Datasets:
YongchengYAO
commited on
Commit
·
f5475ad
1
Parent(s):
4e9fcba
update
Browse files- OAIZIB-CM.py +139 -85
OAIZIB-CM.py
CHANGED
@@ -1,114 +1,168 @@
|
|
1 |
import os
|
2 |
import pandas as pd
|
3 |
import nibabel as nib
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
class OAIZIBCMDataset(GeneratorBasedBuilder):
|
7 |
-
VERSION = "1.0.0"
|
8 |
|
9 |
def _info(self):
|
10 |
return DatasetInfo(
|
11 |
-
description=
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
" - a corresponding 20-ROI atlas for articular cartilages.\n\n"
|
21 |
-
"Papers:\n"
|
22 |
-
"The dataset originates from these projects:\n"
|
23 |
-
" - CartiMorph: https://github.com/YongchengYAO/CartiMorph\n"
|
24 |
-
" - CartiMorph Toolbox: https://github.com/YongchengYAO/CartiMorph-Toolbox\n"
|
25 |
-
" - https://github.com/YongchengYAO/CMT-AMAI24paper\n\n"
|
26 |
-
"Please cite the following if you use the dataset:\n\n"
|
27 |
-
"@article{YAO2024103035,\n"
|
28 |
-
" title = {CartiMorph: A framework for automated knee articular cartilage morphometrics},\n"
|
29 |
-
" journal = {Medical Image Analysis},\n"
|
30 |
-
" author = {Yongcheng Yao and Junru Zhong and Liping Zhang and Sheheryar Khan and Weitian Chen},\n"
|
31 |
-
" volume = {91},\n"
|
32 |
-
" pages = {103035},\n"
|
33 |
-
" year = {2024},\n"
|
34 |
-
" issn = {1361-8415},\n"
|
35 |
-
" doi = {https://doi.org/10.1016/j.media.2023.103035}\n"
|
36 |
-
"}\n\n"
|
37 |
-
"@InProceedings{10.1007/978-3-031-82007-6_16,\n"
|
38 |
-
" author = {Yao, Yongcheng and Chen, Weitian},\n"
|
39 |
-
" editor = {Wu, Shandong and Shabestari, Behrouz and Xing, Lei},\n"
|
40 |
-
" title = {Quantifying Knee Cartilage Shape and Lesion: From Image to Metrics},\n"
|
41 |
-
" booktitle = {Applications of Medical Artificial Intelligence},\n"
|
42 |
-
" year = {2025},\n"
|
43 |
-
" publisher = {Springer Nature Switzerland},\n"
|
44 |
-
" address = {Cham},\n"
|
45 |
-
" pages = {162--172}\n"
|
46 |
-
"}\n\n"
|
47 |
-
"License:\n"
|
48 |
-
"This dataset is released under the CC BY-NC 4.0 license. It is compulsory to cite the above papers if you use the dataset.\n"
|
49 |
),
|
50 |
-
|
51 |
-
|
52 |
-
"mask": Array3D(dtype="float32", shape=(None, None, None)),
|
53 |
-
"image_path": Value("string"),
|
54 |
-
"mask_path": Value("string"),
|
55 |
-
}),
|
56 |
)
|
57 |
|
58 |
def _split_generators(self, dl_manager):
