Datasets:
Commit
·
302878f
1
Parent(s):
9aa169b
update
Browse files- Images.zip +1 -1
- Landmarks-fig.zip +1 -1
- Landmarks.zip +2 -2
- get_dataset.py +372 -0
Images.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1153890344
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:301b0e8619d9e5b243e174d9846d42e8253f65a27cea48cc3452b8068f098623
|
3 |
size 1153890344
|
Landmarks-fig.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1309339265
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bfaba739a464f2f968a2b687ef86d6c531ffd6a5c26ec4163b903b3df23e6a8d
|
3 |
size 1309339265
|
Landmarks.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:687a3e44abdd89e2d271bd0a699da77f83ab6b8cee59c1b6edf19bbb574f8753
|
3 |
+
size 146629
|
get_dataset.py
ADDED
@@ -0,0 +1,372 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import subprocess
|
3 |
+
import shutil
|
4 |
+
import nibabel as nib
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import glob
|
7 |
+
import json
|
8 |
+
import rarfile
|
9 |
+
import numpy as np
|
10 |
+
import cv2
|
11 |
+
from pathlib import Path
|
12 |
+
import argparse
|
13 |
+
|
14 |
+
|
15 |
+
# ====================================
|
16 |
+
# Dataset Info [!]
|
17 |
+
# ====================================
|
18 |
+
# Dataset: Cephalogram400
|
19 |
+
# Data (original): https://figshare.com/s/37ec464af8e81ae6ebbf
|
20 |
+
# Data (HF): https://huggingface.co/datasets/YongchengYAO/Cephalogram400
|
21 |
+
# Format (original): bm
|
22 |
+
# Format (HF): nii.gz
|
23 |
+
# ====================================
|
24 |
+
|
25 |
+
|
26 |
+
def convert_bmp_to_niigz(
|
27 |
+
bmp_dir,
|
28 |
+
niigz_dir,
|
29 |
+
slice_dim_type,
|
30 |
+
pseudo_voxel_size,
|
31 |
+
slip_x=False,
|
32 |
+
slip_y=False,
|
33 |
+
swap_xy=False,
|
34 |
+
):
|
35 |
+
"""
|
36 |
+
Convert BMP image files to NIfTI (.nii.gz) format.
|
37 |
+
This function converts 2D BMP images to 3D NIfTI volumes with specified slice orientation.
|
38 |
+
The output NIfTI files will have RAS+ orientation with specified voxel size.
|
39 |
+
Args:
|
40 |
+
in_dir (str): Input directory containing BMP files to convert
|
41 |
+
out_dir (str): Output directory where NIfTI files will be saved
|
42 |
+
slice_dim_type (int): Slice dimension/orientation type:
|
43 |
+
0: Sagittal (YZ plane)
|
44 |
+
1: Coronal (XZ plane)
|
45 |
+
2: Axial (XY plane)
|
46 |
+
pseudo_voxel_size (list): List of 3 floats specifying voxel dimensions in mm [x,y,z]
|
47 |
+
swap_xy (bool, optional): If True, swap X and Y dimensions. Defaults to False.
|
48 |
+
slip_x (bool, optional): If True, flip image along X axis. Defaults to False.
|
49 |
+
slip_y (bool, optional): If True, flip image along Y axis. Defaults to False.
