diff --git "a/S3-val.txt" "b/S3-val.txt" new file mode 100644--- /dev/null +++ "b/S3-val.txt" @@ -0,0 +1,56797 @@ +Properties S-CONPRI +like O +macro- O +and O +microstructure S-CONPRI +, O +mechanical B-CONPRI +properties E-CONPRI +like O +hardness S-PRO +and O +its O +course O +in O +the O +layers O +, O +high-cycle O +fatigue S-PRO +resistance O +in O +bending S-MANP +and O +fatigue B-PRO +damage E-PRO +mechanisms O +were O +investigated O +with O +the O +emphasis O +on O +fatigue S-PRO +crack O +initiation O +process S-CONPRI +evaluated O +using O +scanning B-CHAR +electron I-CHAR +microscopy E-CHAR +. O + + +The O +results O +indicated O +that O +surface S-CONPRI +additive S-MATE +laser O +welded S-MANP +layers O +of O +a O +high O +quality S-CONPRI +can O +be S-MATE +reached O +. O + + +On O +the O +other O +hand O +, O +some O +drop O +of O +fatigue S-PRO +resistance O +and O +endurance B-PRO +limit E-PRO +was O +observed O +, O +affected O +by O +surface B-CONPRI +defects E-CONPRI +– O +small O +welding S-MANP +imperfections S-CONPRI +Ti-6Al-4V O +and O +AlSi5 S-MATE +wires O +were O +used O +for O +wire B-MANP +and I-MANP +arc I-MANP +additive I-MANP +manufacturing E-MANP +using O +the O +direct O +current O +cold B-MANP +metal I-MANP +transfer E-MANP +welding O +. O + + +Ti B-MATE +alloy E-MATE +was O +deposited O +first O +, O +and O +then O +Al B-MATE +alloy E-MATE +was O +deposited O +on O +the O +Ti S-MATE +layer S-PARA +. O + + +A O +small O +amount O +of O +Ti B-MATE +alloy E-MATE +was O +melted S-CONPRI +when O +the O +first O +layer S-PARA +of O +Al B-MATE +alloy E-MATE +was O +deposited O +due O +to O +the O +low O +heat S-CONPRI +input O +. O + + +A O +component S-MACEQ +composed O +of O +Ti/Al O +dissimilar B-MATE +alloys E-MATE +can O +be S-MATE +produced O +. O + + +The O +interface S-CONPRI +layer O +between O +the O +Ti S-MATE +and O +Al B-MATE +alloys E-MATE +included O +a O +continuous O +layer S-PARA +and O +a O +discontinuous O +layer S-PARA +. O + + +The O +continuous O +layer S-PARA +was O +composed O +of O +Ti7Al5Si12 S-MATE +, O +and O +the O +discontinuous O +layer S-PARA +consisted O +of O +Ti S-MATE +( O +Al1-xSix O +) O +3 O +. O + + +Element S-MATE +Si O +was O +rich O +in O +the O +continuous O +layer S-PARA +. O + + +The O +hardness S-PRO +and O +modulus O +of O +the O +interface S-CONPRI +layer O +were O +between O +those O +of O +Al S-MATE +and O +Ti B-MATE +alloys E-MATE +. O + + +The O +average S-CONPRI +tensile O +strength S-PRO +of O +the O +component S-MACEQ +was O +79 O +MPa S-CONPRI +. O + + +The O +fracture S-CONPRI +located O +at O +the O +interface S-CONPRI +layer O +. O + + +A O +finite B-CONPRI +element I-CONPRI +model E-CONPRI +is O +developed O +to O +calculate O +the O +heat B-CONPRI +propagation E-CONPRI +of O +a O +circular O +thin-walled B-APPL +component E-APPL +fabricated S-CONPRI +in O +gas B-MANP +metal I-MANP +arc I-MANP +welding E-MANP +based O +additive B-MANP +manufacturing E-MANP +. O + + +The O +heat B-CONPRI +evolution E-CONPRI +, O +thermal B-PARA +cycle E-PARA +feature S-FEAT +, O +and O +temperature B-PARA +gradient E-PARA +in O +molten B-CONPRI +pool E-CONPRI +and O +deposited B-CHAR +layers E-CHAR +are O +revealed O +. O + + +The O +temperature S-PARA +simulations S-ENAT +at O +some O +locations O +are O +in O +agreement O +with O +measured O +values O +from O +thermocouples S-MACEQ +. O + + +As S-MATE +the O +deposition B-MANP +process E-MANP +proceeds O +, O +the O +high-temperature O +regions O +of O +the O +substrate S-MATE +and O +molten B-CONPRI +pool E-CONPRI +increase O +. O + + +The O +temperature B-PARA +gradient E-PARA +in O +the O +molten B-CONPRI +pool E-CONPRI +decreases O +with O +the O +increasing O +deposition S-CONPRI +height O +. O + + +The O +heat B-CONPRI +dissipation E-CONPRI +condition O +in O +the O +molten B-CONPRI +pool E-CONPRI +of O +current O +layer S-PARA +tightly O +depends O +on O +the O +deposition B-PARA +direction E-PARA +of O +fore O +layer S-PARA +. O + + +At O +the O +deposition S-CONPRI +ending O +moment O +, O +the O +heat B-CONPRI +conduction E-CONPRI +in O +the O +axial O +direction O +is O +the O +predominant O +heat B-CONPRI +dissipation E-CONPRI +orientation O +, O +whereas O +the O +circumferential O +orientation S-CONPRI +becomes O +the O +main O +heat B-CONPRI +dissipation E-CONPRI +direction O +in O +the O +top O +layers O +. O + + +An O +automated O +arc-welding-based B-MANP +additive I-MANP +manufacturing E-MANP +system O +was O +reported O +. O + + +Integrated O +additive S-MATE +and O +subtractive B-MANP +manufacturing E-MANP +methodology S-CONPRI +was O +developed O +. O + + +Deposition B-PARA +paths E-PARA +and O +welding S-MANP +parameters S-CONPRI +were O +automatically O +generated O +. O + + +User O +interface S-CONPRI +using O +only O +CAD B-ENAT +models E-ENAT +as S-MATE +inputs O +was O +developed O +. O + + +Arc B-MANP +welding E-MANP +has O +been O +widely O +explored O +for O +additive B-MANP +manufacturing E-MANP +of O +large O +metal S-MATE +components S-MACEQ +over O +the O +last O +three O +decades O +due O +to O +its O +lower O +capital B-CONPRI +cost E-CONPRI +, O +an O +unlimited O +build B-PARA +envelope E-PARA +, O +and O +higher O +deposition B-PARA +rates E-PARA +. O + + +Although O +significant O +improvements O +have O +been O +made O +, O +an O +arc B-MANP +welding E-MANP +process O +has O +yet O +to O +be S-MATE +incorporated O +in O +a O +commercially O +available O +additive B-MACEQ +manufacturing I-MACEQ +system E-MACEQ +. O + + +The O +next O +step S-CONPRI +in O +exploiting O +“ O +true O +” O +arc-welding-based B-MANP +additive I-MANP +manufacturing E-MANP +is O +to O +develop O +the O +automation S-CONPRI +software O +required O +to O +produce O +CAD-to-part S-CONPRI +capability O +. O + + +This O +study O +focuses O +on O +developing O +a O +fully O +automated O +system O +using O +robotic O +gas B-MANP +metal I-MANP +arc I-MANP +welding E-MANP +to O +additively B-MANP +manufacture E-MANP +metal O +components S-MACEQ +. O + + +The O +system O +contains O +several O +modules O +, O +including O +bead B-CONPRI +modelling E-CONPRI +, O +slicing S-CONPRI +, O +deposition B-CONPRI +path I-CONPRI +planning E-CONPRI +, O +weld S-FEAT +setting O +, O +and O +post-process B-MANP +machining E-MANP +. O + + +Among O +these O +modules O +, O +bead B-CONPRI +modelling E-CONPRI +provides O +the O +essential O +database S-ENAT +for O +process B-CONPRI +control E-CONPRI +, O +and O +an O +innovative O +path B-ENAT +planning E-ENAT +strategy O +fulfils O +the O +requirements O +of O +the O +automated O +system O +. O + + +Finally O +, O +a O +thin-walled B-MACEQ +aluminium I-MACEQ +structure E-MACEQ +has O +been O +fabricated S-CONPRI +automatically O +using O +only O +a O +CAD B-ENAT +model E-ENAT +as S-MATE +the O +informational O +input O +to O +the O +system O +. O + + +This O +exercise O +demonstrates O +that O +the O +developed O +system O +is O +a O +significant O +contribution O +towards O +the O +ultimate O +goal O +of O +producing O +a O +practical O +and O +highly O +automated O +arc-welding-based B-MANP +additive I-MANP +manufacturing E-MANP +system O +for O +industrial S-APPL +application O +. O + + +Laser B-MANP +additive I-MANP +manufacturing E-MANP +titanium O +alloy S-MATE +40 O +mm S-MANP +thick O +plate O +can O +obtain O +full O +penetration B-CONPRI +joint E-CONPRI +by O +EBW S-MANP +. O + + +In O +fusion B-CONPRI +zone E-CONPRI +, O +due O +to O +acicular O +α′ O +formation O +, O +the O +microhardness S-CONPRI +is O +higher O +than O +base B-MATE +metal E-MATE +and O +heat B-CONPRI +affected I-CONPRI +zone E-CONPRI +. O + + +All O +tensile S-PRO +samples S-CONPRI +fail O +in O +base B-MATE +metal E-MATE +. O + + +The O +L-joint S-FEAT +shows O +higher O +strength S-PRO +but O +lower O +ductility S-PRO +than O +T-joint S-FEAT +. O + + +Individually O +fabrication S-MANP +parts O +by O +laser B-MANP +additive I-MANP +manufacturing E-MANP +( O +LAM S-MANP +) O +and O +then O +jointing O +them O +together O +through O +electron B-MANP +beam I-MANP +welding E-MANP +( O +EBW S-MANP +) O +is O +a O +viable O +way O +for O +manufacturing S-MANP +large O +components S-MACEQ +with O +reduction S-CONPRI +of O +internal B-PRO +stress E-PRO +. O + + +For O +investigating O +the O +microstructure S-CONPRI +and O +mechanical B-CONPRI +property E-CONPRI +of O +EBW S-MANP +joint O +along O +longitudinal O +and O +transverse O +direction O +in O +LAMed O +component S-MACEQ +, O +two O +LAMed O +Ti–6.5Al–3.5Mo–1.5Zr–0.3Si S-MATE +plates O +were O +successfully O +welded S-MANP +without O +defects S-CONPRI +. O + + +Results O +show O +that O +the O +microstructure S-CONPRI +of O +base B-MATE +metal E-MATE +( O +BM S-MATE +) O +is O +a O +typical O +basket-weave B-CONPRI +morphology E-CONPRI +that O +exhibits O +lamellar S-CONPRI +α O +within O +β O +matrix O +. O + + +In O +heat B-CONPRI +affected I-CONPRI +zone E-CONPRI +( O +HAZ S-CONPRI +) O +, O +the O +part O +of O +primary O +α O +transforms O +to O +β O +with O +the O +some O +very O +fine O +lamellar S-CONPRI +αs O +precipitates S-MATE +out O +. O + + +Due O +to O +the O +fast O +solidification B-PARA +rate E-PARA +, O +a O +large O +number O +of O +acicular O +α′ O +forms O +in O +fusion B-CONPRI +zone E-CONPRI +( O +FZ S-CONPRI +) O +, O +leading O +to O +the O +highest O +microhardness S-CONPRI +. O + + +All O +tensile S-PRO +samples S-CONPRI +fail O +in O +BM S-MATE +region O +with O +the O +fracture S-CONPRI +type O +of O +intergranular O +dimpled O +fracture S-CONPRI +. O + + +Compared O +with O +the O +T-joint S-FEAT +, O +the O +L-joint S-FEAT +shows O +higher O +ultimate B-PRO +tensile I-PRO +strength E-PRO +and O +yield B-PRO +strength E-PRO +, O +but O +lower O +elongation S-PRO +and O +reduction B-CHAR +of I-CHAR +area E-CHAR +due O +to O +the O +morphology S-CONPRI +of O +columnar B-PRO +grains E-PRO +and O +the O +strong O +texture S-FEAT +of O +β O +< O +010 O +> O +parallel O +to O +the O +deposition B-PARA +direction E-PARA +. O + + +In O +Laser-based B-MANP +Manufacturing E-MANP +, O +the O +configuration S-CONPRI +of O +process B-CONPRI +parameters E-CONPRI +aims O +to O +maintain O +quality S-CONPRI +measures O +within O +specific O +boundaries S-FEAT +and O +it O +is O +obtained O +through O +experimentation O +. O + + +The O +idea O +developed O +and O +presented O +in O +this O +paper O +concerns O +the O +prediction S-CONPRI +of O +the O +performance S-CONPRI +of O +adaptive B-CONPRI +control E-CONPRI +policies O +, O +based O +on O +process B-CONPRI +modeling E-CONPRI +. O + + +Two O +examples O +of O +Laser-based B-MANP +Manufacturing E-MANP +are O +deployed O +in O +order O +to O +verify O +the O +response O +of O +adaptive B-CONPRI +control E-CONPRI +algorithms O +through O +empirical S-CONPRI +design S-FEAT +, O +Laser B-MANP +welding E-MANP +and O +Laser-based B-MANP +Additive I-MANP +Manufacturing E-MANP +processes O +. O + + +The O +penetration B-PARA +depth E-PARA +has O +been O +utilized O +as S-MATE +the O +quality S-CONPRI +criterion O +of O +the O +adaptive B-CONPRI +control E-CONPRI +loop O +for O +both O +processes S-CONPRI +. O + + +The O +solidification B-CONPRI +phase E-CONPRI +has O +also O +been O +examined O +. O + + +Dissolved O +oxygen S-MATE +in O +weld B-CONPRI +zone E-CONPRI +leads O +to O +distinct O +microstructures S-MATE +from O +base B-MATE +metal E-MATE +after O +annealing S-MANP +. O + + +The O +repaired O +specimens O +have O +lower O +plasticity S-PRO +and O +slightly O +higher O +strength S-PRO +than O +base B-MATE +metal E-MATE +. O + + +Columnar B-CONPRI +grain I-CONPRI +boundary E-CONPRI +α O +phases O +in O +weld B-CONPRI +zone E-CONPRI +are O +the O +earliest O +microcracks S-CONPRI +nucleation O +sites O +. O + + +Gas B-MANP +tungsten I-MANP +arc I-MANP +welding E-MANP +was O +used O +to O +repair O +the O +laser S-ENAT +additive B-MANP +manufactured E-MANP +Ti-5Al-5Mo-5V-1Cr-1Fe O +( O +Ti-55511 O +) O +alloy S-MATE +with O +a O +subsequent O +triplex O +annealing B-MANP +treatment E-MANP +. O + + +The O +tensile B-PRO +properties E-PRO +of O +heat S-CONPRI +treated O +specimens O +containing O +of O +different O +proportions O +of O +weld B-CONPRI +zone E-CONPRI +were O +designed S-FEAT +to O +evaluate O +the O +influence O +of O +weld B-CONPRI +zone E-CONPRI +on O +tensile B-PRO +properties E-PRO +of O +the O +alloy S-MATE +. O + + +Microstructures S-MATE +, O +microhardness S-CONPRI +and O +tensile B-CHAR +tests E-CHAR +were O +performed O +to O +study O +the O +mechanical B-CONPRI +properties E-CONPRI +and O +fracture S-CONPRI +behaviors O +of O +the O +specimens O +. O + + +Results O +show O +that O +dissolved O +oxygen S-MATE +in O +the O +weld B-CONPRI +zone E-CONPRI +has O +a O +strong O +influence O +on O +increasing O +the O +number O +of O +α O +phase B-CONPRI +nucleation I-CONPRI +sites E-CONPRI +that O +can O +lead S-MATE +to O +different O +αp O +morphologies S-CONPRI +in O +the O +base B-MATE +metal E-MATE +and O +weld B-CONPRI +zone E-CONPRI +. O + + +These O +different O +αp O +can O +lead S-MATE +to O +distinct O +microstructures S-MATE +after O +triplex O +annealing B-MANP +treatment E-MANP +but O +with O +similar O +α O +volume B-PARA +fractions E-PARA +. O + + +Besides O +, O +plasticity S-PRO +deterioration O +of O +the O +repaired O +tensile B-MACEQ +specimens E-MACEQ +is O +mainly O +attributed O +to O +the O +formation O +of O +columnar B-CONPRI +grain I-CONPRI +boundary E-CONPRI +α O +phases O +in O +the O +weld B-CONPRI +zone E-CONPRI +which O +are O +considered O +to O +be S-MATE +the O +earliest O +nucleation S-CONPRI +sites O +of O +microcracks S-CONPRI +and O +confirmed O +by O +in B-CONPRI +situ E-CONPRI +tensile O +test O +. O + + +With O +the O +increase O +of O +WZ S-CONPRI +proportions O +in O +the O +cross B-CONPRI +section E-CONPRI +of O +tensile B-MACEQ +specimens E-MACEQ +, O +the O +plasticity S-PRO +of O +the O +alloy S-MATE +gradually O +decreases O +. O + + +Ultrasonic B-MANP +additive I-MANP +manufacturing E-MANP +( O +UAM S-MANP +) O +is O +a O +solid-state S-CONPRI +additive B-MANP +manufacturing E-MANP +technique O +employing O +principles O +of O +ultrasonic B-MANP +welding E-MANP +coupled O +with O +mechanized O +tape O +layering O +to O +fabricate S-MANP +fully O +functional O +parts O +. O + + +However O +, O +parts O +fabricated S-CONPRI +using O +UAM S-MANP +often O +exhibit O +a O +reduction S-CONPRI +in O +strength S-PRO +levels O +when O +loaded O +normal O +to O +the O +welding B-FEAT +interfaces E-FEAT +( O +Z-direction S-FEAT +) O +. O + + +In O +this O +work O +, O +the O +effect O +of O +post-weld B-MANP +heat I-MANP +treatments E-MANP +( O +PWHT S-CONPRI +) O +on O +Al-6061 S-MATE +builds O +fabricated S-CONPRI +using O +the O +UAM S-MANP +process S-CONPRI +was O +explored O +aiming O +to O +improve O +the O +mechanical B-PRO +strength E-PRO +of O +the O +UAM S-MANP +builds S-CHAR +. O + + +Tensile B-CHAR +testing E-CHAR +with O +digital B-CONPRI +image I-CONPRI +correlation E-CONPRI +( O +DIC S-CONPRI +) O +coupled O +with O +metallography S-CONPRI +along O +with O +multi-scale B-CHAR +structure I-CHAR +characterization E-CHAR +( O +SEM-EBSD S-ENAT +) O +was O +used O +to O +investigate O +and O +rationalize O +the O +mechanical S-APPL +performance O +of O +the O +UAM S-MANP +builds S-CHAR +. O + + +It O +was O +established O +that O +PWHTs S-MANP +may O +improve O +the O +Z-strength S-PRO +level O +by O +the O +factor O +of O +~3÷3.5 O +( O +from O +~46 O +to O +177 O +MPa S-CONPRI +) O +. O + + +The O +improvements O +in O +the O +strength S-PRO +level O +were O +primarily O +aided O +by O +material B-CONPRI +aging E-CONPRI +and O +grain B-CONPRI +growth E-CONPRI +across O +the O +bond B-CONPRI +interface E-CONPRI +. O + + +Ultrasonic B-MANP +additive I-MANP +manufacturing E-MANP +( O +UAM S-MANP +) O +is O +a O +solid-state S-CONPRI +additive B-MANP +manufacturing I-MANP +process E-MANP +that O +uses O +fundamental O +principles O +of O +ultrasonic B-MANP +welding E-MANP +and O +sequential O +layering O +of O +tapes O +to O +fabricate S-MANP +complex O +three-dimensional S-CONPRI +( O +3-D S-CONPRI +) O +components S-MACEQ +. O + + +One O +of O +the O +factors O +limiting O +the O +use O +of O +this O +technology S-CONPRI +is O +the O +poor O +tensile B-PRO +strength E-PRO +along O +the O +z-axis S-CONPRI +. O + + +Recent O +work O +has O +demonstrated O +the O +improvement O +of O +the O +z-axis B-CONPRI +properties E-CONPRI +after O +post-processing B-MANP +treatments E-MANP +. O + + +The O +abnormally O +high O +stability S-PRO +of O +the O +grains S-CONPRI +at O +the O +interface S-CONPRI +during O +post-weld B-MANP +heat I-MANP +treatments E-MANP +is O +, O +however O +, O +not O +yet O +well O +understood O +. O + + +In O +this O +work O +we O +use O +multiscale O +characterization O +to O +understand O +the O +stability S-PRO +of O +the O +grains S-CONPRI +during O +post-weld B-MANP +heat I-MANP +treatments E-MANP +. O + + +Aluminum B-MATE +alloy E-MATE +( O +6061 O +) O +builds S-CHAR +, O +fabricated S-CONPRI +using O +ultrasonic B-MANP +additive I-MANP +manufacturing E-MANP +, O +were O +post-weld B-MANP +heat I-MANP +treated E-MANP +at O +180 O +, O +330 O +and O +580 O +°C O +. O + + +The O +grains S-CONPRI +close O +to O +the O +tape O +interfaces O +are O +stable O +during O +post-weld B-MANP +heat I-MANP +treatments E-MANP +at O +high O +temperatures S-PARA +( O +i.e. O +, O +580 O +°C O +) O +. O + + +This O +is O +in O +contrast O +to O +rapid B-CONPRI +grain I-CONPRI +growth E-CONPRI +that O +takes O +place O +in O +the O +bulk O +. O + + +Transmission B-CHAR +electron I-CHAR +microscopy E-CHAR +and O +atom-probe B-CHAR +tomography E-CHAR +display O +a O +significant O +enrichment O +of O +oxygen S-MATE +and O +magnesium S-MATE +near O +the O +stable O +interfaces O +. O + + +Based O +on O +the O +detailed O +characterization O +, O +two O +mechanisms O +are O +proposed O +and O +evaluated O +: O +nonequilibrium O +nano-dispersed B-MATE +oxides E-MATE +impeding O +the O +grain B-CONPRI +growth E-CONPRI +due O +to O +grain B-CONPRI +boundary E-CONPRI +pinning O +, O +or O +grain B-CONPRI +boundary E-CONPRI +segregation O +of O +magnesium S-MATE +and O +oxygen S-MATE +reducing O +the O +grain