e.Bijective) (f : ι → α) (g : κ → α)
(h : ∀ x, f x = g (e x)) : ∏ x, f x = ∏ x, g x :=
prod_equiv (.ofBijective e he) (by simp) (by simp [h])
@[to_additive] alias _root_.Function.Bijective.finset_prod := prod_bijective
/-- `Fintype.prod_equiv` is a specialization of `Finset.prod_bij` that
automatically fills in most arguments.
See `Equiv.prod_comp` for a version without `h`.
-/
@[to_additive "`Fintype.sum_equiv` is a specialization of `Finset.sum_bij` that
automatically fills in most arguments.
See `Equiv.sum_comp` for a version without `h`."]
lemma prod_equiv (e : ι ≃ κ) (f : ι → α) (g : κ → α) (h : ∀ x, f x = g (e x)) :
∏ x, f x = ∏ x, g x := prod_bijective _ e.bijective _ _ h
@[to_additive]
lemma _root_.Function.Bijective.prod_comp {e : ι → κ} (he : e.Bijective) (g : κ → α) :
∏ i, g (e i) = ∏ i, g i := prod_bijective _ he _ _ fun _ ↦ rfl
@[to_additive]
lemma _root_.Equiv.prod_comp (e : ι ≃ κ) (g : κ → α) : ∏ i, g (e i) = ∏ i, g i :=
prod_equiv e _ _ fun _ ↦ rfl
@[to_additive]
lemma prod_of_injective (e : ι → κ) (he : Injective e) (f : ι → α) (g : κ → α)
(h' : ∀ i ∉ Set.range e, g i = 1) (h : ∀ i, f i = g (e i)) : ∏ i, f i = ∏ j, g j :=
prod_of_injOn e he.injOn (by simp) (by simpa using h') (fun i _ ↦ h i)
@[to_additive]
lemma prod_fiberwise [DecidableEq κ] (g : ι → κ) (f : ι → α) :
∏ j, ∏ i : {i // g i = j}, f i = ∏ i, f i := by
rw [← Finset.prod_fiberwise _ g f]
congr with j
exact (prod_subtype _ (by simp) _).symm
@[to_additive]
lemma prod_fiberwise' [DecidableEq κ] (g : ι → κ) (f : κ → α) :
∏ j, ∏ _i : {i // g i = j}, f j = ∏ i, f (g i) := by
rw [← Finset.prod_fiberwise' _ g f]
congr with j
exact (prod_subtype _ (by simp) fun _ ↦ _).symm
@[to_additive]
theorem prod_unique {α β : Type*} [CommMonoid β] [Unique α] [Fintype α] (f : α → β) :
∏ x : α, f x = f default := by rw [univ_unique, prod_singleton]
@[to_additive]
theorem prod_empty {α β : Type*} [CommMonoid β] [IsEmpty α] [Fintype α] (f : α → β) :
∏ x : α, f x = 1 :=
Finset.prod_of_isEmpty _
@[to_additive]
theorem prod_subsingleton {α β : Type*} [CommMonoid β] [Subsingleton α] [Fintype α] (f : α → β)
(a : α) : ∏ x : α, f x = f a := by
have : Unique α := uniqueOfSubsingleton a
rw [prod_unique f, Subsingleton.elim default a]
@[to_additive]
theorem prod_subtype_mul_prod_subtype {α β : Type*} [Fintype α] [CommMonoid β] (p : α → Prop)
(f : α → β) [DecidablePred p] :
(∏ i : { x // p x }, f i) * ∏ i : { x // ¬p x }, f i = ∏ i, f i := by
classical
let s := { x | p x }.toFinset
rw [← Finset.prod_subtype s, ← Finset.prod_subtype sᶜ]
· exact Finset.prod_mul_prod_compl _ _
· simp [s]
· simp [s]
@[to_additive] lemma prod_subset {s : Finset ι} {f : ι → α} (h : ∀ i, f i ≠ 1 → i ∈ s) :
∏ i ∈ s, f i = ∏ i, f i :=
Finset.prod_subset s.subset_univ $ by simpa [not_imp_comm (a := _ ∈ s)]
@[to_additive]
lemma prod_ite_eq_ite_exists (p : ι → Prop) [DecidablePred p] (h : ∀ i j, p i → p j → i = j)
(a : α) : ∏ i, ite (p i) a 1 = ite (∃ i, p i) a 1 := by
simp [prod_ite_one univ p (by simpa using h)]
variable [DecidableEq ι]
/-- See also `Finset.prod_dite_eq`. -/
@[to_additive "See also `Finset.sum_dite_eq`."] lemma prod_dite_eq (i : ι) (f : ∀ j, i = j → α) :
∏ j, (if h : i = j then f j h else 1) = f i rfl := by
rw [Finset.prod_dite_eq, if_pos (mem_univ _)]
/-- See also `Finset.prod_dite_eq'`. -/
@[to_additive "See also `Finset.sum_dite_eq'`."] lemma prod_dite_eq' (i : ι) (f : ∀ j, j = i → α) :
∏ j, (if h : j = i then f j h else 1) = f i rfl := by
rw [Finset.prod_dite_eq', if_pos (mem_univ _)]
/-- See also `Finset.prod_ite_eq`. -/
@[to_additive "See also `Finset.sum_ite_eq`."]
lemma prod_ite_eq (i : ι) (f : ι → α) : ∏ j, (if i = j then f j else 1) = f i := by
rw [Finset.prod_ite_eq, if_pos (mem_univ _)]
/-- See also `Finset.prod_ite_eq'`. -/
@[to_additive "See also `Finset.sum_ite_eq'`."]
lemma prod_ite_eq' (i : ι) (f : ι → α) : ∏ j, (if j = i then f j else 1) = f i := by
rw [Finset.prod_ite_eq', if_pos (mem_univ _)]
/-- See also `Finset.prod_pi_mulSingle`. -/
@[to_additive "See also `Finset.sum_pi_single`."]
lemma prod_pi_mulSingle {α : ι → Type*} [∀ i, CommMonoid (α i)] (i : ι) (f : ∀ i, α i) :
∏ j, Pi.mulSingle j (f j) i = f i := prod_dite_eq _ _
/-- See also `Finset.prod_pi_mulSingle'`. -/
@[to_additive "See also `Finset.sum_pi_single'`."]
lemma prod_pi_mulSingle' (i : ι) (a : α) : ∏ j, Pi.mulSingle i a j = a := prod_dite_eq' _ _
end CommMonoid
end Fintype
namespace Finset
variable [CommMonoid α]
@[to_additive (attr := simp)]
lemma prod_attach_univ [Fintype ι] (f : {i // i ∈ @univ ι _} → α) :
∏ i ∈ univ.attach, f i = ∏ i, f ⟨i, mem_univ _⟩ :=
Fintype.prod_equiv (Equiv.subtypeUnivEquiv mem_univ) _ _ $ by simp
@[to_additive]
theorem prod_erase_attach [DecidableEq ι] {s : Finset ι} (f : ι → α) (i : ↑s) :
∏ j ∈ s.attach.erase i, f ↑j = ∏ j ∈ s.erase ↑i, f j := by
rw [← Function.Embedding.coe_subtype, ← prod_map]
simp [attach_map_val]
end Finset
namespace List
@[to_additive]
theorem prod_toFinset {M : Type*} [DecidableEq α] [CommMonoid M] (f : α → M) :
∀ {l : List α} (_hl : l.Nodup), l.toFinset.prod f = (l.map f).prod
| [], _ => by simp
| a :: l, hl => by
let ⟨not_mem, hl⟩ := List.nodup_cons.mp hl
simp [Finset.prod_insert (mt List.mem_toFinset.mp not_mem), prod_toFinset _ hl]
@[simp]
theorem sum_toFinset_count_eq_length [DecidableEq α] (l : List α) :
∑ a in l.toFinset, l.count a = l.length := by
simpa [List.map_const'] using (Finset.sum_list_map_count l fun _ => (1 : ℕ)).symm
end List
namespace Multiset
theorem disjoint_list_sum_left {a : Multiset α} {l : List (Multiset α)} :
Multiset.Disjoint l.sum a ↔ ∀ b ∈ l, Multiset.Disjoint b a := by
induction' l with b bs ih
· simp only [zero_disjoint, List.not_mem_nil, IsEmpty.forall_iff, forall_const, List.sum_nil]
· simp_rw [List.sum_cons, disjoint_add_left, List.mem_cons, forall_eq_or_imp]
simp [and_congr_left_iff, iff_self_iff, ih]
theorem disjoint_list_sum_right {a : Multiset α} {l : List (Multiset α)} :
Multiset.Disjoint a l.sum ↔ ∀ b ∈ l, Multiset.Disjoint a b := by
simpa only [@disjoint_comm _ a] using disjoint_list_sum_left
theorem disjoint_sum_left {a : Multiset α} {i : Multiset (Multiset α)} :
Multiset.Disjoint i.sum a ↔ ∀ b ∈ i, Multiset.Disjoint b a :=
Quotient.inductionOn i fun l => by
rw [quot_mk_to_coe, Multiset.sum_coe]
exact disjoint_list_sum_left
theorem disjoint_sum_right {a : Multiset α} {i : Multiset (Multiset α)} :
Multiset.Disjoint a i.sum ↔ ∀ b ∈ i, Multiset.Disjoint a b := by
simpa only [@disjoint_comm _ a] using disjoint_sum_left
theorem disjoint_finset_sum_left {β : Type*} {i : Finset β} {f : β → Multiset α} {a : Multiset α} :
Multiset.Disjoint (i.sum f) a ↔ ∀ b ∈ i, Multiset.Disjoint (f b) a := by
convert @disjoint_sum_left _ a (map f i.val)
simp [and_congr_left_iff, iff_self_iff]
theorem disjoint_finset_sum_right {β : Type*} {i : Finset β} {f : β → Multiset α}
{a : Multiset α} : Multiset.Disjoint a (i.sum f) ↔ ∀ b ∈ i, Multiset.Disjoint a (f b) := by
simpa only [disjoint_comm] using disjoint_finset_sum_left
@[simp]
lemma mem_sum {s : Finset ι} {m : ι → Multiset α} : a ∈ ∑ i ∈ s, m i ↔ ∃ i ∈ s, a ∈ m i := by
induction' s using Finset.cons_induction <;> simp [*]
variable [DecidableEq α]
theorem toFinset_sum_count_eq (s : Multiset α) : ∑ a in s.toFinset, s.count a = card s := by
simpa using (Finset.sum_multiset_map_count s (fun _ => (1 : ℕ))).symm
@[simp] lemma sum_count_eq_card {s : Finset α} {m : Multiset α} (hms : ∀ a ∈ m, a ∈ s) :
∑ a ∈ s, m.count a = card m := by
rw [← toFinset_sum_count_eq, ← Finset.sum_filter_ne_zero]
congr with a
simpa using hms a
@[deprecated sum_count_eq_card (since := "2024-07-21")]
theorem sum_count_eq [Fintype α] (s : Multiset α) : ∑ a, s.count a = Multiset.card s := by simp
theorem count_sum' {s : Finset β} {a : α} {f : β → Multiset α} :
count a (∑ x ∈ s, f x) = ∑ x ∈ s, count a (f x) := by
dsimp only [Finset.sum]
rw [count_sum]
@[simp]
theorem toFinset_sum_count_nsmul_eq (s : Multiset α) :
∑ a ∈ s.toFinset, s.count a • {a} = s := by
rw [← Finset.sum_multiset_map_count, Multiset.sum_map_singleton]
theorem exists_smul_of_dvd_count (s : Multiset α) {k : ℕ}
(h : ∀ a : α, a ∈ s → k ∣ Multiset.count a s) : ∃ u : Multiset α, s = k • u := by
use ∑ a ∈ s.toFinset, (s.count a / k) • {a}
have h₂ :
(∑ x ∈ s.toFinset, k • (count x s / k) • ({x} : Multiset α)) =
∑ x ∈ s.toFinset, count x s • {x} := by
apply Finset.sum_congr rfl
intro x hx
rw [← mul_nsmul', Nat.mul_div_cancel' (h x (mem_toFinset.mp hx))]
rw [← Finset.sum_nsmul, h₂, toFinset_sum_count_nsmul_eq]
theorem toFinset_prod_dvd_prod [CommMonoid α] (S : Multiset α) : S.toFinset.prod id ∣ S.prod := by
rw [Finset.prod_eq_multiset_prod]
refine Multiset.prod_dvd_prod_of_le ?_
simp [Multiset.dedup_le S]
@[to_additive]
theorem prod_sum {α : Type*} {ι : Type*} [CommMonoid α] (f : ι → Multiset α) (s : Finset ι) :
(∑ x ∈ s, f x).prod = ∏ x ∈ s, (f x).prod := by
classical
induction' s using Finset.induction_on with a t hat ih
· rw [Finset.sum_empty, Finset.prod_empty, Multiset.prod_zero]
· rw [Finset.sum_insert hat, Finset.prod_insert hat, Multiset.prod_add, ih]
end Multiset
@[simp, norm_cast]
theorem Units.coe_prod {M : Type*} [CommMonoid M] (f : α → Mˣ) (s : Finset α) :
(↑(∏ i ∈ s, f i) : M) = ∏ i ∈ s, (f i : M) :=
map_prod (Units.coeHom M) _ _
theorem nat_abs_sum_le {ι : Type*} (s : Finset ι) (f : ι → ℤ) :
(∑ i ∈ s, f i).natAbs ≤ ∑ i ∈ s, (f i).natAbs := by
classical
induction' s using Finset.induction_on with i s his IH
· simp only [Finset.sum_empty, Int.natAbs_zero, le_refl]
· simp only [his, Finset.sum_insert, not_false_iff]
exact (Int.natAbs_add_le _ _).trans (Nat.add_le_add_left IH _)
/-! ### `Additive`, `Multiplicative` -/
open Additive Multiplicative
section Monoid
variable [Monoid α]
@[simp]
theorem ofMul_list_prod (s : List α) : ofMul s.prod = (s.map ofMul).sum := by simp [ofMul]; rfl
@[simp]
theorem toMul_list_sum (s : List (Additive α)) : toMul s.sum = (s.map toMul).prod := by
simp [toMul, ofMul]; rfl
end Monoid
section AddMonoid
variable [AddMonoid α]
@[simp]
theorem ofAdd_list_prod (s : List α) : ofAdd s.sum = (s.map ofAdd).prod := by simp [ofAdd]; rfl
@[simp]
theorem toAdd_list_sum (s : List (Multiplicative α)) : toAdd s.prod = (s.map toAdd).sum := by
simp [toAdd, ofAdd]; rfl
end AddMonoid
section CommMonoid
variable [CommMonoid α]
@[simp]
theorem ofMul_multiset_prod (s : Multiset α) : ofMul s.prod = (s.map ofMul).sum := by
simp [ofMul]; rfl
@[simp]
theorem toMul_multiset_sum (s : Multiset (Additive α)) : toMul s.sum = (s.map toMul).prod := by
simp [toMul, ofMul]; rfl
@[simp]
theorem ofMul_prod (s : Finset ι) (f : ι → α) : ofMul (∏ i ∈ s, f i) = ∑ i ∈ s, ofMul (f i) :=
rfl
@[simp]
theorem toMul_sum (s : Finset ι) (f : ι → Additive α) :
toMul (∑ i ∈ s, f i) = ∏ i ∈ s, toMul (f i) :=
rfl
end CommMonoid
section AddCommMonoid
variable [AddCommMonoid α]
@[simp]
theorem ofAdd_multiset_prod (s : Multiset α) : ofAdd s.sum = (s.map ofAdd).prod := by
simp [ofAdd]; rfl
@[simp]
theorem toAdd_multiset_sum (s : Multiset (Multiplicative α)) :
toAdd s.prod = (s.map toAdd).sum := by
simp [toAdd, ofAdd]; rfl
@[simp]
theorem ofAdd_sum (s : Finset ι) (f : ι → α) : ofAdd (∑ i ∈ s, f i) = ∏ i ∈ s, ofAdd (f i) :=
rfl
@[simp]
theorem toAdd_prod (s : Finset ι) (f : ι → Multiplicative α) :
toAdd (∏ i ∈ s, f i) = ∑ i ∈ s, toAdd (f i) :=
rfl
end AddCommMonoid
@[deprecated (since := "2023-12-23")] alias Equiv.prod_comp' := Fintype.prod_equiv
@[deprecated (since := "2023-12-23")] alias Equiv.sum_comp' := Fintype.sum_equiv
theorem Finset.sum_sym2_filter_not_isDiag {ι α} [LinearOrder ι] [AddCommMonoid α]
(s : Finset ι) (p : Sym2 ι → α) :
∑ i in s.sym2.filter (¬ ·.IsDiag), p i =
∑ i in s.offDiag.filter (fun i => i.1 < i.2), p s(i.1, i.2) := by
rw [Finset.offDiag_filter_lt_eq_filter_le]
conv_rhs => rw [← Finset.sum_subtype_eq_sum_filter]
refine (Finset.sum_equiv Sym2.sortEquiv.symm ?_ ?_).symm
· rintro ⟨⟨i₁, j₁⟩, hij₁⟩
simp [and_assoc]
· rintro ⟨⟨i₁, j₁⟩, hij₁⟩
simp
|
Algebra\BigOperators\Group\List.lean | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Floris van Doorn, Sébastien Gouëzel, Alex J. Best
-/
import Mathlib.Algebra.Divisibility.Basic
import Mathlib.Algebra.Group.Int
import Mathlib.Algebra.Group.Nat
import Mathlib.Algebra.Group.Opposite
import Mathlib.Algebra.Group.Units
import Mathlib.Data.List.Perm
import Mathlib.Data.List.ProdSigma
import Mathlib.Data.List.Range
import Mathlib.Data.List.Rotate
/-!
# Sums and products from lists
This file provides basic results about `List.prod`, `List.sum`, which calculate the product and sum
of elements of a list and `List.alternatingProd`, `List.alternatingSum`, their alternating
counterparts.
-/
-- Make sure we haven't imported `Data.Nat.Order.Basic`
assert_not_exists OrderedSub
assert_not_exists Ring
variable {ι α β M N P G : Type*}
namespace List
section Defs
/-- Product of a list.
`List.prod [a, b, c] = ((1 * a) * b) * c` -/
@[to_additive "Sum of a list.\n\n`List.sum [a, b, c] = ((0 + a) + b) + c`"]
def prod {α} [Mul α] [One α] : List α → α :=
foldl (· * ·) 1
/-- The alternating sum of a list. -/
def alternatingSum {G : Type*} [Zero G] [Add G] [Neg G] : List G → G
| [] => 0
| g :: [] => g
| g :: h :: t => g + -h + alternatingSum t
/-- The alternating product of a list. -/
@[to_additive existing]
def alternatingProd {G : Type*} [One G] [Mul G] [Inv G] : List G → G
| [] => 1
| g :: [] => g
| g :: h :: t => g * h⁻¹ * alternatingProd t
end Defs
section MulOneClass
variable [MulOneClass M] {l : List M} {a : M}
@[to_additive (attr := simp)]
theorem prod_nil : ([] : List M).prod = 1 :=
rfl
@[to_additive]
theorem prod_singleton : [a].prod = a :=
one_mul a
@[to_additive (attr := simp)]
theorem prod_one_cons : (1 :: l).prod = l.prod := by
rw [prod, foldl, mul_one]
@[to_additive]
theorem prod_map_one {l : List ι} :
(l.map fun _ => (1 : M)).prod = 1 := by
induction l with
| nil => rfl
| cons hd tl ih => rw [map_cons, prod_one_cons, ih]
end MulOneClass
section Monoid
variable [Monoid M] [Monoid N] [Monoid P] {l l₁ l₂ : List M} {a : M}
@[to_additive (attr := simp)]
theorem prod_cons : (a :: l).prod = a * l.prod :=
calc
(a :: l).prod = foldl (· * ·) (a * 1) l := by
simp only [List.prod, foldl_cons, one_mul, mul_one]
_ = _ := foldl_assoc
@[to_additive]
lemma prod_induction
(p : M → Prop) (hom : ∀ a b, p a → p b → p (a * b)) (unit : p 1) (base : ∀ x ∈ l, p x) :
p l.prod := by
induction' l with a l ih
· simpa
rw [List.prod_cons]
simp only [Bool.not_eq_true, List.mem_cons, forall_eq_or_imp] at base
exact hom _ _ (base.1) (ih base.2)
@[to_additive (attr := simp)]
theorem prod_append : (l₁ ++ l₂).prod = l₁.prod * l₂.prod :=
calc
(l₁ ++ l₂).prod = foldl (· * ·) (foldl (· * ·) 1 l₁ * 1) l₂ := by simp [List.prod]
_ = l₁.prod * l₂.prod := foldl_assoc
@[to_additive]
theorem prod_concat : (l.concat a).prod = l.prod * a := by
rw [concat_eq_append, prod_append, prod_singleton]
@[to_additive (attr := simp)]
theorem prod_join {l : List (List M)} : l.join.prod = (l.map List.prod).prod := by
induction l <;> [rfl; simp only [*, List.join, map, prod_append, prod_cons]]
@[to_additive]
theorem prod_eq_foldr : ∀ {l : List M}, l.prod = foldr (· * ·) 1 l
| [] => rfl
| cons a l => by rw [prod_cons, foldr_cons, prod_eq_foldr]
@[to_additive (attr := simp)]
theorem prod_replicate (n : ℕ) (a : M) : (replicate n a).prod = a ^ n := by
induction' n with n ih
· rw [pow_zero]
rfl
· rw [replicate_succ, prod_cons, ih, pow_succ']
@[to_additive sum_eq_card_nsmul]
theorem prod_eq_pow_card (l : List M) (m : M) (h : ∀ x ∈ l, x = m) : l.prod = m ^ l.length := by
rw [← prod_replicate, ← List.eq_replicate.mpr ⟨rfl, h⟩]
@[to_additive]
theorem prod_hom_rel (l : List ι) {r : M → N → Prop} {f : ι → M} {g : ι → N} (h₁ : r 1 1)
(h₂ : ∀ ⦃i a b⦄, r a b → r (f i * a) (g i * b)) : r (l.map f).prod (l.map g).prod :=
List.recOn l h₁ fun a l hl => by simp only [map_cons, prod_cons, h₂ hl]
@[to_additive]
theorem rel_prod {R : M → N → Prop} (h : R 1 1) (hf : (R ⇒ R ⇒ R) (· * ·) (· * ·)) :
(Forall₂ R ⇒ R) prod prod :=
rel_foldl hf h
@[to_additive]
theorem prod_hom (l : List M) {F : Type*} [FunLike F M N] [MonoidHomClass F M N] (f : F) :
(l.map f).prod = f l.prod := by
simp only [prod, foldl_map, ← map_one f]
exact l.foldl_hom f (· * ·) (· * f ·) 1 (fun x y => (map_mul f x y).symm)
@[to_additive]
theorem prod_hom₂ (l : List ι) (f : M → N → P) (hf : ∀ a b c d, f (a * b) (c * d) = f a c * f b d)
(hf' : f 1 1 = 1) (f₁ : ι → M) (f₂ : ι → N) :
(l.map fun i => f (f₁ i) (f₂ i)).prod = f (l.map f₁).prod (l.map f₂).prod := by
simp only [prod, foldl_map]
-- Porting note: next 3 lines used to be
-- convert l.foldl_hom₂ (fun a b => f a b) _ _ _ _ _ fun a b i => _
-- · exact hf'.symm
-- · exact hf _ _ _ _
rw [← l.foldl_hom₂ (fun a b => f a b), hf']
intros
exact hf _ _ _ _
@[to_additive (attr := simp)]
theorem prod_map_mul {α : Type*} [CommMonoid α] {l : List ι} {f g : ι → α} :
(l.map fun i => f i * g i).prod = (l.map f).prod * (l.map g).prod :=
l.prod_hom₂ (· * ·) mul_mul_mul_comm (mul_one _) _ _
@[to_additive]
theorem prod_map_hom (L : List ι) (f : ι → M) {G : Type*} [FunLike G M N] [MonoidHomClass G M N]
(g : G) :
(L.map (g ∘ f)).prod = g (L.map f).prod := by rw [← prod_hom, map_map]
@[to_additive]
theorem prod_isUnit : ∀ {L : List M}, (∀ m ∈ L, IsUnit m) → IsUnit L.prod
| [], _ => by simp
| h :: t, u => by
simp only [List.prod_cons]
exact IsUnit.mul (u h (mem_cons_self h t)) (prod_isUnit fun m mt => u m (mem_cons_of_mem h mt))
@[to_additive]
theorem prod_isUnit_iff {α : Type*} [CommMonoid α] {L : List α} :
IsUnit L.prod ↔ ∀ m ∈ L, IsUnit m := by
refine ⟨fun h => ?_, prod_isUnit⟩
induction' L with m L ih
· exact fun m' h' => False.elim (not_mem_nil m' h')
rw [prod_cons, IsUnit.mul_iff] at h
exact fun m' h' => Or.elim (eq_or_mem_of_mem_cons h') (fun H => H.substr h.1) fun H => ih h.2 _ H
@[to_additive (attr := simp)]
theorem prod_take_mul_prod_drop : ∀ (L : List M) (i : ℕ), (L.take i).prod * (L.drop i).prod = L.prod
| [], i => by simp [Nat.zero_le]
| L, 0 => by simp
| h :: t, n + 1 => by
dsimp
rw [prod_cons, prod_cons, mul_assoc, prod_take_mul_prod_drop t]
@[to_additive (attr := simp)]
theorem prod_take_succ :
∀ (L : List M) (i : ℕ) (p : i < L.length), (L.take (i + 1)).prod = (L.take i).prod * L[i]
| [], i, p => by cases p
| h :: t, 0, _ => rfl
| h :: t, n + 1, p => by
dsimp
rw [prod_cons, prod_cons, prod_take_succ t n (Nat.lt_of_succ_lt_succ p), mul_assoc]
/-- A list with product not one must have positive length. -/
@[to_additive "A list with sum not zero must have positive length."]
