import os import pandas as pd import nibabel as nib import datasets from datasets import ( GeneratorBasedBuilder, SplitGenerator, Split, DatasetInfo, Features, Value, ) logger = datasets.logging.get_logger(__name__) _CITATION = """\ Please cite these papers when using this dataset: - CartiMorph: A framework for automated knee articular cartilage morphometrics - Quantifying Knee Cartilage Shape and Lesion: From Image to Metrics @article{YAO2024103035, title = {CartiMorph: A framework for automated knee articular cartilage morphometrics}, journal = {Medical Image Analysis}, author = {Yongcheng Yao and Junru Zhong and Liping Zhang and Sheheryar Khan and Weitian Chen}, volume = {91}, pages = {103035}, year = {2024}, issn = {1361-8415}, doi = {https://doi.org/10.1016/j.media.2023.103035} } @InProceedings{10.1007/978-3-031-82007-6_16, author="Yao, Yongcheng and Chen, Weitian", editor="Wu, Shandong and Shabestari, Behrouz and Xing, Lei", title="Quantifying Knee Cartilage Shape and Lesion: From Image to Metrics", booktitle="Applications of Medical Artificial Intelligence", year="2025", publisher="Springer Nature Switzerland", address="Cham", pages="162--172" } """ _DESCRIPTION = """\ This is the official release of the OAIZIB-CM dataset. (https://huggingface.co/datasets/YongchengYAO/OAIZIB-CM/blob/load_dataset-support/README.md) """ _HOME_PAGE = "https://huggingface.co/datasets/YongchengYAO/OAIZIB-CM" _LICENSE = "CC BY-NC 4.0" class OAIZIBCMDataset(GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") @staticmethod def load_nifti(example): """Map function to load NIFTI images on demand.""" img_nib = nib.load(example["image_path"]) image = img_nib.get_fdata().astype("float32") mask_nib = nib.load(example["mask_path"]) mask = mask_nib.get_fdata().astype("float32") example["image"] = image example["mask"] = mask return example def _info(self): # Define dataset information including feature schema return DatasetInfo( description=_DESCRIPTION, features=Features( { "image_path": Value("string"), "mask_path": Value("string"), } ), citation=_CITATION, homepage=_HOME_PAGE, license=_LICENSE, ) def _split_generators(self, dl_manager): # Download dataset metadata and data files train_csv_url = "train.csv" test_csv_url = "test.csv" csv_paths = dl_manager.download({"train": train_csv_url, "test": test_csv_url}) logger.info(f"Downloaded CSV paths: {csv_paths}") # Extract main dataset archive data_root_dir = dl_manager.download_and_extract("data/OAIZIB-CM.zip") data_dir = os.path.join(data_root_dir, "OAIZIB-CM") logger.info(f"Data directory set to {data_dir}") # Load split metadata train_df = pd.read_csv(csv_paths["train"]) test_df = pd.read_csv(csv_paths["test"]) # Define split generators for training and test sets return [ SplitGenerator( name=Split.TRAIN, gen_kwargs={"df": train_df, "split": "train", "data_dir": data_dir}, ), SplitGenerator( name=Split.TEST, gen_kwargs={"df": test_df, "split": "test", "data_dir": data_dir}, ), ] def _generate_examples(self, df, split, data_dir): # Set up directory paths based on the split if split == "train": img_dir = os.path.join(data_dir, "imagesTr") mask_dir = os.path.join(data_dir, "labelsTr") elif split == "test": img_dir = os.path.join(data_dir, "imagesTs") mask_dir = os.path.join(data_dir, "labelsTs") else: raise ValueError(f"Unknown split: {split}") # Log directories and ensure they exist logger.info(f"Looking for {split} images in: {img_dir}") logger.info(f"Looking for {split} masks in: {mask_dir}") os.makedirs(img_dir, exist_ok=True) os.makedirs(mask_dir, exist_ok=True) # Process and yield examples count = 0 for idx, row in df.iterrows(): img_file = row["image"] mask_file = row["mask"] img_path = os.path.join(img_dir, img_file) mask_path = os.path.join(mask_dir, mask_file) # Only yield paths, don't load data into memory yield idx, { "image_path": img_path, "mask_path": mask_path, } logger.info(f"Successfully yielded {count} examples for {split} split")