B-CONPRI +boundary I-CONPRI +energy E-CONPRI +. O + + +Additive B-MANP +manufacturing E-MANP +will O +be S-MATE +an O +option O +to O +develop O +prototypes S-CONPRI +or O +mechanical B-MACEQ +parts E-MACEQ +that O +will O +be S-MATE +made O +faster O +and O +cheaper O +than O +other O +techniques O +such O +as S-MATE +laser O +cladding S-MANP +or O +electron B-CONPRI +beam E-CONPRI +. O + + +The O +main O +objective O +of O +this O +research S-CONPRI +was O +to O +study O +the O +optimal O +initial O +conditions O +of O +the O +proposed O +additive B-MACEQ +manufacturing I-MACEQ +system E-MACEQ +in O +order O +to O +obtain O +metal S-MATE +prototypes O +. O + + +This O +optimal O +conditions O +have O +been O +presented O +taking O +into O +account O +the O +measurements O +of O +geometrical O +conditions O +and O +surface B-MANP +finishing E-MANP +. O + + +The O +proposed O +additive B-MACEQ +manufacturing I-MACEQ +system E-MACEQ +consist O +on O +an O +integration O +of O +a O +Fronius B-MACEQ +TPS I-MACEQ +4000 I-MACEQ +CMT I-MACEQ +R E-MACEQ +welding O +machine S-MACEQ +with O +a O +BF30 O +Vario O +Optimun O +CNC B-MANP +milling E-MANP +machine O +. O + + +Once O +the O +material S-MATE +was O +selected O +, O +the O +optimal O +conditions O +to O +make O +the O +first O +layer S-PARA +have O +been O +obtained O +. O + + +Previous O +simple S-MANP +geometries S-CONPRI +, O +such O +as S-MATE +prismatic O +and O +cylindrical S-CONPRI +parts O +have O +been O +manufactured S-CONPRI +. O + + +Efficient O +way O +of O +depositing O +thin-walled O +overhang B-FEAT +features E-FEAT +, O +without O +supports S-APPL +, O +based O +on O +inclined O +slicing S-CONPRI +and O +weld-deposition S-CONPRI +. O + + +Uses O +higher O +order O +kinematics S-CONPRI +to O +the O +work B-MACEQ +piece E-MACEQ +for O +fabricating S-MANP +complex O +thin-walled O +fully B-PARA +dense E-PARA +functional O +metallic B-MACEQ +parts E-MACEQ +. O + + +Geometrical O +modelling S-ENAT +of O +the O +weld-bead S-FEAT +to O +predict O +the O +layer B-PARA +thickness E-PARA +of O +a O +given O +layer S-PARA +for O +bead-on-bead B-CONPRI +deposition E-CONPRI +. O + + +In-house O +MATLAB B-CONPRI +code E-CONPRI +to O +slice S-CONPRI +the O +CAD B-ENAT +model E-ENAT +and O +generate O +the O +tool B-CONPRI +path E-CONPRI +for O +inclined O +deposition S-CONPRI +of O +a O +given O +layer S-PARA +. O + + +Fabrication S-MANP +of O +complex O +thin-walled B-FEAT +parts E-FEAT +using O +GMAW S-MANP +based O +weld-deposition S-CONPRI +for O +illustration O +of O +above O +mentioned O +concepts O +. O + + +Gas B-MANP +Metal I-MANP +Arc I-MANP +Welding E-MANP +( O +GMAW S-MANP +) O +based O +weld-deposition B-CONPRI +process E-CONPRI +is O +one O +of O +the O +deposition-based O +Additive B-MANP +Manufacturing E-MANP +( O +AM S-MANP +) O +processes S-CONPRI +with O +the O +ability O +to O +produce O +fully B-PARA +dense E-PARA +complex O +functional O +metallic S-MATE +objects O +. O + + +Due O +to O +its O +high B-PARA +deposition I-PARA +rates E-PARA +, O +high O +material S-MATE +and O +power B-PARA +efficiency E-PARA +, O +lower O +investment O +costs O +, O +simpler O +setup O +and O +work O +environment O +requirements O +it O +is O +slowly O +becoming O +a O +viable O +metallic B-MANP +AM E-MANP +method O +. O + + +Amongst O +various O +geometrical B-FEAT +features E-FEAT +that O +can O +be S-MATE +realized O +in O +weld-deposition B-MANP +based I-MANP +AM E-MANP +, O +the O +thin-walled O +features O +( O +i.e. O +, O +features O +with O +one O +single O +deposition S-CONPRI +pass O +) O +are O +the O +toughest O +as S-MATE +the O +process S-CONPRI +has O +to O +overcome O +the O +bead-over-bead S-CONPRI +complexity O +. O + + +Based O +on O +geometric B-CONPRI +modelling E-CONPRI +and O +experimentation O +, O +this O +paper O +presents O +an O +efficient O +technique O +for O +producing O +the O +thin-walled O +metallic B-MACEQ +structures E-MACEQ +, O +including O +objects O +with O +undercut S-FEAT +features O +. O + + +This O +is O +possible O +by O +adding O +extra O +degrees B-CONPRI +of I-CONPRI +freedom E-CONPRI +or O +by O +using O +higher O +order O +kinematics S-CONPRI +to O +the O +work B-MACEQ +piece E-MACEQ +and/or O +to O +the O +deposition S-CONPRI +head O +by O +suitably O +aligning O +the O +overhanging B-FEAT +feature E-FEAT +in-line O +to O +the O +deposition B-PARA +direction E-PARA +. O + + +An O +in-house O +MATLAB B-CONPRI +code E-CONPRI +was O +developed O +to O +slice S-CONPRI +the O +CAD B-ENAT +model E-ENAT +and O +generate O +the O +tool B-CONPRI +path E-CONPRI +for O +inclined O +deposition S-CONPRI +of O +a O +given O +layer S-PARA +of O +a O +thin-walled B-MACEQ +model E-MACEQ +. O + + +A O +geometrical B-CONPRI +model E-CONPRI +proposed O +to O +predict O +the O +layer B-PARA +thickness E-PARA +of O +a O +given O +layer S-PARA +during O +such O +bead-on-bead B-CONPRI +deposition E-CONPRI +showed O +good O +correlation O +with O +experimental B-CONPRI +data E-CONPRI +. O + + +Some O +illustrative O +complex O +thin-walled B-APPL +components E-APPL +successfully O +fabricated S-CONPRI +using O +this O +model S-CONPRI +have O +also O +been O +presented O +. O + + +Additive B-MANP +layer I-MANP +manufacturing E-MANP +( O +ALM S-MANP +) O +, O +using O +gas B-MANP +tungsten I-MANP +arc I-MANP +welding E-MANP +( O +GTAW S-MANP +) O +as S-MATE +heat O +source S-APPL +, O +is O +a O +promising O +technology S-CONPRI +in O +producing O +Inconel B-MATE +625 E-MATE +components S-MACEQ +due O +to O +significant O +cost O +savings O +, O +high B-PARA +deposition I-PARA +rate E-PARA +and O +convenience O +of O +processing O +. O + + +With O +the O +purpose O +of O +revealing O +how O +microstructure S-CONPRI +and O +mechanical B-CONPRI +properties E-CONPRI +are O +affected O +by O +the O +location O +within O +the O +manufactured S-CONPRI +wall O +component S-MACEQ +, O +the O +present O +study O +has O +been O +carried O +out O +. O + + +The O +manufactured S-CONPRI +Inconel B-MATE +625 E-MATE +consists O +of O +cellular B-CONPRI +grains E-CONPRI +without O +secondary B-MATE +dendrites E-MATE +in O +the O +near-substrate O +region O +, O +columnar B-MATE +dendrites E-MATE +structure O +oriented O +upwards O +in O +the O +layer S-PARA +bands O +, O +followed O +by O +the O +transition S-CONPRI +from O +directional B-MATE +dendrites E-MATE +to O +equiaxed B-CONPRI +grain E-CONPRI +in O +the O +top O +region O +. O + + +With O +the O +increase O +in O +deposited O +height O +, O +segregation S-CONPRI +behavior O +of O +alloying B-MATE +elements E-MATE +Nb O +and O +Mo S-MATE +constantly O +strengthens O +with O +maximal O +evolution S-CONPRI +in O +the O +top O +region O +. O + + +The O +primary O +dendrite S-BIOP +arm O +spacing O +has O +a O +well O +coherence O +with O +the O +content O +of O +Laves B-CONPRI +phase E-CONPRI +. O + + +The O +microhardness S-CONPRI +and O +tensile B-PRO +strength E-PRO +show O +obvious O +variation S-CONPRI +in O +different O +regions O +. O + + +The O +microhardness S-CONPRI +and O +tensile B-PRO +strength E-PRO +of O +near-substrate O +region O +are O +superior O +to O +that O +of O +layer S-PARA +bands O +and O +top O +region O +. O + + +The O +results O +are O +further O +explained O +in O +detail O +through O +the O +weld B-CONPRI +pool E-CONPRI +behavior O +and O +temperature S-PARA +field O +measurement S-CHAR +. O + + +This O +paper O +describes O +results O +of O +seam B-MANP +welding E-MANP +of O +relatively O +high O +temperature S-PARA +melting B-CONPRI +materials E-CONPRI +, O +AISI B-MATE +304 E-MATE +, O +C-Mn B-MATE +steels E-MATE +, O +Ni-based B-MATE +alloys E-MATE +, O +CP O +Cu S-MATE +, O +CP O +Ni S-MATE +, O +Ti6Al4V S-MATE +and O +relatively O +low O +temperature S-PARA +melting B-CONPRI +material E-CONPRI +, O +AA6061 S-MATE +. O + + +It O +describes O +the O +seam B-MANP +welding E-MANP +of O +multi-layered O +similar O +and O +dissimilar O +metallic B-MATE +sheets E-MATE +. O + + +The O +method O +described O +and O +involved O +advancing O +a O +rotating O +non-consumable O +rod S-MACEQ +( O +CP O +Mo S-MATE +or O +AISI B-MATE +304 E-MATE +) O +toward O +the O +upper O +sheet S-MATE +of O +a O +metallic B-MATE +stack E-MATE +clamped O +under O +pressure S-CONPRI +. O + + +As S-MATE +soon O +as S-MATE +the O +distal O +end O +of O +the O +rod S-MACEQ +touched O +the O +top O +portion O +of O +the O +upper O +metallic B-MATE +sheet E-MATE +, O +an O +axial B-CONPRI +force E-CONPRI +was O +applied O +. O + + +After O +an O +initial O +dwell B-PARA +time E-PARA +, O +the O +metallic B-MATE +stack E-MATE +moved O +horizontally O +relative O +to O +the O +stationery O +non-consumable O +rod S-MACEQ +by O +a O +desired O +length O +, O +thereby O +forming S-MANP +a O +metallurgical B-CONPRI +bond E-CONPRI +between O +the O +metallic B-MATE +sheets E-MATE +. O + + +Multi-track O +and O +multi-metal O +seam B-FEAT +welds E-FEAT +of O +high O +temperature S-PARA +metallic B-MATE +sheets E-MATE +, O +AISI B-MATE +304 E-MATE +, O +C-Mn B-MATE +steel E-MATE +, O +Nickel-based B-MATE +alloys E-MATE +, O +Cp O +Cu S-MATE +, O +Ti6Al4V S-MATE +and O +low O +temperature S-PARA +metallic B-MATE +sheets E-MATE +, O +AA6061 S-MATE +were O +obtained O +. O + + +Optical S-CHAR +and O +scanning B-CHAR +electron I-CHAR +microscopy E-CHAR +examination O +and O +180 O +degree O +U-bend B-CHAR +test E-CHAR +indicated O +that O +defect S-CONPRI +free O +seam B-FEAT +welds E-FEAT +could O +be S-MATE +obtained O +with O +this O +method O +. O + + +Tensile- B-CHAR +shear I-CHAR +testing E-CHAR +showed O +that O +the O +seam B-FEAT +welds E-FEAT +of O +AISI B-MATE +304 E-MATE +, O +C-Mn B-MATE +steel E-MATE +, O +Nickel-based B-MATE +alloy E-MATE +were O +stronger O +than O +the O +starting O +base B-MATE +metal E-MATE +counterparts O +while O +AA6061 S-MATE +was O +weaker O +due O +to O +softening O +. O + + +The O +metallurgical B-CONPRI +bonding E-CONPRI +at O +the O +interface S-CONPRI +between O +the O +metallic B-MATE +sheets E-MATE +was O +attributed O +to O +localized O +stick O +and O +slip O +at O +the O +interface S-CONPRI +, O +dynamic S-CONPRI +recrystallization O +and O +diffusion S-CONPRI +. O + + +The O +method O +developed O +can O +be S-MATE +used O +as S-MATE +a O +means O +of O +welding S-MANP +, O +cladding S-MANP +and O +additive B-MANP +manufacturing E-MANP +. O + + +In O +this O +paper O +the O +joinability O +of O +titanium S-MATE +Additive B-MANP +Manufactured E-MANP +( O +AM S-MANP +) O +parts O +is O +explored O +. O + + +Keyhole B-MANP +welding E-MANP +, O +using O +a O +pulsed B-ENAT +laser I-ENAT +beam E-ENAT +, O +of O +conventionally O +produced O +parts O +is O +compared O +to O +AM B-MACEQ +parts E-MACEQ +. O + + +Metal B-MANP +AM E-MANP +parts O +are O +notorious O +for O +having O +remaining O +porosities S-PRO +and O +other O +non-isotropic S-CONPRI +properties O +due O +to O +the O +layered O +manufacturing B-MANP +process E-MANP +. O + + +This O +study O +shows O +that O +due O +to O +these O +deficiencies O +more O +energy O +per O +unit O +weld B-PARA +length E-PARA +is O +required O +to O +obtain O +a O +similar O +keyhole O +geometry S-CONPRI +for O +titanium S-MATE +AM B-MACEQ +parts E-MACEQ +. O + + +It O +is O +also O +demonstrated O +that O +, O +with O +adjusted O +laser S-ENAT +process O +parameters S-CONPRI +, O +good O +quality B-CONPRI +welds E-CONPRI +for O +aerospace S-APPL +applications O +in O +terms O +of O +pressure B-PRO +resistance E-PRO +and O +leak O +tightness O +are O +achievable O +. O + + +Part O +size O +in O +additive B-MANP +manufacturing E-MANP +is O +limited O +by O +the O +size O +of O +building O +area S-PARA +of O +AM S-MANP +equipment O +. O + + +Occasionally O +, O +larger O +constructions O +that O +AM B-MACEQ +machines E-MACEQ +are O +able O +to O +produce O +, O +are O +needed O +, O +and O +this O +creates O +demand O +for O +welding S-MANP +AM B-MACEQ +parts E-MACEQ +together O +. O + + +However O +there O +is O +very O +little O +information O +on O +welding S-MANP +of O +additive B-MANP +manufactured E-MANP +stainless O +steels S-MATE +. O + + +The O +aim O +of O +this O +study O +was O +to O +investigate O +the O +weldability S-PRO +aspects O +of O +AM B-MATE +material E-MATE +. O + + +In O +this O +study O +, O +comparison O +of O +the O +bead S-CHAR +on O +plate O +welds S-FEAT +between O +AM B-MACEQ +parts E-MACEQ +and O +sheet B-MATE +metal E-MATE +parts O +is O +done.Used O +material S-MATE +was O +316L B-MATE +stainless I-MATE +steel E-MATE +, O +AM S-MANP +and O +sheet B-MATE +metal E-MATE +, O +and O +parts O +were O +welded S-MANP +with O +laser B-MANP +welding E-MANP +. O + + +Weld B-PARA +quality E-PARA +was O +evaluated O +visually O +from O +macroscopic B-CONPRI +images E-CONPRI +. O + + +Results O +show O +that O +there O +are O +certain O +differences O +in O +the O +welds S-FEAT +in O +AM B-MACEQ +parts E-MACEQ +compared O +to O +the O +welds S-FEAT +in O +sheet B-MATE +metal E-MATE +parts O +. O + + +Differences O +were O +found O +in O +penetration B-PARA +depths E-PARA +and O +in O +type O +of O +welding B-CONPRI +defects E-CONPRI +. O + + +Nevertheless O +, O +this O +study O +presents O +that O +laser B-MANP +welding E-MANP +is O +suitable O +process S-CONPRI +for O +welding S-MANP +AM B-MACEQ +parts E-MACEQ +. O + + +Additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +of O +high O +γ′ O +strengthened O +Nickel-base B-MATE +superalloys E-MATE +, O +such O +as S-MATE +IN738LC O +, O +is O +of O +high O +interest O +for O +applications O +in O +hot O +section O +components S-MACEQ +for O +gas B-MACEQ +turbines E-MACEQ +. O + + +The O +creep S-PRO +property O +acts O +as S-MATE +the O +critical O +indicator O +of O +component S-MACEQ +performance O +under O +load O +at O +elevated O +temperature S-PARA +. O + + +In O +order O +to O +evaluate O +the O +short-term O +creep B-PRO +behavior E-PRO +, O +slow B-CONPRI +strain I-CONPRI +rate I-CONPRI +tensile E-CONPRI +( O +SSRT S-CONPRI +) O +tests O +were O +performed O +. O + + +IN738LC S-MATE +bars O +were O +built O +by O +laser B-MANP +powder-bed-fusion E-MANP +( O +L-PBF S-MANP +) O +and O +then O +subjected O +to O +hot B-MANP +isostatic I-MANP +pressing E-MANP +( O +HIP S-MANP +) O +followed O +by O +the O +standard S-CONPRI +two-step O +heat B-MANP +treatment E-MANP +. O + + +The O +samples S-CONPRI +were O +subjected O +to O +SSRT S-CONPRI +testing O +at O +850 O +°C O +under O +strain B-CONPRI +rates E-CONPRI +of O +1 O +× O +10−5/s O +, O +1 O +× O +10−6/s O +, O +and O +1 O +× O +10−7/s O +. O + + +In O +this O +research S-CONPRI +, O +the O +underlying O +creep B-CONPRI +deformation I-CONPRI +mechanism E-CONPRI +of O +AM S-MANP +processed O +IN738LC S-MATE +is O +investigated O +using O +the O +serial B-ENAT +sectioning E-ENAT +technique O +, O +electron B-CHAR +backscatter I-CHAR +diffraction E-CHAR +( O +EBSD S-CHAR +) O +, O +transmission B-CHAR +electron I-CHAR +microscopy E-CHAR +( O +TEM S-CHAR +) O +. O + + +On O +the O +creep S-PRO +mechanism O +of O +AM B-MATE +polycrystalline I-MATE +IN738LC E-MATE +, O +grain B-CONPRI +boundary I-CONPRI +sliding E-CONPRI +is O +predominant O +. O + + +However O +, O +due O +to O +the O +interlock O +feature S-FEAT +of O +grain B-CONPRI +boundaries E-CONPRI +in O +AM S-MANP +processed O +IN738LC S-MATE +, O +the O +grain B-CONPRI +structure E-CONPRI +retains O +its O +integrity S-CONPRI +after O +deformation S-CONPRI +. O + + +The O +dislocation B-CONPRI +motion E-CONPRI +acts O +as S-MATE +the O +major O +accommodation O +process S-CONPRI +of O +grain B-CONPRI +boundary I-CONPRI +sliding E-CONPRI +. O + + +Dislocations S-CONPRI +bypass O +the O +γ′ O +precipitates S-MATE +by O +Orowan B-CONPRI +looping E-CONPRI +and O +wavy O +slip O +. O + + +The O +rearrangement O +of O +screw B-CONPRI +dislocations E-CONPRI +is O +responsible O +for O +the O +formation O +of O +subgrains S-CONPRI +within O +the O +grain S-CONPRI +interior O +. O + + +This O +research S-CONPRI +elucidates O +the O +short-creep S-CONPRI +behavior O +of O +AM S-MANP +processed O +IN738LC S-MATE +. O + + +It O +also O +shed O +new O +light O +on O +the O +creep B-CONPRI +deformation I-CONPRI +mechanism E-CONPRI +of O +additive B-MANP +manufactured E-MANP +γ′ O +strengthened O +polycrystalline O +Nickel-base B-MATE +superalloys E-MATE +. O + + +Due O +to O +the O +cost O +advantage O +, O +weld-based B-MANP +Additive I-MANP +Manufacturing E-MANP +( O +AM S-MANP +) O +is O +suitable O +for O +directly O +fabricating S-MANP +large O +metallic B-MACEQ +parts E-MACEQ +. O + + +One O +of O +challenges O +for O +weld-based O +Additive S-MATE +M O +anufacturing O +is O +to O +build S-PARA +overhanging O +structure S-CONPRI +or O +tilt B-FEAT +structure E-FEAT +at O +a O +large O +slant B-PARA +angle E-PARA +, O +because O +liquid B-MATE +metal E-MATE +on O +the O +boundary S-FEAT +would O +flow O +down O +by O +gravity O +due O +to O +lack O +of O +sufficient O +support S-APPL +. O + + +In O +the O +present O +work O +, O +electromagnetically S-CONPRI +confined O +weld-based B-MANP +Additive I-MANP +Manufacturing E-MANP +is O +develop O +ed S-CHAR +to O +solve O +this O +problem O +. O + + +In O +the O +process S-CONPRI +, O +liquid B-MATE +metal E-MATE +is O +confined O +and O +semi-levitated O +by O +the O +Lorentz B-CONPRI +force E-CONPRI +exerted O +by O +magnetic B-CONPRI +field E-CONPRI +and O +thus O +the O +flow O +of O +liquid B-MATE +metal E-MATE +is O +restricted O +. O + + +Experiments O +and O +numerical B-ENAT +simulations E-ENAT +are O +performed O +to O +investigate O +the O +effect O +mechanism S-CONPRI +of O +electromagnetic B-CONPRI +confinement E-CONPRI +. O + + +Experimental S-CONPRI +results O +verify O +that O +the O +flow-down O +or O +collapse O +of O +liquid B-MATE +metal E-MATE +is O +impeded O +by O +electromagnetic B-CONPRI +confinement E-CONPRI +. O + + +With O +specific O +welding S-MANP +parameters S-CONPRI +, O +the O +maximum O +tilt B-FEAT +angle E-FEAT +of O +successful O +building O +increases O +from O +50° O +to O +60° O +when O +imposing O +electromagnetic B-CONPRI +confinement E-CONPRI +. O + + +New O +technologies S-CONPRI +can O +be S-MATE +justified O +with O +the O +advent O +of O +the O +additive B-MANP +manufacturing E-MANP +, O +excels O +by O +its O +flexibility B-CONPRI +in I-CONPRI +manufacturing E-CONPRI +parts O +of O +various O +geometries S-CONPRI +, O +good O +accuracy S-CHAR +and O +material S-MATE +waste O +reduction S-CONPRI +savings O +. O + + +This O +circumstance O +requires O +the O +application O +of O +techniques O +to O +determine O +the O +reliability S-CHAR +of O +the O +results O +in O +the O +deposition S-CONPRI +of O +layers O +in O +order O +to O +have O +a O +good O +accuracy S-CHAR +. O + + +This O +work O +aims O +to O +present O +a O +new O +technology S-CONPRI +applied O +to O +additive B-MANP +manufacturing E-MANP +, O +focusing O +on O +accuracy S-CHAR +in O +the O +deposition S-CONPRI +of O +layers O +, O +lower O +cost O +and O +user O +friendliness O +man-machine O +. O + + +New O +method O +was O +proposed O +in O +order O +to O +obtain O +advantages O +regarding O +the O +use O +of O +Plasma B-MANP +welding E-MANP +process O +. O + + +An O +apparatus O +for O +generating O +plasma S-CONPRI +was O +used O +to O +obtain O +the O +arc S-CONPRI +. O + + +Correlated S-CONPRI +magnitudes O +helped O +in O +determining O +Efficient O +Model S-CONPRI +of O +Deposition S-CONPRI +for O +use O +in O +offsetting O +the O +geometric O +and O +thermal O +errors S-CONPRI +. O + + +Computer B-CONPRI +simulations E-CONPRI +were O +applied O +to O +the O +new O +concept O +of O +deposition S-CONPRI +and O +the O +efficiency O +of O +the O +presented O +system O +was O +performed O +, O +but O +no O +experimental S-CONPRI +results O +are O +provided O +herein O +. O + + +Ultrasonic B-MANP +additive I-MANP +manufacturing E-MANP +( O +UAM S-MANP +) O +is O +a O +solid-state S-CONPRI +hybrid B-CONPRI +manufacturing E-CONPRI +technique O +. O + + +In O +this O +work O +characterization O +using O +electron B-ENAT +back I-ENAT +scatter I-ENAT +diffraction E-ENAT +was O +performed O +on O +aluminum–titanium O +dissimilar O +metal S-MATE +welds O +made O +using O +a O +9 O +kW O +ultrasonic B-MANP +additive I-MANP +manufacturing E-MANP +system O +. O + + +The O +results O +showed O +that O +the O +aluminum S-MATE +texture O +at O +the O +interface S-CONPRI +after O +ultrasonic B-MANP +additive I-MANP +manufacturing E-MANP +is O +similar O +to O +aluminum S-MATE +texture O +observed O +during O +accumulative O +roll B-MANP +bonding E-MANP +of O +aluminum B-MATE +alloys E-MATE +. O + + +It O +is O +finally O +concluded O +that O +the O +underlying O +mechanism S-CONPRI +of O +bond O +formation O +in O +ultrasonic B-MANP +additive I-MANP +manufacturing E-MANP +primarily O +relies O +on O +severe O +shear O +deformation S-CONPRI +at O +the O +interface S-CONPRI +. O + + +The O +wire B-MANP +arc I-MANP +additive I-MANP +manufacturing E-MANP +( O +WAAM S-MANP +) O +2Cr13 O +thin-wall O +part O +was O +deposited O +using O +robotic O +cold B-MANP +metal I-MANP +transfer E-MANP +( O +CMT S-MANP +) O +technology S-CONPRI +, O +and O +the O +location-related O +thermal O +history O +, O +densification S-MANP +, O +phase S-CONPRI +identification O +, O +microstructure S-CONPRI +, O +and O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +part O +were O +explored O +. O + + +The O +results O +show O +that O +pre-heating O +effect O +from O +previously O +built O +layers O +can O +be S-MATE +effectively O +used O +to O +reduce O +residual B-PRO +stresses E-PRO +; O +cooling B-PARA +rate E-PARA +firstly O +decreased O +rapidly O +and O +then O +kept O +stable O +in O +the O +15th–25th O +layers O +. O + + +The O +peaks O +of O +the O +α-Fe O +phase S-CONPRI +of O +the O +AM B-MACEQ +part E-MACEQ +drifted O +slightly O +toward O +a O +relatively O +smaller O +Bragg O +'s O +angle O +as S-MATE +a O +result O +of O +solute B-MATE +atoms E-MATE +incorporation O +when O +compared O +with O +that O +of O +the O +base B-MATE +metal E-MATE +. O + + +As-deposited O +microstructure S-CONPRI +consisted O +of O +martensite S-MATE +and O +ferrite S-MATE +, O +along O +with O +( O +Fe S-MATE +, O +Cr S-MATE +) O +23C6 O +phase S-CONPRI +precipitated O +at O +α-Fe O +grain B-CONPRI +boundaries E-CONPRI +. O + + +Martensite S-MATE +content O +increased O +gradually O +from O +the O +5th O +layer S-PARA +to O +the O +25th O +layers O +, O +indicating O +that O +metastable S-PRO +martensite S-MATE +partly O +decomposed O +into O +stable O +ferrite S-MATE +due O +to O +the O +carbon B-MATE +atoms E-MATE +diffusion O +. O + + +The O +hardness S-PRO +and O +UTS S-PRO +changed O +slightly O +in O +the O +05th–15th O +layers O +and O +then O +increased O +quickly O +from O +the O +20th O +layer S-PARA +to O +the O +25th O +layers O +at O +the O +expense O +of O +ductility S-PRO +; O +the O +fracture S-CONPRI +process O +transformed O +from O +ductile S-PRO +( O +01st–10th O +layers O +) O +to O +mixed-mode O +( O +15th–20th O +layers O +) O +, O +and O +finally O +to O +brittle B-CONPRI +fracture E-CONPRI +( O +25th O +layer S-PARA +) O +. O + + +The O +findings O +above O +suggest O +that O +, O +despite O +the O +emergency O +of O +few O +pores S-PRO +and O +slightly O +inadequate O +ductility S-PRO +, O +this O +robotic O +CMT S-MANP +technology O +is O +a O +feasible O +method O +to O +obtain O +desired O +microstructures S-MATE +and O +enhanced O +mechanical B-CONPRI +properties E-CONPRI +for O +the O +WAAM S-MANP +2Cr13 O +part O +in O +comparison O +with O +its O +as-solutioned O +counterpart O +. O + + +An O +innovative O +and O +low O +cost O +additive B-MANP +layer I-MANP +manufacturing E-MANP +( O +ALM S-MANP +) O +process S-CONPRI +is O +used O +to O +produce O +γ-TiAl O +based O +alloy S-MATE +wall O +components S-MACEQ +. O + + +Gas B-MANP +tungsten I-MANP +arc I-MANP +welding E-MANP +( O +GTAW S-MANP +) O +provides O +the O +heat B-CONPRI +source E-CONPRI +for O +this O +new O +approach O +, O +combined O +with O +in-situ S-CONPRI +alloying S-FEAT +through O +separate O +feeding O +of O +commercially O +pure O +Ti S-MATE +and O +Al S-MATE +wires O +into O +the O +weld B-CONPRI +pool E-CONPRI +. O + + +This O +paper O +investigates S-CONPRI +the O +morphology S-CONPRI +, O +microstructure S-CONPRI +and O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +additively B-MANP +manufactured E-MANP +TiAl O +material S-MATE +, O +and O +how O +these O +are O +affected O +by O +the O +location O +within O +the O +manufactured S-CONPRI +component S-MACEQ +. O + + +The O +typical O +additively O +layer S-PARA +manufactured O +morphology S-CONPRI +exhibits O +epitaxial S-PRO +growth O +of O +columnar B-PRO +grains E-PRO +and O +several O +layer S-PARA +bands O +. O + + +The O +fabricated S-CONPRI +γ-TiAl O +based O +alloy S-MATE +consists O +of O +comparatively O +large O +α2 O +grains S-CONPRI +in O +the O +near-substrate O +region O +, O +fully O +lamellar S-CONPRI +colonies O +with O +various O +sizes O +and O +interdendritic O +γ O +structure S-CONPRI +in O +the O +intermediate O +layer S-PARA +bands O +, O +followed O +by O +fine O +dendrites S-BIOP +and O +interdendritic O +γ O +phases O +in O +the O +top O +region O +. O + + +Microhardness S-CONPRI +measurements O +and O +tensile B-CHAR +testing E-CHAR +results O +indicated O +relatively O +homogeneous S-CONPRI +mechanical O +characteristics O +throughout O +the O +deposited O +material S-MATE +. O + + +The O +exception O +to O +this O +homogeneity O +occurs O +in O +the O +near-substrate O +region O +immediately O +adjacent O +to O +the O +pure O +Ti B-MATE +substrate E-MATE +used O +in O +these O +experiments O +, O +where O +the O +alloying S-FEAT +process O +is O +not O +as S-MATE +well O +controlled O +as S-MATE +in O +the O +higher O +regions O +. O + + +The O +tensile B-PRO +properties E-PRO +are O +also O +different O +for O +the O +vertical S-CONPRI +( O +build S-PARA +) O +direction O +and O +horizontal O +( O +travel O +) O +direction O +because O +of O +the O +differing O +microstructure S-CONPRI +in O +each O +direction O +. O + + +The O +microstructure S-CONPRI +variation O +and O +strengthening B-CONPRI +mechanisms E-CONPRI +resulting O +from O +the O +new O +manufacturing B-MANP +approach E-MANP +are O +analysed O +in O +detail O +. O + + +The O +results O +demonstrate O +the O +potential O +to O +produce O +full O +density S-PRO +titanium O +aluminide O +components S-MACEQ +directly O +using O +the O +new O +additive B-MANP +layer I-MANP +manufacturing E-MANP +method O +. O + + +Amorphous O +polymer B-MATE +melt E-MATE +is O +extruded S-MANP +and O +deposited O +filament-by-filament O +. O + + +Non-isothermal O +inter-diffusion O +from O +an O +anisotropic S-PRO +configuration O +is O +modelled O +. O + + +Weld B-PARA +thickness E-PARA +( O +∼Rg O +) O +is O +sufficient O +to O +achieve O +bulk O +mechanical B-PRO +strength E-PRO +at O +weld S-FEAT +. O + + +Reduced O +weld B-PRO +strength E-PRO +is O +attributed O +to O +a O +partially O +entangled O +structure S-CONPRI +. O + + +Although O +3D B-MANP +printing E-MANP +has O +the O +potential O +to O +transform O +manufacturing B-MANP +processes E-MANP +, O +the O +strength S-PRO +of O +printed O +parts O +often O +does O +not O +rival O +that O +of O +traditionally-manufactured O +parts