Xian-Gao commited on
Commit
4b9d4b7
·
verified ·
1 Parent(s): 89fb7e5

Upload 8 files

Browse files
.gitattributes CHANGED
@@ -57,3 +57,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
57
  # Video files - compressed
58
  *.mp4 filter=lfs diff=lfs merge=lfs -text
59
  *.webm filter=lfs diff=lfs merge=lfs -text
 
 
57
  # Video files - compressed
58
  *.mp4 filter=lfs diff=lfs merge=lfs -text
59
  *.webm filter=lfs diff=lfs merge=lfs -text
60
+ supplementary/appendix.pdf filter=lfs diff=lfs merge=lfs -text
supplementary/Readme.md ADDED
@@ -0,0 +1 @@
 
 
1
+ Supplementary materials for paper: BasketHAR: A Multimodal Dataset for Human Activity Recognition and Sport Analysis in Basketball Training Scenarios.
supplementary/appendix.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02bb974950f4defcf9c8c6df2f82d6e33c2bcc0e3feb14066ccc8ce74ad50309
3
+ size 575918
supplementary/code/Readme.md ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ Code for paper: BasketHAR: A Multimodal Dataset for Human Activity Recognition and Sport Analysis in Basketball Training Scenarios.
2
+
3
+ The multimodal method can be implemented using [Imagebind-LoRA](https://github.com/fabawi/ImageBind-LoRA).
supplementary/code/classification_cnn.ipynb ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 81,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "import numpy as np\n",
10
+ "import torch\n",
11
+ "import torch.nn as nn\n",
12
+ "import torch.optim as optim\n",
13
+ "from sklearn.model_selection import train_test_split\n",
14
+ "from sklearn.preprocessing import LabelEncoder\n",
15
+ "from torch.utils.data import DataLoader, TensorDataset"
16
+ ]
17
+ },
18
+ {
19
+ "cell_type": "code",
20
+ "execution_count": 82,
21
+ "metadata": {},
22
+ "outputs": [],
23
+ "source": [
24
+ "X = np.load('./signal_X.npy') \n",
25
+ "y = np.load('./signal_y.npy') \n",
26
+ "\n",
27
+ "X = X[:, :, :]\n",
28
+ "\n",
29
+ "\n",
30
+ "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42, stratify=y)"
31
+ ]
32
+ },
33
+ {
34
+ "cell_type": "code",
35
+ "execution_count": 85,
36
+ "metadata": {},
37
+ "outputs": [],
38
+ "source": [
39
+ "X_train = X_train.transpose(0, 2, 1).reshape(-1, 12, 1, 200) \n",
40
+ "X_test = X_test.transpose(0, 2, 1).reshape(-1, 12, 1, 200)\n",
41
+ "\n",
42
+ "\n",
43
+ "torch_X_train = torch.tensor(X_train, dtype=torch.float32)\n",
44
+ "torch_y_train = torch.tensor(y_train, dtype=torch.long)\n",
45
+ "torch_X_test = torch.tensor(X_test, dtype=torch.float32)\n",
46
+ "torch_y_test = torch.tensor(y_test, dtype=torch.long)\n"
47
+ ]
48
+ },
49
+ {
50
+ "cell_type": "code",
51
+ "execution_count": 87,
52
+ "metadata": {},
53
+ "outputs": [],
54
+ "source": [
55
+ "batch_size = 16384\n",
56
+ "train_dataset = TensorDataset(torch_X_train, torch_y_train)\n",
57
+ "test_dataset = TensorDataset(torch_X_test, torch_y_test)\n",
58
+ "train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)\n",
59
+ "test_loader = DataLoader(test_dataset, batch_size=2828, shuffle=False)"
60
+ ]
61
+ },
62
+ {
63
+ "cell_type": "code",
64
+ "execution_count": 88,
65
+ "metadata": {},
66
+ "outputs": [],
67
+ "source": [
68
+ "class CNN(nn.Module):\n",
69
+ " def __init__(self, num_classes):\n",
70
+ " super(CNN, self).__init__()\n",
71
+ " self.conv1 = nn.Conv2d(12, 32, kernel_size=(1, 3), padding=(0, 1))\n",
72
+ " self.pool1 = nn.MaxPool2d(kernel_size=(1, 2))\n",
73
+ " self.bn1 = nn.BatchNorm2d(32)\n",
74
+ " self.conv2 = nn.Conv2d(32, 64, kernel_size=(1, 3), padding=(0, 1))\n",
75
+ " self.pool2 = nn.MaxPool2d(kernel_size=(1, 2))\n",
76
+ " self.bn2 = nn.BatchNorm2d(64)\n",
77
+ " self.flatten = nn.Flatten()\n",
78
+ " # self.dropout = nn.Dropout(0.5)\n",
79
+ " self.fc1 = nn.Linear(64 * 1 * 50, 128) \n",
80
+ " self.fc2 = nn.Linear(128, num_classes)\n",
81
+ " self.bn3 = nn.BatchNorm1d(128) \n",
82
+ " self._initialize_weights()\n",
83
+ "\n",
84
+ " def _initialize_weights(self):\n",
85
+ " for m in self.modules():\n",
86
+ " if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):\n",
87
+ " nn.init.xavier_uniform_(m.weight)\n",
88
+ " if m.bias is not None:\n",
89
+ " nn.init.constant_(m.bias, 0)\n",
90
+ " \n",
91
+ " def forward(self, x):\n",
92
+ " x = self.pool1(torch.relu(self.bn1(self.conv1(x))))\n",
93
+ "\n",
94
+ " x = self.pool2(torch.relu(self.bn2(self.conv2(x))))\n",
95
+ "\n",
96
+ " # x = self.dropout(x)\n",
97
+ " x = self.flatten(x)\n",
98
+ " x = torch.relu(self.bn3(self.fc1(x)))\n",
99
+ " x = self.fc2(x)\n",
100
+ " return x"
101
+ ]
102
+ },
103
+ {
104
+ "cell_type": "code",
105
+ "execution_count": 90,
106
+ "metadata": {},
107
+ "outputs": [],
108
+ "source": [
109
+ "model = CNN(14)"
110
+ ]
111
+ },
112
+ {
113
+ "cell_type": "code",
114
+ "execution_count": 91,
115
+ "metadata": {},
116
+ "outputs": [],
117
+ "source": [
118
+ "criterion = nn.CrossEntropyLoss()\n",
119
+ "optimizer = optim.Adam(model.parameters(), lr=0.001, weight_decay=1e-4)\n",
120
+ "scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=25, gamma=0.9)"
121
+ ]
122
+ },
123
+ {
124
+ "cell_type": "code",
125
+ "execution_count": null,
126
+ "metadata": {},
127
+ "outputs": [],
128
+ "source": [
129
+ "epochs = 100\n",
130
+ "model.to('cuda:1')\n",
131
+ "for epoch in range(epochs):\n",
132
+ " model.train()\n",
133
+ " running_loss = 0.0\n",
134
+ " for inputs, labels in train_loader:\n",
135
+ " inputs = inputs.float().to('cuda:1') \n",
136
+ " optimizer.zero_grad()\n",
137
+ " outputs = model(inputs).to('cpu')\n",
138
+ " _, predicted = torch.max(outputs, 1)\n",
139
+ " # print(accuracy_score(labels, predicted))\n",
140
+ " loss = criterion(outputs, labels)\n",
141
+ " loss.backward()\n",
142
+ " optimizer.step()\n",
143
+ " running_loss += loss.item()\n",
144
+ " scheduler.step() \n",
145
+ " print(f\"Epoch {epoch + 1}/{epochs}, Loss: {running_loss / len(train_loader):.4f}\")"
146
+ ]
147
+ },
148
+ {
149
+ "cell_type": "code",
150
+ "execution_count": null,
151
+ "metadata": {},
152
+ "outputs": [],
153
+ "source": [
154
+ "model.eval()\n",
155
+ "correct = 0\n",
156
+ "total = 0\n",
157
+ "with torch.no_grad():\n",
158
+ " for inputs, labels in test_loader:\n",
159
+ " outputs = model(inputs.to('cuda:1')).to('cpu')\n",
160
+ " _, predicted = torch.max(outputs, 1)\n",
161
+ " total += labels.size(0)\n",
162
+ " correct += (predicted == labels).sum().item()\n",
163
+ "\n",
164
+ "accuracy = correct / total\n",
165
+ "print(f\"Test Accuracy: {accuracy:.4f}\")"
166
+ ]
167
+ },
168
+ {
169
+ "cell_type": "code",
170
+ "execution_count": 95,