|
59 |
-
#
|
60 |
-
# This URL is constructed to point to the files from the desired revision.
|
61 |
base_url = "https://huggingface.co/datasets/YongchengYAO/OAIZIB-CM/resolve/load_dataset-support"
|
62 |
train_csv_url = f"{base_url}/train.csv"
|
63 |
test_csv_url = f"{base_url}/test.csv"
|
64 |
-
|
65 |
-
#
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
train_df = pd.read_csv(
|
74 |
-
test_df = pd.read_csv(
|
75 |
-
|
76 |
return [
|
77 |
-
SplitGenerator(
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
]
|
80 |
|
81 |
-
def _generate_examples(self, df, split):
|
82 |
-
#
|
83 |
if split == "train":
|
84 |
-
|
85 |
-
|
86 |
elif split == "test":
|
87 |
-
|
88 |
-
|
89 |
else:
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
for idx, row in df.iterrows():
|
94 |
img_file = row["image"]
|
95 |
mask_file = row["mask"]
|
96 |
-
img_path = os.path.join(
|
97 |
-
mask_path = os.path.join(
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
continue
|
|
|
103 |
try:
|
104 |
-
mask
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
except Exception as e:
|
106 |
-
|
107 |
-
|
108 |
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
"image_path": img_path,
|
113 |
-
"mask_path": mask_path,
|
114 |
-
}
|
|
|
1 |
import os
|
2 |
import pandas as pd
|
3 |
import nibabel as nib
|
4 |
+
import datasets
|
5 |
+
from datasets import (
|
6 |
+
GeneratorBasedBuilder,
|
7 |
+
SplitGenerator,
|
8 |
+
Split,
|
9 |
+
DatasetInfo,
|
10 |
+
Features,
|
11 |
+
Array3D,
|
12 |
+
Value,
|
13 |
+
)
|
14 |
+
|
15 |
+
logger = datasets.logging.get_logger(__name__)
|
16 |
+
|
17 |
+
_CITATION = """\
|
18 |
+
@article{YAO2024103035,
|
19 |
+
title = {CartiMorph: A framework for automated knee articular cartilage morphometrics},
|
20 |
+
journal = {Medical Image Analysis},
|
21 |
+
author = {Yongcheng Yao and Junru Zhong and Liping Zhang and Sheheryar Khan and Weitian Chen},
|
22 |
+
volume = {91},
|
23 |
+
pages = {103035},
|
24 |
+
year = {2024},
|
25 |
+
issn = {1361-8415},
|
26 |
+
doi = {https://doi.org/10.1016/j.media.2023.103035}
|
27 |
+
}
|
28 |
+
|
29 |
+
@InProceedings{10.1007/978-3-031-82007-6_16,
|
30 |
+
author = {Yao, Yongcheng and Chen, Weitian},
|
31 |
+
editor = {Wu, Shandong and Shabestari, Behrouz and Xing, Lei},
|
32 |
+
title = {Quantifying Knee Cartilage Shape and Lesion: From Image to Metrics},
|
33 |
+
booktitle = {Applications of Medical Artificial Intelligence},
|
34 |
+
year = {2025},
|
35 |
+
publisher = {Springer Nature Switzerland},
|
36 |
+
address = {Cham},
|
37 |
+
pages = {162--172}
|
38 |
+
}
|
39 |
+
"""
|
40 |
+
|
41 |
+
_DESCRIPTION = """\
|
42 |
+
This is the official release of the OAIZIB-CM dataset.
|
43 |
+
|
44 |
+
OAIZIB-CM is based on the OAIZIB dataset.
|
45 |
+
OAIZIB paper: Automated Segmentation of Knee Bone and Cartilage combining Statistical Shape Knowledge
|
46 |
+
and Convolutional Neural Networks: Data from the Osteoarthritis Initiative.
|
47 |
+
In OAIZIB-CM, tibial cartilage is split into medial and lateral tibial cartilages.
|
48 |
+
OAIZIB-CM includes CLAIR-Knee-103R, consisting of:
|
49 |
+
- a template image learned from 103 MR images of subjects without radiographic OA,
|
50 |
+
- a corresponding 5-ROI segmentation mask for cartilages and bones, and
|
51 |
+
- a corresponding 20-ROI atlas for articular cartilages.
|
52 |
+
|
53 |
+
This dataset is released under the CC BY-NC 4.0 license.