O +. O + + +The O +fused-filament B-MANP +fabrication E-MANP +method O +involves O +melting S-MANP +a O +thermoplastic S-MATE +, O +followed O +by O +layer-by-layer S-CONPRI +extrusion S-MANP +of O +the O +molten O +viscoelastic S-PRO +material S-MATE +to O +fabricate S-MANP +a O +three-dimensional S-CONPRI +object O +. O + + +The O +strength S-PRO +of O +the O +welds S-FEAT +between O +layers O +is O +controlled O +by O +interdiffusion O +and O +entanglement O +of O +the O +melt S-CONPRI +across O +the O +interface S-CONPRI +. O + + +However O +, O +diffusion S-CONPRI +slows O +down O +as S-MATE +the O +printed O +layer S-PARA +cools O +towards O +the O +glass B-CONPRI +transition I-CONPRI +temperature E-CONPRI +. O + + +Diffusion S-CONPRI +is O +also O +affected O +by O +high O +shear O +rates O +in O +the O +nozzle S-MACEQ +, O +which O +significantly O +deform O +and O +disentangle O +the O +polymer S-MATE +microstructure S-CONPRI +prior O +to O +welding S-MANP +. O + + +In O +this O +paper O +, O +we O +model S-CONPRI +non-isothermal O +polymer S-MATE +relaxation O +, O +entanglement O +recovery O +, O +and O +diffusion S-CONPRI +processes O +that O +occur O +post-extrusion O +to O +investigate O +the O +effects O +that O +typical O +printing O +conditions O +and O +amorphous O +( O +non-crystalline O +) O +polymer S-MATE +rheology O +have O +on O +the O +ultimate O +weld S-FEAT +structure S-CONPRI +. O + + +Although O +we O +find O +the O +weld B-PARA +thickness E-PARA +to O +be S-MATE +of O +the O +order O +of O +the O +polymer S-MATE +size O +, O +the O +structure S-CONPRI +of O +the O +weld S-FEAT +is O +anisotropic S-PRO +and O +relatively O +disentangled O +; O +reduced O +mechanical B-PRO +strength E-PRO +at O +the O +weld S-FEAT +is O +attributed O +to O +this O +lower O +degree O +of O +entanglement O +. O + + +The O +microstructures S-MATE +of O +Al B-MATE +alloy E-MATE +6061 O +subjected O +to O +very-high-power O +ultrasonic B-MANP +additive I-MANP +manufacturing E-MANP +were O +systematically O +examined O +to O +understand O +the O +underlying O +ultrasonic B-MANP +welding E-MANP +mechanism S-CONPRI +. O + + +The O +microstructure S-CONPRI +of O +the O +weld S-FEAT +interface S-CONPRI +between O +the O +metal S-MATE +tapes O +consisted O +of O +fine O +, O +equiaxed B-CONPRI +grains E-CONPRI +resulting O +from O +recrystallization S-CONPRI +, O +which O +is O +driven O +by O +simple S-MANP +shear O +deformation S-CONPRI +along O +the O +ultrasonically O +vibrating O +direction O +of O +the O +tape O +surface S-CONPRI +. O + + +Void S-CONPRI +formation O +at O +the O +weld S-FEAT +interface S-CONPRI +is O +attributed O +to O +surface B-CONPRI +asperities E-CONPRI +resulting O +from O +pressure S-CONPRI +induced O +by O +the O +sonotrode S-MACEQ +at O +the O +initial O +tape O +deposition S-CONPRI +. O + + +Transmission B-CHAR +electron I-CHAR +microscopy E-CHAR +revealed O +that O +Al–Al O +metallic B-CONPRI +bonding E-CONPRI +without O +surface S-CONPRI +oxide S-MATE +layers O +was O +mainly O +achieved O +, O +although O +some O +oxide S-MATE +clusters O +were O +locally O +observed O +at O +the O +original O +interface S-CONPRI +. O + + +The O +results O +suggest O +that O +the O +oxide S-MATE +layers O +were O +broken O +up O +and O +then O +locally O +clustered O +on O +the O +interface S-CONPRI +by O +ultrasonic B-PARA +vibration E-PARA +. O + + +A O +theoretical S-CONPRI +analysis O +of O +the O +metal S-MATE +transfer O +behaviour O +and O +bead S-CHAR +shape O +formation O +using O +positional O +GMAW S-MANP +are O +provided O +. O + + +The O +effects O +of O +various O +process B-CONPRI +parameters E-CONPRI +on O +the O +stability S-PRO +of O +positional O +deposition S-CONPRI +are O +investigated O +. O + + +The O +effectiveness S-CONPRI +of O +the O +proposed O +strategy O +is O +verified O +by O +three O +complex O +samples S-CONPRI +using O +a O +positional O +GMAW-WAAM O +process S-CONPRI +. O + + +Robotic O +wire B-MANP +arc I-MANP +additive I-MANP +manufacturing E-MANP +( O +WAAM S-MANP +) O +technology S-CONPRI +has O +been O +widely O +employed O +to O +fabricate S-MANP +medium O +to O +large O +scale O +metallic S-MATE +components S-MACEQ +. O + + +It O +has O +the O +advantages O +of O +high B-PARA +deposition I-PARA +rates E-PARA +and O +low O +cost O +. O + + +Ideally O +, O +the O +deposition B-MANP +process E-MANP +is O +carried O +out O +in O +a O +flat O +position O +. O + + +The O +build B-PARA +direction E-PARA +is O +vertically O +upward O +and O +perpendicular O +to O +a O +horizontal O +worktable O +. O + + +However O +, O +it O +would O +be S-MATE +difficult O +to O +directly O +deposit O +complex O +parts O +with O +near O +horizontal O +‘ O +overhangs S-PARA +’ O +, O +and O +temporary O +supports S-APPL +may O +be S-MATE +required O +. O + + +Thus O +, O +it O +is O +necessary O +to O +find O +an O +alternative O +approach O +for O +the O +deposition S-CONPRI +of O +‘ O +overhangs S-PARA +’ O +without O +extra O +support S-APPL +in O +order O +to O +simplify O +the O +deposition S-CONPRI +set-up O +. O + + +This O +paper O +proposed O +a O +fabrication S-MANP +method O +of O +producing O +metallic B-MACEQ +parts E-MACEQ +with O +overhanging B-CONPRI +structures E-CONPRI +using O +the O +multi-directional O +wire B-MANP +arc I-MANP +additive I-MANP +manufacturing E-MANP +. O + + +Firstly O +, O +based O +on O +the O +metal S-MATE +droplet S-CONPRI +kinetics O +and O +weld B-PARA +bead I-PARA +geometry E-PARA +, O +two O +different O +Gas B-MANP +Metal I-MANP +Arc I-MANP +Welding E-MANP +( O +GMAW S-MANP +) O +metal S-MATE +transfer O +modes O +, O +namely O +short O +circuit O +transfer O +and O +free O +flight O +transfer O +, O +were O +evaluated O +for O +the O +multi-directional O +wire B-MANP +arc I-MANP +additive I-MANP +manufacturing E-MANP +. O + + +Subsequently O +, O +the O +effects O +of O +process B-CONPRI +parameters E-CONPRI +, O +including O +wire O +feed S-PARA +speed O +( O +WFS O +) O +, O +torch O +travel O +speed O +( O +TS O +) O +, O +nozzle S-MACEQ +to O +work O +distance O +( O +NTWD O +) O +and O +torch O +angle O +, O +on O +the O +stability S-PRO +of O +positional O +deposition S-CONPRI +were O +investigated O +. O + + +Finally O +, O +the O +effectiveness S-CONPRI +of O +the O +proposed O +strategy O +was O +verified O +by O +fabricating S-MANP +three O +complex O +samples S-CONPRI +with O +overhangs S-PARA +. O + + +Wire B-MANP +Arc I-MANP +Additive I-MANP +Manufacturing E-MANP +underwent O +remarkable O +development O +in O +the O +past O +decade O +. O + + +In O +the O +present O +work O +effect O +of O +welding S-MANP +parameters S-CONPRI +on O +additively O +deposited B-CHAR +layer E-CHAR +width O +is O +investigated O +. O + + +MIG B-MANP +welding E-MANP +is O +chosen O +for O +the O +present O +study O +and O +Inconel S-MATE +825 O +having O +high O +industrial S-APPL +application O +is O +selected O +as S-MATE +wire O +spool S-MACEQ +. O + + +This O +paper O +is O +concentrating O +on O +the O +effect O +of O +weld S-FEAT +parameters S-CONPRI +on O +additively O +deposited B-CHAR +layer E-CHAR +width O +using O +the O +Taguchi B-CONPRI +method E-CONPRI +. O + + +Waviness S-FEAT +, O +weld S-FEAT +cracks O +, O +porosity S-PRO +, O +and O +discontinuity O +of O +weld B-CONPRI +bead E-CONPRI +of O +a O +surface S-CONPRI +can O +be S-MATE +reduced O +by O +selection O +and O +optimising O +the O +parameters S-CONPRI +; O +otherwise O +, O +irregular O +shapes O +will O +come O +during O +the O +manufacturing S-MANP +of O +thin O +or O +thick O +wall O +construction S-APPL +by O +Wire B-MANP +Arc I-MANP +Additive I-MANP +Manufacturing E-MANP +. O + + +L9 O +Orthogonal O +array O +is O +used O +in O +Taguchi O +for O +the O +experimentation O +to O +analyze O +input O +parameters S-CONPRI +, O +namely O +, O +Welding S-MANP +speed O +, O +Wire O +feed S-PARA +speed O +and O +Voltage O +. O + + +Best O +parameter S-CONPRI +combination O +and O +significant O +parameters S-CONPRI +are O +obtained O +from O +the O +main O +effect O +plot O +and O +analysis O +of O +variance O +respectively O +. O + + +A O +mathematical S-CONPRI +model O +on O +the O +response O +variable O +is O +generated O +using O +a O +linear O +regression B-CONPRI +model E-CONPRI +. O + + +At O +0.55 O +m/min O +welding S-MANP +velocity O +, O +4 O +m/min O +Wire O +feed S-PARA +speed O +and O +18 O +V S-MATE +Voltage O +is O +having O +least O +bead B-CHAR +Width E-CHAR +of O +3.07 O +mm S-MANP +length O +. O + + +0.25 O +m/min O +welding S-MANP +velocity O +, O +8 O +m/min O +Wire O +feed S-PARA +speed O +and O +28 O +V S-MATE +Voltage O +is O +having O +highest O +bead B-CHAR +Width E-CHAR +of O +15.83 O +mm S-MANP +length O +. O + + +Confirmation O +tests O +are O +carried O +out O +after O +obtaining O +optimized O +parameters S-CONPRI +and O +results O +are O +correlated S-CONPRI +with O +obtained O +results O +. O + + +Wire O +based O +Additive B-MANP +Manufacturing E-MANP +provides O +an O +attractive O +option O +to O +powder-based O +processes S-CONPRI +due O +to O +their O +high B-PARA +deposition I-PARA +rates