171
+ "metadata": {},
172
+ "outputs": [],
173
+ "source": [
174
+ "from sklearn.metrics import classification_report, accuracy_score, confusion_matrix"
175
+ ]
176
+ },
177
+ {
178
+ "cell_type": "code",
179
+ "execution_count": null,
180
+ "metadata": {},
181
+ "outputs": [],
182
+ "source": [
183
+ "print(classification_report(y_test, predicted))"
184
+ ]
185
+ }
186
+ ],
187
+ "metadata": {
188
+ "kernelspec": {
189
+ "display_name": "imu",
190
+ "language": "python",
191
+ "name": "python3"
192
+ },
193
+ "language_info": {
194
+ "codemirror_mode": {
195
+ "name": "ipython",
196
+ "version": 3
197
+ },
198
+ "file_extension": ".py",
199
+ "mimetype": "text/x-python",
200
+ "name": "python",
201
+ "nbconvert_exporter": "python",
202
+ "pygments_lexer": "ipython3",
203
+ "version": "3.9.19"
204
+ }
205
+ },
206
+ "nbformat": 4,
207
+ "nbformat_minor": 2
208
+ }
supplementary/code/classification_lstm.ipynb ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 112,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "import torch\n",
10
+ "import torch.nn as nn\n",
11
+ "import torch.optim as optim\n",
12
+ "import numpy as np\n",
13
+ "from sklearn.model_selection import train_test_split\n",
14
+ "from sklearn.preprocessing import LabelEncoder\n",
15
+ "from torch.utils.data import DataLoader, TensorDataset"
16
+ ]
17
+ },
18
+ {
19
+ "cell_type": "code",
20
+ "execution_count": 113,
21
+ "metadata": {},
22
+ "outputs": [],
23
+ "source": [
24
+ "X = np.load('./signal_X.npy') \n",
25
+ "y = np.load('./signal_y.npy') "
26
+ ]
27
+ },
28
+ {
29
+ "cell_type": "code",
30
+ "execution_count": 114,
31
+ "metadata": {},
32
+ "outputs": [],
33
+ "source": [
34
+ "X = torch.tensor(X, dtype=torch.float32)\n",
35
+ "y = torch.tensor(y, dtype=torch.long)"
36
+ ]
37
+ },
38
+ {
39
+ "cell_type": "code",
40
+ "execution_count": 115,
41
+ "metadata": {},
42
+ "outputs": [],
43
+ "source": [
44
+ "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42, stratify=y)"
45
+ ]
46
+ },
47
+ {
48
+ "cell_type": "code",
49
+ "execution_count": 116,
50
+ "metadata": {},
51
+ "outputs": [],
52
+ "source": [
53
+ "batch_size = 2048\n",
54
+ "train_dataset = TensorDataset(X_train, y_train)\n",
55
+ "test_dataset = TensorDataset(X_test, y_test)\n",
56
+ "train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)\n",
57
+ "test_loader = DataLoader(test_dataset, batch_size=16384, shuffle=False)\n"
58
+ ]
59
+ },
60
+ {
61
+ "cell_type": "code",
62
+ "execution_count": 117,
63
+ "metadata": {},
64
+ "outputs": [],
65
+ "source": [
66
+ "class LSTMClassifier(nn.Module):\n",
67
+ " def __init__(self, input_size, hidden_size, num_layers, num_classes, dropout=0.3):\n",
68
+ " super(LSTMClassifier, self).__init__()\n",
69
+ " self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True, dropout=dropout)\n",
70
+ " self.fc = nn.Linear(hidden_size, num_classes)\n",
71
+ " self.dropout = nn.Dropout(dropout)\n",
72
+ "\n",
73
+ " def forward(self, x):\n",
74
+ " out, _ = self.lstm(x)\n",
75
+ " out = out[:, -1, :]\n",
76
+ " out = self.fc(self.dropout(out))\n",
77
+ " return out"
78
+ ]
79
+ },
80
+ {
81
+ "cell_type": "code",
82
+ "execution_count": 118,
83
+ "metadata": {},
84
+ "outputs": [],
85
+ "source": [
86
+ "input_size = 12 \n",
87
+ "hidden_size = 128 \n",
88
+ "num_layers = 3 \n",
89
+ "num_classes = 14 "
90
+ ]
91
+ },
92
+ {
93
+ "cell_type": "code",
94
+ "execution_count": 119,
95
+ "metadata": {},
96
+ "outputs": [],
97
+ "source": [
98
+ "model = LSTMClassifier(input_size, hidden_size, num_layers, num_classes)\n",
99
+ "\n",
100
+ "criterion = nn.CrossEntropyLoss()\n",
101
+ "optimizer = optim.Adam(model.parameters(), lr=0.001, weight_decay=1e-4)\n",
102
+ "scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.9)\n",
103
+ "\n",
104
+ "device = torch.device('cuda:3' if torch.cuda.is_available() else 'cpu')\n",
105
+ "model = model.to(device)"
106
+ ]
107
+ },
108
+ {
109
+ "cell_type": "code",
110
+ "execution_count": null,
111
+ "metadata": {},
112
+ "outputs": [],
113
+ "source": [
114
+ "num_epochs = 100\n",
115
+ "for epoch in range(num_epochs):\n",
116
+ " model.train()\n",
117
+ " total_loss = 0\n",
118
+ " for batch_X, batch_y in train_loader:\n",
119
+ " batch_X, batch_y = batch_X.to(device), batch_y.to(device)\n",
120
+ "\n",
121
+ " outputs = model(batch_X)\n",
122
+ " loss = criterion(outputs, batch_y)\n",
123
+ " \n",
124
+ " optimizer.zero_grad()\n",
125
+ " loss.backward()\n",
126
+ " optimizer.step()\n",
127
+ " \n",
128
+ " total_loss += loss.item()\n",
129
+ " scheduler.step()\n",
130
+ " print(f\"Epoch {epoch + 1}/{num_epochs}, Loss: {total_loss / len(train_loader):.4f}\")"
131
+ ]
132
+ },
133
+ {
134
+ "cell_type": "code",
135
+ "execution_count": null,
136
+ "metadata": {},
137
+ "outputs": [],
138
+ "source": [
139
+ "model.eval()\n",
140
+ "with torch.no_grad():\n",
141
+ " correct = 0\n",
142
+ " total = 0\n",
143
+ " for batch_X, batch_y in test_loader:\n",
144
+ " batch_X, batch_y = batch_X.to(device), batch_y.to(device)\n",
145
+ " outputs = model(batch_X)\n",
146
+ " _, predicted = torch.max(outputs.data, 1)\n",
147
+ " total += batch_y.size(0)\n",
148
+ " correct += (predicted == batch_y).sum().item()"
149
+ ]
150
+ },
151
+ {
152
+ "cell_type": "code",
153
+ "execution_count": null,
154
+ "metadata": {},
155
+ "outputs": [],
156
+ "source": [
157
+ "from sklearn.metrics import classification_report, accuracy_score, confusion_matrix"
158
+ ]
159
+ },
160
+ {
161
+ "cell_type": "code",
162
+ "execution_count": null,
163
+ "metadata": {},
164
+ "outputs": [],
165
+ "source": [
166
+ "print(classification_report(y_test, predicted.cpu()))"
167
+ ]
168
+ }
169
+ ],
170
+ "metadata": {
171
+ "kernelspec": {
172
+ "display_name": "imu",
173
+ "language": "python",
174
+ "name": "python3"
175
+ },
176
+ "language_info": {
177
+ "codemirror_mode": {
178
+ "name": "ipython",
179
+ "version": 3
180
+ },
181
+ "file_extension": ".py",
182
+ "mimetype": "text/x-python",
183
+ "name": "python",
184
+ "nbconvert_exporter": "python",
185
+ "pygments_lexer": "ipython3",
186
+ "version": "3.9.19"
187
+ }
188
+ },
189
+ "nbformat": 4,
190
+ "nbformat_minor": 2
191
+ }
supplementary/code/classification_mlp.ipynb ADDED
@@ -0,0 +1,512 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "import numpy as np\n",
10
+ "from sklearn.model_selection import train_test_split\n",
11
+ "from sklearn.ensemble import RandomForestClassifier\n",
12
+ "import matplotlib.pyplot as plt\n",
13
