File size: 1,069 Bytes
cf6b19d
 
 
 
6007b05
cf6b19d
 
6007b05
 
cf6b19d
 
a89355f
cf6b19d
 
0313124
cf6b19d
2285dee
 
a89355f
 
 
 
 
 
 
d6cd38d
a89355f
d6cd38d
a89355f
 
 
cf6b19d
d38547f
5d75cb6
d38547f
 
 
4c3786d
 
 
 
 
d38547f
 
 
 
26c0363
d38547f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
---
license: cc
language:
- id
pretty_name: LibriVox Filtered ID
size_categories:
- n<1K
task_categories:
- automatic-speech-recognition
---
# Librivox Filtered ID

Filtered Librivox Indonesian dataset<br>
<br>
Audio has been preprocessed using FFmpeg as: wav -ar 16000 -ac 1 (mono 16kHz sample_rate) for Whisper-ready finetuning<br>
Selected audio datasets on: ['id']['universal-declaration-of-human-rights']<br>
num_rows: 136<br>
Original dataset: <a href="https://huggingface.co/datasets/indonesian-nlp/librivox-indonesia">indonesian-nlp/librivox-indonesia</a><br>

## Format

Each example is a dictionary with the following fields:

```json
{
  "path": "audio/librivox_id_1.wav",
  "audio": {
    "path": "audio/librivox_id_1.wav",
    "array": [...],
    "sampling_rate": 16000
  },
  "sentence": "Some transcription"
}
```

## Load dataset

Use HuggingFace datasets v2.18:
```bash
pip install datasets==2.18.0
```

Use HuggingFace datasets to load:
```python
from datasets import load_dataset, Audio

dataset = load_dataset("Willy030125/librivox_filtered_id")
```