|
54 |
+
"""
|
55 |
+
|
56 |
+
_HOMEPAGE_URL = "https://github.com/YongchengYAO/CartiMorph"
|
57 |
+
|
58 |
|
59 |
class OAIZIBCMDataset(GeneratorBasedBuilder):
|
60 |
+
VERSION = datasets.Version("1.0.0")
|
61 |
|
62 |
def _info(self):
|
63 |
return DatasetInfo(
|
64 |
+
description=_DESCRIPTION,
|
65 |
+
features=Features(
|
66 |
+
{
|
67 |
+
# Let datasets library infer the shape dimensions
|
68 |
+
"image": Array3D(dtype="float32"),
|
69 |
+
"mask": Array3D(dtype="float32"),
|
70 |
+
"image_path": Value("string"),
|
71 |
+
"mask_path": Value("string"),
|
72 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
),
|
74 |
+
homepage=_HOMEPAGE_URL,
|
75 |
+
citation=_CITATION,
|
|
|
|
|
|
|
|
|
76 |
)
|
77 |
|
78 |
def _split_generators(self, dl_manager):
|
79 |
+
# Download metadata files (CSV) that describe the dataset
|
|
|
80 |
base_url = "https://huggingface.co/datasets/YongchengYAO/OAIZIB-CM/resolve/load_dataset-support"
|
81 |
train_csv_url = f"{base_url}/train.csv"
|
82 |
test_csv_url = f"{base_url}/test.csv"
|
83 |
+
|
84 |
+
# Download CSV files containing dataset metadata
|
85 |
+
csv_paths = dl_manager.download({"train": train_csv_url, "test": test_csv_url})
|
86 |
+
|
87 |
+
logger.info(f"Downloaded CSV paths: {csv_paths}")
|
88 |
+
|
89 |
+
# Check if local data directory exists
|
90 |
+
data_dir = os.path.join(os.getcwd(), "data")
|
91 |
+
|
92 |
+
train_df = pd.read_csv(csv_paths["train"])
|
93 |
+
test_df = pd.read_csv(csv_paths["test"])
|
94 |
+
|
95 |
return [
|
96 |
+
SplitGenerator(
|
97 |
+
name=Split.TRAIN,
|
98 |
+
gen_kwargs={"df": train_df, "split": "train", "data_dir": data_dir},
|
99 |
+
),
|
100 |
+
SplitGenerator(
|
101 |
+
name=Split.TEST,
|
102 |
+
gen_kwargs={"df": test_df, "split": "test", "data_dir": data_dir},
|
103 |
+
),
|
104 |
]
|
105 |
|
106 |
+
def _generate_examples(self, df, split, data_dir):
|
107 |
+
# Set up directory paths based on the split
|
108 |
if split == "train":
|
109 |
+
img_dir = os.path.join(data_dir, "imagesTr")
|
110 |
+
mask_dir = os.path.join(data_dir, "labelsTr")
|
111 |
elif split == "test":
|
112 |
+
img_dir = os.path.join(data_dir, "imagesTs")
|
113 |
+
mask_dir = os.path.join(data_dir, "labelsTs")
|
114 |
else:
|
115 |
+
raise ValueError(f"Unknown split: {split}")
|
116 |
+
|
117 |
+
# Log directories for debugging
|
118 |
+
logger.info(f"Looking for {split} images in: {img_dir}")
|
119 |
+
logger.info(f"Looking for {split} masks in: {mask_dir}")
|
120 |
+
|
121 |
+
# Verify directories exist
|
122 |
+
os.makedirs(img_dir, exist_ok=True)
|
123 |
+
os.makedirs(mask_dir, exist_ok=True)
|
124 |
+
|
125 |
+
# Track yield count for debugging
|
126 |
+
count = 0
|
127 |
+
skipped = 0
|
128 |
|
129 |
for idx, row in df.iterrows():
|
130 |
img_file = row["image"]
|
131 |
mask_file = row["mask"]
|
132 |
+
img_path = os.path.join(img_dir, img_file)
|
133 |
+
mask_path = os.path.join(mask_dir, mask_file)
|
134 |
+
|
135 |
+
# Check if files exist
|
136 |
+
if not os.path.exists(img_path):
|
137 |
+
logger.warning(f"Image not found: {img_path}")
|
138 |
+
skipped += 1
|
139 |
+
continue
|
140 |
+
|
141 |
+
if not os.path.exists(mask_path):
|
142 |
+
logger.warning(f"Mask not found: {mask_path}")
|
143 |
+
skipped += 1
|
144 |
continue
|
145 |
+
|
146 |
try:
|
147 |
+
# Load and convert the image and mask data
|
148 |
+
img_nib = nib.load(img_path)
|
149 |
+
image = img_nib.get_fdata().astype("float32")
|
150 |
+
|
151 |
+
mask_nib = nib.load(mask_path)
|
152 |
+
mask = mask_nib.get_fdata().astype("float32")
|
153 |
+
|
154 |
+
yield idx, {
|
155 |
+
"image": image,
|
156 |
+
"mask": mask,
|
157 |
+
"image_path": img_path,
|
158 |
+
"mask_path": mask_path,
|
159 |
+
}
|
160 |
+
count += 1
|
161 |
+
|
162 |
except Exception as e:
|
163 |
+
logger.error(f"Error processing {img_path} and {mask_path}: {e}")
|
164 |
+
skipped += 1
|
165 |
|
166 |
+
logger.info(
|
167 |
+
f"Successfully yielded {count} examples for {split} split, skipped {skipped}"
|
168 |
+
)
|
|
|
|
|
|