+ "from sklearn.metrics import classification_report, accuracy_score, confusion_matrix, ConfusionMatrixDisplay\n",
14
+ "import numpy as np\n",
15
+ "from sklearn.model_selection import train_test_split\n",
16
+ "from sklearn.svm import SVC\n",
17
+ "from sklearn.metrics import classification_report, accuracy_score\n",
18
+ "from sklearn.preprocessing import StandardScaler\n",
19
+ "import numpy as np\n",
20
+ "from sklearn.model_selection import train_test_split\n",
21
+ "from sklearn.neural_network import MLPClassifier\n",
22
+ "from sklearn.metrics import classification_report, accuracy_score\n",
23
+ "from sklearn.preprocessing import StandardScaler"
24
+ ]
25
+ },
26
+ {
27
+ "cell_type": "code",
28
+ "execution_count": 2,
29
+ "metadata": {},
30
+ "outputs": [],
31
+ "source": [
32
+ "data = np.load('./signal_X.npy') \n",
33
+ "labels = np.load('./signal_y.npy') \n",
34
+ "\n",
35
+ "\n",
36
+ "data_flattened = data.reshape(data.shape[0], -1)"
37
+ ]
38
+ },
39
+ {
40
+ "cell_type": "code",
41
+ "execution_count": 123,
42
+ "metadata": {},
43
+ "outputs": [
44
+ {
45
+ "data": {
46
+ "text/html": [
47
+ "<style>#sk-container-id-6 {\n",
48
+ " /* Definition of color scheme common for light and dark mode */\n",
49
+ " --sklearn-color-text: black;\n",
50
+ " --sklearn-color-line: gray;\n",
51
+ " /* Definition of color scheme for unfitted estimators */\n",
52
+ " --sklearn-color-unfitted-level-0: #fff5e6;\n",
53
+ " --sklearn-color-unfitted-level-1: #f6e4d2;\n",
54
+ " --sklearn-color-unfitted-level-2: #ffe0b3;\n",
55
+ " --sklearn-color-unfitted-level-3: chocolate;\n",
56
+ " /* Definition of color scheme for fitted estimators */\n",
57
+ " --sklearn-color-fitted-level-0: #f0f8ff;\n",
58
+ " --sklearn-color-fitted-level-1: #d4ebff;\n",
59
+ " --sklearn-color-fitted-level-2: #b3dbfd;\n",
60
+ " --sklearn-color-fitted-level-3: cornflowerblue;\n",
61
+ "\n",
62
+ " /* Specific color for light theme */\n",
63
+ " --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));\n",
64
+ " --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));\n",
65
+ " --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));\n",
66
+ " --sklearn-color-icon: #696969;\n",
67
+ "\n",
68
+ " @media (prefers-color-scheme: dark) {\n",
69
+ " /* Redefinition of color scheme for dark theme */\n",
70
+ " --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));\n",
71
+ " --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));\n",
72
+ " --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));\n",
73
+ " --sklearn-color-icon: #878787;\n",
74
+ " }\n",
75
+ "}\n",
76
+ "\n",
77
+ "#sk-container-id-6 {\n",
78
+ " color: var(--sklearn-color-text);\n",
79
+ "}\n",
80
+ "\n",
81
+ "#sk-container-id-6 pre {\n",
82
+ " padding: 0;\n",
83
+ "}\n",
84
+ "\n",
85
+ "#sk-container-id-6 input.sk-hidden--visually {\n",
86
+ " border: 0;\n",
87
+ " clip: rect(1px 1px 1px 1px);\n",
88
+ " clip: rect(1px, 1px, 1px, 1px);\n",
89
+ " height: 1px;\n",
90
+ " margin: -1px;\n",
91
+ " overflow: hidden;\n",
92
+ " padding: 0;\n",
93
+ " position: absolute;\n",
94
+ " width: 1px;\n",
95
+ "}\n",
96
+ "\n",
97
+ "#sk-container-id-6 div.sk-dashed-wrapped {\n",
98
+ " border: 1px dashed var(--sklearn-color-line);\n",
99
+ " margin: 0 0.4em 0.5em 0.4em;\n",
100
+ " box-sizing: border-box;\n",
101
+ " padding-bottom: 0.4em;\n",
102
+ " background-color: var(--sklearn-color-background);\n",
103
+ "}\n",
104
+ "\n",
105
+ "#sk-container-id-6 div.sk-container {\n",
106
+ " /* jupyter's `normalize.less` sets `[hidden] { display: none; }`\n",
107
+ " but bootstrap.min.css set `[hidden] { display: none !important; }`\n",
108
+ " so we also need the `!important` here to be able to override the\n",
109
+ " default hidden behavior on the sphinx rendered scikit-learn.org.\n",
110
+ " See: https://github.com/scikit-learn/scikit-learn/issues/21755 */\n",
111
+ " display: inline-block !important;\n",
112
+ " position: relative;\n",
113
+ "}\n",
114
+ "\n",
115
+ "#sk-container-id-6 div.sk-text-repr-fallback {\n",
116
+ " display: none;\n",
117
+ "}\n",
118
+ "\n",
119
+ "div.sk-parallel-item,\n",
120
+ "div.sk-serial,\n",
121
+ "div.sk-item {\n",
122
+ " /* draw centered vertical line to link estimators */\n",
123
+ " background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));\n",
124
+ " background-size: 2px 100%;\n",
125
+ " background-repeat: no-repeat;\n",
126
+ " background-position: center center;\n",
127
+ "}\n",
128
+ "\n",
129
+ "/* Parallel-specific style estimator block */\n",
130
+ "\n",
131
+ "#sk-container-id-6 div.sk-parallel-item::after {\n",
132
+ " content: \"\";\n",
133
+ " width: 100%;\n",
134
+ " border-bottom: 2px solid var(--sklearn-color-text-on-default-background);\n",
135
+ " flex-grow: 1;\n",
136
+ "}\n",
137
+ "\n",
138
+ "#sk-container-id-6 div.sk-parallel {\n",
139
+ " display: flex;\n",
140
+ " align-items: stretch;\n",
141
+ " justify-content: center;\n",
142
+ " background-color: var(--sklearn-color-background);\n",
143
+ " position: relative;\n",
144
+ "}\n",
145
+ "\n",
146
+ "#sk-container-id-6 div.sk-parallel-item {\n",
147
+ " display: flex;\n",
148
+ " flex-direction: column;\n",
149
+ "}\n",
150
+ "\n",
151
+ "#sk-container-id-6 div.sk-parallel-item:first-child::after {\n",
152
+ " align-self: flex-end;\n",
153
+ " width: 50%;\n",
154
+ "}\n",
155
+ "\n",
156
+ "#sk-container-id-6 div.sk-parallel-item:last-child::after {\n",
157
+ " align-self: flex-start;\n",
158
+ " width: 50%;\n",
159
+ "}\n",
160
+ "\n",
161
+ "#sk-container-id-6 div.sk-parallel-item:only-child::after {\n",
162
+ " width: 0;\n",
163
+ "}\n",
164
+ "\n",
165
+ "/* Serial-specific style estimator block */\n",
166
+ "\n",
167
+ "#sk-container-id-6 div.sk-serial {\n",
168
+ " display: flex;\n",
169
+ " flex-direction: column;\n",
170
+ " align-items: center;\n",
171
+ " background-color: var(--sklearn-color-background);\n",
172
+ " padding-right: 1em;\n",
173
+ " padding-left: 1em;\n",
174
+ "}\n",
175
+ "\n",
176
+ "\n",
177
+ "/* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is\n",
178
+ "clickable and can be expanded/collapsed.\n",
179
+ "- Pipeline and ColumnTransformer use this feature and define the default style\n",
180
+ "- Estimators will overwrite some part of the style using the `sk-estimator` class\n",
181
+ "*/\n",
182
+ "\n",
183
+ "/* Pipeline and ColumnTransformer style (default) */\n",
184
+ "\n",
185
+ "#sk-container-id-6 div.sk-toggleable {\n",
186
+ " /* Default theme specific background. It is overwritten whether we have a\n",
187
+ " specific estimator or a Pipeline/ColumnTransformer */\n",
