Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -1,70 +1,195 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
- name: original_width
|
38 |
-
dtype: int32
|
39 |
-
- name: original_height
|
40 |
-
dtype: int32
|
41 |
-
- name: coco_width
|
42 |
-
dtype: int32
|
43 |
-
- name: coco_height
|
44 |
-
dtype: int32
|
45 |
-
- name: collection
|
46 |
-
dtype: string
|
47 |
-
- name: doc_category
|
48 |
-
dtype: string
|
49 |
-
splits:
|
50 |
-
- name: train
|
51 |
-
num_bytes: 773564178
|
52 |
-
num_examples: 69103
|
53 |
-
- name: validation
|
54 |
-
num_bytes: 74492844
|
55 |
-
num_examples: 6480
|
56 |
-
- name: test
|
57 |
-
num_bytes: 58899926
|
58 |
-
num_examples: 4994
|
59 |
-
download_size: 196812287
|
60 |
-
dataset_size: 906956948
|
61 |
-
configs:
|
62 |
-
- config_name: default
|
63 |
-
data_files:
|
64 |
-
- split: train
|
65 |
-
path: data/train-*
|
66 |
-
- split: validation
|
67 |
-
path: data/validation-*
|
68 |
-
- split: test
|
69 |
-
path: data/test-*
|
70 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
- de
|
5 |
+
- fr
|
6 |
+
- ja
|
7 |
+
annotations_creators:
|
8 |
+
- crowdsourced
|
9 |
+
license: other
|
10 |
+
pretty_name: DocLayNet large
|
11 |
+
size_categories:
|
12 |
+
- 10K<n<100K
|
13 |
+
tags:
|
14 |
+
- DocLayNet
|
15 |
+
- COCO
|
16 |
+
- PDF
|
17 |
+
- IBM
|
18 |
+
- Financial-Reports
|
19 |
+
- Finance
|
20 |
+
- Manuals
|
21 |
+
- Scientific-Articles
|
22 |
+
- Science
|
23 |
+
- Laws
|
24 |
+
- Law
|
25 |
+
- Regulations
|
26 |
+
- Patents
|
27 |
+
- Government-Tenders
|
28 |
+
- object-detection
|
29 |
+
- image-segmentation
|
30 |
+
- token-classification
|
31 |
+
task_categories:
|
32 |
+
- object-detection
|
33 |
+
- image-segmentation
|
34 |
+
- token-classification
|
35 |
+
task_ids:
|
36 |
+
- instance-segmentation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
---
|
38 |
+
|
39 |
+
# Dataset Card for DocLayNet large without image
|
40 |
+
|
41 |
+
## About this card (02/14/2024)
|
42 |
+
|
43 |
+
### Property and license
|
44 |
+
|
45 |
+
All information from this page but the content of this paragraph "About this card (02/14/2025)" has been copied/pasted from [Dataset Card for DocLayNet](https://huggingface.co/datasets/ds4sd/DocLayNet).
|
46 |
+
|
47 |
+
DocLayNet is a dataset created by Deep Search (IBM Research) published under [license CDLA-Permissive-1.0](https://huggingface.co/datasets/ds4sd/DocLayNet#licensing-information).
|
48 |
+
|
49 |
+
I do not claim any rights to the data taken from this dataset and published on this page.
|
50 |
+
|
51 |
+
# Dataset Card for DocLayNet
|
52 |
+
|
53 |
+
## Table of Contents
|
54 |
+
- [Table of Contents](#table-of-contents)
|
55 |
+
- [Dataset Description](#dataset-description)
|
56 |
+
- [Dataset Summary](#dataset-summary)
|
57 |
+
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
|
58 |
+
- [Dataset Structure](#dataset-structure)
|
59 |
+
- [Data Fields](#data-fields)
|
60 |
+
- [Data Splits](#data-splits)
|
61 |
+
- [Dataset Creation](#dataset-creation)
|
62 |
+
- [Annotations](#annotations)
|
63 |
+
- [Additional Information](#additional-information)
|
64 |
+
- [Dataset Curators](#dataset-curators)
|
65 |
+
- [Licensing Information](#licensing-information)
|
66 |
+
- [Citation Information](#citation-information)
|
67 |
+
- [Contributions](#contributions)
|
68 |
+
|
69 |
+
## Dataset Description
|
70 |
+
|
71 |
+
- **Homepage:** https://developer.ibm.com/exchanges/data/all/doclaynet/
|
72 |
+
- **Repository:** https://github.com/DS4SD/DocLayNet
|
73 |
+
- **Paper:** https://doi.org/10.1145/3534678.3539043
|
74 |
+
- **Leaderboard:**
|
75 |
+
- **Point of Contact:**
|
76 |
+
|
77 |
+
### Dataset Summary
|
78 |
+
|
79 |
+
DocLayNet provides page-by-page layout segmentation ground-truth using bounding-boxes for 11 distinct class labels on 80863 unique pages from 6 document categories. It provides several unique features compared to related work such as PubLayNet or DocBank:
|
80 |
+
|
81 |
+
1. *Human Annotation*: DocLayNet is hand-annotated by well-trained experts, providing a gold-standard in layout segmentation through human recognition and interpretation of each page layout
|
82 |
+
2. *Large layout variability*: DocLayNet includes diverse and complex layouts from a large variety of public sources in Finance, Science, Patents, Tenders, Law texts and Manuals
|
83 |
+
3. *Detailed label set*: DocLayNet defines 11 class labels to distinguish layout features in high detail.