|
50 |
+
Returns:
|
51 |
+
tuple: Original image dimensions (height, width) of the first converted BMP
|
52 |
+
"""
|
53 |
+
|
54 |
+
# Validate slice_dim_type
|
55 |
+
if slice_dim_type not in [0, 1, 2]:
|
56 |
+
raise ValueError("slice_dim_type must be 0, 1, or 2")
|
57 |
+
|
58 |
+
# Convert pseudo_voxel_size to list if it's not already
|
59 |
+
pseudo_voxel_size = list(pseudo_voxel_size)
|
60 |
+
|
61 |
+
# Create output directory
|
62 |
+
Path(niigz_dir).mkdir(parents=True, exist_ok=True)
|
63 |
+
|
64 |
+
# Get all BMP files
|
65 |
+
bmp_files = list(Path(bmp_dir).glob("*.bmp"))
|
66 |
+
print(f"Found {len(bmp_files)} .bmp files")
|
67 |
+
|
68 |
+
for bmp_file in bmp_files:
|
69 |
+
try:
|
70 |
+
print(f"Converting {bmp_file.name}")
|
71 |
+
|
72 |
+
# Read BMP image
|
73 |
+
img_2d = cv2.imread(str(bmp_file), cv2.IMREAD_GRAYSCALE)
|
74 |
+
height_orig, width_orig = img_2d.shape
|
75 |
+
|
76 |
+
# Note: this is definitely correct, DO NOT SWAP the order of transformations
|
77 |
+
if slip_x:
|
78 |
+
img_2d = cv2.flip(img_2d, 0) # 0 means flip vertically
|
79 |
+
if slip_y:
|
80 |
+
img_2d = cv2.flip(img_2d, 1) # 1 means flip horizontally
|
81 |
+
if swap_xy: # this line should be AFTER slip_x and slip_y
|
82 |
+
img_2d = np.swapaxes(img_2d, 0, 1)
|
83 |
+
|
84 |
+
# Create 3D array based on slice_dim_type
|
85 |
+
if slice_dim_type == 0: # Sagittal (YZ plane)
|
86 |
+
img_3d = np.zeros(
|
87 |
+
(1, img_2d.shape[0], img_2d.shape[1]), dtype=img_2d.dtype
|
88 |
+
)
|
89 |
+
img_3d[0, :, :] = img_2d
|
90 |
+
elif slice_dim_type == 1: # Coronal (XZ plane)
|
91 |
+
img_3d = np.zeros(
|
92 |
+
(img_2d.shape[0], 1, img_2d.shape[1]), dtype=img_2d.dtype
|
93 |
+
)
|
94 |
+
img_3d[:, 0, :] = img_2d
|
95 |
+
else: # Axial (XY plane)
|
96 |
+
img_3d = np.zeros(
|
97 |
+
(img_2d.shape[0], img_2d.shape[1], 1), dtype=img_2d.dtype
|
98 |
+
)
|
99 |
+
img_3d[:, :, 0] = img_2d
|
100 |
+
|
101 |
+
# Create affine matrix for RAS+ orientation
|
102 |
+
# Set voxel size to 0.1mm in all dimensions
|
103 |
+
affine = np.diag(pseudo_voxel_size + [1])
|
104 |
+
|
105 |
+
# Create NIfTI image
|
106 |
+
nii_img = nib.Nifti1Image(img_3d, affine)
|
107 |
+
|
108 |
+
# Set header information
|
109 |
+
nii_img.header.set_zooms(pseudo_voxel_size)
|
110 |
+
|
111 |
+
# Save as NIfTI file
|
112 |
+
output_file = Path(niigz_dir) / f"{bmp_file.stem}.nii.gz"
|
113 |
+
nib.save(nii_img, str(output_file))
|
114 |
+
print(f"Saved to {output_file}")
|
115 |
+
|
116 |
+
except Exception as e:
|
117 |
+
print(f"Error converting {bmp_file.name}: {e}")
|
118 |
+
|
119 |
+
return height_orig, width_orig
|
120 |
+
|
121 |
+
|
122 |
+
def process_landmarks_data(
|
123 |
+
landmarks_txt_dir: str,
|
124 |
+
landmarks_json_dir: str,
|
125 |
+
n: int,
|
126 |
+
height_width_orig,
|
127 |
+
slip_x=False,
|
128 |
+
slip_y=False,
|
129 |
+
swap_xy=False,
|
130 |
+
) -> None:
|
131 |
+
"""
|
132 |
+
Read landmark points from all txt files in a directory and save as JSON files.