188
+ " background-color: var(--sklearn-color-background);\n",
189
+ "}\n",
190
+ "\n",
191
+ "/* Toggleable label */\n",
192
+ "#sk-container-id-6 label.sk-toggleable__label {\n",
193
+ " cursor: pointer;\n",
194
+ " display: block;\n",
195
+ " width: 100%;\n",
196
+ " margin-bottom: 0;\n",
197
+ " padding: 0.5em;\n",
198
+ " box-sizing: border-box;\n",
199
+ " text-align: center;\n",
200
+ "}\n",
201
+ "\n",
202
+ "#sk-container-id-6 label.sk-toggleable__label-arrow:before {\n",
203
+ " /* Arrow on the left of the label */\n",
204
+ " content: \"▸\";\n",
205
+ " float: left;\n",
206
+ " margin-right: 0.25em;\n",
207
+ " color: var(--sklearn-color-icon);\n",
208
+ "}\n",
209
+ "\n",
210
+ "#sk-container-id-6 label.sk-toggleable__label-arrow:hover:before {\n",
211
+ " color: var(--sklearn-color-text);\n",
212
+ "}\n",
213
+ "\n",
214
+ "/* Toggleable content - dropdown */\n",
215
+ "\n",
216
+ "#sk-container-id-6 div.sk-toggleable__content {\n",
217
+ " max-height: 0;\n",
218
+ " max-width: 0;\n",
219
+ " overflow: hidden;\n",
220
+ " text-align: left;\n",
221
+ " /* unfitted */\n",
222
+ " background-color: var(--sklearn-color-unfitted-level-0);\n",
223
+ "}\n",
224
+ "\n",
225
+ "#sk-container-id-6 div.sk-toggleable__content.fitted {\n",
226
+ " /* fitted */\n",
227
+ " background-color: var(--sklearn-color-fitted-level-0);\n",
228
+ "}\n",
229
+ "\n",
230
+ "#sk-container-id-6 div.sk-toggleable__content pre {\n",
231
+ " margin: 0.2em;\n",
232
+ " border-radius: 0.25em;\n",
233
+ " color: var(--sklearn-color-text);\n",
234
+ " /* unfitted */\n",
235
+ " background-color: var(--sklearn-color-unfitted-level-0);\n",
236
+ "}\n",
237
+ "\n",
238
+ "#sk-container-id-6 div.sk-toggleable__content.fitted pre {\n",
239
+ " /* unfitted */\n",
240
+ " background-color: var(--sklearn-color-fitted-level-0);\n",
241
+ "}\n",
242
+ "\n",
243
+ "#sk-container-id-6 input.sk-toggleable__control:checked~div.sk-toggleable__content {\n",
244
+ " /* Expand drop-down */\n",
245
+ " max-height: 200px;\n",
246
+ " max-width: 100%;\n",
247
+ " overflow: auto;\n",
248
+ "}\n",
249
+ "\n",
250
+ "#sk-container-id-6 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {\n",
251
+ " content: \"▾\";\n",
252
+ "}\n",
253
+ "\n",
254
+ "/* Pipeline/ColumnTransformer-specific style */\n",
255
+ "\n",
256
+ "#sk-container-id-6 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
257
+ " color: var(--sklearn-color-text);\n",
258
+ " background-color: var(--sklearn-color-unfitted-level-2);\n",
259
+ "}\n",
260
+ "\n",
261
+ "#sk-container-id-6 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
262
+ " background-color: var(--sklearn-color-fitted-level-2);\n",
263
+ "}\n",
264
+ "\n",
265
+ "/* Estimator-specific style */\n",
266
+ "\n",
267
+ "/* Colorize estimator box */\n",
268
+ "#sk-container-id-6 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
269
+ " /* unfitted */\n",
270
+ " background-color: var(--sklearn-color-unfitted-level-2);\n",
271
+ "}\n",
272
+ "\n",
273
+ "#sk-container-id-6 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
274
+ " /* fitted */\n",
275
+ " background-color: var(--sklearn-color-fitted-level-2);\n",
276
+ "}\n",
277
+ "\n",
278
+ "#sk-container-id-6 div.sk-label label.sk-toggleable__label,\n",
279
+ "#sk-container-id-6 div.sk-label label {\n",
280
+ " /* The background is the default theme color */\n",
281
+ " color: var(--sklearn-color-text-on-default-background);\n",
282
+ "}\n",
283
+ "\n",
284
+ "/* On hover, darken the color of the background */\n",
285
+ "#sk-container-id-6 div.sk-label:hover label.sk-toggleable__label {\n",
286
+ " color: var(--sklearn-color-text);\n",
287
+ " background-color: var(--sklearn-color-unfitted-level-2);\n",
288
+ "}\n",
289
+ "\n",
290
+ "/* Label box, darken color on hover, fitted */\n",
291
+ "#sk-container-id-6 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {\n",
292
+ " color: var(--sklearn-color-text);\n",
293
+ " background-color: var(--sklearn-color-fitted-level-2);\n",
294
+ "}\n",
295
+ "\n",
296
+ "/* Estimator label */\n",
297
+ "\n",
298
+ "#sk-container-id-6 div.sk-label label {\n",
299
+ " font-family: monospace;\n",
300
+ " font-weight: bold;\n",
301
+ " display: inline-block;\n",
302
+ " line-height: 1.2em;\n",
303
+ "}\n",
304
+ "\n",
305
+ "#sk-container-id-6 div.sk-label-container {\n",
306
+ " text-align: center;\n",
307
+ "}\n",
308
+ "\n",
309
+ "/* Estimator-specific */\n",
310
+ "#sk-container-id-6 div.sk-estimator {\n",
311
+ " font-family: monospace;\n",
312
+ " border: 1px dotted var(--sklearn-color-border-box);\n",
313
+ " border-radius: 0.25em;\n",
314
+ " box-sizing: border-box;\n",
315
+ " margin-bottom: 0.5em;\n",
316
+ " /* unfitted */\n",
317
+ " background-color: var(--sklearn-color-unfitted-level-0);\n",
318
+ "}\n",
319
+ "\n",
320
+ "#sk-container-id-6 div.sk-estimator.fitted {\n",
321
+ " /* fitted */\n",
322
+ " background-color: var(--sklearn-color-fitted-level-0);\n",
323
+ "}\n",
324
+ "\n",
325
+ "/* on hover */\n",
326
+ "#sk-container-id-6 div.sk-estimator:hover {\n",
327
+ " /* unfitted */\n",
328
+ " background-color: var(--sklearn-color-unfitted-level-2);\n",
329
+ "}\n",
330
+ "\n",
331
+ "#sk-container-id-6 div.sk-estimator.fitted:hover {\n",
332
+ " /* fitted */\n",
333
+ " background-color: var(--sklearn-color-fitted-level-2);\n",
334
+ "}\n",
335
+ "\n",
336
+ "/* Specification for estimator info (e.g. \"i\" and \"?\") */\n",
337
+ "\n",
338
+ "/* Common style for \"i\" and \"?\" */\n",
339
+ "\n",
340
+ ".sk-estimator-doc-link,\n",
341
+ "a:link.sk-estimator-doc-link,\n",
342
+ "a:visited.sk-estimator-doc-link {\n",
343
+ " float: right;\n",
344
+ " font-size: smaller;\n",
345
+ " line-height: 1em;\n",
346
+ " font-family: monospace;\n",
347
+ " background-color: var(--sklearn-color-background);\n",
348
+ " border-radius: 1em;\n",
349
+ " height: 1em;\n",
350
+ " width: 1em;\n",
351
+ " text-decoration: none !important;\n",
352
+ " margin-left: 1ex;\n",
353
+ " /* unfitted */\n",
354
+ " border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n",
355
+ " color: var(--sklearn-color-unfitted-level-1);\n",
356
+ "}\n",
357
+ "\n",
358
+ ".sk-estimator-doc-link.fitted,\n",
359
+ "a:link.sk-estimator-doc-link.fitted,\n",
360
+ "a:visited.sk-estimator-doc-link.fitted {\n",
361
+ " /* fitted */\n",
362
+ " border: var(--sklearn-color-fitted-level-1) 1pt solid;\n",
363
+ " color: var(--sklearn-color-fitted-level-1);\n",
364
+ "}\n",
365
+ "\n",
366
+ "/* On hover */\n",
367
+ "div.sk-estimator:hover .sk-estimator-doc-link:hover,\n",