theorem length_pos_of_prod_ne_one (L : List M) (h : L.prod ≠ 1) : 0 < L.length := by
cases L
· simp at h
· simp
/-- A list with product greater than one must have positive length. -/
@[to_additive length_pos_of_sum_pos "A list with positive sum must have positive length."]
theorem length_pos_of_one_lt_prod [Preorder M] (L : List M) (h : 1 < L.prod) : 0 < L.length :=
length_pos_of_prod_ne_one L h.ne'
/-- A list with product less than one must have positive length. -/
@[to_additive "A list with negative sum must have positive length."]
theorem length_pos_of_prod_lt_one [Preorder M] (L : List M) (h : L.prod < 1) : 0 < L.length :=
length_pos_of_prod_ne_one L h.ne
@[to_additive]
theorem prod_set :
∀ (L : List M) (n : ℕ) (a : M),
(L.set n a).prod =
((L.take n).prod * if n < L.length then a else 1) * (L.drop (n + 1)).prod
| x :: xs, 0, a => by simp [set]
| x :: xs, i + 1, a => by
simp [set, prod_set xs i a, mul_assoc, Nat.add_lt_add_iff_right]
| [], _, _ => by simp [set, (Nat.zero_le _).not_lt, Nat.zero_le]
/-- We'd like to state this as `L.headI * L.tail.prod = L.prod`, but because `L.headI` relies on an
inhabited instance to return a garbage value on the empty list, this is not possible.
Instead, we write the statement in terms of `(L.get? 0).getD 1`.
-/
@[to_additive "We'd like to state this as `L.headI + L.tail.sum = L.sum`, but because `L.headI`
relies on an inhabited instance to return a garbage value on the empty list, this is not possible.
Instead, we write the statement in terms of `(L.get? 0).getD 0`."]
theorem get?_zero_mul_tail_prod (l : List M) : (l.get? 0).getD 1 * l.tail.prod = l.prod := by
cases l <;> simp
/-- Same as `get?_zero_mul_tail_prod`, but avoiding the `List.headI` garbage complication by
requiring the list to be nonempty. -/
@[to_additive "Same as `get?_zero_add_tail_sum`, but avoiding the `List.headI` garbage complication
by requiring the list to be nonempty."]
theorem headI_mul_tail_prod_of_ne_nil [Inhabited M] (l : List M) (h : l ≠ []) :
l.headI * l.tail.prod = l.prod := by cases l <;> [contradiction; simp]
@[to_additive]
theorem _root_.Commute.list_prod_right (l : List M) (y : M) (h : ∀ x ∈ l, Commute y x) :
Commute y l.prod := by
induction' l with z l IH
· simp
· rw [List.forall_mem_cons] at h
rw [List.prod_cons]
exact Commute.mul_right h.1 (IH h.2)
@[to_additive]
theorem _root_.Commute.list_prod_left (l : List M) (y : M) (h : ∀ x ∈ l, Commute x y) :
Commute l.prod y :=
((Commute.list_prod_right _ _) fun _ hx => (h _ hx).symm).symm
@[to_additive] lemma prod_range_succ (f : ℕ → M) (n : ℕ) :
((range n.succ).map f).prod = ((range n).map f).prod * f n := by
rw [range_succ, map_append, map_singleton, prod_append, prod_cons, prod_nil, mul_one]
/-- A variant of `prod_range_succ` which pulls off the first term in the product rather than the
last. -/
@[to_additive
"A variant of `sum_range_succ` which pulls off the first term in the sum rather than the last."]
lemma prod_range_succ' (f : ℕ → M) (n : ℕ) :
((range n.succ).map f).prod = f 0 * ((range n).map fun i ↦ f i.succ).prod :=
Nat.recOn n (show 1 * f 0 = f 0 * 1 by rw [one_mul, mul_one]) fun _ hd => by
rw [List.prod_range_succ, hd, mul_assoc, ← List.prod_range_succ]
@[to_additive] lemma prod_eq_one (hl : ∀ x ∈ l, x = 1) : l.prod = 1 := by
induction' l with i l hil
· rfl
rw [List.prod_cons, hil fun x hx ↦ hl _ (mem_cons_of_mem i hx), hl _ (mem_cons_self i l), one_mul]
@[to_additive] lemma exists_mem_ne_one_of_prod_ne_one (h : l.prod ≠ 1) :
∃ x ∈ l, x ≠ (1 : M) := by simpa only [not_forall, exists_prop] using mt prod_eq_one h
@[to_additive]
lemma prod_erase_of_comm [DecidableEq M] (ha : a ∈ l) (comm : ∀ x ∈ l, ∀ y ∈ l, x * y = y * x) :
a * (l.erase a).prod = l.prod := by
induction' l with b l ih
· simp only [not_mem_nil] at ha
obtain rfl | ⟨ne, h⟩ := List.eq_or_ne_mem_of_mem ha
· simp only [erase_cons_head, prod_cons]
rw [List.erase, beq_false_of_ne ne.symm, List.prod_cons, List.prod_cons, ← mul_assoc,
comm a ha b (l.mem_cons_self b), mul_assoc,
ih h fun x hx y hy ↦ comm _ (List.mem_cons_of_mem b hx) _ (List.mem_cons_of_mem b hy)]
@[to_additive]
lemma prod_map_eq_pow_single [DecidableEq α] {l : List α} (a : α) (f : α → M)
(hf : ∀ a', a' ≠ a → a' ∈ l → f a' = 1) : (l.map f).prod = f a ^ l.count a := by
induction' l with a' as h generalizing a
· rw [map_nil, prod_nil, count_nil, _root_.pow_zero]
· specialize h a fun a' ha' hfa' => hf a' ha' (mem_cons_of_mem _ hfa')
rw [List.map_cons, List.prod_cons, count_cons, h]
simp only [beq_iff_eq]
split_ifs with ha'
· rw [ha', _root_.pow_succ']
· rw [hf a' ha' (List.mem_cons_self a' as), one_mul, add_zero]
@[to_additive]
lemma prod_eq_pow_single [DecidableEq M] (a : M) (h : ∀ a', a' ≠ a → a' ∈ l → a' = 1) :
l.prod = a ^ l.count a :=
_root_.trans (by rw [map_id]) (prod_map_eq_pow_single a id h)
/-- If elements of a list commute with each other, then their product does not
depend on the order of elements. -/
@[to_additive "If elements of a list additively commute with each other, then their sum does not
depend on the order of elements."]
lemma Perm.prod_eq' (h : l₁ ~ l₂) (hc : l₁.Pairwise Commute) : l₁.prod = l₂.prod := by
refine h.foldl_eq' ?_ _
apply Pairwise.forall_of_forall
· intro x y h z
exact (h z).symm
· intros; rfl
· apply hc.imp
intro a b h z
rw [mul_assoc z, mul_assoc z, h]
end Monoid
section CommMonoid
variable [CommMonoid M] {a : M} {l l₁ l₂ : List M}
@[to_additive (attr := simp)]
lemma prod_erase [DecidableEq M] (ha : a ∈ l) : a * (l.erase a).prod = l.prod :=
prod_erase_of_comm ha fun x _ y _ ↦ mul_comm x y
@[to_additive (attr := simp)]
lemma prod_map_erase [DecidableEq α] (f : α → M) {a} :
∀ {l : List α}, a ∈ l → f a * ((l.erase a).map f).prod = (l.map f).prod
| b :: l, h => by
obtain rfl | ⟨ne, h⟩ := List.eq_or_ne_mem_of_mem h
· simp only [map, erase_cons_head, prod_cons]
· simp only [map, erase_cons_tail (not_beq_of_ne ne.symm), prod_cons, prod_map_erase _ h,
mul_left_comm (f a) (f b)]
@[to_additive] lemma Perm.prod_eq (h : Perm l₁ l₂) : prod l₁ = prod l₂ := h.fold_op_eq
@[to_additive] lemma prod_reverse (l : List M) : prod l.reverse = prod l := (reverse_perm l).prod_eq
@[to_additive]
lemma prod_mul_prod_eq_prod_zipWith_mul_prod_drop :
∀ l l' : List M,
l.prod * l'.prod =
(zipWith (· * ·) l l').prod * (l.drop l'.length).prod * (l'.drop l.length).prod
| [], ys => by simp [Nat.zero_le]
| xs, [] => by simp [Nat.zero_le]
| x :: xs, y :: ys => by
simp only [drop, length, zipWith_cons_cons, prod_cons]
conv =>
lhs; rw [mul_assoc]; right; rw [mul_comm, mul_assoc]; right
rw [mul_comm, prod_mul_prod_eq_prod_zipWith_mul_prod_drop xs ys]
simp [mul_assoc]
@[to_additive]
lemma prod_mul_prod_eq_prod_zipWith_of_length_eq (l l' : List M) (h : l.length = l'.length) :
l.prod * l'.prod = (zipWith (· * ·) l l').prod := by
apply (prod_mul_prod_eq_prod_zipWith_mul_prod_drop l l').trans
rw [← h, drop_length, h, drop_length, prod_nil, mul_one, mul_one]
@[to_additive]
lemma prod_map_ite (p : α → Prop) [DecidablePred p] (f g : α → M) (l : List α) :
(l.map fun a => if p a then f a else g a).prod =
((l.filter p).map f).prod * ((l.filter fun a ↦ ¬p a).map g).prod := by
induction l with
| nil => simp
| cons x xs ih =>
simp only [map_cons, filter_cons, prod_cons, nodup_cons, ne_eq, mem_cons, count_cons] at ih ⊢
rw [ih]
clear ih
by_cases hx : p x
· simp only [hx, ↓reduceIte, decide_not, decide_True, map_cons, prod_cons, not_true_eq_false,
decide_False, Bool.false_eq_true, mul_assoc]
· simp only [hx, ↓reduceIte, decide_not, decide_False, Bool.false_eq_true, not_false_eq_true,
decide_True, map_cons, prod_cons, mul_left_comm]
@[to_additive]
lemma prod_map_filter_mul_prod_map_filter_not (p : α → Prop) [DecidablePred p] (f : α → M)
(l : List α) :
((l.filter p).map f).prod * ((l.filter fun x => ¬p x).map f).prod = (l.map f).prod := by
rw [← prod_map_ite]
simp only [ite_self]
end CommMonoid
@[to_additive]
lemma eq_of_prod_take_eq [LeftCancelMonoid M] {L L' : List M} (h : L.length = L'.length)
(h' : ∀ i ≤ L.length, (L.take i).prod = (L'.take i).prod) : L = L' := by
refine ext_get h fun i h₁ h₂ => ?_
have : (L.take (i + 1)).prod = (L'.take (i + 1)).prod := h' _ (Nat.succ_le_of_lt h₁)
rw [prod_take_succ L i h₁, prod_take_succ L' i h₂, h' i (le_of_lt h₁)] at this
convert mul_left_cancel this
section Group
variable [Group G]
/-- This is the `List.prod` version of `mul_inv_rev` -/
@[to_additive "This is the `List.sum` version of `add_neg_rev`"]
theorem prod_inv_reverse : ∀ L : List G, L.prod⁻¹ = (L.map fun x => x⁻¹).reverse.prod
| [] => by simp
| x :: xs => by simp [prod_inv_reverse xs]
/-- A non-commutative variant of `List.prod_reverse` -/
@[to_additive "A non-commutative variant of `List.sum_reverse`"]
theorem prod_reverse_noncomm : ∀ L : List G, L.reverse.prod = (L.map fun x => x⁻¹).prod⁻¹ := by
simp [prod_inv_reverse]
/-- Counterpart to `List.prod_take_succ` when we have an inverse operation -/
@[to_additive (attr := simp)
"Counterpart to `List.sum_take_succ` when we have a negation operation"]
theorem prod_drop_succ :
∀ (L : List G) (i : ℕ) (p), (L.drop (i + 1)).prod = (L.get ⟨i, p⟩)⁻¹ * (L.drop i).prod
| [], i, p => False.elim (Nat.not_lt_zero _ p)
| x :: xs, 0, _ => by simp
| x :: xs, i + 1, p => prod_drop_succ xs i _
/-- Cancellation of a telescoping product. -/
@[to_additive "Cancellation of a telescoping sum."]
theorem prod_range_div' (n : ℕ) (f : ℕ → G) :
((range n).map fun k ↦ f k / f (k + 1)).prod = f 0 / f n := by
induction' n with n h
· exact (div_self' (f 0)).symm
· rw [range_succ, map_append, map_singleton, prod_append, prod_singleton, h, div_mul_div_cancel']
lemma prod_rotate_eq_one_of_prod_eq_one :
∀ {l : List G} (_ : l.prod = 1) (n : ℕ), (l.rotate n).prod = 1
| [], _, _ => by simp
| a :: l, hl, n => by
have : n % List.length (a :: l) ≤ List.length (a :: l) := le_of_lt (Nat.mod_lt _ (by simp))
rw [← List.take_append_drop (n % List.length (a :: l)) (a :: l)] at hl
rw [← rotate_mod, rotate_eq_drop_append_take this, List.prod_append, mul_eq_one_iff_inv_eq,
← one_mul (List.prod _)⁻¹, ← hl, List.prod_append, mul_assoc, mul_inv_self, mul_one]
end Group
section CommGroup
variable [CommGroup G]
/-- This is the `List.prod` version of `mul_inv` -/
@[to_additive "This is the `List.sum` version of `add_neg`"]
theorem prod_inv : ∀ L : List G, L.prod⁻¹ = (L.map fun x => x⁻¹).prod
| [] => by simp
| x :: xs => by simp [mul_comm, prod_inv xs]
/-- Cancellation of a telescoping product. -/
@[to_additive "Cancellation of a telescoping sum."]
theorem prod_range_div (n : ℕ) (f : ℕ → G) :
((range n).map fun k ↦ f (k + 1) / f k).prod = f n / f 0 := by
have h : ((·⁻¹) ∘ fun k ↦ f (k + 1) / f k) = fun k ↦ f k / f (k + 1) := by ext; apply inv_div
rw [← inv_inj, prod_inv, map_map, inv_div, h, prod_range_div']
/-- Alternative version of `List.prod_set` when the list is over a group -/
@[to_additive "Alternative version of `List.sum_set` when the list is over a group"]
theorem prod_set' (L : List G) (n : ℕ) (a : G) :
(L.set n a).prod = L.prod * if hn : n < L.length then (L.get ⟨n, hn⟩)⁻¹ * a else 1 := by
refine (prod_set L n a).trans ?_
split_ifs with hn
· rw [mul_comm _ a, mul_assoc a, prod_drop_succ L n hn, mul_comm _ (drop n L).prod, ←
mul_assoc (take n L).prod, prod_take_mul_prod_drop, mul_comm a, mul_assoc]
· simp only [take_of_length_le (le_of_not_lt hn), prod_nil, mul_one,
drop_eq_nil_of_le ((le_of_not_lt hn).trans n.le_succ)]
@[to_additive]
lemma prod_map_ite_eq {A : Type*} [DecidableEq A] (l : List A) (f g : A → G) (a : A) :
(l.map fun x => if x = a then f x else g x).prod
= (f a / g a) ^ (l.count a) * (l.map g).prod := by
induction l with
| nil => simp
| cons x xs ih =>
simp only [map_cons, prod_cons, nodup_cons, ne_eq, mem_cons, count_cons] at ih ⊢
rw [ih]
clear ih
by_cases hx : x = a
· simp only [hx, ite_true, div_pow, pow_add, pow_one, div_eq_mul_inv, mul_assoc, mul_comm,
mul_left_comm, mul_inv_cancel_left, beq_self_eq_true]
· simp only [hx, ite_false, ne_comm.mp hx, add_zero, mul_assoc, mul_comm (g x) _, beq_iff_eq]
end CommGroup
theorem sum_const_nat (m n : ℕ) : sum (replicate m n) = m * n :=
sum_replicate m n
/-!
Several lemmas about sum/head/tail for `List ℕ`.
These are hard to generalize well, as they rely on the fact that `default ℕ = 0`.
If desired, we could add a class stating that `default = 0`.