|
133 |
+
|
134 |
+
Args:
|
135 |
+
in_dir (str): Directory containing the txt files
|
136 |
+
out_dir (str): Directory where JSON files will be saved
|
137 |
+
n (int): Number of lines to read from each file
|
138 |
+
height_width_orig: Original height and width of the image
|
139 |
+
swap_xy (bool): Whether to swap x and y coordinates
|
140 |
+
slip_x (bool): Whether to flip coordinates along x-axis
|
141 |
+
slip_y (bool): Whether to flip coordinates along y-axis
|
142 |
+
"""
|
143 |
+
(
|
144 |
+
os.makedirs(landmarks_json_dir, exist_ok=True)
|
145 |
+
if not os.path.exists(landmarks_json_dir)
|
146 |
+
else None
|
147 |
+
)
|
148 |
+
|
149 |
+
for txt_file in glob.glob(os.path.join(landmarks_txt_dir, "*.txt")):
|
150 |
+
result = {}
|
151 |
+
filename = os.path.basename(txt_file)
|
152 |
+
json_path = os.path.join(landmarks_json_dir, filename.replace(".txt", ".json"))
|
153 |
+
|
154 |
+
try:
|
155 |
+
with open(txt_file, "r") as f:
|
156 |
+
for i in range(n):
|
157 |
+
line = f.readline().strip()
|
158 |
+
if not line:
|
159 |
+
break
|
160 |
+
# Note: this is definitely correct, DO NOT SWAP idx_dim1 and idx_dim2
|
161 |
+
# Assuming an image with height and width:
|
162 |
+
# - The data array read from bmp file is of size (height, width) -- dim1 is height, dim2 is width
|
163 |
+
# - The landmark coordinates are defined as the indices in width (coordinate 1) and height (coordinate 2) directions
|
164 |
+
idx_dim2, idx_dim1 = map(int, line.split(","))
|
165 |
+
|
166 |
+
# Apply transformations
|
167 |
+
# Note: this is definitely correct, DO NOT SWAP the order of transformations
|
168 |
+
if slip_x:
|
169 |
+
idx_dim1 = height_width_orig[0] - idx_dim1
|
170 |
+
if slip_y:
|
171 |
+
idx_dim2 = height_width_orig[1] - idx_dim2
|
172 |
+
if swap_xy: # this line should be AFTER slip_x and slip_y
|
173 |
+
idx_dim1, idx_dim2 = idx_dim2, idx_dim1
|
174 |
+
|
175 |
+
result[f"P{i+1}"] = [1, idx_dim1, idx_dim2]
|
176 |
+
|
177 |
+
# Save to JSON
|
178 |
+
with open(json_path, "w") as f:
|
179 |
+
json.dump(result, f, indent=4)
|
180 |
+
|
181 |
+
except FileNotFoundError:
|
182 |
+
print(f"Error: File {txt_file} not found")
|
183 |
+
except ValueError:
|
184 |
+
print(f"Error: Invalid format in file {txt_file}")
|
185 |
+
except Exception as e:
|
186 |
+
print(f"Error reading file {txt_file}: {str(e)}")
|
187 |
+
|
188 |
+
|
189 |
+
def plot_slice_with_landmarks(nii_path: str, json_path: str, fig_path: str = None):
|
190 |
+
"""Plot first slice from NIfTI file and overlay landmarks from JSON file.
