import os from datasets import GeneratorBasedBuilder, DatasetInfo, SplitGenerator, Split, Features, Value, Sequence, Image class TruckV2X(GeneratorBasedBuilder): VERSION = "1.0.0" def _info(self): return DatasetInfo( description="TruckV2X: A Truck-Centered Perception Dataset", features=Features({ "town": Value("string"), "frame_id": Value("string"), "agent_data": { "cav": { "camera_images": Sequence(Image()), "lidar_files": Sequence(Value("string")), "yaml_file": Value("string"), }, "roadside": { "camera_images": Sequence(Image()), "lidar_files": Sequence(Value("string")), "yaml_file": Value("string"), }, "tractor": { "camera_images": Sequence(Image()), "lidar_files": Sequence(Value("string")), "yaml_file": Value("string"), }, "trailer": { "camera_images": Sequence(Image()), "lidar_files": Sequence(Value("string")), "yaml_file": Value("string"), }, } }), supervised_keys=None, homepage="TBD", license="MIT" ) def _split_generators(self, dl_manager): # 直接用 dl_manager 下载并自动解压 train_zips = [ "train/Town1_1.zip", "train/Town1_4.zip", "train/Town1_5.zip", "train/Town2_0.zip", "train/Town2_1.zip", "train/Town2_2.zip", "train/Town2_3.zip", "train/Town3_1.zip", "train/Town3_4.zip", "train/Town3_6.zip", "train/Town3_7.zip", "train/Town3_8.zip", "train/Town3_9.zip", "train/Town4_0.zip", "train/Town4_1.zip", "train/Town4_3.zip", "train/Town4_4.zip", "train/Town4_6.zip", "train/Town5_0.zip", "train/Town5_3.zip", "train/Town5_4.zip", "train/Town5_5.zip", "train/Town5_6.zip", "train/Town5_7.zip", "train/Town5_8.zip", "train/Town6_0.zip", "train/Town6_2.zip", "train/Town6_3.zip", "train/Town6_4.zip", "train/Town6_5.zip", "train/Town7_1.zip", "train/Town7_3.zip", "train/Town10_0.zip", "train/Town10_1.zip", "train/Town10_6.zip", "train/Town10_7.zip", "train/Town10_8.zip", "train/Town15_1.zip" ] val_zips = [ "val/Town3_0.zip", "val/Town4_5.zip", "val/Town5_2.zip", "val/Town5_9.zip", "val/Town6_6.zip", "val/Town7_4.zip", "val/Town10_4.zip", "val/Town10_9.zip", "val/Town10_10.zip" ] test_zips = [ "test/Town1_0.zip", "test/Town1_2.zip", "test/Town1_3.zip", "test/Town2_4.zip", "test/Town2_5.zip", "test/Town3_2.zip", "test/Town3_3.zip", "test/Town3_5.zip", "test/Town4_2.zip", "test/Town5_1.zip", "test/Town6_1.zip", "test/Town7_0.zip", "test/Town7_2.zip", "test/Town10_2.zip", "test/Town10_3.zip", "test/Town10_5.zip", "test/Town15_0.zip" ] train_dirs = [dl_manager.extract(dl_manager.download(p)) for p in train_zips] val_dirs = [dl_manager.extract(dl_manager.download(p)) for p in val_zips] test_dirs = [dl_manager.extract(dl_manager.download(p)) for p in test_zips] return [ SplitGenerator(name=Split.TRAIN, gen_kwargs={"town_dirs": train_dirs}), SplitGenerator(name=Split.VALIDATION, gen_kwargs={"town_dirs": val_dirs}), SplitGenerator(name=Split.TEST, gen_kwargs={"town_dirs": test_dirs}), ] def _generate_examples(self, town_dirs): id_ = 0 agents = ["cav", "roadside", "tractor", "trailer"] camera_counts = {"cav": 4, "roadside": 1, "tractor": 5, "trailer": 5} lidar_counts = {"cav": 1, "roadside": 1, "tractor": 2, "trailer": 2} for town_dir in town_dirs: # 如果自动解压后是有一级文件夹,进入它 subfolders = [f for f in os.listdir(town_dir) if os.path.isdir(os.path.join(town_dir, f))] if len(subfolders) == 1: town_dir = os.path.join(town_dir, subfolders[0]) town_name = os.path.basename(town_dir.rstrip("/\\")) # 用cav目录判断帧ID cav_dir = os.path.join(town_dir, "cav") if not os.path.exists(cav_dir): continue frame_ids = sorted([ fname.replace(".yaml", "") for fname in os.listdir(cav_dir) if fname.endswith(".yaml") ]) for frame_id in frame_ids: example = { "town": town_name, "frame_id": frame_id, "agent_data": {} } for agent in agents: agent_dir = os.path.join(town_dir, agent) data = { "camera_images": [], "lidar_files": [], "yaml_file": "" } for i in range(camera_counts[agent]): cam_path = os.path.join(agent_dir, f"{frame_id}_camera{i}.jpg") if os.path.exists(cam_path): data["camera_images"].append(cam_path) for i in range(lidar_counts[agent]): lidar_path = os.path.join(agent_dir, f"{frame_id}_lidar{i}.pcd") if os.path.exists(lidar_path): data["lidar_files"].append(lidar_path) yaml_path = os.path.join(agent_dir, f"{frame_id}.yaml") if os.path.exists(yaml_path): data["yaml_file"] = yaml_path example["agent_data"][agent] = data yield id_, example id_ += 1