-/
/-- This relies on `default ℕ = 0`. -/
theorem headI_add_tail_sum (L : List ℕ) : L.headI + L.tail.sum = L.sum := by
cases L <;> simp
/-- This relies on `default ℕ = 0`. -/
theorem headI_le_sum (L : List ℕ) : L.headI ≤ L.sum :=
Nat.le.intro (headI_add_tail_sum L)
/-- This relies on `default ℕ = 0`. -/
theorem tail_sum (L : List ℕ) : L.tail.sum = L.sum - L.headI := by
rw [← headI_add_tail_sum L, add_comm, Nat.add_sub_cancel_right]
section Alternating
section
variable [One α] [Mul α] [Inv α]
@[to_additive (attr := simp)]
theorem alternatingProd_nil : alternatingProd ([] : List α) = 1 :=
rfl
@[to_additive (attr := simp)]
theorem alternatingProd_singleton (a : α) : alternatingProd [a] = a :=
rfl
@[to_additive]
theorem alternatingProd_cons_cons' (a b : α) (l : List α) :
alternatingProd (a :: b :: l) = a * b⁻¹ * alternatingProd l :=
rfl
end
@[to_additive]
theorem alternatingProd_cons_cons [DivInvMonoid α] (a b : α) (l : List α) :
alternatingProd (a :: b :: l) = a / b * alternatingProd l := by
rw [div_eq_mul_inv, alternatingProd_cons_cons']
variable [CommGroup α]
@[to_additive]
theorem alternatingProd_cons' :
∀ (a : α) (l : List α), alternatingProd (a :: l) = a * (alternatingProd l)⁻¹
| a, [] => by rw [alternatingProd_nil, inv_one, mul_one, alternatingProd_singleton]
| a, b :: l => by
rw [alternatingProd_cons_cons', alternatingProd_cons' b l, mul_inv, inv_inv, mul_assoc]
@[to_additive (attr := simp)]
theorem alternatingProd_cons (a : α) (l : List α) :
alternatingProd (a :: l) = a / alternatingProd l := by
rw [div_eq_mul_inv, alternatingProd_cons']
end Alternating
lemma sum_nat_mod (l : List ℕ) (n : ℕ) : l.sum % n = (l.map (· % n)).sum % n := by
induction' l with a l ih
· simp only [Nat.zero_mod, map_nil]
· simpa only [map_cons, sum_cons, Nat.mod_add_mod, Nat.add_mod_mod] using congr((a + $ih) % n)
lemma prod_nat_mod (l : List ℕ) (n : ℕ) : l.prod % n = (l.map (· % n)).prod % n := by
induction' l with a l ih
· simp only [Nat.zero_mod, map_nil]
· simpa only [prod_cons, map_cons, Nat.mod_mul_mod, Nat.mul_mod_mod] using congr((a * $ih) % n)
lemma sum_int_mod (l : List ℤ) (n : ℤ) : l.sum % n = (l.map (· % n)).sum % n := by
induction l <;> simp [Int.add_emod, *]
lemma prod_int_mod (l : List ℤ) (n : ℤ) : l.prod % n = (l.map (· % n)).prod % n := by
induction l <;> simp [Int.mul_emod, *]
variable [DecidableEq α]
/-- Summing the count of `x` over a list filtered by some `p` is just `countP` applied to `p` -/
theorem sum_map_count_dedup_filter_eq_countP (p : α → Bool) (l : List α) :
((l.dedup.filter p).map fun x => l.count x).sum = l.countP p := by
induction' l with a as h
· simp
· simp_rw [List.countP_cons, List.count_cons, List.sum_map_add]
congr 1
· refine _root_.trans ?_ h
by_cases ha : a ∈ as
· simp [dedup_cons_of_mem ha]
· simp only [dedup_cons_of_not_mem ha, List.filter]
match p a with
| true => simp only [List.map_cons, List.sum_cons, List.count_eq_zero.2 ha, zero_add]
| false => simp only
· simp only [beq_iff_eq]
by_cases hp : p a
· refine _root_.trans (sum_map_eq_nsmul_single a _ fun _ h _ => by simp [h.symm]) ?_
simp [hp, count_dedup]
· refine _root_.trans (List.sum_eq_zero fun n hn => ?_) (by simp [hp])
obtain ⟨a', ha'⟩ := List.mem_map.1 hn
split_ifs at ha' with ha
· simp only [ha.symm, mem_filter, mem_dedup, find?, mem_cons, true_or, hp,
and_false, false_and] at ha'
· exact ha'.2.symm
theorem sum_map_count_dedup_eq_length (l : List α) :
(l.dedup.map fun x => l.count x).sum = l.length := by
simpa using sum_map_count_dedup_filter_eq_countP (fun _ => True) l
end List
section MonoidHom
variable [Monoid M] [Monoid N]
@[to_additive]
theorem map_list_prod {F : Type*} [FunLike F M N] [MonoidHomClass F M N] (f : F) (l : List M) :
f l.prod = (l.map f).prod :=
(l.prod_hom f).symm
namespace MonoidHom
@[to_additive]
protected theorem map_list_prod (f : M →* N) (l : List M) : f l.prod = (l.map f).prod :=
map_list_prod f l
attribute [deprecated map_list_prod (since := "2023-01-10")] MonoidHom.map_list_prod
attribute [deprecated map_list_sum (since := "2024-05-02")] AddMonoidHom.map_list_sum
end MonoidHom
end MonoidHom
@[simp] lemma Nat.sum_eq_listSum (l : List ℕ) : Nat.sum l = l.sum :=
(List.foldl_eq_foldr Nat.add_comm Nat.add_assoc _ _).symm
namespace List
lemma length_sigma {σ : α → Type*} (l₁ : List α) (l₂ : ∀ a, List (σ a)) :
length (l₁.sigma l₂) = (l₁.map fun a ↦ length (l₂ a)).sum := by simp [length_sigma']
lemma ranges_join (l : List ℕ) : l.ranges.join = range l.sum := by simp [ranges_join']
/-- Any entry of any member of `l.ranges` is strictly smaller than `l.sum`. -/
lemma mem_mem_ranges_iff_lt_sum (l : List ℕ) {n : ℕ} :
(∃ s ∈ l.ranges, n ∈ s) ↔ n < l.sum := by simp [mem_mem_ranges_iff_lt_natSum]
lemma countP_join (p : α → Bool) : ∀ L : List (List α), countP p L.join = (L.map (countP p)).sum
| [] => rfl
| a :: l => by rw [join, countP_append, map_cons, sum_cons, countP_join _ l]
lemma count_join [BEq α] (L : List (List α)) (a : α) : L.join.count a = (L.map (count a)).sum :=
countP_join _ _
@[simp]
theorem length_bind (l : List α) (f : α → List β) :
length (List.bind l f) = sum (map (length ∘ f) l) := by
rw [List.bind, length_join, map_map, Nat.sum_eq_listSum]
lemma countP_bind (p : β → Bool) (l : List α) (f : α → List β) :
countP p (l.bind f) = sum (map (countP p ∘ f) l) := by rw [List.bind, countP_join, map_map]
lemma count_bind [BEq β] (l : List α) (f : α → List β) (x : β) :
count x (l.bind f) = sum (map (count x ∘ f) l) := countP_bind _ _ _
/-- In a join, taking the first elements up to an index which is the sum of the lengths of the
first `i` sublists, is the same as taking the join of the first `i` sublists. -/
lemma take_sum_join (L : List (List α)) (i : ℕ) :
L.join.take ((L.map length).take i).sum = (L.take i).join := by simpa using take_sum_join' _ _
/-- In a join, dropping all the elements up to an index which is the sum of the lengths of the
first `i` sublists, is the same as taking the join after dropping the first `i` sublists. -/
lemma drop_sum_join (L : List (List α)) (i : ℕ) :
L.join.drop ((L.map length).take i).sum = (L.drop i).join := by simpa using drop_sum_join' _ _
/-- In a join of sublists, taking the slice between the indices `A` and `B - 1` gives back the
original sublist of index `i` if `A` is the sum of the lengths of sublists of index `< i`, and
`B` is the sum of the lengths of sublists of index `≤ i`. -/
lemma drop_take_succ_join_eq_getElem (L : List (List α)) (i : Nat) (h : i < L.length) :
(L.join.take ((L.map length).take (i + 1)).sum).drop ((L.map length).take i).sum = L[i] := by
simpa using drop_take_succ_join_eq_getElem' _ _ _
@[deprecated drop_take_succ_join_eq_getElem (since := "2024-06-11")]
lemma drop_take_succ_join_eq_get (L : List (List α)) (i : Fin L.length) :
(L.join.take ((L.map length).take (i + 1)).sum).drop ((L.map length).take i).sum = get L i := by
rw [drop_take_succ_join_eq_getElem _ _ i.2]
simp
end List
namespace List
/-- If a product of integers is `-1`, then at least one factor must be `-1`. -/
theorem neg_one_mem_of_prod_eq_neg_one {l : List ℤ} (h : l.prod = -1) : (-1 : ℤ) ∈ l := by
obtain ⟨x, h₁, h₂⟩ := exists_mem_ne_one_of_prod_ne_one (ne_of_eq_of_ne h (by decide))
exact Or.resolve_left
(Int.isUnit_iff.mp (prod_isUnit_iff.mp
(h.symm ▸ ⟨⟨-1, -1, by decide, by decide⟩, rfl⟩ : IsUnit l.prod) x h₁)) h₂ ▸ h₁
/-- If all elements in a list are bounded below by `1`, then the length of the list is bounded
by the sum of the elements. -/
theorem length_le_sum_of_one_le (L : List ℕ) (h : ∀ i ∈ L, 1 ≤ i) : L.length ≤ L.sum := by
induction' L with j L IH h; · simp
rw [sum_cons, length, add_comm]
exact Nat.add_le_add (h _ (mem_cons_self _ _)) (IH fun i hi => h i (mem_cons.2 (Or.inr hi)))
theorem dvd_prod [CommMonoid M] {a} {l : List M} (ha : a ∈ l) : a ∣ l.prod := by
let ⟨s, t, h⟩ := append_of_mem ha
rw [h, prod_append, prod_cons, mul_left_comm]
exact dvd_mul_right _ _
theorem Sublist.prod_dvd_prod [CommMonoid M] {l₁ l₂ : List M} (h : l₁ <+ l₂) :
l₁.prod ∣ l₂.prod := by
obtain ⟨l, hl⟩ := h.exists_perm_append
rw [hl.prod_eq, prod_append]
exact dvd_mul_right _ _
section Alternating
variable [CommGroup α]
@[to_additive]
theorem alternatingProd_append :
∀ l₁ l₂ : List α,
alternatingProd (l₁ ++ l₂) = alternatingProd l₁ * alternatingProd l₂ ^ (-1 : ℤ) ^ length l₁
| [], l₂ => by simp
| a :: l₁, l₂ => by
simp_rw [cons_append, alternatingProd_cons, alternatingProd_append, length_cons, pow_succ',
Int.neg_mul, one_mul, zpow_neg, ← div_eq_mul_inv, div_div]
@[to_additive]
theorem alternatingProd_reverse :
∀ l : List α, alternatingProd (reverse l) = alternatingProd l ^ (-1 : ℤ) ^ (length l + 1)
| [] => by simp only [alternatingProd_nil, one_zpow, reverse_nil]
| a :: l => by
simp_rw [reverse_cons, alternatingProd_append, alternatingProd_reverse,
alternatingProd_singleton, alternatingProd_cons, length_reverse, length, pow_succ',
Int.neg_mul, one_mul, zpow_neg, inv_inv]
rw [mul_comm, ← div_eq_mul_inv, div_zpow]
end Alternating
end List
open List
namespace MulOpposite
variable [Monoid M]
lemma op_list_prod : ∀ l : List M, op l.prod = (l.map op).reverse.prod := by
intro l; induction l with
| nil => rfl
| cons x xs ih =>
rw [List.prod_cons, List.map_cons, List.reverse_cons', List.prod_concat, op_mul, ih]
lemma unop_list_prod (l : List Mᵐᵒᵖ) : l.prod.unop = (l.map unop).reverse.prod := by
rw [← op_inj, op_unop, MulOpposite.op_list_prod, map_reverse, map_map, reverse_reverse,
op_comp_unop, map_id]
end MulOpposite
section MonoidHom
variable [Monoid M] [Monoid N]
/-- A morphism into the opposite monoid acts on the product by acting on the reversed elements. -/
lemma unop_map_list_prod {F : Type*} [FunLike F M Nᵐᵒᵖ] [MonoidHomClass F M Nᵐᵒᵖ]
(f : F) (l : List M) :
(f l.prod).unop = (l.map (MulOpposite.unop ∘ f)).reverse.prod := by
rw [map_list_prod f l, MulOpposite.unop_list_prod, List.map_map]
namespace MonoidHom
/-- A morphism into the opposite monoid acts on the product by acting on the reversed elements. -/
@[deprecated _root_.unop_map_list_prod (since := "2023-01-10")]
protected theorem unop_map_list_prod (f : M →* Nᵐᵒᵖ) (l : List M) :
(f l.prod).unop = (l.map (MulOpposite.unop ∘ f)).reverse.prod :=
unop_map_list_prod f l
end MonoidHom
end MonoidHom
|
Algebra\BigOperators\Group\Multiset.lean | /-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Algebra.BigOperators.Group.List
import Mathlib.Algebra.Group.Prod
import Mathlib.Data.Multiset.Basic
/-!
# Sums and products over multisets
In this file we define products and sums indexed by multisets. This is later used to define products
and sums indexed by finite sets.
## Main declarations
* `Multiset.prod`: `s.prod f` is the product of `f i` over all `i ∈ s`. Not to be mistaken with
the cartesian product `Multiset.product`.
* `Multiset.sum`: `s.sum f` is the sum of `f i` over all `i ∈ s`.
-/
assert_not_exists MonoidWithZero
variable {F ι α β β' γ : Type*}
namespace Multiset
section CommMonoid
variable [CommMonoid α] [CommMonoid β] {s t : Multiset α} {a : α} {m : Multiset ι} {f g : ι → α}
/-- Product of a multiset given a commutative monoid structure on `α`.
`prod {a, b, c} = a * b * c` -/
@[to_additive
"Sum of a multiset given a commutative additive monoid structure on `α`.
`sum {a, b, c} = a + b + c`"]
def prod : Multiset α → α :=
foldr (· * ·) (fun x y z => by simp [mul_left_comm]) 1
@[to_additive]
theorem prod_eq_foldr (s : Multiset α) :
prod s = foldr (· * ·) (fun x y z => by simp [mul_left_comm]) 1 s :=
rfl
@[to_additive]
theorem prod_eq_foldl (s : Multiset α) :
prod s = foldl (· * ·) (fun x y z => by simp [mul_right_comm]) 1 s :=
(foldr_swap _ _ _ _).trans (by simp [mul_comm])
@[to_additive (attr := simp, norm_cast)]
theorem prod_coe (l : List α) : prod ↑l = l.prod :=
prod_eq_foldl _
@[to_additive (attr := simp)]
theorem prod_toList (s : Multiset α) : s.toList.prod = s.prod := by
conv_rhs => rw [← coe_toList s]
rw [prod_coe]
@[to_additive (attr := simp)]
theorem prod_zero : @prod α _ 0 = 1 :=
rfl
@[to_additive (attr := simp)]
theorem prod_cons (a : α) (s) : prod (a ::ₘ s) = a * prod s :=
foldr_cons _ _ _ _ _
@[to_additive (attr := simp)]
theorem prod_erase [DecidableEq α] (h : a ∈ s) : a * (s.erase a).prod = s.prod := by
rw [← s.coe_toList, coe_erase, prod_coe, prod_coe, List.prod_erase (mem_toList.2 h)]
@[to_additive (attr := simp)]
theorem prod_map_erase [DecidableEq ι] {a : ι} (h : a ∈ m) :
f a * ((m.erase a).map f).prod = (m.map f).prod := by
rw [← m.coe_toList, coe_erase, map_coe, map_coe, prod_coe, prod_coe,
List.prod_map_erase f (mem_toList.2 h)]
@[to_additive (attr := simp)]
theorem prod_singleton (a : α) : prod {a} = a := by
simp only [mul_one, prod_cons, ← cons_zero, eq_self_iff_true, prod_zero]
@[to_additive]
theorem prod_pair (a b : α) : ({a, b} : Multiset α).prod = a * b := by
rw [insert_eq_cons, prod_cons, prod_singleton]
@[to_additive (attr := simp)]
theorem prod_add (s t : Multiset α) : prod (s + t) = prod s * prod t :=
Quotient.inductionOn₂ s t fun l₁ l₂ => by simp
@[to_additive]
theorem prod_nsmul (m : Multiset α) : ∀ n : ℕ, (n • m).prod = m.prod ^ n
| 0 => by
rw [zero_nsmul, pow_zero]
rfl
| n + 1 => by rw [add_nsmul, one_nsmul, pow_add, pow_one, prod_add, prod_nsmul m n]
@[to_additive]
theorem prod_filter_mul_prod_filter_not (p) [DecidablePred p] :
(s.filter p).prod * (s.filter (fun a ↦ ¬ p a)).prod = s.prod := by
rw [← prod_add, filter_add_not]
@[to_additive (attr := simp)]
theorem prod_replicate (n : ℕ) (a : α) : (replicate n a).prod = a ^ n := by
simp [replicate, List.prod_replicate]
@[to_additive]
theorem prod_map_eq_pow_single [DecidableEq ι] (i : ι)
(hf : ∀ i' ≠ i, i' ∈ m → f i' = 1) : (m.map f).prod = f i ^ m.count i := by
induction' m using Quotient.inductionOn with l
simp [List.prod_map_eq_pow_single i f hf]
@[to_additive]
theorem prod_eq_pow_single [DecidableEq α] (a : α) (h : ∀ a' ≠ a, a' ∈ s → a' = 1) :
s.prod = a ^ s.count a := by
induction' s using Quotient.inductionOn with l
simp [List.prod_eq_pow_single a h]
@[to_additive]
lemma prod_eq_one (h : ∀ x ∈ s, x = (1 : α)) : s.prod = 1 := by
induction' s using Quotient.inductionOn with l; simp [List.prod_eq_one h]
@[to_additive]
theorem pow_count [DecidableEq α] (a : α) : a ^ s.count a = (s.filter (Eq a)).prod := by
rw [filter_eq, prod_replicate]
@[to_additive]
theorem prod_hom (s : Multiset α) {F : Type*} [FunLike F α β]
[MonoidHomClass F α β] (f : F) :
(s.map f).prod = f s.prod :=
Quotient.inductionOn s fun l => by simp only [l.prod_hom f, quot_mk_to_coe, map_coe, prod_coe]
@[to_additive]
theorem prod_hom' (s : Multiset ι) {F : Type*} [FunLike F α β]
[MonoidHomClass F α β] (f : F)
(g : ι → α) : (s.map fun i => f <| g i).prod = f (s.map g).prod := by
convert (s.map g).prod_hom f
exact (map_map _ _ _).symm
@[to_additive]
theorem prod_hom₂ [CommMonoid γ] (s : Multiset ι) (f : α → β → γ)
(hf : ∀ a b c d, f (a * b) (c * d) = f a c * f b d) (hf' : f 1 1 = 1) (f₁ : ι → α)
(f₂ : ι → β) : (s.map fun i => f (f₁ i) (f₂ i)).prod = f (s.map f₁).prod (s.map f₂).prod :=
Quotient.inductionOn s fun l => by
simp only [l.prod_hom₂ f hf hf', quot_mk_to_coe, map_coe, prod_coe]
@[to_additive]
theorem prod_hom_rel (s : Multiset ι) {r : α → β → Prop} {f : ι → α} {g : ι → β}
(h₁ : r 1 1) (h₂ : ∀ ⦃a b c⦄, r b c → r (f a * b) (g a * c)) :
r (s.map f).prod (s.map g).prod :=
Quotient.inductionOn s fun l => by
simp only [l.prod_hom_rel h₁ h₂, quot_mk_to_coe, map_coe, prod_coe]
@[to_additive]
theorem prod_map_one : prod (m.map fun _ => (1 : α)) = 1 := by
rw [map_const', prod_replicate, one_pow]
@[to_additive (attr := simp)]
theorem prod_map_mul : (m.map fun i => f i * g i).prod = (m.map f).prod * (m.map g).prod :=
m.prod_hom₂ (· * ·) mul_mul_mul_comm (mul_one _) _ _
@[to_additive]
theorem prod_map_pow {n : ℕ} : (m.map fun i => f i ^ n).prod = (m.map f).prod ^ n :=
m.prod_hom' (powMonoidHom n : α →* α) f
@[to_additive]
theorem prod_map_prod_map (m : Multiset β') (n : Multiset γ) {f : β' → γ → α} :
prod (m.map fun a => prod <| n.map fun b => f a b) =
prod (n.map fun b => prod <| m.map fun a => f a b) :=
Multiset.induction_on m (by simp) fun a m ih => by simp [ih]
@[to_additive]
theorem prod_induction (p : α → Prop) (s : Multiset α) (p_mul : ∀ a b, p a → p b → p (a * b))
(p_one : p 1) (p_s : ∀ a ∈ s, p a) : p s.prod := by
rw [prod_eq_foldr]
exact foldr_induction (· * ·) (fun x y z => by simp [mul_left_comm]) 1 p s p_mul p_one p_s
@[to_additive]
theorem prod_induction_nonempty (p : α → Prop) (p_mul : ∀ a b, p a → p b → p (a * b)) (hs : s ≠ ∅)
(p_s : ∀ a ∈ s, p a) : p s.prod := by
-- Porting note: used to be `refine' Multiset.induction _ _`
induction' s using Multiset.induction_on with a s hsa
· simp at hs
rw [prod_cons]
by_cases hs_empty : s = ∅
· simp [hs_empty, p_s a]
have hps : ∀ x, x ∈ s → p x := fun x hxs => p_s x (mem_cons_of_mem hxs)
exact p_mul a s.prod (p_s a (mem_cons_self a s)) (hsa hs_empty hps)
theorem prod_dvd_prod_of_le (h : s ≤ t) : s.prod ∣ t.prod := by
obtain ⟨z, rfl⟩ := exists_add_of_le h
simp only [prod_add, dvd_mul_right]
@[to_additive]
lemma _root_.map_multiset_prod [FunLike F α β] [MonoidHomClass F α β] (f : F) (s : Multiset α) :
f s.prod = (s.map f).prod := (s.prod_hom f).symm
@[to_additive]
protected lemma _root_.MonoidHom.map_multiset_prod (f : α →* β) (s : Multiset α) :
f s.prod = (s.map f).prod := (s.prod_hom f).symm
lemma dvd_prod : a ∈ s → a ∣ s.prod :=
Quotient.inductionOn s (fun l a h ↦ by simpa using List.dvd_prod h) a
@[to_additive] lemma fst_prod (s : Multiset (α × β)) : s.prod.1 = (s.map Prod.fst).prod :=
map_multiset_prod (MonoidHom.fst _ _) _
@[to_additive] lemma snd_prod (s : Multiset (α × β)) : s.prod.2 = (s.map Prod.snd).prod :=
map_multiset_prod (MonoidHom.snd _ _) _
end CommMonoid
theorem prod_dvd_prod_of_dvd [CommMonoid β] {S : Multiset α} (g1 g2 : α → β)
(h : ∀ a ∈ S, g1 a ∣ g2 a) : (Multiset.map g1 S).prod ∣ (Multiset.map g2 S).prod := by
apply Multiset.induction_on' S
· simp
intro a T haS _ IH
simp [mul_dvd_mul (h a haS) IH]
section AddCommMonoid
variable [AddCommMonoid α]
/-- `Multiset.sum`, the sum of the elements of a multiset, promoted to a morphism of
`AddCommMonoid`s. -/
def sumAddMonoidHom : Multiset α →+ α where
toFun := sum
map_zero' := sum_zero
map_add' := sum_add
@[simp]
theorem coe_sumAddMonoidHom : (sumAddMonoidHom : Multiset α → α) = sum :=
rfl
end AddCommMonoid
section DivisionCommMonoid
variable [DivisionCommMonoid α] {m : Multiset ι} {f g : ι → α}
@[to_additive]
theorem prod_map_inv' (m : Multiset α) : (m.map Inv.inv).prod = m.prod⁻¹ :=
m.prod_hom (invMonoidHom : α →* α)
@[to_additive (attr := simp)]
theorem prod_map_inv : (m.map fun i => (f i)⁻¹).prod = (m.map f).prod⁻¹ := by
-- Porting note: used `convert`
simp_rw [← (m.map f).prod_map_inv', map_map, Function.comp_apply]
@[to_additive (attr := simp)]
theorem prod_map_div : (m.map fun i => f i / g i).prod = (m.map f).prod / (m.map g).prod :=
m.prod_hom₂ (· / ·) mul_div_mul_comm (div_one _) _ _
@[to_additive]
theorem prod_map_zpow {n : ℤ} : (m.map fun i => f i ^ n).prod = (m.map f).prod ^ n := by
convert (m.map f).prod_hom (zpowGroupHom n : α →* α)
simp only [map_map, Function.comp_apply, zpowGroupHom_apply]
end DivisionCommMonoid
@[simp]
theorem sum_map_singleton (s : Multiset α) : (s.map fun a => ({a} : Multiset α)).sum = s :=
Multiset.induction_on s (by simp) (by simp)
theorem sum_nat_mod (s : Multiset ℕ) (n : ℕ) : s.sum % n = (s.map (· % n)).sum % n := by
induction s using Multiset.induction <;> simp [Nat.add_mod, *]
theorem prod_nat_mod (s : Multiset ℕ) (n : ℕ) : s.prod % n = (s.map (· % n)).prod % n := by
induction s using Multiset.induction <;> simp [Nat.mul_mod, *]
theorem sum_int_mod (s : Multiset ℤ) (n : ℤ) : s.sum % n = (s.map (· % n)).sum % n := by
induction s using Multiset.induction <;> simp [Int.add_emod, *]
theorem prod_int_mod (s : Multiset ℤ) (n : ℤ) : s.prod % n = (s.map (· % n)).prod % n := by
induction s using Multiset.induction <;> simp [Int.mul_emod, *]
end Multiset
|
Algebra\BigOperators\GroupWithZero\Finset.lean | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl
-/
import Mathlib.Algebra.BigOperators.Group.Finset
import Mathlib.Algebra.GroupWithZero.Units.Basic
/-!
# Big operators on a finset in groups with zero
This file contains the results concerning the interaction of finset big operators with groups with
zero.
-/
open Function
variable {ι κ G₀ M₀ : Type*}
namespace Finset
variable [CommMonoidWithZero M₀] {p : ι → Prop} [DecidablePred p] {f : ι → M₀} {s : Finset ι}
{i : ι}
lemma prod_eq_zero (hi : i ∈ s) (h : f i = 0) : ∏ j ∈ s, f j = 0 := by
classical rw [← prod_erase_mul _ _ hi, h, mul_zero]
lemma prod_boole : ∏ i ∈ s, (ite (p i) 1 0 : M₀) = ite (∀ i ∈ s, p i) 1 0 := by
split_ifs with h
· apply prod_eq_one
intro i hi
rw [if_pos (h i hi)]
· push_neg at h
rcases h with ⟨i, hi, hq⟩
apply prod_eq_zero hi
rw [if_neg hq]
lemma support_prod_subset (s : Finset ι) (f : ι → κ → M₀) :
support (fun x ↦ ∏ i ∈ s, f i x) ⊆ ⋂ i ∈ s, support (f i) :=
fun _ hx ↦ Set.mem_iInter₂.2 fun _ hi H ↦ hx <| prod_eq_zero hi H
variable [Nontrivial M₀] [NoZeroDivisors M₀]
lemma prod_eq_zero_iff : ∏ x ∈ s, f x = 0 ↔ ∃ a ∈ s, f a = 0 := by
classical
induction' s using Finset.induction_on with a s ha ih
· exact ⟨Not.elim one_ne_zero, fun ⟨_, H, _⟩ => by simp at H⟩
· rw [prod_insert ha, mul_eq_zero, exists_mem_insert, ih]
lemma prod_ne_zero_iff : ∏ x ∈ s, f x ≠ 0 ↔ ∀ a ∈ s, f a ≠ 0 := by
rw [Ne, prod_eq_zero_iff]
push_neg; rfl
lemma support_prod (s : Finset ι) (f : ι → κ → M₀) :
support (fun j ↦ ∏ i ∈ s, f i j) = ⋂ i ∈ s, support (f i) :=
Set.ext fun x ↦ by simp [support, prod_eq_zero_iff]
end Finset
namespace Fintype
variable [Fintype ι] [CommMonoidWithZero M₀] {p : ι → Prop} [DecidablePred p]
lemma prod_boole : ∏ i, (ite (p i) 1 0 : M₀) = ite (∀ i, p i) 1 0 := by simp [Finset.prod_boole]
end Fintype
lemma Units.mk0_prod [CommGroupWithZero G₀] (s : Finset ι) (f : ι → G₀) (h) :
Units.mk0 (∏ i ∈ s, f i) h =
∏ i ∈ s.attach, Units.mk0 (f i) fun hh ↦ h (Finset.prod_eq_zero i.2 hh) := by
classical induction s using Finset.induction_on <;> simp [*]
|
Algebra\BigOperators\Ring\List.lean | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Floris van Doorn, Sébastien Gouëzel, Alex J. Best
-/
import Mathlib.Algebra.BigOperators.Group.List
import Mathlib.Algebra.GroupWithZero.Commute
import Mathlib.Algebra.GroupWithZero.Divisibility
import Mathlib.Algebra.Ring.Basic
import Mathlib.Algebra.Ring.Divisibility.Basic
import Mathlib.Algebra.Ring.Commute
/-!