|
191 |
+
|
192 |
+
Args:
|
193 |
+
nii_path (str): Path to .nii.gz file
|
194 |
+
json_path (str): Path to landmarks JSON file
|
195 |
+
fig_path (str, optional): Path to save the plot. If None, displays plot
|
196 |
+
"""
|
197 |
+
# Load NIfTI image and extract first slice
|
198 |
+
nii_img = nib.load(nii_path)
|
199 |
+
slice_data = nii_img.get_fdata()[0, :, :]
|
200 |
+
|
201 |
+
# Load landmark coordinates from JSON
|
202 |
+
with open(json_path, "r") as f:
|
203 |
+
landmarks = json.load(f)
|
204 |
+
|
205 |
+
# Setup visualization
|
206 |
+
plt.figure(figsize=(12, 12))
|
207 |
+
plt.imshow(
|
208 |
+
slice_data.T, cmap="gray", origin="lower"
|
209 |
+
) # the transpose is necessary only for visualization
|
210 |
+
|
211 |
+
# Extract and plot landmark coordinates
|
212 |
+
x_coords = []
|
213 |
+
y_coords = []
|
214 |
+
for point_id, coords in landmarks.items():
|
215 |
+
if len(coords) == 3: # Check for valid [1, x, y] format
|
216 |
+
# Note: this is definitely correct, DO NOT SWAP coords[1] and coords[2]
|
217 |
+
x_coords.append(coords[1])
|
218 |
+
y_coords.append(coords[2])
|
219 |
+
|
220 |
+
# Add landmarks and labels
|
221 |
+
plt.scatter(
|
222 |
+
x_coords,
|
223 |
+
y_coords,
|
224 |
+
facecolors="#18A727",
|
225 |
+
edgecolors="black",
|
226 |
+
marker="o",
|
227 |
+
s=30,
|
228 |
+
linewidth=1,
|
229 |
+
)
|
230 |
+
for i, (x, y) in enumerate(zip(x_coords, y_coords), 1):
|
231 |
+
plt.annotate(
|
232 |
+
f"{i}", (x, y), xytext=(2, 2), textcoords="offset points", color="#FE9100"
|
233 |
+
)
|
234 |
+
|
235 |
+
# Configure plot appearance
|
236 |
+
plt.axis("on")
|
237 |
+
plt.xlabel("Posterior to Anterior")
|
238 |
+
plt.ylabel("Inferior to Superior")
|
239 |
+
|
240 |
+
# Save or display the plot
|
241 |
+
if fig_path:
|
242 |
+
plt.savefig(fig_path, bbox_inches="tight", dpi=300)
|
243 |
+
print(f"Plot saved to: {fig_path}")
|
244 |
+
else:
|
245 |
+
plt.show()
|
246 |
+
|
247 |
+
plt.close()
|
248 |
+
|
249 |
+
|
250 |
+
def plot_slice_with_landmarks_batch(image_dir: str, landmark_dir: str, fig_dir: str):
|
251 |
+
"""Plot all cases from given directories.
|
252 |
+
|
253 |
+
Args:
|
254 |
+
image_dir (str): Directory containing .nii.gz files
|
255 |
+
landmark_dir (str): Directory containing landmark JSON files
|
256 |
+
fig_dir (str): Directory to save output figures
|
257 |
+
|
258 |
+
"""
|
259 |
+
# Create output directory if it doesn't exist
|
260 |
+
os.makedirs(fig_dir, exist_ok=True)
|
261 |
+
|
262 |
+
# Process each .nii.gz file
|
263 |
+
for nii_path in glob.glob(os.path.join(image_dir, "*.nii.gz")):
|
264 |
+
base_name = os.path.splitext(os.path.splitext(os.path.basename(nii_path))[0])[0]
|
265 |
+
json_path = os.path.join(landmark_dir, f"{base_name}.json")
|
266 |
+
fig_path = os.path.join(fig_dir, f"{base_name}.png")
|
267 |
+
|
268 |
+
# Plot and save
|
269 |
+
if os.path.exists(json_path):
|
270 |
+
plot_slice_with_landmarks(nii_path, json_path, fig_path)
|
271 |
+
else:
|
272 |
+
print(f"Warning: No landmark file found for {base_name}")
|
273 |
+
|
274 |
+
|
275 |
+
def download_and_extract(dataset_dir, dataset_name):
|
276 |
+
# Download files
|
277 |
+
print(f"Downloading {dataset_name} dataset to {dataset_dir}...")
|
278 |
+
|
279 |
+
# ====================================
|
280 |
+
# Add download logic here [!]
|
281 |
+
# ====================================
|
282 |
+
# Download the file using curl
|
283 |
+
url = "https://figshare.com/ndownloader/articles/3471833?private_link=37ec464af8e81ae6ebbf"
|
284 |
+
output_file = "Cephalogram400.zip"
|
285 |
+
subprocess.run(["curl", url, "-o", output_file], check=True)
|
286 |
+
|
287 |
+
# Extract the ZIP file
|
288 |
+
print("Extracting ZIP file...")