368
+ ".sk-estimator-doc-link:hover,\n",
369
+ "div.sk-label-container:hover .sk-estimator-doc-link:hover,\n",
370
+ ".sk-estimator-doc-link:hover {\n",
371
+ " /* unfitted */\n",
372
+ " background-color: var(--sklearn-color-unfitted-level-3);\n",
373
+ " color: var(--sklearn-color-background);\n",
374
+ " text-decoration: none;\n",
375
+ "}\n",
376
+ "\n",
377
+ "div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,\n",
378
+ ".sk-estimator-doc-link.fitted:hover,\n",
379
+ "div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,\n",
380
+ ".sk-estimator-doc-link.fitted:hover {\n",
381
+ " /* fitted */\n",
382
+ " background-color: var(--sklearn-color-fitted-level-3);\n",
383
+ " color: var(--sklearn-color-background);\n",
384
+ " text-decoration: none;\n",
385
+ "}\n",
386
+ "\n",
387
+ "/* Span, style for the box shown on hovering the info icon */\n",
388
+ ".sk-estimator-doc-link span {\n",
389
+ " display: none;\n",
390
+ " z-index: 9999;\n",
391
+ " position: relative;\n",
392
+ " font-weight: normal;\n",
393
+ " right: .2ex;\n",
394
+ " padding: .5ex;\n",
395
+ " margin: .5ex;\n",
396
+ " width: min-content;\n",
397
+ " min-width: 20ex;\n",
398
+ " max-width: 50ex;\n",
399
+ " color: var(--sklearn-color-text);\n",
400
+ " box-shadow: 2pt 2pt 4pt #999;\n",
401
+ " /* unfitted */\n",
402
+ " background: var(--sklearn-color-unfitted-level-0);\n",
403
+ " border: .5pt solid var(--sklearn-color-unfitted-level-3);\n",
404
+ "}\n",
405
+ "\n",
406
+ ".sk-estimator-doc-link.fitted span {\n",
407
+ " /* fitted */\n",
408
+ " background: var(--sklearn-color-fitted-level-0);\n",
409
+ " border: var(--sklearn-color-fitted-level-3);\n",
410
+ "}\n",
411
+ "\n",
412
+ ".sk-estimator-doc-link:hover span {\n",
413
+ " display: block;\n",
414
+ "}\n",
415
+ "\n",
416
+ "/* \"?\"-specific style due to the `<a>` HTML tag */\n",
417
+ "\n",
418
+ "#sk-container-id-6 a.estimator_doc_link {\n",
419
+ " float: right;\n",
420
+ " font-size: 1rem;\n",
421
+ " line-height: 1em;\n",
422
+ " font-family: monospace;\n",
423
+ " background-color: var(--sklearn-color-background);\n",
424
+ " border-radius: 1rem;\n",
425
+ " height: 1rem;\n",
426
+ " width: 1rem;\n",
427
+ " text-decoration: none;\n",
428
+ " /* unfitted */\n",
429
+ " color: var(--sklearn-color-unfitted-level-1);\n",
430
+ " border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n",
431
+ "}\n",
432
+ "\n",
433
+ "#sk-container-id-6 a.estimator_doc_link.fitted {\n",
434
+ " /* fitted */\n",
435
+ " border: var(--sklearn-color-fitted-level-1) 1pt solid;\n",
436
+ " color: var(--sklearn-color-fitted-level-1);\n",
437
+ "}\n",
438
+ "\n",
439
+ "/* On hover */\n",
440
+ "#sk-container-id-6 a.estimator_doc_link:hover {\n",
441
+ " /* unfitted */\n",
442
+ " background-color: var(--sklearn-color-unfitted-level-3);\n",
443
+ " color: var(--sklearn-color-background);\n",
444
+ " text-decoration: none;\n",
445
+ "}\n",
446
+ "\n",
447
+ "#sk-container-id-6 a.estimator_doc_link.fitted:hover {\n",
448
+ " /* fitted */\n",
449
+ " background-color: var(--sklearn-color-fitted-level-3);\n",
450
+ "}\n",
451
+ "</style><div id=\"sk-container-id-6\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>MLPClassifier(hidden_layer_sizes=(128, 64), random_state=42)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-6\" type=\"checkbox\" checked><label for=\"sk-estimator-id-6\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">&nbsp;&nbsp;MLPClassifier<a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.5/modules/generated/sklearn.neural_network.MLPClassifier.html\">?<span>Documentation for MLPClassifier</span></a><span class=\"sk-estimator-doc-link fitted\">i<span>Fitted</span></span></label><div class=\"sk-toggleable__content fitted\"><pre>MLPClassifier(hidden_layer_sizes=(128, 64), random_state=42)</pre></div> </div></div></div></div>"
452
+ ],
453
+ "text/plain": [
454
+ "MLPClassifier(hidden_layer_sizes=(128, 64), random_state=42)"
455
+ ]
456
+ },
457
+ "execution_count": 123,
458
+ "metadata": {},
459
+ "output_type": "execute_result"
460
+ }
461
+ ],
462
+ "source": [
463
+ "scaler = StandardScaler()\n",
464
+ "data_flattened = scaler.fit_transform(data_flattened)\n",
465
+ "\n",
466
+ "X_train, X_test, y_train, y_test = train_test_split(data_flattened, labels, test_size=0.2, random_state=42, stratify=labels)\n",
467
+ "\n",
468
+ "mlp_classifier = MLPClassifier(\n",
469
+ " hidden_layer_sizes=(128, 64), \n",
470
+ " activation='relu', \n",
471
+ " solver='adam', \n",
472
+ " max_iter=200, \n",
473
+ " random_state=42\n",
474
+ ")\n",
475
+ "\n",
476
+ "\n",
477
+ "mlp_classifier.fit(X_train, y_train)"
478
+ ]
479
+ },
480
+ {
481
+ "cell_type": "code",
482
+ "execution_count": null,
483
+ "metadata": {},
484
+ "outputs": [],
485
+ "source": [
486
+ "y_pred = mlp_classifier.predict(X_test)\n",
487
+ "print(classification_report(y_test, y_pred))"
488
+ ]
489
+ }
490
+ ],
491
+ "metadata": {
492
+ "kernelspec": {
493
+ "display_name": "imu",
494
+ "language": "python",
495
+ "name": "python3"
496
+ },
497
+ "language_info": {
498
+ "codemirror_mode": {
499
+ "name": "ipython",
500
+ "version": 3
501
+ },
502
+ "file_extension": ".py",
503
+ "mimetype": "text/x-python",
504
+ "name": "python",
505
+ "nbconvert_exporter": "python",
506
+ "pygments_lexer": "ipython3",
507
+ "version": "3.9.19"
508
+ }
509
+ },
510
+ "nbformat": 4,
511
+ "nbformat_minor": 2
512
+ }
supplementary/code/classification_rf.ipynb ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 117,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "import numpy as np\n",
10
+ "from sklearn.model_selection import train_test_split\n",
11
+ "from sklearn.ensemble import RandomForestClassifier\n",
12
+ "import matplotlib.pyplot as plt\n",
13
+ "from sklearn.metrics import classification_report, accuracy_score, confusion_matrix, ConfusionMatrixDisplay"
14
+ ]
15
+ },
16
+ {
17
+ "cell_type": "code",
18
+ "execution_count": 118,
19
+ "metadata": {},
20
+ "outputs": [],
21
+ "source": [
22
+ "from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, AdaBoostClassifier"
23
+ ]
24
+ },
25
+ {
26
+ "cell_type": "code",
27
+ "execution_count": 119,
28
+ "metadata": {},
29
+ "outputs": [],
30
+ "source": [
31
+ "data = np.load('./signal_X.npy') \n",
32
+ "labels = np.load('./signal_y.npy') "
33
+ ]
34
+ },
35
+ {
36
+ "cell_type": "code",
37
+ "execution_count": 120,
38
+ "metadata": {},
39
+ "outputs": [],
40
+ "source": [
41
+ "X_train, X_test, y_train, y_test = train_test_split(data, labels, test_size=0.2, random_state=42, stratify=labels)\n"