# Big operators on a list in rings
This file contains the results concerning the interaction of list big operators with rings.
-/
open MulOpposite List
variable {ι κ M M₀ R : Type*}
namespace Commute
variable [NonUnitalNonAssocSemiring R]
lemma list_sum_right (a : R) (l : List R) (h : ∀ b ∈ l, Commute a b) : Commute a l.sum := by
induction' l with x xs ih
· exact Commute.zero_right _
· rw [List.sum_cons]
exact (h _ <| mem_cons_self _ _).add_right (ih fun j hj ↦ h _ <| mem_cons_of_mem _ hj)
lemma list_sum_left (b : R) (l : List R) (h : ∀ a ∈ l, Commute a b) : Commute l.sum b :=
((Commute.list_sum_right _ _) fun _x hx ↦ (h _ hx).symm).symm
end Commute
namespace List
section HasDistribNeg
variable [CommMonoid M] [HasDistribNeg M]
@[simp]
lemma prod_map_neg (l : List M) :
(l.map Neg.neg).prod = (-1) ^ l.length * l.prod := by
induction l <;> simp [*, pow_succ, ((Commute.neg_one_left _).pow_left _).left_comm]
end HasDistribNeg
section MonoidWithZero
variable [MonoidWithZero M₀] {l : List M₀}
/-- If zero is an element of a list `l`, then `List.prod l = 0`. If the domain is a nontrivial
monoid with zero with no divisors, then this implication becomes an `iff`, see
`List.prod_eq_zero_iff`. -/
lemma prod_eq_zero : ∀ {l : List M₀}, (0 : M₀) ∈ l → l.prod = 0
-- | absurd h (not_mem_nil _)
| a :: l, h => by
rw [prod_cons]
cases' mem_cons.1 h with ha hl
exacts [mul_eq_zero_of_left ha.symm _, mul_eq_zero_of_right _ (prod_eq_zero hl)]
variable [Nontrivial M₀] [NoZeroDivisors M₀]
/-- Product of elements of a list `l` equals zero if and only if `0 ∈ l`. See also
`List.prod_eq_zero` for an implication that needs weaker typeclass assumptions. -/
@[simp] lemma prod_eq_zero_iff : ∀ {l : List M₀}, l.prod = 0 ↔ (0 : M₀) ∈ l
| [] => by simp
| a :: l => by rw [prod_cons, mul_eq_zero, prod_eq_zero_iff, mem_cons, eq_comm]
lemma prod_ne_zero (hL : (0 : M₀) ∉ l) : l.prod ≠ 0 := mt prod_eq_zero_iff.1 hL
end MonoidWithZero
section NonUnitalNonAssocSemiring
variable [NonUnitalNonAssocSemiring R] (l : List ι) (f : ι → R) (r : R)
lemma sum_map_mul_left : (l.map fun b ↦ r * f b).sum = r * (l.map f).sum :=
sum_map_hom l f <| AddMonoidHom.mulLeft r
lemma sum_map_mul_right : (l.map fun b ↦ f b * r).sum = (l.map f).sum * r :=
sum_map_hom l f <| AddMonoidHom.mulRight r
end NonUnitalNonAssocSemiring
lemma dvd_sum [NonUnitalSemiring R] {a} {l : List R} (h : ∀ x ∈ l, a ∣ x) : a ∣ l.sum := by
induction' l with x l ih
· exact dvd_zero _
· rw [List.sum_cons]
exact dvd_add (h _ (mem_cons_self _ _)) (ih fun x hx ↦ h x (mem_cons_of_mem _ hx))
@[simp] lemma sum_zipWith_distrib_left [Semiring R] (f : ι → κ → R) (a : R) :
∀ (l₁ : List ι) (l₂ : List κ),
(zipWith (fun i j ↦ a * f i j) l₁ l₂).sum = a * (zipWith f l₁ l₂).sum
| [], _ => by simp
| _, [] => by simp
| i :: l₁, j :: l₂ => by simp [sum_zipWith_distrib_left, mul_add]
end List
|
Algebra\BigOperators\Ring\Multiset.lean | /-
Copyright (c) 2019 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Bhavik Mehta, Eric Wieser
-/
import Mathlib.Algebra.BigOperators.Group.Multiset
import Mathlib.Algebra.BigOperators.Ring.List
import Mathlib.Data.Multiset.Antidiagonal
import Mathlib.Data.Multiset.Sections
/-! # Lemmas about `Multiset.sum` and `Multiset.prod` requiring extra algebra imports -/
variable {ι α β : Type*}
namespace Multiset
section CommMonoid
variable [CommMonoid α] [HasDistribNeg α]
@[simp] lemma prod_map_neg (s : Multiset α) : (s.map Neg.neg).prod = (-1) ^ card s * s.prod :=
Quotient.inductionOn s (by simp)
end CommMonoid
section CommMonoidWithZero
variable [CommMonoidWithZero α] {s : Multiset α}
lemma prod_eq_zero (h : (0 : α) ∈ s) : s.prod = 0 := by
rcases Multiset.exists_cons_of_mem h with ⟨s', hs'⟩; simp [hs', Multiset.prod_cons]
variable [NoZeroDivisors α] [Nontrivial α] {s : Multiset α}
@[simp] lemma prod_eq_zero_iff : s.prod = 0 ↔ (0 : α) ∈ s :=
Quotient.inductionOn s fun l ↦ by rw [quot_mk_to_coe, prod_coe]; exact List.prod_eq_zero_iff
lemma prod_ne_zero (h : (0 : α) ∉ s) : s.prod ≠ 0 := mt prod_eq_zero_iff.1 h
end CommMonoidWithZero
section NonUnitalNonAssocSemiring
variable [NonUnitalNonAssocSemiring α] {a : α} {s : Multiset ι} {f : ι → α}
lemma sum_map_mul_left : sum (s.map fun i ↦ a * f i) = a * sum (s.map f) :=
Multiset.induction_on s (by simp) fun i s ih => by simp [ih, mul_add]
lemma sum_map_mul_right : sum (s.map fun i ↦ f i * a) = sum (s.map f) * a :=
Multiset.induction_on s (by simp) fun a s ih => by simp [ih, add_mul]
end NonUnitalNonAssocSemiring
section NonUnitalSemiring
variable [NonUnitalSemiring α] {s : Multiset α} {a : α}
lemma dvd_sum : (∀ x ∈ s, a ∣ x) → a ∣ s.sum :=
Multiset.induction_on s (fun _ ↦ dvd_zero _) fun x s ih h ↦ by
rw [sum_cons]
exact dvd_add (h _ (mem_cons_self _ _)) (ih fun y hy ↦ h _ <| mem_cons.2 <| Or.inr hy)
end NonUnitalSemiring
section CommSemiring
variable [CommSemiring α]
lemma prod_map_sum {s : Multiset (Multiset α)} :
prod (s.map sum) = sum ((Sections s).map prod) :=
Multiset.induction_on s (by simp) fun a s ih ↦ by
simp [ih, map_bind, sum_map_mul_left, sum_map_mul_right]
lemma prod_map_add {s : Multiset ι} {f g : ι → α} :
prod (s.map fun i ↦ f i + g i) =
sum ((antidiagonal s).map fun p ↦ (p.1.map f).prod * (p.2.map g).prod) := by
refine s.induction_on ?_ fun a s ih ↦ ?_
· simp only [map_zero, prod_zero, antidiagonal_zero, map_singleton, mul_one, sum_singleton]
· simp only [map_cons, prod_cons, ih, sum_map_mul_left.symm, add_mul, mul_left_comm (f a),
mul_left_comm (g a), sum_map_add, antidiagonal_cons, Prod.map_fst, Prod.map_snd,
id_eq, map_add, map_map, Function.comp_apply, mul_assoc, sum_add]
exact add_comm _ _
end CommSemiring
end Multiset
open Multiset
namespace Commute
variable [NonUnitalNonAssocSemiring α] (s : Multiset α)
theorem multiset_sum_right (a : α) (h : ∀ b ∈ s, Commute a b) : Commute a s.sum := by
induction s using Quotient.inductionOn
rw [quot_mk_to_coe, sum_coe]
exact Commute.list_sum_right _ _ h
theorem multiset_sum_left (b : α) (h : ∀ a ∈ s, Commute a b) : Commute s.sum b :=
((Commute.multiset_sum_right _ _) fun _ ha => (h _ ha).symm).symm
end Commute
|
Algebra\BigOperators\Ring\Nat.lean | /-
Copyright (c) 2024 Pim Otte. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Pim Otte
-/
import Mathlib.Algebra.BigOperators.Group.Finset
import Mathlib.Algebra.Ring.Parity
/-!
# Big operators on a finset in the natural numbers
This file contains the results concerning the interaction of finset big operators with natural
numbers.
-/
variable {ι : Type*}
namespace Finset
lemma even_sum_iff_even_card_odd {s : Finset ι} (f : ι → ℕ) :
Even (∑ i ∈ s, f i) ↔ Even (s.filter fun x ↦ Odd (f x)).card := by
rw [← Finset.sum_filter_add_sum_filter_not _ (fun x ↦ Even (f x)), Nat.even_add]
simp only [Finset.mem_filter, and_imp, imp_self, implies_true, Finset.even_sum, true_iff]
rw [Nat.even_iff, Finset.sum_nat_mod, Finset.sum_filter]
simp (config := { contextual := true }) only [← Nat.odd_iff_not_even, Nat.odd_iff.mp]
simp_rw [← Finset.sum_filter, ← Nat.even_iff, Finset.card_eq_sum_ones]
lemma odd_sum_iff_odd_card_odd {s : Finset ι} (f : ι → ℕ) :
Odd (∑ i ∈ s, f i) ↔ Odd (s.filter fun x ↦ Odd (f x)).card := by
simp only [Nat.odd_iff_not_even, even_sum_iff_even_card_odd]
end Finset
|
Algebra\Category\BoolRing.lean | /-
Copyright (c) 2022 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Algebra.Category.Ring.Basic
import Mathlib.Algebra.Ring.BooleanRing
import Mathlib.Order.Category.BoolAlg
/-!
# The category of Boolean rings
This file defines `BoolRing`, the category of Boolean rings.
## TODO
Finish the equivalence with `BoolAlg`.
-/
universe u
open CategoryTheory Order
/-- The category of Boolean rings. -/
def BoolRing :=
Bundled BooleanRing
namespace BoolRing
instance : CoeSort BoolRing Type* :=
Bundled.coeSort
instance (X : BoolRing) : BooleanRing X :=
X.str
/-- Construct a bundled `BoolRing` from a `BooleanRing`. -/
def of (α : Type*) [BooleanRing α] : BoolRing :=
Bundled.of α
@[simp]
theorem coe_of (α : Type*) [BooleanRing α] : ↥(of α) = α :=
rfl
instance : Inhabited BoolRing :=
⟨of PUnit⟩
instance : BundledHom.ParentProjection @BooleanRing.toCommRing :=
⟨⟩
-- Porting note: `deriving` `ConcreteCategory` failed, added it manually
-- see https://github.com/leanprover-community/mathlib4/issues/5020
deriving instance LargeCategory for BoolRing
instance : ConcreteCategory BoolRing := by
dsimp [BoolRing]
infer_instance
-- Porting note: disabled `simps`
-- Invalid simp lemma BoolRing.hasForgetToCommRing_forget₂_obj_str_add.
-- The given definition is not a constructor application:
-- inferInstance.1
-- @[simps]
instance hasForgetToCommRing : HasForget₂ BoolRing CommRingCat :=
BundledHom.forget₂ _ _
/-- Constructs an isomorphism of Boolean rings from a ring isomorphism between them. -/
@[simps]
def Iso.mk {α β : BoolRing.{u}} (e : α ≃+* β) : α ≅ β where
hom := (e : RingHom _ _)
inv := (e.symm : RingHom _ _)
hom_inv_id := by ext; exact e.symm_apply_apply _
inv_hom_id := by ext; exact e.apply_symm_apply _
end BoolRing
/-! ### Equivalence between `BoolAlg` and `BoolRing` -/
@[simps]
instance BoolRing.hasForgetToBoolAlg : HasForget₂ BoolRing BoolAlg where
forget₂ :=
{ obj := fun X => BoolAlg.of (AsBoolAlg X)
map := fun {X Y} => RingHom.asBoolAlg }
-- Porting note: Added. somehow it does not find this instance.
instance {X : BoolAlg} :
BooleanAlgebra ↑(BddDistLat.toBddLat (X.toBddDistLat)).toLat :=
BoolAlg.instBooleanAlgebra _
@[simps]
instance BoolAlg.hasForgetToBoolRing : HasForget₂ BoolAlg BoolRing where
forget₂ :=
{ obj := fun X => BoolRing.of (AsBoolRing X)
map := fun {X Y} => BoundedLatticeHom.asBoolRing }
/-- The equivalence between Boolean rings and Boolean algebras. This is actually an isomorphism. -/
@[simps functor inverse]
def boolRingCatEquivBoolAlg : BoolRing ≌ BoolAlg where
functor := forget₂ BoolRing BoolAlg
inverse := forget₂ BoolAlg BoolRing
unitIso := NatIso.ofComponents (fun X => BoolRing.Iso.mk <|
(RingEquiv.asBoolRingAsBoolAlg X).symm) fun {X Y} f => rfl
counitIso := NatIso.ofComponents (fun X => BoolAlg.Iso.mk <|
OrderIso.asBoolAlgAsBoolRing X) fun {X Y} f => rfl
|
Algebra\Category\GrpWithZero.lean | /-
Copyright (c) 2022 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import Mathlib.Algebra.Category.MonCat.Basic
import Mathlib.Algebra.GroupWithZero.WithZero
import Mathlib.CategoryTheory.Category.Bipointed
/-!
# The category of groups with zero
This file defines `GrpWithZero`, the category of groups with zero.
-/
universe u
open CategoryTheory Order
/-- The category of groups with zero. -/
def GrpWithZero :=
Bundled GroupWithZero
namespace GrpWithZero
instance : CoeSort GrpWithZero Type* :=
Bundled.coeSort
instance (X : GrpWithZero) : GroupWithZero X :=
X.str
/-- Construct a bundled `GrpWithZero` from a `GroupWithZero`. -/
def of (α : Type*) [GroupWithZero α] : GrpWithZero :=
Bundled.of α
instance : Inhabited GrpWithZero :=
⟨of (WithZero PUnit)⟩
instance : LargeCategory.{u} GrpWithZero where
Hom X Y := MonoidWithZeroHom X Y
id X := MonoidWithZeroHom.id X
comp f g := g.comp f
id_comp := MonoidWithZeroHom.comp_id
comp_id := MonoidWithZeroHom.id_comp
assoc _ _ _ := MonoidWithZeroHom.comp_assoc _ _ _
instance {M N : GrpWithZero} : FunLike (M ⟶ N) M N :=
⟨fun f => f.toFun, fun f g h => by
cases f
cases g
congr
apply DFunLike.coe_injective'
exact h⟩
lemma coe_id {X : GrpWithZero} : (𝟙 X : X → X) = id := rfl
lemma coe_comp {X Y Z : GrpWithZero} {f : X ⟶ Y} {g : Y ⟶ Z} : (f ≫ g : X → Z) = g ∘ f := rfl
instance groupWithZeroConcreteCategory : ConcreteCategory GrpWithZero where
forget :=
{ obj := fun G => G
map := fun f => f.toFun }
forget_faithful := ⟨fun h => DFunLike.coe_injective h⟩
@[simp] lemma forget_map {X Y : GrpWithZero} (f : X ⟶ Y) :
(forget GrpWithZero).map f = f := rfl
instance hasForgetToBipointed : HasForget₂ GrpWithZero Bipointed where
forget₂ :=
{ obj := fun X => ⟨X, 0, 1⟩
map := fun f => ⟨f, f.map_zero', f.map_one'⟩ }
instance hasForgetToMon : HasForget₂ GrpWithZero MonCat where
forget₂ :=
{ obj := fun X => ⟨ X , _ ⟩
map := fun f => f.toMonoidHom }
/-- Constructs an isomorphism of groups with zero from a group isomorphism between them. -/
@[simps]
def Iso.mk {α β : GrpWithZero.{u}} (e : α ≃* β) : α ≅ β where
hom := (e : α →*₀ β)
inv := (e.symm : β →*₀ α)
hom_inv_id := by
ext
exact e.symm_apply_apply _
inv_hom_id := by
ext
exact e.apply_symm_apply _
end GrpWithZero
|
Algebra\Category\AlgebraCat\Basic.lean | /-
Copyright (c) 2020 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison
-/
import Mathlib.Algebra.Algebra.Subalgebra.Basic
import Mathlib.Algebra.FreeAlgebra
import Mathlib.Algebra.Category.Ring.Basic
import Mathlib.Algebra.Category.ModuleCat.Basic
/-!
# Category instance for algebras over a commutative ring
We introduce the bundled category `AlgebraCat` of algebras over a fixed commutative ring `R` along
with the forgetful functors to `RingCat` and `ModuleCat`. We furthermore show that the functor
associating to a type the free `R`-algebra on that type is left adjoint to the forgetful functor.
-/
open CategoryTheory Limits
universe v u
variable (R : Type u) [CommRing R]
/-- The category of R-algebras and their morphisms. -/
structure AlgebraCat where
carrier : Type v
[isRing : Ring carrier]
[isAlgebra : Algebra R carrier]
-- Porting note: typemax hack to fix universe complaints
/-- An alias for `AlgebraCat.{max u₁ u₂}`, to deal around unification issues.
Since the universe the ring lives in can be inferred, we put that last. -/
@[nolint checkUnivs]
abbrev AlgebraCatMax.{v₁, v₂, u₁} (R : Type u₁) [CommRing R] := AlgebraCat.{max v₁ v₂} R
attribute [instance] AlgebraCat.isRing AlgebraCat.isAlgebra
initialize_simps_projections AlgebraCat (-isRing, -isAlgebra)
namespace AlgebraCat
instance : CoeSort (AlgebraCat R) (Type v) :=
⟨AlgebraCat.carrier⟩
attribute [coe] AlgebraCat.carrier
instance : Category (AlgebraCat.{v} R) where
Hom A B := A →ₐ[R] B
id A := AlgHom.id R A
comp f g := g.comp f
instance {M N : AlgebraCat.{v} R} : FunLike (M ⟶ N) M N :=
AlgHom.funLike
instance {M N : AlgebraCat.{v} R} : AlgHomClass (M ⟶ N) R M N :=
AlgHom.algHomClass
instance : ConcreteCategory.{v} (AlgebraCat.{v} R) where
forget :=
{ obj := fun R => R
map := fun f => f.toFun }
forget_faithful := ⟨fun h => AlgHom.ext (by intros x; dsimp at h; rw [h])⟩
instance {S : AlgebraCat.{v} R} : Ring ((forget (AlgebraCat R)).obj S) :=
(inferInstance : Ring S.carrier)
instance {S : AlgebraCat.{v} R} : Algebra R ((forget (AlgebraCat R)).obj S) :=
(inferInstance : Algebra R S.carrier)
instance hasForgetToRing : HasForget₂ (AlgebraCat.{v} R) RingCat.{v} where
forget₂ :=
{ obj := fun A => RingCat.of A
map := fun f => RingCat.ofHom f.toRingHom }
instance hasForgetToModule : HasForget₂ (AlgebraCat.{v} R) (ModuleCat.{v} R) where
forget₂ :=
{ obj := fun M => ModuleCat.of R M
map := fun f => ModuleCat.ofHom f.toLinearMap }
@[simp]
lemma forget₂_module_obj (X : AlgebraCat.{v} R) :
(forget₂ (AlgebraCat.{v} R) (ModuleCat.{v} R)).obj X = ModuleCat.of R X :=
rfl
@[simp]
lemma forget₂_module_map {X Y : AlgebraCat.{v} R} (f : X ⟶ Y) :
(forget₂ (AlgebraCat.{v} R) (ModuleCat.{v} R)).map f = ModuleCat.ofHom f.toLinearMap :=
rfl
/-- The object in the category of R-algebras associated to a type equipped with the appropriate
typeclasses. -/
def of (X : Type v) [Ring X] [Algebra R X] : AlgebraCat.{v} R :=
⟨X⟩
/-- Typecheck a `AlgHom` as a morphism in `AlgebraCat R`. -/
def ofHom {R : Type u} [CommRing R] {X Y : Type v} [Ring X] [Algebra R X] [Ring Y] [Algebra R Y]
(f : X →ₐ[R] Y) : of R X ⟶ of R Y :=
f
@[simp]
theorem ofHom_apply {R : Type u} [CommRing R] {X Y : Type v} [Ring X] [Algebra R X] [Ring Y]
[Algebra R Y] (f : X →ₐ[R] Y) (x : X) : ofHom f x = f x :=
rfl
instance : Inhabited (AlgebraCat R) :=
⟨of R R⟩
@[simp]
theorem coe_of (X : Type u) [Ring X] [Algebra R X] : (of R X : Type u) = X :=
rfl
variable {R}
/-- Forgetting to the underlying type and then building the bundled object returns the original
algebra. -/
@[simps]
def ofSelfIso (M : AlgebraCat.{v} R) : AlgebraCat.of R M ≅ M where
hom := 𝟙 M
inv := 𝟙 M
variable {M N U : ModuleCat.{v} R}
@[simp]
theorem id_apply (m : M) : (𝟙 M : M → M) m = m :=
rfl
@[simp]
theorem coe_comp (f : M ⟶ N) (g : N ⟶ U) : (f ≫ g : M → U) = g ∘ f :=
rfl
variable (R)
/-- The "free algebra" functor, sending a type `S` to the free algebra on `S`. -/
@[simps!]
def free : Type u ⥤ AlgebraCat.{u} R where
obj S :=
{ carrier := FreeAlgebra R S
isRing := Algebra.semiringToRing R }
map f := FreeAlgebra.lift _ <| FreeAlgebra.ι _ ∘ f
-- Porting note (#11041): `apply FreeAlgebra.hom_ext` was `ext1`.
map_id := by intro X; apply FreeAlgebra.hom_ext; simp only [FreeAlgebra.ι_comp_lift]; rfl
map_comp := by
-- Porting note (#11041): `apply FreeAlgebra.hom_ext` was `ext1`.
intros; apply FreeAlgebra.hom_ext; simp only [FreeAlgebra.ι_comp_lift]; ext1
-- Porting node: this ↓ `erw` used to be handled by the `simp` below it
erw [CategoryTheory.coe_comp]
simp only [CategoryTheory.coe_comp, Function.comp_apply, types_comp_apply]
-- Porting node: this ↓ `erw` and `rfl` used to be handled by the `simp` above
erw [FreeAlgebra.lift_ι_apply, FreeAlgebra.lift_ι_apply]
rfl
/-- The free/forget adjunction for `R`-algebras. -/
def adj : free.{u} R ⊣ forget (AlgebraCat.{u} R) :=
Adjunction.mkOfHomEquiv
{ homEquiv := fun X A => (FreeAlgebra.lift _).symm
-- Relying on `obviously` to fill out these proofs is very slow :(
homEquiv_naturality_left_symm := by
-- Porting note (#11041): `apply FreeAlgebra.hom_ext` was `ext1`.
intros; apply FreeAlgebra.hom_ext; simp only [FreeAlgebra.ι_comp_lift]; ext1
simp only [free_map, Equiv.symm_symm, FreeAlgebra.lift_ι_apply, CategoryTheory.coe_comp,
Function.comp_apply, types_comp_apply]
-- Porting node: this ↓ `erw` and `rfl` used to be handled by the `simp` above
erw [FreeAlgebra.lift_ι_apply, CategoryTheory.comp_apply, FreeAlgebra.lift_ι_apply,
Function.comp_apply, FreeAlgebra.lift_ι_apply]
rfl
homEquiv_naturality_right := by
intros; ext
simp only [CategoryTheory.coe_comp, Function.comp_apply,
FreeAlgebra.lift_symm_apply, types_comp_apply]
-- Porting note: proof used to be done after this ↑ `simp`; added ↓ two lines
erw [FreeAlgebra.lift_symm_apply, FreeAlgebra.lift_symm_apply]
rfl }
instance : (forget (AlgebraCat.{u} R)).IsRightAdjoint := (adj R).isRightAdjoint
end AlgebraCat
variable {R}
variable {X₁ X₂ : Type u}
/-- Build an isomorphism in the category `AlgebraCat R` from a `AlgEquiv` between `Algebra`s. -/
@[simps]
def AlgEquiv.toAlgebraIso {g₁ : Ring X₁} {g₂ : Ring X₂} {m₁ : Algebra R X₁} {m₂ : Algebra R X₂}
(e : X₁ ≃ₐ[R] X₂) : AlgebraCat.of R X₁ ≅ AlgebraCat.of R X₂ where
hom := (e : X₁ →ₐ[R] X₂)
inv := (e.symm : X₂ →ₐ[R] X₁)
hom_inv_id := by ext x; exact e.left_inv x
inv_hom_id := by ext x; exact e.right_inv x
namespace CategoryTheory.Iso
/-- Build a `AlgEquiv` from an isomorphism in the category `AlgebraCat R`. -/
@[simps]
def toAlgEquiv {X Y : AlgebraCat R} (i : X ≅ Y) : X ≃ₐ[R] Y :=
{ i.hom with
toFun := i.hom
invFun := i.inv
left_inv := fun x => by
-- Porting note: was `by tidy`
change (i.hom ≫ i.inv) x = x
simp only [hom_inv_id]
-- This used to be `rw`, but we need `erw` after leanprover/lean4#2644
erw [id_apply]
right_inv := fun x => by
-- Porting note: was `by tidy`
change (i.inv ≫ i.hom) x = x
simp only [inv_hom_id]
-- This used to be `rw`, but we need `erw` after leanprover/lean4#2644
erw [id_apply] }
end CategoryTheory.Iso
/-- Algebra equivalences between `Algebra`s are the same as (isomorphic to) isomorphisms in
`AlgebraCat`. -/
@[simps]
def algEquivIsoAlgebraIso {X Y : Type u} [Ring X] [Ring Y] [Algebra R X] [Algebra R Y] :
(X ≃ₐ[R] Y) ≅ AlgebraCat.of R X ≅ AlgebraCat.of R Y where
hom e := e.toAlgebraIso
inv i := i.toAlgEquiv
instance AlgebraCat.forget_reflects_isos : (forget (AlgebraCat.{u} R)).ReflectsIsomorphisms where
reflects {X Y} f _ := by
let i := asIso ((forget (AlgebraCat.{u} R)).map f)
let e : X ≃ₐ[R] Y := { f, i.toEquiv with }
exact e.toAlgebraIso.isIso_hom
/-!