|
84 |
+
4. *Redundant annotations*: A fraction of the pages in DocLayNet are double- or triple-annotated, allowing to estimate annotation uncertainty and an upper-bound of achievable prediction accuracy with ML models
|
85 |
+
5. *Pre-defined train- test- and validation-sets*: DocLayNet provides fixed sets for each to ensure proportional representation of the class-labels and avoid leakage of unique layout styles across the sets.
|
86 |
+
|
87 |
+
### Supported Tasks and Leaderboards
|
88 |
+
|
89 |
+
We are hosting a competition in ICDAR 2023 based on the DocLayNet dataset. For more information see https://ds4sd.github.io/icdar23-doclaynet/.
|
90 |
+
|
91 |
+
## Dataset Structure
|
92 |
+
|
93 |
+
### Data Fields
|
94 |
+
|
95 |
+
DocLayNet provides four types of data assets:
|
96 |
+
|
97 |
+
1. Bounding-box annotations in COCO format for each PNG image
|
98 |
+
2. Extra: Single-page PDF files matching each PNG image
|
99 |
+
3. Extra: JSON file matching each PDF page, which provides the digital text cells with coordinates and content
|
100 |
+
|
101 |
+
The COCO image record are defined like this example
|
102 |
+
|
103 |
+
```js
|
104 |
+
...
|
105 |
+
{
|
106 |
+
"id": 1,
|
107 |
+
"width": 1025,
|
108 |
+
"height": 1025,
|
109 |
+
"file_name": "132a855ee8b23533d8ae69af0049c038171a06ddfcac892c3c6d7e6b4091c642.png",
|
110 |
+
|
111 |
+
// Custom fields:
|
112 |
+
"doc_category": "financial_reports" // high-level document category
|
113 |
+
"collection": "ann_reports_00_04_fancy", // sub-collection name
|
114 |
+
"doc_name": "NASDAQ_FFIN_2002.pdf", // original document filename
|
115 |
+
"page_no": 9, // page number in original document
|
116 |
+
"precedence": 0, // Annotation order, non-zero in case of redundant double- or triple-annotation
|
117 |
+
},
|
118 |
+
...
|
119 |
+
```
|
120 |
+
|
121 |
+
The `doc_category` field uses one of the following constants:
|
122 |
+
|
123 |
+
```
|
124 |
+
financial_reports,
|
125 |
+
scientific_articles,
|
126 |
+
laws_and_regulations,
|
127 |
+
government_tenders,
|
128 |
+
manuals,
|
129 |
+
patents
|
130 |
+
```
|
131 |
+
|
132 |
+
|
133 |
+
### Data Splits
|
134 |
+
|
135 |
+
The dataset provides three splits
|
136 |
+
- `train`
|
137 |
+
- `val`
|
138 |
+
- `test`
|
139 |
+
|
140 |
+
## Dataset Creation
|
141 |
+
|
142 |
+
### Annotations
|
143 |
+
|
144 |
+
#### Annotation process
|
145 |
+
|
146 |
+
The labeling guideline used for training of the annotation experts are available at [DocLayNet_Labeling_Guide_Public.pdf](https://raw.githubusercontent.com/DS4SD/DocLayNet/main/assets/DocLayNet_Labeling_Guide_Public.pdf).
|
147 |
+
|
148 |
+
|
149 |
+
#### Who are the annotators?
|
150 |
+
|
151 |
+
Annotations are crowdsourced.
|
152 |
+
|
153 |
+
|
154 |
+
## Additional Information
|
155 |
+
|
156 |
+
### Dataset Curators
|
157 |
+
|
158 |
+
The dataset is curated by the [Deep Search team](https://ds4sd.github.io/) at IBM Research.
|
159 |
+
You can contact us at [[email protected]](mailto:[email protected]).
|
160 |
+
|
161 |
+
Curators:
|
162 |
+
- Christoph Auer, [@cau-git](https://github.com/cau-git)
|
163 |
+
- Michele Dolfi, [@dolfim-ibm](https://github.com/dolfim-ibm)
|
164 |
+
- Ahmed Nassar, [@nassarofficial](https://github.com/nassarofficial)
|
165 |
+
- Peter Staar, [@PeterStaar-IBM](https://github.com/PeterStaar-IBM)
|
166 |
+
|
167 |
+
### Licensing Information
|
168 |
+
|
169 |
+
License: [CDLA-Permissive-1.0](https://cdla.io/permissive-1-0/)
|
170 |
+
|
171 |
+
|
172 |
+
### Citation Information
|
173 |
+
|
174 |
+
|
175 |
+
```bib
|
176 |
+
@article{doclaynet2022,
|
177 |
+
title = {DocLayNet: A Large Human-Annotated Dataset for Document-Layout Segmentation},
|
178 |
+
doi = {10.1145/3534678.353904},
|
179 |
+
url = {https://doi.org/10.1145/3534678.3539043},
|
180 |
+
author = {Pfitzmann, Birgit and Auer, Christoph and Dolfi, Michele and Nassar, Ahmed S and Staar, Peter W J},
|
181 |
+
year = {2022},
|
182 |
+
isbn = {9781450393850},
|
183 |
+
publisher = {Association for Computing Machinery},
|
184 |
+
address = {New York, NY, USA},
|
185 |
+
booktitle = {Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining},
|
186 |
+
pages = {3743–3751},
|
187 |
+
numpages = {9},
|
188 |
+
location = {Washington DC, USA},
|
189 |
+
series = {KDD '22}
|
190 |
+
}
|
191 |
+
```
|
192 |
+
|
193 |
+
### Contributions
|
194 |
+
|
195 |
+
Thanks to [@dolfim-ibm](https://github.com/dolfim-ibm), [@cau-git](https://github.com/cau-git) for adding this dataset.
|