42
+ ]
43
+ },
44
+ {
45
+ "cell_type": "code",
46
+ "execution_count": 122,
47
+ "metadata": {},
48
+ "outputs": [],
49
+ "source": [
50
+ "X_train = X_train.reshape(X_train.shape[0], -1)\n",
51
+ "X_test = X_test.reshape(X_test.shape[0], -1)\n",
52
+ "\n",
53
+ "classifier = RandomForestClassifier(n_estimators=100, random_state=42)\n",
54
+ "\n",
55
+ "classifier.fit(X_train, y_train)\n",
56
+ "\n",
57
+ "y_pred = classifier.predict(X_test)"
58
+ ]
59
+ },
60
+ {
61
+ "cell_type": "code",
62
+ "execution_count": null,
63
+ "metadata": {},
64
+ "outputs": [],
65
+ "source": [
66
+ "print(classification_report(y_test, y_pred))"
67
+ ]
68
+ }
69
+ ],
70
+ "metadata": {
71
+ "kernelspec": {
72
+ "display_name": "imu",
73
+ "language": "python",
74
+ "name": "python3"
75
+ },
76
+ "language_info": {
77
+ "codemirror_mode": {
78
+ "name": "ipython",
79
+ "version": 3
80
+ },
81
+ "file_extension": ".py",
82
+ "mimetype": "text/x-python",
83
+ "name": "python",
84
+ "nbconvert_exporter": "python",
85
+ "pygments_lexer": "ipython3",
86
+ "version": "3.9.19"
87
+ }
88
+ },
89
+ "nbformat": 4,
90
+ "nbformat_minor": 2
91
+ }
supplementary/code/classification_svm.ipynb ADDED
@@ -0,0 +1,506 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 39,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "import numpy as np\n",
10
+ "from sklearn.model_selection import train_test_split\n",
11
+ "from sklearn.ensemble import RandomForestClassifier\n",
12
+ "import matplotlib.pyplot as plt\n",
13
+ "from sklearn.metrics import classification_report, accuracy_score, confusion_matrix, ConfusionMatrixDisplay\n",
14
+ "import numpy as np\n",
15
+ "from sklearn.model_selection import train_test_split\n",
16
+ "from sklearn.svm import SVC\n",
17
+ "from sklearn.metrics import classification_report, accuracy_score\n",
18
+ "from sklearn.preprocessing import StandardScaler"
19
+ ]
20
+ },
21
+ {
22
+ "cell_type": "code",
23
+ "execution_count": 40,
24
+ "metadata": {},
25
+ "outputs": [],
26
+ "source": [
27
+ "data = np.load('./signal_X.npy') \n",
28
+ "labels = np.load('./signal_y.npy') \n",
29
+ "\n",
30
+ "data_flattened = data.reshape(data.shape[0], -1)"
31
+ ]
32
+ },
33
+ {
34
+ "cell_type": "code",
35
+ "execution_count": 41,
36
+ "metadata": {},
37
+ "outputs": [
38
+ {
39
+ "data": {
40
+ "text/html": [
41
+ "<style>#sk-container-id-6 {\n",
42
+ " /* Definition of color scheme common for light and dark mode */\n",
43
+ " --sklearn-color-text: black;\n",
44
+ " --sklearn-color-line: gray;\n",
45
+ " /* Definition of color scheme for unfitted estimators */\n",
46
+ " --sklearn-color-unfitted-level-0: #fff5e6;\n",
47
+ " --sklearn-color-unfitted-level-1: #f6e4d2;\n",
48
+ " --sklearn-color-unfitted-level-2: #ffe0b3;\n",
49
+ " --sklearn-color-unfitted-level-3: chocolate;\n",
50
+ " /* Definition of color scheme for fitted estimators */\n",
51
+ " --sklearn-color-fitted-level-0: #f0f8ff;\n",
52
+ " --sklearn-color-fitted-level-1: #d4ebff;\n",
53
+ " --sklearn-color-fitted-level-2: #b3dbfd;\n",
54
+ " --sklearn-color-fitted-level-3: cornflowerblue;\n",
55
+ "\n",
56
+ " /* Specific color for light theme */\n",
57
+ " --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));\n",
58
+ " --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));\n",
59
+ " --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));\n",
60
+ " --sklearn-color-icon: #696969;\n",
61
+ "\n",
62
+ " @media (prefers-color-scheme: dark) {\n",
63
+ " /* Redefinition of color scheme for dark theme */\n",
64
+ " --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));\n",
65
+ " --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));\n",
66
+ " --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));\n",
67
+ " --sklearn-color-icon: #878787;\n",
68
+ " }\n",
69
+ "}\n",
70
+ "\n",
71
+ "#sk-container-id-6 {\n",
72
+ " color: var(--sklearn-color-text);\n",
73
+ "}\n",
74
+ "\n",
75
+ "#sk-container-id-6 pre {\n",
76
+ " padding: 0;\n",
77
+ "}\n",
78
+ "\n",
79
+ "#sk-container-id-6 input.sk-hidden--visually {\n",
80
+ " border: 0;\n",
81
+ " clip: rect(1px 1px 1px 1px);\n",
82
+ " clip: rect(1px, 1px, 1px, 1px);\n",
83
+ " height: 1px;\n",
84
+ " margin: -1px;\n",
85
+ " overflow: hidden;\n",
86
+ " padding: 0;\n",
87
+ " position: absolute;\n",
88
+ " width: 1px;\n",
89
+ "}\n",
90
+ "\n",
91
+ "#sk-container-id-6 div.sk-dashed-wrapped {\n",
92
+ " border: 1px dashed var(--sklearn-color-line);\n",
93
+ " margin: 0 0.4em 0.5em 0.4em;\n",
94
+ " box-sizing: border-box;\n",
95
+ " padding-bottom: 0.4em;\n",
96
+ " background-color: var(--sklearn-color-background);\n",
97
+ "}\n",
98
+ "\n",
99
+ "#sk-container-id-6 div.sk-container {\n",
100
+ " /* jupyter's `normalize.less` sets `[hidden] { display: none; }`\n",
101
+ " but bootstrap.min.css set `[hidden] { display: none !important; }`\n",
102
+ " so we also need the `!important` here to be able to override the\n",
103
+ " default hidden behavior on the sphinx rendered scikit-learn.org.\n",
104
+ " See: https://github.com/scikit-learn/scikit-learn/issues/21755 */\n",
105
+ " display: inline-block !important;\n",
106
+ " position: relative;\n",
107
+ "}\n",
108
+ "\n",
109
+ "#sk-container-id-6 div.sk-text-repr-fallback {\n",
110
+ " display: none;\n",
111
+ "}\n",
112
+ "\n",
113
+ "div.sk-parallel-item,\n",
114
+ "div.sk-serial,\n",
115
+ "div.sk-item {\n",
116
+ " /* draw centered vertical line to link estimators */\n",
117
+ " background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));\n",
118
+ " background-size: 2px 100%;\n",
119
+ " background-repeat: no-repeat;\n",
120
+ " background-position: center center;\n",
121
+ "}\n",
122
+ "\n",
123
+ "/* Parallel-specific style estimator block */\n",
124
+ "\n",
125
+ "#sk-container-id-6 div.sk-parallel-item::after {\n",
126
+ " content: \"\";\n",
127
+ " width: 100%;\n",
128
+ " border-bottom: 2px solid var(--sklearn-color-text-on-default-background);\n",
129
+ " flex-grow: 1;\n",
130
+ "}\n",
131
+ "\n",
132
+ "#sk-container-id-6 div.sk-parallel {\n",
133
+ " display: flex;\n",
134
+ " align-items: stretch;\n",
135
+ " justify-content: center;\n",
136
+ " background-color: var(--sklearn-color-background);\n",
137
+ " position: relative;\n",
138
+ "}\n",
139
+ "\n",
140
+ "#sk-container-id-6 div.sk-parallel-item {\n",
141
+ " display: flex;\n",
142
+ " flex-direction: column;\n",
143
+ "}\n",
144
+ "\n",
145
+ "#sk-container-id-6 div.sk-parallel-item:first-child::after {\n",
146
+ " align-self: flex-end;\n",
147