`@[simp]` lemmas for `AlgHom.comp` and categorical identities.
-/
@[simp] theorem AlgHom.comp_id_algebraCat
{R} [CommRing R] {G : AlgebraCat.{u} R} {H : Type u} [Ring H] [Algebra R H] (f : G →ₐ[R] H) :
f.comp (𝟙 G) = f :=
Category.id_comp (AlgebraCat.ofHom f)
@[simp] theorem AlgHom.id_algebraCat_comp
{R} [CommRing R] {G : Type u} [Ring G] [Algebra R G] {H : AlgebraCat.{u} R} (f : G →ₐ[R] H) :
AlgHom.comp (𝟙 H) f = f :=
Category.comp_id (AlgebraCat.ofHom f)
|
Algebra\Category\AlgebraCat\Limits.lean | /-
Copyright (c) 2020 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison
-/
import Mathlib.Algebra.Category.AlgebraCat.Basic
import Mathlib.Algebra.Category.ModuleCat.Basic
import Mathlib.Algebra.Category.ModuleCat.Limits
import Mathlib.Algebra.Category.Ring.Limits
/-!
# The category of R-algebras has all limits
Further, these limits are preserved by the forgetful functor --- that is,
the underlying types are just the limits in the category of types.
-/
open CategoryTheory Limits
universe v w u t
-- `u` is determined by the ring, so can come later
noncomputable section
namespace AlgebraCat
variable {R : Type u} [CommRing R]
variable {J : Type v} [Category.{t} J] (F : J ⥤ AlgebraCat.{w} R)
instance semiringObj (j) : Semiring ((F ⋙ forget (AlgebraCat R)).obj j) :=
inferInstanceAs <| Semiring (F.obj j)
instance algebraObj (j) :
Algebra R ((F ⋙ forget (AlgebraCat R)).obj j) :=
inferInstanceAs <| Algebra R (F.obj j)
/-- The flat sections of a functor into `AlgebraCat R` form a submodule of all sections.
-/
def sectionsSubalgebra : Subalgebra R (∀ j, F.obj j) :=
{ SemiRingCat.sectionsSubsemiring
(F ⋙ forget₂ (AlgebraCat R) RingCat.{w} ⋙ forget₂ RingCat SemiRingCat.{w}) with
algebraMap_mem' := fun r _ _ f => (F.map f).commutes r }
instance (F : J ⥤ AlgebraCat.{w} R) : Ring (F ⋙ forget _).sections :=
inferInstanceAs <| Ring (sectionsSubalgebra F)
instance (F : J ⥤ AlgebraCat.{w} R) : Algebra R (F ⋙ forget _).sections :=
inferInstanceAs <| Algebra R (sectionsSubalgebra F)
variable [Small.{w} (F ⋙ forget (AlgebraCat.{w} R)).sections]
instance : Small.{w} (sectionsSubalgebra F) :=
inferInstanceAs <| Small.{w} (F ⋙ forget _).sections
instance limitSemiring :
Ring.{w} (Types.Small.limitCone.{v, w} (F ⋙ forget (AlgebraCat.{w} R))).pt :=
inferInstanceAs <| Ring (Shrink (sectionsSubalgebra F))
instance limitAlgebra :
Algebra R (Types.Small.limitCone (F ⋙ forget (AlgebraCat.{w} R))).pt :=
inferInstanceAs <| Algebra R (Shrink (sectionsSubalgebra F))
/-- `limit.π (F ⋙ forget (AlgebraCat R)) j` as a `AlgHom`. -/
def limitπAlgHom (j) :
(Types.Small.limitCone (F ⋙ forget (AlgebraCat R))).pt →ₐ[R]
(F ⋙ forget (AlgebraCat.{w} R)).obj j :=
letI : Small.{w}
(Functor.sections ((F ⋙ forget₂ _ RingCat ⋙ forget₂ _ SemiRingCat) ⋙ forget _)) :=
inferInstanceAs <| Small.{w} (F ⋙ forget _).sections
{ SemiRingCat.limitπRingHom
(F ⋙ forget₂ (AlgebraCat R) RingCat.{w} ⋙ forget₂ RingCat SemiRingCat.{w}) j with
toFun := (Types.Small.limitCone (F ⋙ forget (AlgebraCat.{w} R))).π.app j
commutes' := fun x => by
simp only [Types.Small.limitCone_π_app, ← Shrink.algEquiv_apply _ R,
Types.Small.limitCone_pt, AlgEquiv.commutes]
rfl
}
namespace HasLimits
-- The next two definitions are used in the construction of `HasLimits (AlgebraCat R)`.
-- After that, the limits should be constructed using the generic limits API,
-- e.g. `limit F`, `limit.cone F`, and `limit.isLimit F`.
/-- Construction of a limit cone in `AlgebraCat R`.
(Internal use only; use the limits API.)
-/
def limitCone : Cone F where
pt := AlgebraCat.of R (Types.Small.limitCone (F ⋙ forget _)).pt
π :=
{ app := limitπAlgHom F
naturality := fun _ _ f =>
AlgHom.coe_fn_injective ((Types.Small.limitCone (F ⋙ forget _)).π.naturality f) }
/-- Witness that the limit cone in `AlgebraCat R` is a limit cone.
(Internal use only; use the limits API.)
-/
def limitConeIsLimit : IsLimit (limitCone.{v, w} F) := by
refine
IsLimit.ofFaithful (forget (AlgebraCat R)) (Types.Small.limitConeIsLimit.{v, w} _)
-- Porting note: in mathlib3 the function term
-- `fun v => ⟨fun j => ((forget (AlgebraCat R)).mapCone s).π.app j v`
-- was provided by unification, and the last argument `(fun s => _)` was `(fun s => rfl)`.
(fun s => { toFun := _, map_one' := ?_, map_mul' := ?_, map_zero' := ?_, map_add' := ?_,
commutes' := ?_ })
(fun s => rfl)
· congr
ext j
simp only [Functor.comp_obj, Functor.mapCone_pt, Functor.mapCone_π_app,
forget_map_eq_coe]
erw [map_one]
rfl
· intro x y
simp only [Functor.comp_obj, Functor.mapCone_pt, Functor.mapCone_π_app]
erw [← map_mul (MulEquiv.symm Shrink.mulEquiv)]
apply congrArg
ext j
simp only [Functor.comp_obj, Functor.mapCone_pt, Functor.mapCone_π_app,
forget_map_eq_coe, map_mul]
rfl
· simp only [Functor.mapCone_π_app, forget_map_eq_coe]
congr
funext j
simp only [map_zero, Pi.zero_apply]
· intro x y
simp only [Functor.mapCone_π_app]
erw [← map_add (AddEquiv.symm Shrink.addEquiv)]
apply congrArg
ext j
simp only [forget_map_eq_coe, map_add]
rfl
· intro r
simp only [← Shrink.algEquiv_symm_apply _ R, limitCone, Equiv.algebraMap_def,
Equiv.symm_symm]
apply congrArg
apply Subtype.ext
ext j
exact (s.π.app j).commutes r
end HasLimits
open HasLimits
-- Porting note: mathport translated this as `irreducible_def`, but as `HasLimitsOfSize`
-- is a `Prop`, declaring this as `irreducible` should presumably have no effect
/-- The category of R-algebras has all limits. -/
lemma hasLimitsOfSize [UnivLE.{v, w}] : HasLimitsOfSize.{t, v} (AlgebraCat.{w} R) :=
{ has_limits_of_shape := fun _ _ =>
{ has_limit := fun F => HasLimit.mk
{ cone := limitCone F
isLimit := limitConeIsLimit F } } }
instance hasLimits : HasLimits (AlgebraCat.{w} R) :=
AlgebraCat.hasLimitsOfSize.{w, w, u}
/-- The forgetful functor from R-algebras to rings preserves all limits.
-/
instance forget₂RingPreservesLimitsOfSize [UnivLE.{v, w}] :
PreservesLimitsOfSize.{t, v} (forget₂ (AlgebraCat.{w} R) RingCat.{w}) where
preservesLimitsOfShape :=
{ preservesLimit := fun {K} ↦
preservesLimitOfPreservesLimitCone (limitConeIsLimit K)
(RingCat.limitConeIsLimit.{v, w}
(_ ⋙ forget₂ (AlgebraCat.{w} R) RingCat.{w})) }
instance forget₂RingPreservesLimits : PreservesLimits (forget₂ (AlgebraCat R) RingCat.{w}) :=
AlgebraCat.forget₂RingPreservesLimitsOfSize.{w, w}
/-- The forgetful functor from R-algebras to R-modules preserves all limits.
-/
instance forget₂ModulePreservesLimitsOfSize [UnivLE.{v, w}] : PreservesLimitsOfSize.{t, v}
(forget₂ (AlgebraCat.{w} R) (ModuleCat.{w} R)) where
preservesLimitsOfShape :=
{ preservesLimit := fun {K} ↦
preservesLimitOfPreservesLimitCone (limitConeIsLimit K)
(ModuleCat.HasLimits.limitConeIsLimit
(K ⋙ forget₂ (AlgebraCat.{w} R) (ModuleCat.{w} R))) }
instance forget₂ModulePreservesLimits :
PreservesLimits (forget₂ (AlgebraCat R) (ModuleCat.{w} R)) :=
AlgebraCat.forget₂ModulePreservesLimitsOfSize.{w, w}
/-- The forgetful functor from R-algebras to types preserves all limits.
-/
instance forgetPreservesLimitsOfSize [UnivLE.{v, w}] :
PreservesLimitsOfSize.{t, v} (forget (AlgebraCat.{w} R)) where
preservesLimitsOfShape :=
{ preservesLimit := fun {K} ↦
preservesLimitOfPreservesLimitCone (limitConeIsLimit K)
(Types.Small.limitConeIsLimit.{v} (K ⋙ forget _)) }
instance forgetPreservesLimits : PreservesLimits (forget (AlgebraCat.{w} R)) :=
AlgebraCat.forgetPreservesLimitsOfSize.{w, w}
end AlgebraCat
|
Algebra\Category\AlgebraCat\Monoidal.lean | /-
Copyright (c) 2023 Eric Wieser. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Eric Wieser
-/
import Mathlib.CategoryTheory.Monoidal.Transport
import Mathlib.Algebra.Category.AlgebraCat.Basic
import Mathlib.Algebra.Category.ModuleCat.Monoidal.Basic
import Mathlib.RingTheory.TensorProduct.Basic
/-!
# The monoidal category structure on R-algebras
-/
open CategoryTheory
open scoped MonoidalCategory
universe v u
variable {R : Type u} [CommRing R]
namespace AlgebraCat
noncomputable section
namespace instMonoidalCategory
open scoped TensorProduct
/-- Auxiliary definition used to fight a timeout when building
`AlgebraCat.instMonoidalCategory`. -/
@[simps!]
noncomputable abbrev tensorObj (X Y : AlgebraCat.{u} R) : AlgebraCat.{u} R :=
of R (X ⊗[R] Y)
/-- Auxiliary definition used to fight a timeout when building
`AlgebraCat.instMonoidalCategory`. -/
noncomputable abbrev tensorHom {W X Y Z : AlgebraCat.{u} R} (f : W ⟶ X) (g : Y ⟶ Z) :
tensorObj W Y ⟶ tensorObj X Z :=
Algebra.TensorProduct.map f g
open MonoidalCategory
end instMonoidalCategory
open instMonoidalCategory
instance : MonoidalCategoryStruct (AlgebraCat.{u} R) where
tensorObj := instMonoidalCategory.tensorObj
whiskerLeft X _ _ f := tensorHom (𝟙 X) f
whiskerRight {X₁ X₂} (f : X₁ ⟶ X₂) Y := tensorHom f (𝟙 Y)
tensorHom := tensorHom
tensorUnit := of R R
associator X Y Z := (Algebra.TensorProduct.assoc R X Y Z).toAlgebraIso
leftUnitor X := (Algebra.TensorProduct.lid R X).toAlgebraIso
rightUnitor X := (Algebra.TensorProduct.rid R R X).toAlgebraIso
theorem forget₂_map_associator_hom (X Y Z : AlgebraCat.{u} R) :
(forget₂ (AlgebraCat R) (ModuleCat R)).map (α_ X Y Z).hom =
(α_
(forget₂ _ (ModuleCat R) |>.obj X)
(forget₂ _ (ModuleCat R) |>.obj Y)
(forget₂ _ (ModuleCat R) |>.obj Z)).hom := by
rfl
theorem forget₂_map_associator_inv (X Y Z : AlgebraCat.{u} R) :
(forget₂ (AlgebraCat R) (ModuleCat R)).map (α_ X Y Z).inv =
(α_
(forget₂ _ (ModuleCat R) |>.obj X)
(forget₂ _ (ModuleCat R) |>.obj Y)
(forget₂ _ (ModuleCat R) |>.obj Z)).inv := by
rfl
set_option maxHeartbeats 800000 in
noncomputable instance instMonoidalCategory : MonoidalCategory (AlgebraCat.{u} R) :=
Monoidal.induced
(forget₂ (AlgebraCat R) (ModuleCat R))
{ μIso := fun X Y => Iso.refl _
εIso := Iso.refl _
associator_eq := fun X Y Z => by
dsimp only [forget₂_module_obj, forget₂_map_associator_hom]
simp only [eqToIso_refl, Iso.refl_trans, Iso.refl_symm, Iso.trans_hom, tensorIso_hom,
Iso.refl_hom, MonoidalCategory.tensor_id]
erw [Category.id_comp, Category.comp_id, MonoidalCategory.tensor_id, Category.id_comp]
leftUnitor_eq := fun X => by
dsimp only [forget₂_module_obj, forget₂_module_map, Iso.refl_symm, Iso.trans_hom,
Iso.refl_hom, tensorIso_hom]
erw [Category.id_comp, MonoidalCategory.tensor_id, Category.id_comp]
rfl
rightUnitor_eq := fun X => by
dsimp
erw [Category.id_comp, MonoidalCategory.tensor_id, Category.id_comp]
exact congr_arg LinearEquiv.toLinearMap <|
TensorProduct.AlgebraTensorModule.rid_eq_rid R X }
variable (R) in
/-- `forget₂ (AlgebraCat R) (ModuleCat R)` as a monoidal functor. -/
def toModuleCatMonoidalFunctor : MonoidalFunctor (AlgebraCat.{u} R) (ModuleCat.{u} R) := by
unfold instMonoidalCategory
exact Monoidal.fromInduced (forget₂ (AlgebraCat R) (ModuleCat R)) _
instance : (toModuleCatMonoidalFunctor R).Faithful :=
forget₂_faithful _ _
end
end AlgebraCat
|
Algebra\Category\AlgebraCat\Symmetric.lean | /-
Copyright (c) 2023 Eric Wieser. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Eric Wieser
-/
import Mathlib.Algebra.Category.AlgebraCat.Monoidal
import Mathlib.Algebra.Category.ModuleCat.Monoidal.Symmetric
/-!
# The monoidal structure on `AlgebraCat` is symmetric.
In this file we show:
* `AlgebraCat.instSymmetricCategory : SymmetricCategory (AlgebraCat.{u} R)`
-/
open CategoryTheory
noncomputable section
universe v u
variable {R : Type u} [CommRing R]
namespace AlgebraCat
instance : BraidedCategory (AlgebraCat.{u} R) :=
braidedCategoryOfFaithful (toModuleCatMonoidalFunctor R)
(fun X Y => (Algebra.TensorProduct.comm R X Y).toAlgebraIso)
(by aesop_cat)
variable (R) in
/-- `forget₂ (AlgebraCat R) (ModuleCat R)` as a braided functor. -/
@[simps toMonoidalFunctor]
def toModuleCatBraidedFunctor : BraidedFunctor (AlgebraCat.{u} R) (ModuleCat.{u} R) where
toMonoidalFunctor := toModuleCatMonoidalFunctor R
instance : (toModuleCatBraidedFunctor R).Faithful :=
forget₂_faithful _ _
instance instSymmetricCategory : SymmetricCategory (AlgebraCat.{u} R) :=
symmetricCategoryOfFaithful (toModuleCatBraidedFunctor R)
end AlgebraCat
|
Algebra\Category\BialgebraCat\Basic.lean | /-
Copyright (c) 2024 Amelia Livingston. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Amelia Livingston
-/
import Mathlib.Algebra.Category.CoalgebraCat.Basic
import Mathlib.Algebra.Category.AlgebraCat.Basic
import Mathlib.RingTheory.Bialgebra.Equiv
/-!
# The category of bialgebras over a commutative ring
We introduce the bundled category `BialgebraCat` of bialgebras over a fixed commutative ring `R`
along with the forgetful functors to `CoalgebraCat` and `AlgebraCat`.
This file mimics `Mathlib.LinearAlgebra.QuadraticForm.QuadraticModuleCat`.
-/
open CategoryTheory
universe v u
variable (R : Type u) [CommRing R]
/-- The category of `R`-bialgebras. -/
structure BialgebraCat extends Bundled Ring.{v} where
[instBialgebra : Bialgebra R α]
attribute [instance] BialgebraCat.instBialgebra
variable {R}
namespace BialgebraCat
open Bialgebra
instance : CoeSort (BialgebraCat.{v} R) (Type v) :=
⟨(·.α)⟩
variable (R)
/-- The object in the category of `R`-bialgebras associated to an `R`-bialgebra. -/
@[simps]
def of (X : Type v) [Ring X] [Bialgebra R X] :
BialgebraCat R where
instBialgebra := (inferInstance : Bialgebra R X)
variable {R}
@[simp]
lemma of_comul {X : Type v} [Ring X] [Bialgebra R X] :
Coalgebra.comul (A := of R X) = Coalgebra.comul (R := R) (A := X) := rfl
@[simp]
lemma of_counit {X : Type v} [Ring X] [Bialgebra R X] :
Coalgebra.counit (A := of R X) = Coalgebra.counit (R := R) (A := X) := rfl
/-- A type alias for `BialgHom` to avoid confusion between the categorical and
algebraic spellings of composition. -/
@[ext]
structure Hom (V W : BialgebraCat.{v} R) :=
/-- The underlying `BialgHom` -/
toBialgHom : V →ₐc[R] W
lemma Hom.toBialgHom_injective (V W : BialgebraCat.{v} R) :
Function.Injective (Hom.toBialgHom : Hom V W → _) :=
fun ⟨f⟩ ⟨g⟩ _ => by congr
instance category : Category (BialgebraCat.{v} R) where
Hom X Y := Hom X Y
id X := ⟨BialgHom.id R X⟩
comp f g := ⟨BialgHom.comp g.toBialgHom f.toBialgHom⟩
-- TODO: if `Quiver.Hom` and the instance above were `reducible`, this wouldn't be needed.
