#!/bin/bash set -x models=( "/mnt/petrelfs/weixilin/cache/Qwen2-VL-t_scale2_change_freq-128frames-16card_8k-context-330k-llava-video" ) rope_types=( # "m_rope" "videorope" ) # basic port base_port=6011 # iterate each model for i in "${!models[@]}"; do model=${models[$i]} rope_type=${rope_types[$i]} port=$((base_port + i)) echo "evaluating model: $model" echo "using rope_type: $rope_type" echo "port: $port" accelerate launch --num_processes 8 --config_file easy_context/accelerate_configs/deepspeed_inference.yaml \ --main_process_port "$port" vision_niah_d/eval_vision_niah_interrupt.py \ --model "$model" \ --needle_dataset vision_niah_d/needle_datasets/dataset.json \ --needle_embedding_dir vision_niah_d/video_needle_haystack/data/needle_qwen2_embeddings_144tokens_dataset \ --needle_embedding_interrupt_dir vision_niah_d/video_needle_haystack/data/needle_qwen2_embeddings_144tokens_dataset_interrupt \ --haystack_dir vision_niah_d/video_needle_haystack/data/haystack_qwen2_embeddings_6000frames \ --prompt_template qwen2 \ --max_frame_num 3000 \ --min_frame_num 100 \ --frame_interval 200 \ --output_path vision_niah_d/niah_output_interrupt \ --rope_type "$rope_type" \ --image_tokens 144 \ --depth_interval 0.2 echo "model $model evaluation has done." echo "------------------------------------" done