+ " width: 50%;\n",
148
+ "}\n",
149
+ "\n",
150
+ "#sk-container-id-6 div.sk-parallel-item:last-child::after {\n",
151
+ " align-self: flex-start;\n",
152
+ " width: 50%;\n",
153
+ "}\n",
154
+ "\n",
155
+ "#sk-container-id-6 div.sk-parallel-item:only-child::after {\n",
156
+ " width: 0;\n",
157
+ "}\n",
158
+ "\n",
159
+ "/* Serial-specific style estimator block */\n",
160
+ "\n",
161
+ "#sk-container-id-6 div.sk-serial {\n",
162
+ " display: flex;\n",
163
+ " flex-direction: column;\n",
164
+ " align-items: center;\n",
165
+ " background-color: var(--sklearn-color-background);\n",
166
+ " padding-right: 1em;\n",
167
+ " padding-left: 1em;\n",
168
+ "}\n",
169
+ "\n",
170
+ "\n",
171
+ "/* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is\n",
172
+ "clickable and can be expanded/collapsed.\n",
173
+ "- Pipeline and ColumnTransformer use this feature and define the default style\n",
174
+ "- Estimators will overwrite some part of the style using the `sk-estimator` class\n",
175
+ "*/\n",
176
+ "\n",
177
+ "/* Pipeline and ColumnTransformer style (default) */\n",
178
+ "\n",
179
+ "#sk-container-id-6 div.sk-toggleable {\n",
180
+ " /* Default theme specific background. It is overwritten whether we have a\n",
181
+ " specific estimator or a Pipeline/ColumnTransformer */\n",
182
+ " background-color: var(--sklearn-color-background);\n",
183
+ "}\n",
184
+ "\n",
185
+ "/* Toggleable label */\n",
186
+ "#sk-container-id-6 label.sk-toggleable__label {\n",
187
+ " cursor: pointer;\n",
188
+ " display: block;\n",
189
+ " width: 100%;\n",
190
+ " margin-bottom: 0;\n",
191
+ " padding: 0.5em;\n",
192
+ " box-sizing: border-box;\n",
193
+ " text-align: center;\n",
194
+ "}\n",
195
+ "\n",
196
+ "#sk-container-id-6 label.sk-toggleable__label-arrow:before {\n",
197
+ " /* Arrow on the left of the label */\n",
198
+ " content: \"▸\";\n",
199
+ " float: left;\n",
200
+ " margin-right: 0.25em;\n",
201
+ " color: var(--sklearn-color-icon);\n",
202
+ "}\n",
203
+ "\n",
204
+ "#sk-container-id-6 label.sk-toggleable__label-arrow:hover:before {\n",
205
+ " color: var(--sklearn-color-text);\n",
206
+ "}\n",
207
+ "\n",
208
+ "/* Toggleable content - dropdown */\n",
209
+ "\n",
210
+ "#sk-container-id-6 div.sk-toggleable__content {\n",
211
+ " max-height: 0;\n",
212
+ " max-width: 0;\n",
213
+ " overflow: hidden;\n",
214
+ " text-align: left;\n",
215
+ " /* unfitted */\n",
216
+ " background-color: var(--sklearn-color-unfitted-level-0);\n",
217
+ "}\n",
218
+ "\n",
219
+ "#sk-container-id-6 div.sk-toggleable__content.fitted {\n",
220
+ " /* fitted */\n",
221
+ " background-color: var(--sklearn-color-fitted-level-0);\n",
222
+ "}\n",
223
+ "\n",
224
+ "#sk-container-id-6 div.sk-toggleable__content pre {\n",
225
+ " margin: 0.2em;\n",
226
+ " border-radius: 0.25em;\n",
227
+ " color: var(--sklearn-color-text);\n",
228
+ " /* unfitted */\n",
229
+ " background-color: var(--sklearn-color-unfitted-level-0);\n",
230
+ "}\n",
231
+ "\n",
232
+ "#sk-container-id-6 div.sk-toggleable__content.fitted pre {\n",
233
+ " /* unfitted */\n",
234
+ " background-color: var(--sklearn-color-fitted-level-0);\n",
235
+ "}\n",
236
+ "\n",
237
+ "#sk-container-id-6 input.sk-toggleable__control:checked~div.sk-toggleable__content {\n",
238
+ " /* Expand drop-down */\n",
239
+ " max-height: 200px;\n",
240
+ " max-width: 100%;\n",
241
+ " overflow: auto;\n",
242
+ "}\n",
243
+ "\n",
244
+ "#sk-container-id-6 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {\n",
245
+ " content: \"▾\";\n",
246
+ "}\n",
247
+ "\n",
248
+ "/* Pipeline/ColumnTransformer-specific style */\n",
249
+ "\n",
250
+ "#sk-container-id-6 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
251
+ " color: var(--sklearn-color-text);\n",
252
+ " background-color: var(--sklearn-color-unfitted-level-2);\n",
253
+ "}\n",
254
+ "\n",
255
+ "#sk-container-id-6 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
256
+ " background-color: var(--sklearn-color-fitted-level-2);\n",
257
+ "}\n",
258
+ "\n",
259
+ "/* Estimator-specific style */\n",
260
+ "\n",
261
+ "/* Colorize estimator box */\n",
262
+ "#sk-container-id-6 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
263
+ " /* unfitted */\n",
264
+ " background-color: var(--sklearn-color-unfitted-level-2);\n",
265
+ "}\n",
266
+ "\n",
267
+ "#sk-container-id-6 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
268
+ " /* fitted */\n",
269
+ " background-color: var(--sklearn-color-fitted-level-2);\n",
270
+ "}\n",
271
+ "\n",
272
+ "#sk-container-id-6 div.sk-label label.sk-toggleable__label,\n",
273
+ "#sk-container-id-6 div.sk-label label {\n",
274
+ " /* The background is the default theme color */\n",
275
+ " color: var(--sklearn-color-text-on-default-background);\n",
276
+ "}\n",
277
+ "\n",
278
+ "/* On hover, darken the color of the background */\n",
279
+ "#sk-container-id-6 div.sk-label:hover label.sk-toggleable__label {\n",
280
+ " color: var(--sklearn-color-text);\n",
281
+ " background-color: var(--sklearn-color-unfitted-level-2);\n",
282
+ "}\n",
283
+ "\n",
284
+ "/* Label box, darken color on hover, fitted */\n",
285
+ "#sk-container-id-6 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {\n",
286
+ " color: var(--sklearn-color-text);\n",
287
+ " background-color: var(--sklearn-color-fitted-level-2);\n",
288
+ "}\n",
289
+ "\n",
290
+ "/* Estimator label */\n",
291
+ "\n",
292
+ "#sk-container-id-6 div.sk-label label {\n",
293
+ " font-family: monospace;\n",
294
+ " font-weight: bold;\n",
295
+ " display: inline-block;\n",
296
+ " line-height: 1.2em;\n",
297
+ "}\n",
298
+ "\n",
299
+ "#sk-container-id-6 div.sk-label-container {\n",
300
+ " text-align: center;\n",
301
+ "}\n",
302
+ "\n",
303
+ "/* Estimator-specific */\n",
304
+ "#sk-container-id-6 div.sk-estimator {\n",
305
+ " font-family: monospace;\n",
306
+ " border: 1px dotted var(--sklearn-color-border-box);\n",
307
+ " border-radius: 0.25em;\n",
308
+ " box-sizing: border-box;\n",
309
+ " margin-bottom: 0.5em;\n",
310
+ " /* unfitted */\n",
311
+ " background-color: var(--sklearn-color-unfitted-level-0);\n",
312
+ "}\n",
313
+ "\n",
314
+ "#sk-container-id-6 div.sk-estimator.fitted {\n",
315
+ " /* fitted */\n",
316
+ " background-color: var(--sklearn-color-fitted-level-0);\n",
317
+ "}\n",
318
+ "\n",
319
+ "/* on hover */\n",
320
+ "#sk-container-id-6 div.sk-estimator:hover {\n",
321
+ " /* unfitted */\n",
322
+ " background-color: var(--sklearn-color-unfitted-level-2);\n",
323
+ "}\n",
324
+ "\n",
325
+ "#sk-container-id-6 div.sk-estimator.fitted:hover {\n",
326