@[ext]
lemma hom_ext {X Y : BialgebraCat.{v} R} (f g : X ⟶ Y) (h : f.toBialgHom = g.toBialgHom) :
f = g :=
Hom.ext h
/-- Typecheck a `BialgHom` as a morphism in `BialgebraCat R`. -/
abbrev ofHom {X Y : Type v} [Ring X] [Ring Y]
[Bialgebra R X] [Bialgebra R Y] (f : X →ₐc[R] Y) :
of R X ⟶ of R Y :=
⟨f⟩
@[simp] theorem toBialgHom_comp {X Y Z : BialgebraCat.{v} R} (f : X ⟶ Y) (g : Y ⟶ Z) :
(f ≫ g).toBialgHom = g.toBialgHom.comp f.toBialgHom :=
rfl
@[simp] theorem toBialgHom_id {M : BialgebraCat.{v} R} :
Hom.toBialgHom (𝟙 M) = BialgHom.id _ _ :=
rfl
instance concreteCategory : ConcreteCategory.{v} (BialgebraCat.{v} R) where
forget :=
{ obj := fun M => M
map := fun f => f.toBialgHom }
forget_faithful :=
{ map_injective := fun {M N} => DFunLike.coe_injective.comp <| Hom.toBialgHom_injective _ _ }
instance hasForgetToAlgebra : HasForget₂ (BialgebraCat R) (AlgebraCat R) where
forget₂ :=
{ obj := fun X => AlgebraCat.of R X
map := fun {X Y} f => (f.toBialgHom : X →ₐ[R] Y) }
@[simp]
theorem forget₂_algebra_obj (X : BialgebraCat R) :
(forget₂ (BialgebraCat R) (AlgebraCat R)).obj X = AlgebraCat.of R X :=
rfl
@[simp]
theorem forget₂_algebra_map (X Y : BialgebraCat R) (f : X ⟶ Y) :
(forget₂ (BialgebraCat R) (AlgebraCat R)).map f = (f.toBialgHom : X →ₐ[R] Y) :=
rfl
instance hasForgetToCoalgebra : HasForget₂ (BialgebraCat R) (CoalgebraCat R) where
forget₂ :=
{ obj := fun X => CoalgebraCat.of R X
map := fun {X Y} f => CoalgebraCat.ofHom f.toBialgHom }
@[simp]
theorem forget₂_coalgebra_obj (X : BialgebraCat R) :
(forget₂ (BialgebraCat R) (CoalgebraCat R)).obj X = CoalgebraCat.of R X :=
rfl
@[simp]
theorem forget₂_coalgebra_map (X Y : BialgebraCat R) (f : X ⟶ Y) :
(forget₂ (BialgebraCat R) (CoalgebraCat R)).map f = CoalgebraCat.ofHom f.toBialgHom :=
rfl
end BialgebraCat
namespace BialgEquiv
open BialgebraCat
variable {X Y Z : Type v}
variable [Ring X] [Ring Y] [Ring Z]
variable [Bialgebra R X] [Bialgebra R Y] [Bialgebra R Z]
/-- Build an isomorphism in the category `BialgebraCat R` from a
`BialgEquiv`. -/
@[simps]
def toBialgebraCatIso (e : X ≃ₐc[R] Y) : BialgebraCat.of R X ≅ BialgebraCat.of R Y where
hom := BialgebraCat.ofHom e
inv := BialgebraCat.ofHom e.symm
hom_inv_id := Hom.ext <| DFunLike.ext _ _ e.left_inv
inv_hom_id := Hom.ext <| DFunLike.ext _ _ e.right_inv
@[simp] theorem toBialgebraCatIso_refl : toBialgebraCatIso (BialgEquiv.refl R X) = .refl _ :=
rfl
@[simp] theorem toBialgebraCatIso_symm (e : X ≃ₐc[R] Y) :
toBialgebraCatIso e.symm = (toBialgebraCatIso e).symm :=
rfl
@[simp] theorem toBialgebraCatIso_trans (e : X ≃ₐc[R] Y) (f : Y ≃ₐc[R] Z) :
toBialgebraCatIso (e.trans f) = toBialgebraCatIso e ≪≫ toBialgebraCatIso f :=
rfl
end BialgEquiv
namespace CategoryTheory.Iso
open Bialgebra
variable {X Y Z : BialgebraCat.{v} R}
/-- Build a `BialgEquiv` from an isomorphism in the category
`BialgebraCat R`. -/
def toBialgEquiv (i : X ≅ Y) : X ≃ₐc[R] Y :=
{ i.hom.toBialgHom with
invFun := i.inv.toBialgHom
left_inv := fun x => BialgHom.congr_fun (congr_arg BialgebraCat.Hom.toBialgHom i.3) x
right_inv := fun x => BialgHom.congr_fun (congr_arg BialgebraCat.Hom.toBialgHom i.4) x }
@[simp] theorem toBialgEquiv_toBialgHom (i : X ≅ Y) :
(i.toBialgEquiv : X →ₐc[R] Y) = i.hom.1 := rfl
@[simp] theorem toBialgEquiv_refl : toBialgEquiv (.refl X) = .refl _ _ :=
rfl
@[simp] theorem toBialgEquiv_symm (e : X ≅ Y) :
toBialgEquiv e.symm = (toBialgEquiv e).symm :=
rfl
@[simp] theorem toBialgEquiv_trans (e : X ≅ Y) (f : Y ≅ Z) :
toBialgEquiv (e ≪≫ f) = e.toBialgEquiv.trans f.toBialgEquiv :=
rfl
end CategoryTheory.Iso
instance BialgebraCat.forget_reflects_isos :
(forget (BialgebraCat.{v} R)).ReflectsIsomorphisms where
reflects {X Y} f _ := by
let i := asIso ((forget (BialgebraCat.{v} R)).map f)
let e : X ≃ₐc[R] Y := { f.toBialgHom, i.toEquiv with }
exact ⟨e.toBialgebraCatIso.isIso_hom.1⟩
|
Algebra\Category\CoalgebraCat\Basic.lean | /-
Copyright (c) 2024 Amelia Livingston. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Amelia Livingston
-/
import Mathlib.Algebra.Category.ModuleCat.Basic
import Mathlib.RingTheory.Coalgebra.Equiv
/-!
# The category of coalgebras over a commutative ring
We introduce the bundled category `CoalgebraCat` of coalgebras over a fixed commutative ring `R`
along with the forgetful functor to `ModuleCat`.
This file mimics `Mathlib.LinearAlgebra.QuadraticForm.QuadraticModuleCat`.
-/
open CategoryTheory
universe v u
variable (R : Type u) [CommRing R]
/-- The category of `R`-coalgebras. -/
structure CoalgebraCat extends ModuleCat.{v} R where
instCoalgebra : Coalgebra R carrier
attribute [instance] CoalgebraCat.instCoalgebra
variable {R}
namespace CoalgebraCat
open Coalgebra
instance : CoeSort (CoalgebraCat.{v} R) (Type v) :=
⟨(·.carrier)⟩
@[simp] theorem moduleCat_of_toModuleCat (X : CoalgebraCat.{v} R) :
ModuleCat.of R X.toModuleCat = X.toModuleCat :=
rfl
variable (R)
/-- The object in the category of `R`-coalgebras associated to an `R`-coalgebra. -/
@[simps]
def of (X : Type v) [AddCommGroup X] [Module R X] [Coalgebra R X] :
CoalgebraCat R where
instCoalgebra := (inferInstance : Coalgebra R X)
variable {R}
@[simp]
lemma of_comul {X : Type v} [AddCommGroup X] [Module R X] [Coalgebra R X] :
Coalgebra.comul (A := of R X) = Coalgebra.comul (R := R) (A := X) := rfl
@[simp]
lemma of_counit {X : Type v} [AddCommGroup X] [Module R X] [Coalgebra R X] :
Coalgebra.counit (A := of R X) = Coalgebra.counit (R := R) (A := X) := rfl
/-- A type alias for `CoalgHom` to avoid confusion between the categorical and
algebraic spellings of composition. -/
@[ext]
structure Hom (V W : CoalgebraCat.{v} R) :=
/-- The underlying `CoalgHom` -/
toCoalgHom : V →ₗc[R] W
lemma Hom.toCoalgHom_injective (V W : CoalgebraCat.{v} R) :
Function.Injective (Hom.toCoalgHom : Hom V W → _) :=
fun ⟨f⟩ ⟨g⟩ _ => by congr
instance category : Category (CoalgebraCat.{v} R) where
Hom M N := Hom M N
id M := ⟨CoalgHom.id R M⟩
comp f g := ⟨CoalgHom.comp g.toCoalgHom f.toCoalgHom⟩
-- TODO: if `Quiver.Hom` and the instance above were `reducible`, this wouldn't be needed.
@[ext]
lemma hom_ext {M N : CoalgebraCat.{v} R} (f g : M ⟶ N) (h : f.toCoalgHom = g.toCoalgHom) :
f = g :=
Hom.ext h
/-- Typecheck a `CoalgHom` as a morphism in `CoalgebraCat R`. -/
abbrev ofHom {X Y : Type v} [AddCommGroup X] [Module R X] [AddCommGroup Y] [Module R Y]
[Coalgebra R X] [Coalgebra R Y] (f : X →ₗc[R] Y) :
of R X ⟶ of R Y :=
⟨f⟩
@[simp] theorem toCoalgHom_comp {M N U : CoalgebraCat.{v} R} (f : M ⟶ N) (g : N ⟶ U) :
(f ≫ g).toCoalgHom = g.toCoalgHom.comp f.toCoalgHom :=
rfl
@[simp] theorem toCoalgHom_id {M : CoalgebraCat.{v} R} :
Hom.toCoalgHom (𝟙 M) = CoalgHom.id _ _ :=
rfl
instance concreteCategory : ConcreteCategory.{v} (CoalgebraCat.{v} R) where
forget :=
{ obj := fun M => M
map := fun f => f.toCoalgHom }
forget_faithful :=
{ map_injective := fun {M N} => DFunLike.coe_injective.comp <| Hom.toCoalgHom_injective _ _ }
instance hasForgetToModule : HasForget₂ (CoalgebraCat R) (ModuleCat R) where
forget₂ :=
{ obj := fun M => ModuleCat.of R M
map := fun f => f.toCoalgHom.toLinearMap }
@[simp]
theorem forget₂_obj (X : CoalgebraCat R) :
(forget₂ (CoalgebraCat R) (ModuleCat R)).obj X = ModuleCat.of R X :=
rfl
@[simp]
theorem forget₂_map (X Y : CoalgebraCat R) (f : X ⟶ Y) :
(forget₂ (CoalgebraCat R) (ModuleCat R)).map f = (f.toCoalgHom : X →ₗ[R] Y) :=
rfl
end CoalgebraCat
namespace CoalgEquiv
open CoalgebraCat
variable {X Y Z : Type v}
variable [AddCommGroup X] [Module R X] [AddCommGroup Y] [Module R Y] [AddCommGroup Z] [Module R Z]
variable [Coalgebra R X] [Coalgebra R Y] [Coalgebra R Z]
/-- Build an isomorphism in the category `CoalgebraCat R` from a
`CoalgEquiv`. -/
@[simps]
def toCoalgebraCatIso (e : X ≃ₗc[R] Y) : CoalgebraCat.of R X ≅ CoalgebraCat.of R Y where
hom := CoalgebraCat.ofHom e
inv := CoalgebraCat.ofHom e.symm
hom_inv_id := Hom.ext <| DFunLike.ext _ _ e.left_inv
inv_hom_id := Hom.ext <| DFunLike.ext _ _ e.right_inv
@[simp] theorem toCoalgebraCatIso_refl :
toCoalgebraCatIso (CoalgEquiv.refl R X) = .refl _ :=
rfl
@[simp] theorem toCoalgebraCatIso_symm (e : X ≃ₗc[R] Y) :
toCoalgebraCatIso e.symm = (toCoalgebraCatIso e).symm :=
rfl
@[simp] theorem toCoalgebraCatIso_trans (e : X ≃ₗc[R] Y) (f : Y ≃ₗc[R] Z) :
toCoalgebraCatIso (e.trans f) = toCoalgebraCatIso e ≪≫ toCoalgebraCatIso f :=
rfl
end CoalgEquiv
namespace CategoryTheory.Iso
open Coalgebra
variable {X Y Z : CoalgebraCat.{v} R}
/-- Build a `CoalgEquiv` from an isomorphism in the category
`CoalgebraCat R`. -/
def toCoalgEquiv (i : X ≅ Y) : X ≃ₗc[R] Y :=
{ i.hom.toCoalgHom with
invFun := i.inv.toCoalgHom
left_inv := fun x => CoalgHom.congr_fun (congr_arg CoalgebraCat.Hom.toCoalgHom i.3) x
right_inv := fun x => CoalgHom.congr_fun (congr_arg CoalgebraCat.Hom.toCoalgHom i.4) x }
@[simp] theorem toCoalgEquiv_toCoalgHom (i : X ≅ Y) :
i.toCoalgEquiv = i.hom.toCoalgHom := rfl
@[simp] theorem toCoalgEquiv_refl : toCoalgEquiv (.refl X) = .refl _ _ :=
rfl
@[simp] theorem toCoalgEquiv_symm (e : X ≅ Y) :
toCoalgEquiv e.symm = (toCoalgEquiv e).symm :=
rfl
@[simp] theorem toCoalgEquiv_trans (e : X ≅ Y) (f : Y ≅ Z) :
toCoalgEquiv (e ≪≫ f) = e.toCoalgEquiv.trans f.toCoalgEquiv :=
rfl
end CategoryTheory.Iso
instance CoalgebraCat.forget_reflects_isos :
(forget (CoalgebraCat.{v} R)).ReflectsIsomorphisms where
reflects {X Y} f _ := by
let i := asIso ((forget (CoalgebraCat.{v} R)).map f)
let e : X ≃ₗc[R] Y := { f.toCoalgHom, i.toEquiv with }
exact ⟨e.toCoalgebraCatIso.isIso_hom.1⟩
|
Algebra\Category\CoalgebraCat\ComonEquivalence.lean | /-
Copyright (c) 2024 Amelia Livingston. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Amelia Livingston
-/
import Mathlib.CategoryTheory.Monoidal.Braided.Opposite
import Mathlib.Algebra.Category.ModuleCat.Monoidal.Symmetric
import Mathlib.CategoryTheory.Monoidal.Comon_
import Mathlib.Algebra.Category.CoalgebraCat.Basic
/-!
# The category equivalence between `R`-coalgebras and comonoid objects in `R-Mod`
Given a commutative ring `R`, this file defines the equivalence of categories between
`R`-coalgebras and comonoid objects in the category of `R`-modules.
We then use this to set up boilerplate for the `Coalgebra` instance on a tensor product of
coalgebras defined in `Mathlib.RingTheory.Coalgebra.TensorProduct` in #11975.
## Implementation notes
We make the definiton `CoalgebraCat.instMonoidalCategoryAux` in this file, which is the
monoidal structure on `CoalgebraCat` induced by the equivalence with `Comon(R-Mod)`. We
use this to show the comultiplication and counit on a tensor product of coalgebras satisfy
the coalgebra axioms, but our actual `MonoidalCategory` instance on `CoalgebraCat` is
constructed in `Mathlib.Algebra.Category.CoalgebraCat.Monoidal` in #11976 to have better
definitional equalities.
-/
universe v u
namespace CoalgebraCat
open CategoryTheory MonoidalCategory
variable {R : Type u} [CommRing R]
/-- An `R`-coalgebra is a comonoid object in the category of `R`-modules. -/
@[simps] def toComonObj (X : CoalgebraCat R) : Comon_ (ModuleCat R) where
X := ModuleCat.of R X
counit := ModuleCat.ofHom Coalgebra.counit
comul := ModuleCat.ofHom Coalgebra.comul
counit_comul := by simpa only [ModuleCat.of_coe] using Coalgebra.rTensor_counit_comp_comul
comul_counit := by simpa only [ModuleCat.of_coe] using Coalgebra.lTensor_counit_comp_comul
comul_assoc := by simp_rw [ModuleCat.of_coe]; exact Coalgebra.coassoc.symm
variable (R) in
/-- The natural functor from `R`-coalgebras to comonoid objects in the category of `R`-modules. -/
@[simps]
def toComon : CoalgebraCat R ⥤ Comon_ (ModuleCat R) where
obj X := toComonObj X
map f :=
{ hom := ModuleCat.ofHom f.1
hom_counit := f.1.counit_comp
hom_comul := f.1.map_comp_comul.symm }
/-- A comonoid object in the category of `R`-modules has a natural comultiplication
and counit. -/
@[simps]
instance ofComonObjCoalgebraStruct (X : Comon_ (ModuleCat R)) :
CoalgebraStruct R X.X where
comul := X.comul
counit := X.counit
/-- A comonoid object in the category of `R`-modules has a natural `R`-coalgebra
structure. -/
def ofComonObj (X : Comon_ (ModuleCat R)) : CoalgebraCat R where
carrier := X.X
instCoalgebra :=
{ ofComonObjCoalgebraStruct X with
coassoc := X.comul_assoc.symm
rTensor_counit_comp_comul := X.counit_comul
lTensor_counit_comp_comul := X.comul_counit }
variable (R)
/-- The natural functor from comonoid objects in the category of `R`-modules to `R`-coalgebras. -/
def ofComon : Comon_ (ModuleCat R) ⥤ CoalgebraCat R where
obj X := ofComonObj X
map f :=
{ toCoalgHom :=
{ f.hom with
counit_comp := f.hom_counit
map_comp_comul := f.hom_comul.symm }}
/-- The natural category equivalence between `R`-coalgebras and comonoid objects in the
category of `R`-modules. -/
@[simps]
noncomputable def comonEquivalence : CoalgebraCat R ≌ Comon_ (ModuleCat R) where
functor := toComon R
inverse := ofComon R
unitIso := NatIso.ofComponents (fun _ => Iso.refl _) fun _ => by rfl
counitIso := NatIso.ofComponents (fun _ => Iso.refl _) fun _ => by rfl
variable {R}
/-- The monoidal category structure on the category of `R`-coalgebras induced by the
equivalence with `Comon(R-Mod)`. This is just an auxiliary definition; the `MonoidalCategory`
instance we make in `Mathlib.Algebra.Category.CoalgebraCat.Monoidal` in #11976 will have better
definitional equalities. -/
noncomputable def instMonoidalCategoryAux : MonoidalCategory (CoalgebraCat R) :=
Monoidal.transport (comonEquivalence R).symm
namespace MonoidalCategoryAux
variable {M N P Q : Type u} [AddCommGroup M] [AddCommGroup N] [AddCommGroup P] [AddCommGroup Q]
[Module R M] [Module R N] [Module R P] [Module R Q] [Coalgebra R M] [Coalgebra R N]
[Coalgebra R P] [Coalgebra R Q]
attribute [local instance] instMonoidalCategoryAux
open MonoidalCategory ModuleCat.MonoidalCategory
theorem tensorObj_comul (K L : CoalgebraCat R) :
Coalgebra.comul (R := R) (A := (K ⊗ L : CoalgebraCat R))
= (TensorProduct.tensorTensorTensorComm R K K L L).toLinearMap
∘ₗ TensorProduct.map Coalgebra.comul Coalgebra.comul := by
rw [ofComonObjCoalgebraStruct_comul]
dsimp [ModuleCat.ofHom, -Mon_.monMonoidalStruct_tensorObj_X,
instMonoidalCategoryStruct_tensorHom, ModuleCat.comp_def]
simp only [BraidedCategory.unop_tensor_μ, tensor_μ_eq_tensorTensorTensorComm]
theorem tensorHom_toLinearMap (f : M →ₗc[R] N) (g : P →ₗc[R] Q) :
(CoalgebraCat.ofHom f ⊗ CoalgebraCat.ofHom g).1.toLinearMap
= TensorProduct.map f.toLinearMap g.toLinearMap := rfl
theorem associator_hom_toLinearMap :
(α_ (CoalgebraCat.of R M) (CoalgebraCat.of R N) (CoalgebraCat.of R P)).hom.1.toLinearMap
= (TensorProduct.assoc R M N P).toLinearMap :=
TensorProduct.ext <| TensorProduct.ext <| by ext; rfl
theorem leftUnitor_hom_toLinearMap :
(λ_ (CoalgebraCat.of R M)).hom.1.toLinearMap = (TensorProduct.lid R M).toLinearMap :=
TensorProduct.ext <| by ext; rfl
theorem rightUnitor_hom_toLinearMap :
(ρ_ (CoalgebraCat.of R M)).hom.1.toLinearMap = (TensorProduct.rid R M).toLinearMap :=
TensorProduct.ext <| by ext; rfl
open TensorProduct
theorem comul_tensorObj :
Coalgebra.comul (R := R) (A := (CoalgebraCat.of R M ⊗ CoalgebraCat.of R N : CoalgebraCat R))
= Coalgebra.comul (A := M ⊗[R] N) := by
rw [ofComonObjCoalgebraStruct_comul]
dsimp [- Mon_.monMonoidalStruct_tensorObj_X, instMonoidalCategoryStruct_tensorHom,
ModuleCat.comp_def, ModuleCat.ofHom, ModuleCat.of]
simp only [BraidedCategory.unop_tensor_μ, tensor_μ_eq_tensorTensorTensorComm]
theorem comul_tensorObj_tensorObj_right :
Coalgebra.comul (R := R) (A := (CoalgebraCat.of R M ⊗
(CoalgebraCat.of R N ⊗ CoalgebraCat.of R P) : CoalgebraCat R))
= Coalgebra.comul (A := M ⊗[R] N ⊗[R] P) := by
rw [ofComonObjCoalgebraStruct_comul]
dsimp [- Mon_.monMonoidalStruct_tensorObj_X, instMonoidalCategoryStruct_tensorHom,
ModuleCat.comp_def, ModuleCat.ofHom, ModuleCat.of]
rw [ofComonObjCoalgebraStruct_comul]
dsimp [- Mon_.monMonoidalStruct_tensorObj_X, instMonoidalCategoryStruct_tensorHom,
ModuleCat.comp_def, ModuleCat.ofHom, ModuleCat.of]
simp only [instMonoidalCategoryStruct_tensorObj, ModuleCat.MonoidalCategory.tensorObj,
ModuleCat.coe_of, BraidedCategory.unop_tensor_μ, tensor_μ_eq_tensorTensorTensorComm]
rfl
theorem comul_tensorObj_tensorObj_left :
Coalgebra.comul (R := R)
(A := ((CoalgebraCat.of R M ⊗ CoalgebraCat.of R N) ⊗ CoalgebraCat.of R P : CoalgebraCat R))
= Coalgebra.comul (A := (M ⊗[R] N) ⊗[R] P) := by
rw [ofComonObjCoalgebraStruct_comul]
dsimp [- Mon_.monMonoidalStruct_tensorObj_X, instMonoidalCategoryStruct_tensorHom,
ModuleCat.comp_def, ModuleCat.ofHom, ModuleCat.of]
rw [ofComonObjCoalgebraStruct_comul]
dsimp [- Mon_.monMonoidalStruct_tensorObj_X, instMonoidalCategoryStruct_tensorHom,
ModuleCat.comp_def, ModuleCat.ofHom, ModuleCat.of]
simp only [instMonoidalCategoryStruct_tensorObj, ModuleCat.MonoidalCategory.tensorObj,
ModuleCat.coe_of, BraidedCategory.unop_tensor_μ, tensor_μ_eq_tensorTensorTensorComm]
rfl
theorem counit_tensorObj :
Coalgebra.counit (R := R) (A := (CoalgebraCat.of R M ⊗ CoalgebraCat.of R N : CoalgebraCat R))
= Coalgebra.counit (A := M ⊗[R] N) := by
rfl
theorem counit_tensorObj_tensorObj_right :
Coalgebra.counit (R := R)
(A := (CoalgebraCat.of R M ⊗ (CoalgebraCat.of R N ⊗ CoalgebraCat.of R P) : CoalgebraCat R))
= Coalgebra.counit (A := M ⊗[R] (N ⊗[R] P)) := by
ext; rfl
theorem counit_tensorObj_tensorObj_left :
Coalgebra.counit (R := R)
(A := ((CoalgebraCat.of R M ⊗ CoalgebraCat.of R N) ⊗ CoalgebraCat.of R P : CoalgebraCat R))
= Coalgebra.counit (A := (M ⊗[R] N) ⊗[R] P) := by
ext; rfl
end CoalgebraCat.MonoidalCategoryAux
|
Algebra\Category\FGModuleCat\Basic.lean | /-
Copyright (c) 2021 Jakob von Raumer. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jakob von Raumer
-/
import Mathlib.CategoryTheory.Monoidal.Rigid.Basic
import Mathlib.CategoryTheory.Monoidal.Subcategory
import Mathlib.LinearAlgebra.Coevaluation
import Mathlib.LinearAlgebra.FreeModule.Finite.Matrix
import Mathlib.Algebra.Category.ModuleCat.Monoidal.Closed
/-!
# The category of finitely generated modules over a ring
This introduces `FGModuleCat R`, the category of finitely generated modules over a ring `R`.
It is implemented as a full subcategory on a subtype of `ModuleCat R`.
When `K` is a field,
`FGModuleCatCat K` is the category of finite dimensional vector spaces over `K`.
We first create the instance as a preadditive category.
When `R` is commutative we then give the structure as an `R`-linear monoidal category.