|
289 |
+
subprocess.run(["unzip", output_file], check=True)
|
290 |
+
|
291 |
+
# Find and extract all RAR files
|
292 |
+
print("Extracting RAR files...")
|
293 |
+
for file in os.listdir("."):
|
294 |
+
if file.endswith(".rar"):
|
295 |
+
with rarfile.RarFile(file) as rf:
|
296 |
+
rf.extractall()
|
297 |
+
|
298 |
+
# Create the Images-raw directory
|
299 |
+
os.makedirs("Images-raw", exist_ok=True)
|
300 |
+
|
301 |
+
# Move all BMP files from RawImage to Images-raw using glob
|
302 |
+
for src_path in glob.glob(f"RawImage/**/*.bmp", recursive=True):
|
303 |
+
shutil.move(src_path, os.path.join("Images-raw", os.path.basename(src_path)))
|
304 |
+
|
305 |
+
# Convert BMP files to 3D nii.gz
|
306 |
+
height_orig, width_orig = convert_bmp_to_niigz(
|
307 |
+
"Images-raw",
|
308 |
+
"Images",
|
309 |
+
slice_dim_type=0,
|
310 |
+
pseudo_voxel_size=[0.1, 0.1, 0.1],
|
311 |
+
slip_x=True,
|
312 |
+
slip_y=False,
|
313 |
+
swap_xy=True,
|
314 |
+
)
|
315 |
+
|
316 |
+
# Read landmark points from txt files and save as JSON
|
317 |
+
process_landmarks_data(
|
318 |
+
"400_senior",
|
319 |
+
"Landmarks",
|
320 |
+
19,
|
321 |
+
height_width_orig=[height_orig, width_orig],
|
322 |
+
slip_x=True,
|
323 |
+
slip_y=False,
|
324 |
+
swap_xy=True,
|
325 |
+
)
|
326 |
+
|
327 |
+
# Plot slices with landmarks
|
328 |
+
plot_slice_with_landmarks_batch("Images", "Landmarks", "Landmarks-fig")
|
329 |
+
|
330 |
+
# Clean up
|
331 |
+
for dir_name in [
|
332 |
+
"RawImage",
|
333 |
+
"400_junior",
|
334 |
+
"400_senior",
|
335 |
+
"Images-raw",
|
336 |
+
"EvaluationCode",
|
337 |
+
]:
|
338 |
+
shutil.rmtree(dir_name, ignore_errors=True)
|
339 |
+
for file in os.listdir("."):
|
340 |
+
if file.endswith((".rar", ".zip")):
|
341 |
+
os.remove(file)
|
342 |
+
# ====================================
|
343 |
+
|
344 |
+
print(f"Download and extraction completed for {dataset_name}")
|
345 |
+
|
346 |
+
|
347 |
+
if __name__ == "__main__":
|
348 |
+
# Set up argument parser
|
349 |
+
parser = argparse.ArgumentParser(description="Download and extract dataset")
|
350 |
+
parser.add_argument(
|
351 |
+
"-d",
|
352 |
+
"--dir_datasets_data",
|
353 |
+
help="Directory path where datasets will be stored",
|
354 |
+
required=True,
|
355 |
+
)
|
356 |
+
parser.add_argument(
|
357 |
+
"-n",
|
358 |
+
"--dataset_name",
|
359 |
+
help="Name of the dataset",
|
360 |
+
required=True,
|
361 |
+
)
|
362 |
+
args = parser.parse_args()
|
363 |
+
|
364 |
+
# Create dataset directory
|
365 |
+
dataset_dir = os.path.join(args.dir_datasets_data, args.dataset_name)
|
366 |
+
os.makedirs(dataset_dir, exist_ok=True)
|
367 |
+
|
368 |
+
# Change to dataset directory
|
369 |
+
os.chdir(dataset_dir)
|
370 |
+
|
371 |
+
# Download and extract dataset
|
372 |
+
download_and_extract(dataset_dir, args.dataset_name)
|