+ " /* fitted */\n",
327
+ " background-color: var(--sklearn-color-fitted-level-2);\n",
328
+ "}\n",
329
+ "\n",
330
+ "/* Specification for estimator info (e.g. \"i\" and \"?\") */\n",
331
+ "\n",
332
+ "/* Common style for \"i\" and \"?\" */\n",
333
+ "\n",
334
+ ".sk-estimator-doc-link,\n",
335
+ "a:link.sk-estimator-doc-link,\n",
336
+ "a:visited.sk-estimator-doc-link {\n",
337
+ " float: right;\n",
338
+ " font-size: smaller;\n",
339
+ " line-height: 1em;\n",
340
+ " font-family: monospace;\n",
341
+ " background-color: var(--sklearn-color-background);\n",
342
+ " border-radius: 1em;\n",
343
+ " height: 1em;\n",
344
+ " width: 1em;\n",
345
+ " text-decoration: none !important;\n",
346
+ " margin-left: 1ex;\n",
347
+ " /* unfitted */\n",
348
+ " border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n",
349
+ " color: var(--sklearn-color-unfitted-level-1);\n",
350
+ "}\n",
351
+ "\n",
352
+ ".sk-estimator-doc-link.fitted,\n",
353
+ "a:link.sk-estimator-doc-link.fitted,\n",
354
+ "a:visited.sk-estimator-doc-link.fitted {\n",
355
+ " /* fitted */\n",
356
+ " border: var(--sklearn-color-fitted-level-1) 1pt solid;\n",
357
+ " color: var(--sklearn-color-fitted-level-1);\n",
358
+ "}\n",
359
+ "\n",
360
+ "/* On hover */\n",
361
+ "div.sk-estimator:hover .sk-estimator-doc-link:hover,\n",
362
+ ".sk-estimator-doc-link:hover,\n",
363
+ "div.sk-label-container:hover .sk-estimator-doc-link:hover,\n",
364
+ ".sk-estimator-doc-link:hover {\n",
365
+ " /* unfitted */\n",
366
+ " background-color: var(--sklearn-color-unfitted-level-3);\n",
367
+ " color: var(--sklearn-color-background);\n",
368
+ " text-decoration: none;\n",
369
+ "}\n",
370
+ "\n",
371
+ "div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,\n",
372
+ ".sk-estimator-doc-link.fitted:hover,\n",
373
+ "div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,\n",
374
+ ".sk-estimator-doc-link.fitted:hover {\n",
375
+ " /* fitted */\n",
376
+ " background-color: var(--sklearn-color-fitted-level-3);\n",
377
+ " color: var(--sklearn-color-background);\n",
378
+ " text-decoration: none;\n",
379
+ "}\n",
380
+ "\n",
381
+ "/* Span, style for the box shown on hovering the info icon */\n",
382
+ ".sk-estimator-doc-link span {\n",
383
+ " display: none;\n",
384
+ " z-index: 9999;\n",
385
+ " position: relative;\n",
386
+ " font-weight: normal;\n",
387
+ " right: .2ex;\n",
388
+ " padding: .5ex;\n",
389
+ " margin: .5ex;\n",
390
+ " width: min-content;\n",
391
+ " min-width: 20ex;\n",
392
+ " max-width: 50ex;\n",
393
+ " color: var(--sklearn-color-text);\n",
394
+ " box-shadow: 2pt 2pt 4pt #999;\n",
395
+ " /* unfitted */\n",
396
+ " background: var(--sklearn-color-unfitted-level-0);\n",
397
+ " border: .5pt solid var(--sklearn-color-unfitted-level-3);\n",
398
+ "}\n",
399
+ "\n",
400
+ ".sk-estimator-doc-link.fitted span {\n",
401
+ " /* fitted */\n",
402
+ " background: var(--sklearn-color-fitted-level-0);\n",
403
+ " border: var(--sklearn-color-fitted-level-3);\n",
404
+ "}\n",
405
+ "\n",
406
+ ".sk-estimator-doc-link:hover span {\n",
407
+ " display: block;\n",
408
+ "}\n",
409
+ "\n",
410
+ "/* \"?\"-specific style due to the `<a>` HTML tag */\n",
411
+ "\n",
412
+ "#sk-container-id-6 a.estimator_doc_link {\n",
413
+ " float: right;\n",
414
+ " font-size: 1rem;\n",
415
+ " line-height: 1em;\n",
416
+ " font-family: monospace;\n",
417
+ " background-color: var(--sklearn-color-background);\n",
418
+ " border-radius: 1rem;\n",
419
+ " height: 1rem;\n",
420
+ " width: 1rem;\n",
421
+ " text-decoration: none;\n",
422
+ " /* unfitted */\n",
423
+ " color: var(--sklearn-color-unfitted-level-1);\n",
424
+ " border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n",
425
+ "}\n",
426
+ "\n",
427
+ "#sk-container-id-6 a.estimator_doc_link.fitted {\n",
428
+ " /* fitted */\n",
429
+ " border: var(--sklearn-color-fitted-level-1) 1pt solid;\n",
430
+ " color: var(--sklearn-color-fitted-level-1);\n",
431
+ "}\n",
432
+ "\n",
433
+ "/* On hover */\n",
434
+ "#sk-container-id-6 a.estimator_doc_link:hover {\n",
435
+ " /* unfitted */\n",
436
+ " background-color: var(--sklearn-color-unfitted-level-3);\n",
437
+ " color: var(--sklearn-color-background);\n",
438
+ " text-decoration: none;\n",
439
+ "}\n",
440
+ "\n",
441
+ "#sk-container-id-6 a.estimator_doc_link.fitted:hover {\n",
442
+ " /* fitted */\n",
443
+ " background-color: var(--sklearn-color-fitted-level-3);\n",
444
+ "}\n",
445
+ "</style><div id=\"sk-container-id-6\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>SVC(random_state=42)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-6\" type=\"checkbox\" checked><label for=\"sk-estimator-id-6\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">&nbsp;&nbsp;SVC<a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.5/modules/generated/sklearn.svm.SVC.html\">?<span>Documentation for SVC</span></a><span class=\"sk-estimator-doc-link fitted\">i<span>Fitted</span></span></label><div class=\"sk-toggleable__content fitted\"><pre>SVC(random_state=42)</pre></div> </div></div></div></div>"
446
+ ],
447
+ "text/plain": [
448
+ "SVC(random_state=42)"
449
+ ]
450
+ },
451
+ "execution_count": 41,
452
+ "metadata": {},
453
+ "output_type": "execute_result"
454
+ }
455
+ ],
456
+ "source": [
457
+ "scaler = StandardScaler()\n",
458
+ "data_flattened = scaler.fit_transform(data_flattened)\n",
459
+ "\n",
460
+ "X_train, X_test, y_train, y_test = train_test_split(data_flattened, labels, test_size=0.2, random_state=42, stratify=labels)\n",
461
+ "svm_classifier = SVC(kernel='rbf', C=1.0, gamma='scale', random_state=42)\n",
462
+ "\n",
463
+ "svm_classifier.fit(X_train, y_train)"
464
+ ]
465
+ },
466
+ {
467
+ "cell_type": "code",
468
+ "execution_count": 43,
469
+ "metadata": {},
470
+ "outputs": [],
471
+ "source": [
472
+ "y_pred = svm_classifier.predict(X_test)"
473
+ ]
474
+ },
475
+ {
476
+ "cell_type": "code",
477
+ "execution_count": null,
478
+ "metadata": {},
479
+ "outputs": [],
480
+ "source": [
481
+ "print(classification_report(y_test, y_pred))"
482
+ ]
483
+ }
484
+ ],
485
+ "metadata": {
486
+ "kernelspec": {
487
+ "display_name": "imu",
488
+ "language": "python",
489
+ "name": "python3"
490
+ },
491
+ "language_info": {
492
+ "codemirror_mode": {
493
+ "name": "ipython",
494
+ "version": 3
495
+ },
496
+ "file_extension": ".py",
497
+ "mimetype": "text/x-python",
498
+ "name": "python",
499
+ "nbconvert_exporter": "python",
500
+ "pygments_lexer": "ipython3",
501
+ "version": "3.9.19"
502
+ }
503
+ },
504
+ "nbformat": 4,
505
+ "nbformat_minor": 2
506
+ }