When `R` is a field we give it the structure of a closed monoidal category
and then as a right-rigid monoidal category.
## Future work
* Show that `FGModuleCat R` is abelian when `R` is (left)-noetherian.
-/
noncomputable section
open CategoryTheory ModuleCat.monoidalCategory
universe u
section Ring
variable (R : Type u) [Ring R]
/-- Define `FGModuleCat` as the subtype of `ModuleCat.{u} R` of finitely generated modules. -/
def FGModuleCat :=
FullSubcategory fun V : ModuleCat.{u} R => Module.Finite R V
-- Porting note: still no derive handler via `dsimp`.
-- see https://github.com/leanprover-community/mathlib4/issues/5020
-- deriving LargeCategory, ConcreteCategory,Preadditive
variable {R}
/-- A synonym for `M.obj.carrier`, which we can mark with `@[coe]`. -/
def FGModuleCat.carrier (M : FGModuleCat R) : Type u := M.obj.carrier
instance : CoeSort (FGModuleCat R) (Type u) :=
⟨FGModuleCat.carrier⟩
attribute [coe] FGModuleCat.carrier
@[simp] lemma obj_carrier (M : FGModuleCat R) : M.obj.carrier = M.carrier := rfl
instance (M : FGModuleCat R) : AddCommGroup M := by
change AddCommGroup M.obj
infer_instance
instance (M : FGModuleCat R) : Module R M := by
change Module R M.obj
infer_instance
instance : LargeCategory (FGModuleCat R) := by
dsimp [FGModuleCat]
infer_instance
instance {M N : FGModuleCat R} : FunLike (M ⟶ N) M N :=
LinearMap.instFunLike
instance {M N : FGModuleCat R} : LinearMapClass (M ⟶ N) R M N :=
LinearMap.semilinearMapClass
instance : ConcreteCategory (FGModuleCat R) := by
dsimp [FGModuleCat]
infer_instance
instance : Preadditive (FGModuleCat R) := by
dsimp [FGModuleCat]
infer_instance
end Ring
namespace FGModuleCat
section Ring
variable (R : Type u) [Ring R]
instance finite (V : FGModuleCat R) : Module.Finite R V :=
V.property
instance : Inhabited (FGModuleCat R) :=
⟨⟨ModuleCat.of R R, Module.Finite.self R⟩⟩
/-- Lift an unbundled finitely generated module to `FGModuleCat R`. -/
def of (V : Type u) [AddCommGroup V] [Module R V] [Module.Finite R V] : FGModuleCat R :=
⟨ModuleCat.of R V, by change Module.Finite R V; infer_instance⟩
instance (V : FGModuleCat R) : Module.Finite R V :=
V.property
instance : HasForget₂ (FGModuleCat.{u} R) (ModuleCat.{u} R) := by
dsimp [FGModuleCat]
infer_instance
instance : (forget₂ (FGModuleCat R) (ModuleCat.{u} R)).Full where
map_surjective f := ⟨f, rfl⟩
variable {R}
/-- Converts and isomorphism in the category `FGModuleCat R` to
a `LinearEquiv` between the underlying modules. -/
def isoToLinearEquiv {V W : FGModuleCat R} (i : V ≅ W) : V ≃ₗ[R] W :=
((forget₂ (FGModuleCat.{u} R) (ModuleCat.{u} R)).mapIso i).toLinearEquiv
/-- Converts a `LinearEquiv` to an isomorphism in the category `FGModuleCat R`. -/
@[simps]
def _root_.LinearEquiv.toFGModuleCatIso
{V W : Type u} [AddCommGroup V] [Module R V] [Module.Finite R V]
[AddCommGroup W] [Module R W] [Module.Finite R W] (e : V ≃ₗ[R] W) :
FGModuleCat.of R V ≅ FGModuleCat.of R W where
hom := e.toLinearMap
inv := e.symm.toLinearMap
hom_inv_id := by ext x; exact e.left_inv x
inv_hom_id := by ext x; exact e.right_inv x
end Ring
section CommRing
variable (R : Type u) [CommRing R]
instance : Linear R (FGModuleCat R) := by
dsimp [FGModuleCat]
infer_instance
instance monoidalPredicate_module_finite :
MonoidalCategory.MonoidalPredicate fun V : ModuleCat.{u} R => Module.Finite R V where
prop_id := Module.Finite.self R
prop_tensor := @fun X Y _ _ => Module.Finite.tensorProduct R X Y
instance : MonoidalCategory (FGModuleCat R) := by
dsimp [FGModuleCat]
infer_instance
open MonoidalCategory
@[simp] lemma tensorUnit_obj : (𝟙_ (FGModuleCat R)).obj = 𝟙_ (ModuleCat R) := rfl
@[simp] lemma tensorObj_obj (M N : FGModuleCat.{u} R) : (M ⊗ N).obj = (M.obj ⊗ N.obj) := rfl
instance : SymmetricCategory (FGModuleCat R) := by
dsimp [FGModuleCat]
infer_instance
instance : MonoidalPreadditive (FGModuleCat R) := by
dsimp [FGModuleCat]
infer_instance
instance : MonoidalLinear R (FGModuleCat R) := by
dsimp [FGModuleCat]
infer_instance
/-- The forgetful functor `FGModuleCat R ⥤ Module R` as a monoidal functor. -/
def forget₂Monoidal : MonoidalFunctor (FGModuleCat R) (ModuleCat.{u} R) :=
MonoidalCategory.fullMonoidalSubcategoryInclusion _
instance forget₂Monoidal_faithful : (forget₂Monoidal R).Faithful := by
dsimp [forget₂Monoidal]
-- Porting note (#11187): was `infer_instance`
exact FullSubcategory.faithful _
instance forget₂Monoidal_additive : (forget₂Monoidal R).Additive := by
dsimp [forget₂Monoidal]
-- Porting note (#11187): was `infer_instance`
exact Functor.fullSubcategoryInclusion_additive _
instance forget₂Monoidal_linear : (forget₂Monoidal R).Linear R := by
dsimp [forget₂Monoidal]
-- Porting note (#11187): was `infer_instance`
exact Functor.fullSubcategoryInclusionLinear _ _
theorem Iso.conj_eq_conj {V W : FGModuleCat R} (i : V ≅ W) (f : End V) :
Iso.conj i f = LinearEquiv.conj (isoToLinearEquiv i) f :=
rfl
end CommRing
section Field
variable (K : Type u) [Field K]
instance (V W : FGModuleCat K) : Module.Finite K (V ⟶ W) :=
(by infer_instance : Module.Finite K (V →ₗ[K] W))
instance closedPredicateModuleFinite :
MonoidalCategory.ClosedPredicate fun V : ModuleCat.{u} K ↦ Module.Finite K V where
prop_ihom {X Y} _ _ := Module.Finite.linearMap K K X Y
instance : MonoidalClosed (FGModuleCat K) := by
dsimp [FGModuleCat]
-- Porting note (#11187): was `infer_instance`
exact MonoidalCategory.fullMonoidalClosedSubcategory
(fun V : ModuleCat.{u} K => Module.Finite K V)
variable (V W : FGModuleCat K)
@[simp]
theorem ihom_obj : (ihom V).obj W = FGModuleCat.of K (V →ₗ[K] W) :=
rfl
/-- The dual module is the dual in the rigid monoidal category `FGModuleCat K`. -/
def FGModuleCatDual : FGModuleCat K :=
⟨ModuleCat.of K (Module.Dual K V), Subspace.instModuleDualFiniteDimensional⟩
@[simp] lemma FGModuleCatDual_obj : (FGModuleCatDual K V).obj = ModuleCat.of K (Module.Dual K V) :=
rfl
@[simp] lemma FGModuleCatDual_coe : (FGModuleCatDual K V : Type u) = Module.Dual K V := rfl
open CategoryTheory.MonoidalCategory
/-- The coevaluation map is defined in `LinearAlgebra.coevaluation`. -/
def FGModuleCatCoevaluation : 𝟙_ (FGModuleCat K) ⟶ V ⊗ FGModuleCatDual K V :=
coevaluation K V
theorem FGModuleCatCoevaluation_apply_one :
FGModuleCatCoevaluation K V (1 : K) =
∑ i : Basis.ofVectorSpaceIndex K V,
(Basis.ofVectorSpace K V) i ⊗ₜ[K] (Basis.ofVectorSpace K V).coord i :=
coevaluation_apply_one K V
/-- The evaluation morphism is given by the contraction map. -/
def FGModuleCatEvaluation : FGModuleCatDual K V ⊗ V ⟶ 𝟙_ (FGModuleCat K) :=
contractLeft K V
@[simp]
theorem FGModuleCatEvaluation_apply (f : FGModuleCatDual K V) (x : V) :
(FGModuleCatEvaluation K V) (f ⊗ₜ x) = f.toFun x :=
contractLeft_apply f x
private theorem coevaluation_evaluation :
letI V' : FGModuleCat K := FGModuleCatDual K V
V' ◁ FGModuleCatCoevaluation K V ≫ (α_ V' V V').inv ≫ FGModuleCatEvaluation K V ▷ V' =
(ρ_ V').hom ≫ (λ_ V').inv := by
apply contractLeft_assoc_coevaluation K V
private theorem evaluation_coevaluation :
FGModuleCatCoevaluation K V ▷ V ≫
(α_ V (FGModuleCatDual K V) V).hom ≫ V ◁ FGModuleCatEvaluation K V =
(λ_ V).hom ≫ (ρ_ V).inv := by
apply contractLeft_assoc_coevaluation' K V
instance exactPairing : ExactPairing V (FGModuleCatDual K V) where
coevaluation' := FGModuleCatCoevaluation K V
evaluation' := FGModuleCatEvaluation K V
coevaluation_evaluation' := coevaluation_evaluation K V
evaluation_coevaluation' := evaluation_coevaluation K V
instance rightDual : HasRightDual V :=
⟨FGModuleCatDual K V⟩
instance rightRigidCategory : RightRigidCategory (FGModuleCat K) where
end Field
end FGModuleCat
/-!
`@[simp]` lemmas for `LinearMap.comp` and categorical identities.
-/
@[simp] theorem LinearMap.comp_id_fgModuleCat
{R} [Ring R] {G : FGModuleCat.{u} R} {H : Type u} [AddCommGroup H] [Module R H]
(f : G →ₗ[R] H) : f.comp (𝟙 G) = f :=
Category.id_comp (ModuleCat.ofHom f)
@[simp] theorem LinearMap.id_fgModuleCat_comp
{R} [Ring R] {G : Type u} [AddCommGroup G] [Module R G] {H : FGModuleCat.{u} R}
(f : G →ₗ[R] H) : LinearMap.comp (𝟙 H) f = f :=
Category.comp_id (ModuleCat.ofHom f)
|
Algebra\Category\FGModuleCat\Limits.lean | /-
Copyright (c) 2022 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison
-/
import Mathlib.Algebra.Category.FGModuleCat.Basic
import Mathlib.Algebra.Category.ModuleCat.Limits
import Mathlib.Algebra.Category.ModuleCat.Products
import Mathlib.Algebra.Category.ModuleCat.EpiMono
import Mathlib.CategoryTheory.Limits.Creates
import Mathlib.CategoryTheory.Limits.Shapes.FiniteLimits
import Mathlib.CategoryTheory.Limits.Constructions.LimitsOfProductsAndEqualizers
/-!
# `forget₂ (FGModuleCat K) (ModuleCat K)` creates all finite limits.
And hence `FGModuleCat K` has all finite limits.
## Future work
After generalising `FGModuleCat` to allow the ring and the module to live in different universes,
generalize this construction so we can take limits over smaller diagrams,
as is done for the other algebraic categories.
Analogous constructions for Noetherian modules.
-/
noncomputable section
universe v u
open CategoryTheory Limits
namespace FGModuleCat
variable {J : Type} [SmallCategory J] [FinCategory J]
variable {k : Type v} [Field k]
instance {J : Type} [Finite J] (Z : J → ModuleCat.{v} k) [∀ j, FiniteDimensional k (Z j)] :
FiniteDimensional k (∏ᶜ fun j => Z j : ModuleCat.{v} k) :=
haveI : FiniteDimensional k (ModuleCat.of k (∀ j, Z j)) := by unfold ModuleCat.of; infer_instance
FiniteDimensional.of_injective (ModuleCat.piIsoPi _).hom
((ModuleCat.mono_iff_injective _).1 (by infer_instance))
/-- Finite limits of finite dimensional vectors spaces are finite dimensional,
because we can realise them as subobjects of a finite product. -/
instance (F : J ⥤ FGModuleCat k) :
FiniteDimensional k (limit (F ⋙ forget₂ (FGModuleCat k) (ModuleCat.{v} k)) : ModuleCat.{v} k) :=
haveI : ∀ j, FiniteDimensional k ((F ⋙ forget₂ (FGModuleCat k) (ModuleCat.{v} k)).obj j) := by
intro j; change FiniteDimensional k (F.obj j); infer_instance
FiniteDimensional.of_injective
(limitSubobjectProduct (F ⋙ forget₂ (FGModuleCat k) (ModuleCat.{v} k)))
((ModuleCat.mono_iff_injective _).1 inferInstance)
/-- The forgetful functor from `FGModuleCat k` to `ModuleCat k` creates all finite limits. -/
def forget₂CreatesLimit (F : J ⥤ FGModuleCat k) :
CreatesLimit F (forget₂ (FGModuleCat k) (ModuleCat.{v} k)) :=
createsLimitOfFullyFaithfulOfIso
⟨(limit (F ⋙ forget₂ (FGModuleCat k) (ModuleCat.{v} k)) : ModuleCat.{v} k), inferInstance⟩
(Iso.refl _)
instance : CreatesLimitsOfShape J (forget₂ (FGModuleCat k) (ModuleCat.{v} k)) where
CreatesLimit {F} := forget₂CreatesLimit F
instance (J : Type) [Category J] [FinCategory J] :
HasLimitsOfShape J (FGModuleCat.{v} k) :=
hasLimitsOfShape_of_hasLimitsOfShape_createsLimitsOfShape
(forget₂ (FGModuleCat k) (ModuleCat.{v} k))
instance : HasFiniteLimits (FGModuleCat k) where
out _ _ _ := inferInstance
instance : PreservesFiniteLimits (forget₂ (FGModuleCat k) (ModuleCat.{v} k)) where
preservesFiniteLimits _ _ _ := inferInstance
end FGModuleCat
|
Algebra\Category\Grp\AB5.lean | /-
Copyright (c) 2023 David Kurniadi Angdinata. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: David Kurniadi Angdinata, Moritz Firsching, Nikolas Kuhn, Amelia Livingston
-/
import Mathlib.Algebra.Homology.ShortComplex.Ab
import Mathlib.Algebra.Homology.ShortComplex.ExactFunctor
import Mathlib.CategoryTheory.Abelian.Exact
import Mathlib.Algebra.Category.Grp.FilteredColimits
import Mathlib.CategoryTheory.Abelian.FunctorCategory
/-!
# The category of abelian groups satisfies Grothendieck's axiom AB5
-/
universe u
open CategoryTheory Limits
instance {J C : Type*} [Category J] [Category C] [HasColimitsOfShape J C] [Preadditive C] :
(colim (J := J) (C := C)).Additive where
variable {J : Type u} [SmallCategory J] [IsFiltered J]
noncomputable instance :
(colim (J := J) (C := AddCommGrp.{u})).PreservesHomology :=
Functor.preservesHomologyOfMapExact _ (fun S hS ↦ by
replace hS := fun j => hS.map ((evaluation _ _).obj j)
simp only [ShortComplex.ab_exact_iff_ker_le_range] at hS ⊢
intro x (hx : _ = _)
dsimp at hx
rcases Concrete.colimit_exists_rep S.X₂ x with ⟨j, y, rfl⟩
erw [← comp_apply, colimit.ι_map, comp_apply,
← map_zero (by exact colimit.ι S.X₃ j : (S.X₃).obj j →+ ↑(colimit S.X₃))] at hx
rcases Concrete.colimit_exists_of_rep_eq.{u, u, u} S.X₃ _ _ hx
with ⟨k, e₁, e₂, hk : _ = S.X₃.map e₂ 0⟩
rw [map_zero, ← comp_apply, ← NatTrans.naturality, comp_apply] at hk
rcases hS k hk with ⟨t, ht⟩
use colimit.ι S.X₁ k t
erw [← comp_apply, colimit.ι_map, comp_apply, ht]
exact colimit.w_apply S.X₂ e₁ y)
noncomputable instance :
PreservesFiniteLimits <| colim (J := J) (C := AddCommGrp.{u}) := by
apply Functor.preservesFiniteLimitsOfPreservesHomology
|
Algebra\Category\Grp\Abelian.lean | /-
Copyright (c) 2020 Markus Himmel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Markus Himmel
-/
import Mathlib.Algebra.Category.Grp.Colimits
import Mathlib.Algebra.Category.Grp.Limits
import Mathlib.Algebra.Category.Grp.ZModuleEquivalence
import Mathlib.Algebra.Category.ModuleCat.Abelian
import Mathlib.CategoryTheory.Adjunction.Limits
import Mathlib.CategoryTheory.Limits.ConcreteCategory.Basic
/-!
# The category of abelian groups is abelian
-/
open CategoryTheory Limits
universe u
noncomputable section
namespace AddCommGrp
variable {X Y Z : AddCommGrp.{u}} (f : X ⟶ Y) (g : Y ⟶ Z)
/-- In the category of abelian groups, every monomorphism is normal. -/
def normalMono (_ : Mono f) : NormalMono f :=
equivalenceReflectsNormalMono (forget₂ (ModuleCat.{u} ℤ) AddCommGrp.{u}).inv <|
ModuleCat.normalMono _ inferInstance
/-- In the category of abelian groups, every epimorphism is normal. -/
def normalEpi (_ : Epi f) : NormalEpi f :=
equivalenceReflectsNormalEpi (forget₂ (ModuleCat.{u} ℤ) AddCommGrp.{u}).inv <|
ModuleCat.normalEpi _ inferInstance
/-- The category of abelian groups is abelian. -/
instance : Abelian AddCommGrp.{u} where
has_finite_products := ⟨HasFiniteProducts.out⟩
normalMonoOfMono := normalMono
normalEpiOfEpi := normalEpi
end AddCommGrp
|
Algebra\Category\Grp\Adjunctions.lean | /-
Copyright (c) 2019 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Johannes Hölzl
-/
import Mathlib.Algebra.Category.Grp.Preadditive
import Mathlib.GroupTheory.FreeAbelianGroup
import Mathlib.CategoryTheory.Limits.Shapes.Types
/-!
# Adjunctions regarding the category of (abelian) groups
This file contains construction of basic adjunctions concerning the category of groups and the
category of abelian groups.
## Main definitions
* `AddCommGrp.free`: constructs the functor associating to a type `X` the free abelian group
with generators `x : X`.
* `Grp.free`: constructs the functor associating to a type `X` the free group with
generators `x : X`.
* `Grp.abelianize`: constructs the functor which associates to a group `G` its abelianization `Gᵃᵇ`.
## Main statements
* `AddCommGrp.adj`: proves that `AddCommGrp.free` is the left adjoint
of the forgetful functor from abelian groups to types.
* `Grp.adj`: proves that `Grp.free` is the left adjoint of the forgetful functor
from groups to types.
* `abelianizeAdj`: proves that `Grp.abelianize` is left adjoint to the forgetful functor from
abelian groups to groups.
-/
noncomputable section
universe u
open CategoryTheory Limits
namespace AddCommGrp
/-- The free functor `Type u ⥤ AddCommGroup` sending a type `X` to the
free abelian group with generators `x : X`.
-/
def free : Type u ⥤ AddCommGrp where
obj α := of (FreeAbelianGroup α)
map := FreeAbelianGroup.map
map_id _ := AddMonoidHom.ext FreeAbelianGroup.map_id_apply
map_comp _ _ := AddMonoidHom.ext FreeAbelianGroup.map_comp_apply
@[simp]
theorem free_obj_coe {α : Type u} : (free.obj α : Type u) = FreeAbelianGroup α :=
rfl
-- This currently can't be a `simp` lemma,
-- because `free_obj_coe` will simplify implicit arguments in the LHS.
-- (The `simpNF` linter will, correctly, complain.)
theorem free_map_coe {α β : Type u} {f : α → β} (x : FreeAbelianGroup α) :
(free.map f) x = f <$> x :=
rfl
/-- The free-forgetful adjunction for abelian groups.
-/
def adj : free ⊣ forget AddCommGrp.{u} :=
Adjunction.mkOfHomEquiv
{ homEquiv := fun X G => FreeAbelianGroup.lift.symm
-- Porting note (#11041): used to be just `by intros; ext; rfl`.
homEquiv_naturality_left_symm := by
intros
ext
simp only [Equiv.symm_symm]
apply FreeAbelianGroup.lift_comp }
instance : free.{u}.IsLeftAdjoint :=
⟨_, ⟨adj⟩⟩
instance : (forget AddCommGrp.{u}).IsRightAdjoint :=
⟨_, ⟨adj⟩⟩
/-- As an example, we now give a high-powered proof that
the monomorphisms in `AddCommGroup` are just the injective functions.
(This proof works in all universes.)
-/
example {G H : AddCommGrp.{u}} (f : G ⟶ H) [Mono f] : Function.Injective f :=
(mono_iff_injective (f : G → H)).mp (Functor.map_mono (forget AddCommGrp) f)
instance : (free.{u}).PreservesMonomorphisms where
preserves {X Y} f _ := by
by_cases hX : IsEmpty X
· constructor
intros
apply (IsInitial.isInitialObj free _
((Types.initial_iff_empty X).2 hX).some).isZero.eq_of_tgt
· simp only [not_isEmpty_iff] at hX
have hf : Function.Injective f := by rwa [← mono_iff_injective]
obtain ⟨g, hg⟩ := hf.hasLeftInverse
have : IsSplitMono f := IsSplitMono.mk' { retraction := g }
infer_instance
end AddCommGrp
namespace Grp
/-- The free functor `Type u ⥤ Group` sending a type `X` to the free group with generators `x : X`.
-/
def free : Type u ⥤ Grp where
obj α := of (FreeGroup α)
map := FreeGroup.map
map_id := by
-- This used to be `rw`, but we need `erw` after leanprover/lean4#2644
intros; ext1; erw [← FreeGroup.map.unique] <;> intros <;> rfl
map_comp := by
-- This used to be `rw`, but we need `erw` after leanprover/lean4#2644
intros; ext1; erw [← FreeGroup.map.unique] <;> intros <;> rfl
/-- The free-forgetful adjunction for groups.
-/
def adj : free ⊣ forget Grp.{u} :=
Adjunction.mkOfHomEquiv
{ homEquiv := fun X G => FreeGroup.lift.symm
-- Porting note (#11041): used to be just `by intros; ext1; rfl`.
homEquiv_naturality_left_symm := by
intros
ext1
simp only [Equiv.symm_symm]
apply Eq.symm
apply FreeGroup.lift.unique
intros
apply FreeGroup.lift.of }
instance : (forget Grp.{u}).IsRightAdjoint :=
⟨_, ⟨adj⟩⟩
section Abelianization
/-- The abelianization functor `Group ⥤ CommGroup` sending a group `G` to its abelianization `Gᵃᵇ`.
