Datasets:

ArXiv:
License:
Moonjun Gong commited on
Commit
ea48c67
·
verified ·
1 Parent(s): 3bca080

Create sscbench-nuscenes/readme.md

Browse files
Files changed (1) hide show
  1. sscbench-nuscenes/readme.md +80 -0
sscbench-nuscenes/readme.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # SSCBench-nuScenes
2
+
3
+ ## Change Log
4
+ * 2023/06: Initial release.
5
+
6
+ ## Overview
7
+ The [nuScenes dataset](https://www.nuscenes.org/nuscenes) consists of one thousand 20-second scenes with labels provided only for the training and validation set, totaling 850 scenes. From the publicly available 850 scenes, we allocate 500 scenes for training, 200 scenes for validation, and 150 scenes for testing. This distribution results in 20,064 frames for training, 8,050 frames for validation, and 5,949 frames for testing, totaling 34,078 frames (~34K).
8
+
9
+ ## License
10
+ The nuScenes dataset is released under the [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public](https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode) License (“CC BY-NC-SA 4.0”). Please check their [Terms of Use](https://www.nuscenes.org/terms-of-use) for more details.
11
+
12
+ We release SSCBench-nuScenes under the same license. When you download or use the SSCBench-KITTI-360 from the website or elsewhere, you are agreeing to comply with the terms of the "CC BY-NC-SA 4.0" Licnese.
13
+
14
+ ## Folder Structure and format
15
+ The folder structure of the nuScenes dataset is as follows:
16
+ ```
17
+ dataset/nuScenes/
18
+ |-- trainval # training and validation set
19
+ | |-- sequences # 500 (train) + 200 (validation) scenes
20
+ | | |-- 000000
21
+ | | | |-- image_2 # RGB images
22
+ | | | | |-- 0000.png
23
+ | | | | |-- 0001.png
24
+ | | | | |-- ...
25
+ | | | |-- voxels # voxelized point clouds
26
+ | | | | |-- 0000.bin # voxelized input
27
+ | | | | |-- 0000.label # voxelized label
28
+ | | | | |-- 0000.invalid # voxelized invalid mask
29
+ | | | | |-- 0001.bin
30
+ | | | | |-- 0001.label
31
+ | | | | |-- 0001.invalid
32
+ | | | | |-- ...
33
+ | | |-- 000001
34
+ | | |-- 000002
35
+ | | |-- ...
36
+ | |-- poses # camera poses
37
+ | | |-- 000000
38
+ | | | |-- 0000.txt # camera pose for each frame
39
+ | | | |-- 0001.txt
40
+ | | | |-- ...
41
+ | | |-- 000001
42
+ | | |-- ...
43
+ | |-- calib.txt # calibration information
44
+ | |-- ... # other files (not needed)
45
+ |-- test # testing set
46
+ | |-- ... # same as trainval
47
+ |-- preprocess # preprocessed labels
48
+ | |-- trainval
49
+ | | |-- labels
50
+ | | | |-- 000000
51
+ | | | | |-- 0000_1_1.npy # original labels
52
+ | | | | |-- 0000_1_2.npy # 2x downsampled labels
53
+ | | | | |-- 0000_1_8.npy # 8x downsampled labels
54
+ | | | | |-- 0001_1_1.npy
55
+ | | | | |-- 0001_1_2.npy
56
+ | | | | |-- 0001_1_8.npy
57
+ | | | | |-- ...
58
+ | | | |-- 000001
59
+ | | | |-- ...
60
+ | |-- test
61
+ | | |-- ... # same as trainval
62
+ |-- preprocess_uni # unified preprocessed labels
63
+ | |-- ... # same as preprocess
64
+ ```
65
+
66
+ For each frame in the dataset, we provide the following information:
67
+ * `image_2`: RGB image of size 1600x900.
68
+ * `voxels`: Voxelized point cloud of size 256x256x32. Each voxel is a 0.2x0.2x0.2 meter cube.
69
+ * `*.bin`: Voxelized point cloud in binary format.
70
+ * `*.label`: Voxelized point cloud label in binary format.
71
+ * `*.invalid`: Voxelized point cloud invalid mask in binary format.
72
+
73
+ For MonoScene and VoxFormer, a preprocessed downsampled version of the dataset is provided in the `preprocess` folder. We provide two scales of downsampled point clouds: 1/1 and 1/8. The downsampled point clouds are stored in the `labels` folder, stored as `.npy` files.
74
+
75
+ ## Data Usage
76
+ Use the following command to merge the split parts of this dataset
77
+
78
+ ```
79
+ cat sscbench-nuscenes_part_* > sscbench-nuscenes.sqfs
80
+ ```