Datasets:
Update get_dataset.py
Browse files- get_dataset.py +12 -12
get_dataset.py
CHANGED
@@ -162,22 +162,22 @@ def process_landmarks_data(
|
|
162 |
# Assuming an image with height and width:
|
163 |
# - The data array read from bmp file is of size (height, width) -- dim1 is height, dim2 is width
|
164 |
# - The landmark coordinates are defined as the indices in width (coordinate 1) and height (coordinate 2) directions
|
165 |
-
|
166 |
|
167 |
# Apply transformations
|
168 |
# Note: this is definitely correct
|
169 |
# This "mismatch" indices in "idx_dim1 = img_sizes[0] - idx_dim1" is due to the way the manual landmarks are defined
|
170 |
# DO NOT SWAP the order of transformations
|
171 |
if flip_dim0:
|
172 |
-
|
173 |
if flip_dim1:
|
174 |
-
|
175 |
if swap_dim01: # this line should be AFTER slip_x and slip_y
|
176 |
-
|
177 |
|
178 |
# Save landmark coordinates in 0-based indices
|
179 |
landmarks[f"P{i+1}"] = [
|
180 |
-
coord - 1 for coord in [1,
|
181 |
]
|
182 |
|
183 |
# This data structure is designed to be compatible with biometric data constructed from segmentation masks
|
@@ -229,26 +229,26 @@ def plot_sagittal_slice_with_landmarks(
|
|
229 |
) # the transpose is necessary only for visualization
|
230 |
|
231 |
# Extract and plot landmark coordinates
|
232 |
-
|
233 |
-
|
234 |
landmarks = landmarks_json["slice_landmarks_x"][0]["landmarks"]
|
235 |
for point_id, coords in landmarks.items():
|
236 |
if len(coords) == 3: # Check for valid [1, x, y] format
|
237 |
# Note: this is definitely correct, DO NOT SWAP coords[1] and coords[2]
|
238 |
-
|
239 |
-
|
240 |
|
241 |
# Add landmarks and labels
|
242 |
plt.scatter(
|
243 |
-
|
244 |
-
|
245 |
facecolors="#18A727",
|
246 |
edgecolors="black",
|
247 |
marker="o",
|
248 |
s=80,
|
249 |
linewidth=1.5,
|
250 |
)
|
251 |
-
for i, (x, y) in enumerate(zip(
|
252 |
plt.annotate(
|
253 |
f"$\\mathbf{{{i}}}$",
|
254 |
(x, y),
|
|
|
162 |
# Assuming an image with height and width:
|
163 |
# - The data array read from bmp file is of size (height, width) -- dim1 is height, dim2 is width
|
164 |
# - The landmark coordinates are defined as the indices in width (coordinate 1) and height (coordinate 2) directions
|
165 |
+
idx_dim1, idx_dim0 = map(int, line.split(","))
|
166 |
|
167 |
# Apply transformations
|
168 |
# Note: this is definitely correct
|
169 |
# This "mismatch" indices in "idx_dim1 = img_sizes[0] - idx_dim1" is due to the way the manual landmarks are defined
|
170 |
# DO NOT SWAP the order of transformations
|
171 |
if flip_dim0:
|
172 |
+
idx_dim0 = img_sizes[0] - idx_dim0
|
173 |
if flip_dim1:
|
174 |
+
idx_dim1 = img_sizes[1] - idx_dim1
|
175 |
if swap_dim01: # this line should be AFTER slip_x and slip_y
|
176 |
+
idx_dim0, idx_dim1 = idx_dim1, idx_dim0
|
177 |
|
178 |
# Save landmark coordinates in 0-based indices
|
179 |
landmarks[f"P{i+1}"] = [
|
180 |
+
coord - 1 for coord in [1, idx_dim0, idx_dim1]
|
181 |
]
|
182 |
|
183 |
# This data structure is designed to be compatible with biometric data constructed from segmentation masks
|
|
|
229 |
) # the transpose is necessary only for visualization
|
230 |
|
231 |
# Extract and plot landmark coordinates
|
232 |
+
coords_dim0 = []
|
233 |
+
coords_dim1 = []
|
234 |
landmarks = landmarks_json["slice_landmarks_x"][0]["landmarks"]
|
235 |
for point_id, coords in landmarks.items():
|
236 |
if len(coords) == 3: # Check for valid [1, x, y] format
|
237 |
# Note: this is definitely correct, DO NOT SWAP coords[1] and coords[2]
|
238 |
+
coords_dim0.append(coords[1])
|
239 |
+
coords_dim1.append(coords[2])
|
240 |
|
241 |
# Add landmarks and labels
|
242 |
plt.scatter(
|
243 |
+
coords_dim0,
|
244 |
+
coords_dim1,
|
245 |
facecolors="#18A727",
|
246 |
edgecolors="black",
|
247 |
marker="o",
|
248 |
s=80,
|
249 |
linewidth=1.5,
|
250 |
)
|
251 |
+
for i, (x, y) in enumerate(zip(coords_dim0, coords_dim1), 1):
|
252 |
plt.annotate(
|
253 |
f"$\\mathbf{{{i}}}$",
|
254 |
(x, y),
|