-/
def abelianize : Grp.{u} ⥤ CommGrp.{u} where
obj G := CommGrp.of (Abelianization G)
map f := Abelianization.lift (Abelianization.of.comp f)
map_id := by
intros; simp only [coe_id]
apply (Equiv.apply_eq_iff_eq_symm_apply Abelianization.lift).mpr; rfl
map_comp := by
intros; simp only [coe_comp]
apply (Equiv.apply_eq_iff_eq_symm_apply Abelianization.lift).mpr; rfl
/-- The abelianization-forgetful adjuction from `Group` to `CommGroup`. -/
def abelianizeAdj : abelianize ⊣ forget₂ CommGrp.{u} Grp.{u} :=
Adjunction.mkOfHomEquiv
{ homEquiv := fun G A => Abelianization.lift.symm
-- Porting note (#11041): used to be just `by intros; ext1; rfl`.
homEquiv_naturality_left_symm := by
intros
ext1
simp only [Equiv.symm_symm]
apply Eq.symm
apply Abelianization.lift.unique
intros
apply Abelianization.lift.of }
end Abelianization
end Grp
/-- The functor taking a monoid to its subgroup of units. -/
@[simps]
def MonCat.units : MonCat.{u} ⥤ Grp.{u} where
obj R := Grp.of Rˣ
map f := Grp.ofHom <| Units.map f
map_id _ := MonoidHom.ext fun _ => Units.ext rfl
map_comp _ _ := MonoidHom.ext fun _ => Units.ext rfl
/-- The forgetful-units adjunction between `Grp` and `MonCat`. -/
def Grp.forget₂MonAdj : forget₂ Grp MonCat ⊣ MonCat.units.{u} where
homEquiv X Y :=
{ toFun := fun f => MonoidHom.toHomUnits f
invFun := fun f => (Units.coeHom Y).comp f
left_inv := fun f => MonoidHom.ext fun _ => rfl
right_inv := fun f => MonoidHom.ext fun _ => Units.ext rfl }
unit :=
{ app := fun X => { (@toUnits X _).toMonoidHom with }
naturality := fun X Y f => MonoidHom.ext fun x => Units.ext rfl }
counit :=
{ app := fun X => Units.coeHom X
naturality := by intros; exact MonoidHom.ext fun x => rfl }
homEquiv_unit := MonoidHom.ext fun _ => Units.ext rfl
homEquiv_counit := MonoidHom.ext fun _ => rfl
instance : MonCat.units.{u}.IsRightAdjoint :=
⟨_, ⟨Grp.forget₂MonAdj⟩⟩
/-- The functor taking a monoid to its subgroup of units. -/
@[simps]
def CommMonCat.units : CommMonCat.{u} ⥤ CommGrp.{u} where
obj R := CommGrp.of Rˣ
map f := CommGrp.ofHom <| Units.map f
map_id _ := MonoidHom.ext fun _ => Units.ext rfl
map_comp _ _ := MonoidHom.ext fun _ => Units.ext rfl
/-- The forgetful-units adjunction between `CommGrp` and `CommMonCat`. -/
def CommGrp.forget₂CommMonAdj : forget₂ CommGrp CommMonCat ⊣ CommMonCat.units.{u} where
homEquiv X Y :=
{ toFun := fun f => MonoidHom.toHomUnits f
invFun := fun f => (Units.coeHom Y).comp f
left_inv := fun f => MonoidHom.ext fun _ => rfl
right_inv := fun f => MonoidHom.ext fun _ => Units.ext rfl }
unit :=
{ app := fun X => { (@toUnits X _).toMonoidHom with }
naturality := fun X Y f => MonoidHom.ext fun x => Units.ext rfl }
counit :=
{ app := fun X => Units.coeHom X
naturality := by intros; exact MonoidHom.ext fun x => rfl }
homEquiv_unit := MonoidHom.ext fun _ => Units.ext rfl
homEquiv_counit := MonoidHom.ext fun _ => rfl
instance : CommMonCat.units.{u}.IsRightAdjoint :=
⟨_, ⟨CommGrp.forget₂CommMonAdj⟩⟩
|
Algebra\Category\Grp\Basic.lean | /-
Copyright (c) 2018 Johan Commelin. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin
-/
import Mathlib.Algebra.Category.MonCat.Basic
import Mathlib.Algebra.Group.ULift
import Mathlib.CategoryTheory.Endomorphism
import Mathlib.Data.Int.Cast.Lemmas
import Mathlib.GroupTheory.Perm.Basic
/-!
# Category instances for Group, AddGroup, CommGroup, and AddCommGroup.
We introduce the bundled categories:
* `Grp`
* `AddGrp`
* `CommGrp`
* `AddCommGrp`
along with the relevant forgetful functors between them, and to the bundled monoid categories.
-/
universe u v
open CategoryTheory
/-- The category of groups and group morphisms. -/
@[to_additive]
def Grp : Type (u + 1) :=
Bundled Group
/-- The category of additive groups and group morphisms -/
add_decl_doc AddGrp
namespace Grp
@[to_additive]
instance : BundledHom.ParentProjection
(fun {α : Type*} (h : Group α) => h.toDivInvMonoid.toMonoid) := ⟨⟩
deriving instance LargeCategory for Grp
attribute [to_additive] instGrpLargeCategory
@[to_additive]
instance concreteCategory : ConcreteCategory Grp := by
dsimp only [Grp]
infer_instance
@[to_additive]
instance : CoeSort Grp Type* where
coe X := X.α
@[to_additive]
instance (X : Grp) : Group X := X.str
-- porting note (#10670): this instance was not necessary in mathlib
@[to_additive]
instance {X Y : Grp} : CoeFun (X ⟶ Y) fun _ => X → Y where
coe (f : X →* Y) := f
@[to_additive]
instance instFunLike (X Y : Grp) : FunLike (X ⟶ Y) X Y :=
show FunLike (X →* Y) X Y from inferInstance
@[to_additive (attr := simp)]
lemma coe_id {X : Grp} : (𝟙 X : X → X) = id := rfl
@[to_additive (attr := simp)]
lemma coe_comp {X Y Z : Grp} {f : X ⟶ Y} {g : Y ⟶ Z} : (f ≫ g : X → Z) = g ∘ f := rfl
@[to_additive]
lemma comp_def {X Y Z : Grp} {f : X ⟶ Y} {g : Y ⟶ Z} : f ≫ g = g.comp f := rfl
@[simp] lemma forget_map {X Y : Grp} (f : X ⟶ Y) : (forget Grp).map f = (f : X → Y) := rfl
@[to_additive (attr := ext)]
lemma ext {X Y : Grp} {f g : X ⟶ Y} (w : ∀ x : X, f x = g x) : f = g :=
MonoidHom.ext w
/-- Construct a bundled `Group` from the underlying type and typeclass. -/
@[to_additive]
def of (X : Type u) [Group X] : Grp :=
Bundled.of X
/-- Construct a bundled `AddGroup` from the underlying type and typeclass. -/
add_decl_doc AddGrp.of
@[to_additive (attr := simp)]
theorem coe_of (R : Type u) [Group R] : ↑(Grp.of R) = R :=
rfl
@[to_additive (attr := simp)]
theorem coe_comp' {G H K : Type _} [Group G] [Group H] [Group K] (f : G →* H) (g : H →* K) :
@DFunLike.coe (G →* K) G (fun _ ↦ K) MonoidHom.instFunLike (CategoryStruct.comp
(X := Grp.of G) (Y := Grp.of H) (Z := Grp.of K) f g) = g ∘ f :=
rfl
@[to_additive (attr := simp)]
theorem coe_id' {G : Type _} [Group G] :
@DFunLike.coe (G →* G) G (fun _ ↦ G) MonoidHom.instFunLike
(CategoryStruct.id (X := Grp.of G)) = id :=
rfl
@[to_additive]
instance : Inhabited Grp :=
⟨Grp.of PUnit⟩
@[to_additive hasForgetToAddMonCat]
instance hasForgetToMonCat : HasForget₂ Grp MonCat :=
BundledHom.forget₂ _ _
@[to_additive]
instance : Coe Grp.{u} MonCat.{u} where coe := (forget₂ Grp MonCat).obj
-- porting note (#10670): this instance was not necessary in mathlib
@[to_additive]
instance (G H : Grp) : One (G ⟶ H) := (inferInstance : One (MonoidHom G H))
@[to_additive (attr := simp)]
theorem one_apply (G H : Grp) (g : G) : ((1 : G ⟶ H) : G → H) g = 1 :=
rfl
/-- Typecheck a `MonoidHom` as a morphism in `Grp`. -/
@[to_additive]
def ofHom {X Y : Type u} [Group X] [Group Y] (f : X →* Y) : of X ⟶ of Y :=
f
/-- Typecheck an `AddMonoidHom` as a morphism in `AddGroup`. -/
add_decl_doc AddGrp.ofHom
@[to_additive]
theorem ofHom_apply {X Y : Type _} [Group X] [Group Y] (f : X →* Y) (x : X) :
(ofHom f) x = f x :=
rfl
@[to_additive]
instance ofUnique (G : Type*) [Group G] [i : Unique G] : Unique (Grp.of G) := i
-- We verify that simp lemmas apply when coercing morphisms to functions.
@[to_additive]
example {R S : Grp} (i : R ⟶ S) (r : R) (h : r = 1) : i r = 1 := by simp [h]
/-- Universe lift functor for groups. -/
@[to_additive (attr := simps)
"Universe lift functor for additive groups."]
def uliftFunctor : Grp.{u} ⥤ Grp.{max u v} where
obj X := Grp.of (ULift.{v, u} X)
map {X Y} f := Grp.ofHom <|
MulEquiv.ulift.symm.toMonoidHom.comp <| f.comp MulEquiv.ulift.toMonoidHom
map_id X := by rfl
map_comp {X Y Z} f g := by rfl
end Grp
/-- The category of commutative groups and group morphisms. -/
@[to_additive]
def CommGrp : Type (u + 1) :=
Bundled CommGroup
/-- The category of additive commutative groups and group morphisms. -/
add_decl_doc AddCommGrp
/-- `Ab` is an abbreviation for `AddCommGroup`, for the sake of mathematicians' sanity. -/
abbrev Ab := AddCommGrp
namespace CommGrp
@[to_additive]
instance : BundledHom.ParentProjection @CommGroup.toGroup := ⟨⟩
deriving instance LargeCategory for CommGrp
attribute [to_additive] instCommGrpLargeCategory
@[to_additive]
instance concreteCategory : ConcreteCategory CommGrp := by
dsimp only [CommGrp]
infer_instance
@[to_additive]
instance : CoeSort CommGrp Type* where
coe X := X.α
@[to_additive]
instance commGroupInstance (X : CommGrp) : CommGroup X := X.str
-- porting note (#10670): this instance was not necessary in mathlib
@[to_additive]
instance {X Y : CommGrp} : CoeFun (X ⟶ Y) fun _ => X → Y where
coe (f : X →* Y) := f
@[to_additive]
instance instFunLike (X Y : CommGrp) : FunLike (X ⟶ Y) X Y :=
show FunLike (X →* Y) X Y from inferInstance
@[to_additive (attr := simp)]
lemma coe_id {X : CommGrp} : (𝟙 X : X → X) = id := rfl
@[to_additive (attr := simp)]
lemma coe_comp {X Y Z : CommGrp} {f : X ⟶ Y} {g : Y ⟶ Z} : (f ≫ g : X → Z) = g ∘ f := rfl
@[to_additive]
lemma comp_def {X Y Z : CommGrp} {f : X ⟶ Y} {g : Y ⟶ Z} : f ≫ g = g.comp f := rfl
@[to_additive (attr := simp)]
lemma forget_map {X Y : CommGrp} (f : X ⟶ Y) :
(forget CommGrp).map f = (f : X → Y) :=
rfl
@[to_additive (attr := ext)]
lemma ext {X Y : CommGrp} {f g : X ⟶ Y} (w : ∀ x : X, f x = g x) : f = g :=
MonoidHom.ext w
/-- Construct a bundled `CommGroup` from the underlying type and typeclass. -/
@[to_additive]
def of (G : Type u) [CommGroup G] : CommGrp :=
Bundled.of G
/-- Construct a bundled `AddCommGroup` from the underlying type and typeclass. -/
add_decl_doc AddCommGrp.of
@[to_additive]
instance : Inhabited CommGrp :=
⟨CommGrp.of PUnit⟩
@[to_additive (attr := simp)]
theorem coe_of (R : Type u) [CommGroup R] : (CommGrp.of R : Type u) = R :=
rfl
@[to_additive (attr := simp)]
theorem coe_comp' {G H K : Type _} [CommGroup G] [CommGroup H] [CommGroup K]
(f : G →* H) (g : H →* K) :
@DFunLike.coe (G →* K) G (fun _ ↦ K) MonoidHom.instFunLike (CategoryStruct.comp
(X := CommGrp.of G) (Y := CommGrp.of H) (Z := CommGrp.of K) f g) = g ∘ f :=
rfl
@[to_additive (attr := simp)]
theorem coe_id' {G : Type _} [CommGroup G] :
@DFunLike.coe (G →* G) G (fun _ ↦ G) MonoidHom.instFunLike
(CategoryStruct.id (X := CommGrp.of G)) = id :=
rfl
@[to_additive]
instance ofUnique (G : Type*) [CommGroup G] [i : Unique G] : Unique (CommGrp.of G) :=
i
@[to_additive]
instance hasForgetToGroup : HasForget₂ CommGrp Grp :=
BundledHom.forget₂ _ _
@[to_additive]
instance : Coe CommGrp.{u} Grp.{u} where coe := (forget₂ CommGrp Grp).obj
@[to_additive hasForgetToAddCommMonCat]
instance hasForgetToCommMonCat : HasForget₂ CommGrp CommMonCat :=
InducedCategory.hasForget₂ fun G : CommGrp => CommMonCat.of G
@[to_additive]
instance : Coe CommGrp.{u} CommMonCat.{u} where coe := (forget₂ CommGrp CommMonCat).obj
-- porting note (#10670): this instance was not necessary in mathlib
@[to_additive]
instance (G H : CommGrp) : One (G ⟶ H) := (inferInstance : One (MonoidHom G H))
@[to_additive (attr := simp)]
theorem one_apply (G H : CommGrp) (g : G) : ((1 : G ⟶ H) : G → H) g = 1 :=
rfl
/-- Typecheck a `MonoidHom` as a morphism in `CommGroup`. -/
@[to_additive]
def ofHom {X Y : Type u} [CommGroup X] [CommGroup Y] (f : X →* Y) : of X ⟶ of Y :=
f
/-- Typecheck an `AddMonoidHom` as a morphism in `AddCommGroup`. -/
add_decl_doc AddCommGrp.ofHom
@[to_additive (attr := simp)]
theorem ofHom_apply {X Y : Type _} [CommGroup X] [CommGroup Y] (f : X →* Y) (x : X) :
@DFunLike.coe (X →* Y) X (fun _ ↦ Y) _ (ofHom f) x = f x :=
rfl
-- We verify that simp lemmas apply when coercing morphisms to functions.
@[to_additive]
example {R S : CommGrp} (i : R ⟶ S) (r : R) (h : r = 1) : i r = 1 := by simp [h]
/-- Universe lift functor for commutative groups. -/
@[to_additive (attr := simps)
"Universe lift functor for additive commutative groups."]
def uliftFunctor : CommGrp.{u} ⥤ CommGrp.{max u v} where
obj X := CommGrp.of (ULift.{v, u} X)
map {X Y} f := CommGrp.ofHom <|
MulEquiv.ulift.symm.toMonoidHom.comp <| f.comp MulEquiv.ulift.toMonoidHom
map_id X := by rfl
map_comp {X Y Z} f g := by rfl
end CommGrp
namespace AddCommGrp
-- Note that because `ℤ : Type 0`, this forces `G : AddCommGroup.{0}`,
-- so we write this explicitly to be clear.
-- TODO generalize this, requiring a `ULiftInstances.lean` file
/-- Any element of an abelian group gives a unique morphism from `ℤ` sending
`1` to that element. -/
def asHom {G : AddCommGrp.{0}} (g : G) : AddCommGrp.of ℤ ⟶ G :=
zmultiplesHom G g
@[simp]
theorem asHom_apply {G : AddCommGrp.{0}} (g : G) (i : ℤ) :
@DFunLike.coe (ℤ →+ ↑G) ℤ (fun _ ↦ ↑G) _ (asHom g) i = i • g :=
rfl
theorem asHom_injective {G : AddCommGrp.{0}} : Function.Injective (@asHom G) := fun h k w => by
convert congr_arg (fun k : AddCommGrp.of ℤ ⟶ G => (k : ℤ → G) (1 : ℤ)) w <;> simp
@[ext]
theorem int_hom_ext {G : AddCommGrp.{0}} (f g : AddCommGrp.of ℤ ⟶ G)
(w : f (1 : ℤ) = g (1 : ℤ)) : f = g :=
@AddMonoidHom.ext_int G _ f g w
-- TODO: this argument should be generalised to the situation where
-- the forgetful functor is representable.
theorem injective_of_mono {G H : AddCommGrp.{0}} (f : G ⟶ H) [Mono f] : Function.Injective f :=
fun g₁ g₂ h => by
have t0 : asHom g₁ ≫ f = asHom g₂ ≫ f := by aesop_cat
have t1 : asHom g₁ = asHom g₂ := (cancel_mono _).1 t0
apply asHom_injective t1
end AddCommGrp
/-- Build an isomorphism in the category `Grp` from a `MulEquiv` between `Group`s. -/
@[to_additive (attr := simps)]
def MulEquiv.toGrpIso {X Y : Grp} (e : X ≃* Y) : X ≅ Y where
hom := e.toMonoidHom
inv := e.symm.toMonoidHom
/-- Build an isomorphism in the category `AddGroup` from an `AddEquiv` between `AddGroup`s. -/
add_decl_doc AddEquiv.toAddGrpIso
/-- Build an isomorphism in the category `CommGrp` from a `MulEquiv`
between `CommGroup`s. -/
@[to_additive (attr := simps)]
def MulEquiv.toCommGrpIso {X Y : CommGrp} (e : X ≃* Y) : X ≅ Y where
hom := e.toMonoidHom
inv := e.symm.toMonoidHom
/-- Build an isomorphism in the category `AddCommGrp` from an `AddEquiv`
between `AddCommGroup`s. -/
add_decl_doc AddEquiv.toAddCommGrpIso
namespace CategoryTheory.Iso
/-- Build a `MulEquiv` from an isomorphism in the category `Grp`. -/
@[to_additive (attr := simp)]
def groupIsoToMulEquiv {X Y : Grp} (i : X ≅ Y) : X ≃* Y :=
MonoidHom.toMulEquiv i.hom i.inv i.hom_inv_id i.inv_hom_id
/-- Build an `addEquiv` from an isomorphism in the category `AddGroup` -/
add_decl_doc addGroupIsoToAddEquiv
/-- Build a `MulEquiv` from an isomorphism in the category `CommGroup`. -/
@[to_additive (attr := simps!)]
def commGroupIsoToMulEquiv {X Y : CommGrp} (i : X ≅ Y) : X ≃* Y :=
MonoidHom.toMulEquiv i.hom i.inv i.hom_inv_id i.inv_hom_id
/-- Build an `AddEquiv` from an isomorphism in the category `AddCommGroup`. -/
add_decl_doc addCommGroupIsoToAddEquiv
end CategoryTheory.Iso
/-- multiplicative equivalences between `Group`s are the same as (isomorphic to) isomorphisms
in `Grp` -/
@[to_additive]
def mulEquivIsoGroupIso {X Y : Grp.{u}} : X ≃* Y ≅ X ≅ Y where
hom e := e.toGrpIso
inv i := i.groupIsoToMulEquiv
/-- Additive equivalences between `AddGroup`s are the same
as (isomorphic to) isomorphisms in `AddGrp`. -/
add_decl_doc addEquivIsoAddGroupIso
/-- Multiplicative equivalences between `CommGroup`s are the same as (isomorphic to) isomorphisms
in `CommGrp`. -/
@[to_additive]
def mulEquivIsoCommGroupIso {X Y : CommGrp.{u}} : X ≃* Y ≅ X ≅ Y where
hom e := e.toCommGrpIso
inv i := i.commGroupIsoToMulEquiv
/-- Additive equivalences between `AddCommGroup`s are
the same as (isomorphic to) isomorphisms in `AddCommGrp`. -/
add_decl_doc addEquivIsoAddCommGroupIso
namespace CategoryTheory.Aut
/-- The (bundled) group of automorphisms of a type is isomorphic to the (bundled) group
of permutations. -/
def isoPerm {α : Type u} : Grp.of (Aut α) ≅ Grp.of (Equiv.Perm α) where
hom :=
{ toFun := fun g => g.toEquiv
map_one' := by aesop
map_mul' := by aesop }
inv :=
{ toFun := fun g => g.toIso
map_one' := by aesop
map_mul' := by aesop }
/-- The (unbundled) group of automorphisms of a type is `MulEquiv` to the (unbundled) group
of permutations. -/
def mulEquivPerm {α : Type u} : Aut α ≃* Equiv.Perm α :=
isoPerm.groupIsoToMulEquiv
end CategoryTheory.Aut
@[to_additive]
instance Grp.forget_reflects_isos : (forget Grp.{u}).ReflectsIsomorphisms where
reflects {X Y} f _ := by
let i := asIso ((forget Grp).map f)
let e : X ≃* Y := { i.toEquiv with map_mul' := map_mul _ }
exact e.toGrpIso.isIso_hom
@[to_additive]
instance CommGrp.forget_reflects_isos : (forget CommGrp.{u}).ReflectsIsomorphisms where
reflects {X Y} f _ := by
let i := asIso ((forget CommGrp).map f)
let e : X ≃* Y := { i.toEquiv with map_mul' := map_mul _}
exact e.toCommGrpIso.isIso_hom
-- note: in the following definitions, there is a problem with `@[to_additive]`
-- as the `Category` instance is not found on the additive variant
-- this variant is then renamed with a `Aux` suffix
/-- An alias for `Grp.{max u v}`, to deal around unification issues. -/
@[to_additive (attr := nolint checkUnivs) GrpMaxAux
"An alias for `AddGrp.{max u v}`, to deal around unification issues."]
abbrev GrpMax.{u1, u2} := Grp.{max u1 u2}
/-- An alias for `AddGrp.{max u v}`, to deal around unification issues. -/
@[nolint checkUnivs]
abbrev AddGrpMax.{u1, u2} := AddGrp.{max u1 u2}
/-- An alias for `CommGrp.{max u v}`, to deal around unification issues. -/
@[to_additive (attr := nolint checkUnivs) AddCommGrpMaxAux
"An alias for `AddCommGrp.{max u v}`, to deal around unification issues."]
abbrev CommGrpMax.{u1, u2} := CommGrp.{max u1 u2}
/-- An alias for `AddCommGrp.{max u v}`, to deal around unification issues. -/
@[nolint checkUnivs]
abbrev AddCommGrpMax.{u1, u2} := AddCommGrp.{max u1 u2}
/-!
`@[simp]` lemmas for `MonoidHom.comp` and categorical identities.
-/
@[to_additive (attr := simp)] theorem MonoidHom.comp_id_grp
{G : Grp.{u}} {H : Type u} [Group H] (f : G →* H) : f.comp (𝟙 G) = f :=
Category.id_comp (Grp.ofHom f)
@[to_additive (attr := simp)] theorem MonoidHom.id_grp_comp
{G : Type u} [Group G] {H : Grp.{u}} (f : G →* H) : MonoidHom.comp (𝟙 H) f = f :=
Category.comp_id (Grp.ofHom f)
@[to_additive (attr := simp)] theorem MonoidHom.comp_id_commGrp
{G : CommGrp.{u}} {H : Type u} [CommGroup H] (f : G →* H) : f.comp (𝟙 G) = f :=
Category.id_comp (CommGrp.ofHom f)
@[to_additive (attr := simp)] theorem MonoidHom.id_commGrp_comp
{G : Type u} [CommGroup G] {H : CommGrp.{u}} (f : G →* H) : MonoidHom.comp (𝟙 H) f = f :=
Category.comp_id (CommGrp.ofHom f)
|
Subsets and Splits