E-PARA +. O + + +In O +the O +present O +work O +effect O +of O +welding S-MANP +parameters S-CONPRI +on O +pre-positioned O +wire O +Electron B-CONPRI +Beam E-CONPRI +additively O +deposited B-CHAR +layer E-CHAR +width O +is O +investigated O +. O + + +Electron B-MANP +Beam I-MANP +welding E-MANP +is O +chosen O +for O +the O +present O +study O +and O +Ti6Al4V S-MATE +having O +high O +aerospace S-APPL +application O +is O +selected O +as S-MATE +filler O +wire O +. O + + +This O +paper O +concentrates O +on O +the O +effect O +of O +weld S-FEAT +parameters S-CONPRI +on O +additively O +deposited B-CHAR +layer E-CHAR +width O +using O +the O +Taguchi B-CONPRI +method E-CONPRI +. O + + +Unacceptable O +weld S-FEAT +cracks O +, O +porosity S-PRO +, O +and O +discontinuity O +of O +weld B-CONPRI +bead E-CONPRI +of O +a O +surface S-CONPRI +can O +be S-MATE +reduced O +by O +selection O +and O +optimizing O +the O +parameters S-CONPRI +; O +otherwise O +, O +irregular O +shapes O +will O +come O +during O +the O +manufacturing S-MANP +of O +thin O +or O +thick O +wall O +construction S-APPL +by O +Wire O +Electron B-MANP +Beam I-MANP +Additive I-MANP +Manufacturing E-MANP +. O + + +L9 O +Orthogonal O +array O +is O +used O +in O +Taguchi O +for O +the O +experimentation O +to O +analyze O +input O +parameters S-CONPRI +, O +namely O +, O +Welding S-MANP +speed O +, O +Accelerating O +voltage O +and O +Beam S-MACEQ +current O +. O + + +Best O +parameter S-CONPRI +combination O +and O +significant O +parameters S-CONPRI +are O +obtained O +from O +the O +main O +effect O +plot O +and O +analysis O +of O +variance O +respectively O +. O + + +A O +mathematical S-CONPRI +model O +on O +the O +response O +variable O +is O +generated O +using O +a O +linear O +regression B-CONPRI +model E-CONPRI +. O + + +At O +700 O +mm/min O +welding S-MANP +speed O +, O +138 O +kV O +accelerating O +voltage O +and O +05 O +mA O +beam S-MACEQ +current O +is O +having O +least O +bead B-CHAR +Width E-CHAR +of O +2.30222 O +mm S-MANP +length O +. O + + +500 O +mm/min O +welding S-MANP +speed O +, O +142 O +kV O +accelerating O +voltage O +and O +09 O +mA O +beam S-MACEQ +current O +is O +having O +highest O +bead B-CHAR +Width E-CHAR +of O +4.09 O +mm S-MANP +length O +. O + + +Confirmation O +tests O +are O +carried O +out O +after O +obtaining O +optimized O +parameters S-CONPRI +and O +results O +are O +correlated S-CONPRI +with O +obtained O +results O +. O + + +Comparison O +between O +laser B-MANP +welding E-MANP +and O +laser-based B-MANP +additive I-MANP +manufacturing E-MANP +parameters O +is O +established O +. O + + +Major O +process B-CONPRI +parameters E-CONPRI +during O +laser-based B-MANP +additive I-MANP +manufacturing E-MANP +and O +their O +influence O +are O +discussed O +. O + + +Remedies O +for O +avoid O +several O +problems O +found O +during O +additive B-MANP +manufacturing E-MANP +are O +proposed O +. O + + +As S-MATE +metallic O +additive B-MANP +manufacturing E-MANP +grew O +in O +sophistication O +, O +users O +have O +requested O +greater O +control O +over O +the O +systems O +, O +namely O +the O +ability O +to O +fully O +change O +the O +process B-CONPRI +parameters E-CONPRI +. O + + +The O +goal O +of O +this O +manuscript S-CONPRI +is O +to O +review O +the O +effects O +of O +major O +process B-CONPRI +parameters E-CONPRI +on O +build S-PARA +quality O +( O +porosity S-PRO +, O +residual B-PRO +stress E-PRO +, O +and O +composition S-CONPRI +changes O +) O +and O +materials S-CONPRI +properties O +( O +microstructure S-CONPRI +and O +microsegregation S-CONPRI +) O +, O +and O +to O +serve O +as S-MATE +a O +guide O +on O +how O +these O +parameters S-CONPRI +may O +be S-MATE +modified O +to O +achieve O +specific O +design S-FEAT +goals O +for O +a O +given O +part O +. O + + +The O +focus O +of O +this O +paper O +is O +on O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +, O +but O +elements S-MATE +can O +be S-MATE +applied O +to O +electron B-CONPRI +beam E-CONPRI +powder O +bed B-MANP +fusion E-MANP +or O +direct B-MANP +energy I-MANP +deposition E-MANP +techniques O +. O + + +Stellite-6 O +FSW S-MANP +tools O +were O +developed O +on O +H13 B-MATE +steel E-MATE +by O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +. O + + +Tool S-MACEQ +performance S-CONPRI +was O +evaluated O +in O +friction S-CONPRI +stir O +welding/ O +processing O +of O +CuCrZr O +. O + + +No O +tool B-CONPRI +wear E-CONPRI +or O +plastic B-PRO +deformation E-PRO +was O +observed O +on O +Stellite-6 O +tool S-MACEQ +. O + + +This O +performed O +better O +than O +H13 S-MATE +as-received O +, O +heat S-CONPRI +treated O +and O +laser S-ENAT +remelted O +tools S-MACEQ +. O + + +Tool B-CONPRI +wear E-CONPRI +and O +failure B-PRO +mechanism E-PRO +investigated O +in O +conventional O +and O +AM S-MANP +tools O +. O + + +In O +the O +recent O +time O +friction B-MANP +stir I-MANP +welding E-MANP +( O +FSW S-MANP +) O +, O +a O +solid B-MANP +state I-MANP +welding E-MANP +process S-CONPRI +has O +rapidly O +gained O +attention O +for O +joining S-MANP +high O +melting B-PRO +point E-PRO +materials S-CONPRI +like O +Cu S-MATE +, O +Fe S-MATE +, O +Ti S-MATE +and O +their O +alloys S-MATE +apart O +from O +Al B-MATE +alloys E-MATE +due O +to O +its O +several O +advantages O +over O +fusion B-MANP +welding E-MANP +techniques O +. O + + +AISI O +H13 S-MATE +, O +a O +versatile O +chromium–molybdenum O +hot O +work O +hardened S-MANP +steel O +, O +has O +been O +the O +most O +commonly O +used O +as S-MATE +a O +tool S-MACEQ +material S-MATE +for O +aluminium B-MATE +alloys E-MATE +. O + + +However O +, O +low O +tool B-CONPRI +life E-CONPRI +due O +to O +plastic B-PRO +deformation E-PRO +and O +wear S-CONPRI +at O +elevated O +temperatures S-PARA +is O +limiting O +its O +application O +in O +welding S-MANP +of O +high O +melting B-PRO +point E-PRO +materials S-CONPRI +. O + + +In O +the O +present O +work O +the O +performances O +of O +as-received O +, O +heat S-CONPRI +treated O +, O +laser S-ENAT +remelted O +and O +Stellite S-MATE +6 O +hardfaced O +H13 B-MATE +steel E-MATE +tools O +in O +friction S-CONPRI +stir O +processing O +( O +FSP O +) O +of O +CuCrZr O +have O +been O +investigated O +. O + + +Stellite S-MATE +6 O +hardfaced O +FSW S-MANP +tools O +are O +developed O +by O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +process S-CONPRI +on O +H13 B-MATE +steel E-MATE +as S-MATE +a O +base O +material S-MATE +. O + + +In O +all O +these O +cases O +except O +the O +Stellite S-MATE +6 O +hardfaced O +tool S-MACEQ +, O +the O +shoulder O +and O +pin O +are O +found O +to O +deform O +plastically O +with O +significant O +wear S-CONPRI +of O +shoulder O +along O +with O +the O +diffusion S-CONPRI +of O +CuCrZr O +into O +tool S-MACEQ +from O +tool S-MACEQ +pin-shoulder O +interface S-CONPRI +. O + + +However O +, O +tools S-MACEQ +developed O +by O +AM B-MANP +process E-MANP +are O +found O +to O +remain O +intact O +without O +any O +significant O +deformation S-CONPRI +or O +wear S-CONPRI +. O + + +GMAW S-MANP +( O +Gas B-MANP +Metal I-MANP +Arc I-MANP +Welding E-MANP +) O +of O +titanium S-MATE +is O +not O +currently O +used O +in O +industry S-APPL +due O +to O +the O +high O +levels O +of O +spatter S-CHAR +generation O +, O +the O +wandering O +of O +the O +welding S-MANP +arc S-CONPRI +and O +the O +consequent O +waviness S-FEAT +of O +the O +weld B-CONPRI +bead E-CONPRI +. O + + +This O +paper O +reports O +on O +the O +use O +of O +laser B-MANP +welding E-MANP +in O +conduction O +mode O +to O +stabilize O +the O +CMT S-MANP +( O +Cold B-MANP +Metal I-MANP +Transfer E-MANP +) O +, O +a O +low O +heat S-CONPRI +input O +GMAW S-MANP +process O +. O + + +The O +stabilization S-CONPRI +and O +reshaping O +of O +Ti-6Al-4 B-MATE +V E-MATE +weld O +beads S-CHAR +was O +verified O +for O +laser S-ENAT +hybrid O +GMAW S-MANP +bead S-CHAR +on O +plate O +deposition S-CONPRI +. O + + +The O +laser B-CONPRI +beam E-CONPRI +was O +defocused O +, O +used O +in O +conduction O +mode O +, O +and O +was O +positioned O +concentric O +with O +the O +welding S-MANP +wire O +and O +the O +welding S-MANP +arc S-CONPRI +( O +CMT S-MANP +) O +.Finally O +, O +the O +results O +obtained O +for O +bead-on-plate O +welding S-MANP +were O +applied O +to O +an O +additively B-MANP +manufactured E-MANP +structure O +, O +in O +which O +a O +laser-hybrid O +stabilized O +sample S-CONPRI +was O +built O +and O +then O +evaluated O +against O +CMT-only O +sample S-CONPRI +. O + + +This O +work O +reveals O +that O +laser S-ENAT +can O +be S-MATE +used O +to O +stabilize O +the O +welding S-MANP +process S-CONPRI +, O +improve O +the O +weld-bead S-FEAT +shape O +of O +single O +and O +multiple O +layer S-PARA +depositions O +and O +increase O +the O +deposition B-PARA +rate E-PARA +of O +additive B-MANP +manufacture E-MANP +of O +Ti-6Al-4 B-MATE +V E-MATE +from1.7 O +kg/h O +to O +2.0 O +kg/h O +. O + + +Additive B-MANP +Manufacturing E-MANP +is O +an O +established O +process S-CONPRI +group O +that O +includes O +various O +technologies S-CONPRI +. O + + +In O +contrast O +to O +subtractive S-MANP +methods O +, O +complex O +components S-MACEQ +can O +be S-MATE +produced O +by O +applying O +layers O +of O +construction S-APPL +materials O +. O + + +In O +accordance O +with O +the O +standard S-CONPRI +VDI O +Guideline O +3405 O +, O +additive B-MANP +manufacturing E-MANP +technologies O +can O +be S-MATE +differentiated O +into O +wire- O +and O +powder-based O +technologies S-CONPRI +. O + + +The O +basis O +for O +these O +experimental S-CONPRI +investigations O +is O +a O +Wire B-MANP +Arc I-MANP +Additive I-MANP +Manufacturing E-MANP +( O +WAAM S-MANP +) O +process S-CONPRI +with O +a O +high O +build-up O +rate O +( O +Cold B-MANP +Metal I-MANP +Transfer E-MANP +- O +CMT S-MANP +) O +to O +produce O +a O +rectangular O +thin-walled B-APPL +component E-APPL +made O +of O +G4Si1 O +( O +1.5130 O +) O +. O + + +In O +order O +to O +analyze O +the O +influence O +of O +a O +subsequent O +forming B-MANP +process E-MANP +on O +the O +microstructural S-CONPRI +properties O +and O +the O +forming S-MANP +behavior O +of O +the O +components S-MACEQ +, O +compression B-CHAR +tests E-CHAR +were O +carried O +out O +. O + + +Therefore O +, O +cylindrical S-CONPRI +specimens O +were O +made O +out O +of O +the O +additively B-MANP +manufactured E-MANP +components O +by O +machining S-MANP +. O + + +To O +be S-MATE +able O +to O +take O +a O +possible O +anisotropy S-PRO +in O +the O +workpiece S-CONPRI +caused O +by O +the O +multi-layer O +welding S-MANP +into O +account O +, O +the O +samples S-CONPRI +were O +taken O +both O +along O +and O +across O +the O +welding S-MANP +direction O +. O + + +To O +evaluate O +the O +inhomogeneous O +component S-MACEQ +properties O +, O +cast S-MANP +specimens O +with O +a O +representative O +microstructure S-CONPRI +were O +produced O +by O +inductive O +melting S-MANP +of O +the O +filler O +material S-MATE +and O +subsequent O +a O +solidification S-CONPRI +with O +an O +appropriate O +cooling B-PARA +rate E-PARA +. O + + +In O +addition O +to O +the O +cold B-MANP +forming E-MANP +of O +the O +additively B-MANP +manufactured E-MANP +components O +, O +the O +investigation O +also O +includes O +hot B-MANP +forming E-MANP +and O +the O +influence O +of O +a O +corresponding O +heat B-MANP +treatment E-MANP +. O + + +The O +experimental S-CONPRI +examination O +was O +completed O +by O +the O +analysis O +of O +the O +microstructure S-CONPRI +of O +each O +material S-MATE +state.The O +aim O +of O +the O +research S-CONPRI +work O +was O +to O +prove O +the O +homogenization S-MANP +and O +optimization S-CONPRI +of O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +additive B-MANP +manufactured E-MANP +components O +due O +to O +a O +subsequent O +forming B-MANP +process E-MANP +. O + + +Highlight O +An O +experimental S-CONPRI +work O +to O +investigate O +the O +formation O +of O +the O +humping O +phenomena O +in O +the O +positional O +deposition S-CONPRI +using O +WAAM S-MANP +. O + + +Mechanism S-CONPRI +of O +humping O +formation O +is O +analysed O +to O +explain O +humping O +occurrence O +for O +positional O +deposition S-CONPRI +. O + + +The O +impacts O +of O +welding S-MANP +parameters S-CONPRI +and O +positions O +on O +humping O +formation O +are O +investigated O +through O +a O +series O +of O +tests O +. O + + +A O +series O +of O +guidelines O +are O +summarised O +to O +assist O +the O +path B-ENAT +planning E-ENAT +and O +process B-CONPRI +parameter E-CONPRI +selection O +processes S-CONPRI +in O +multi-directional O +WAAM S-MANP +. O + + +Wire B-MANP +Arc I-MANP +Additive I-MANP +Manufacturing E-MANP +( O +WAAM S-MANP +) O +is O +a O +promising O +technology S-CONPRI +for O +fabricating S-MANP +medium O +to O +large O +scale O +metallic B-MACEQ +parts E-MACEQ +with O +excellent O +productivity S-CONPRI +and O +flexibility S-PRO +. O + + +Due O +to O +the O +positional O +capability O +of O +some O +welding S-MANP +processes S-CONPRI +, O +WAAM S-MANP +is O +able O +to O +deposit O +parts O +with O +overhanging B-FEAT +features E-FEAT +in O +an O +arbitrary O +direction O +without O +additional O +support B-FEAT +structures E-FEAT +. O + + +There O +has O +been O +significant O +research S-CONPRI +on O +the O +humping O +phenomenon O +in O +the O +downhand O +welding S-MANP +, O +but O +it O +is O +doubtful O +whether O +the O +existing O +theories O +of O +humping O +formation O +can O +be S-MATE +applied O +in O +the O +positional O +deposition S-CONPRI +during O +WAAM S-MANP +process S-CONPRI +. O + + +This O +study O +has O +therefore O +provided O +an O +experimental S-CONPRI +work O +to O +investigate O +the O +formation O +of O +the O +humping O +phenomena O +in O +the O +positional O +deposition S-CONPRI +during O +additive B-MANP +manufacturing E-MANP +with O +the O +gas B-MANP +metal I-MANP +arc I-MANP +welding E-MANP +. O + + +Firstly O +, O +the O +mechanism S-CONPRI +of O +humping O +formation O +was O +analysed O +to O +explain O +humping O +occurrence O +for O +positional O +deposition S-CONPRI +. O + + +Then O +, O +the O +mechanism S-CONPRI +was O +validated O +through O +experiments O +with O +different O +welding S-MANP +parameters S-CONPRI +and O +positions O +. O + + +Finally O +, O +a O +series O +of O +guidelines O +are O +summarised O +to O +assist O +the O +path B-ENAT +planning E-ENAT +and O +process B-CONPRI +parameter E-CONPRI +selection O +processes S-CONPRI +in O +multi-directional O +WAAM S-MANP +. O + + +Automated O +weld S-FEAT +deposition S-CONPRI +coupled O +with O +the O +real-time O +robotic O +NDT S-CONPRI +is O +discussed O +. O + + +An O +intentionally O +embedded O +defect S-CONPRI +, O +a O +tungsten S-MATE +rod S-MACEQ +, O +is O +introduced O +for O +verification S-CONPRI +. O + + +A O +partially-filled O +groove O +sample S-CONPRI +is O +also O +manufactured S-CONPRI +and O +ultrasonically O +tested O +. O + + +For O +performance S-CONPRI +verification O +of O +the O +in-process O +inspection S-CHAR +system O +, O +an O +intentionally O +embedded O +defect S-CONPRI +, O +a O +tungsten S-MATE +rod S-MACEQ +, O +is O +introduced O +into O +the O +multi-pass O +weld S-FEAT +. O + + +A O +partially-filled O +groove O +( O +staircase O +) O +sample S-CONPRI +is O +also O +manufactured S-CONPRI +and O +ultrasonically O +tested O +to O +calibrate O +the O +real-time O +inspection S-CHAR +implemented O +on O +all O +seven O +layers O +of O +the O +weld S-FEAT +which O +are O +deposited O +progressively O +. O + + +The O +tungsten S-MATE +rod S-MACEQ +is O +successfully O +detected O +in O +the O +real-time O +NDE O +of O +the O +deposited O +position O +. O + + +Non-weldable O +Ni-based O +superalloy O +Alloy713ELC O +could O +be S-MATE +fabricated O +by O +electron B-MANP +beam I-MANP +melting E-MANP +. O + + +Process S-CONPRI +condition O +could O +be S-MATE +efficiently O +optimized O +by O +using O +support S-APPL +vector O +machine S-MACEQ +. O + + +Additive B-MANP +manufactured E-MANP +Alloy713ELC O +showed O +columnar B-PRO +grain E-PRO +along O +building B-PARA +direction E-PARA +. O + + +Additive B-MANP +manufactured E-MANP +Alloy713ELC O +showed O +good O +ductility S-PRO +along O +building B-PARA +direction E-PARA +. O + + +Additive B-MANP +manufactured E-MANP +Alloy713ELC O +showed O +good O +creep S-PRO +properties O +along O +building B-PARA +direction E-PARA +. O + + +An O +efficient O +optimization S-CONPRI +method O +based O +on O +a O +support S-APPL +vector O +machine S-MACEQ +( O +SVM O +) O +is O +used O +to O +optimize O +multiple O +process B-CONPRI +parameters E-CONPRI +of O +selective B-MANP +electron I-MANP +beam I-MANP +melting E-MANP +( O +SEBM S-MANP +) O +for O +a O +non-weldable O +nickel-base B-MATE +superalloy E-MATE +Alloy713ELC O +. O + + +The O +global O +optimum O +condition O +and O +the O +near O +optimum O +conditions O +are O +extracted S-CONPRI +to O +fabricate S-MANP +SEBM O +samples S-CONPRI +. O + + +All O +the O +SVM O +optimized O +conditions O +lead S-MATE +to O +near O +net O +shaped O +samples S-CONPRI +with O +even O +top O +surfaces S-CONPRI +. O + + +The O +sample S-CONPRI +fabricated S-CONPRI +under O +the O +global O +optimum O +condition O +for O +sample S-CONPRI +dimension S-FEAT +of O +10 O +mm S-MANP +exhibits O +pore-less O +cross-sections S-CONPRI +, O +columnar B-PRO +grains E-PRO +with O +fine O +γ′ O +precipitates S-MATE +and O +fine O +substructure O +, O +a O +small O +amount O +of O +grain B-PRO +boundary I-PRO +crack E-PRO +and O +excellent O +room O +temperature S-PARA +tensile O +properties S-CONPRI +. O + + +The O +samples B-CONPRI +fabricated E-CONPRI +under O +the O +global O +optimum O +condition O +and O +a O +near O +optimum O +condition O +with O +increased O +beam S-MACEQ +current O +for O +sample S-CONPRI +dimension S-FEAT +of O +15 O +mm S-MANP +exhibit O +excellent O +creep S-PRO +properties O +under O +980 O +°C O +. O + + +In O +both O +the O +two O +situations O +for O +sample S-CONPRI +dimensions S-FEAT +of O +10 O +mm S-MANP +and O +15 O +mm S-MANP +, O +SEBM S-MANP +samples S-CONPRI +with O +mechanical B-CONPRI +properties E-CONPRI +superior O +to O +conventional O +cast S-MANP +alloys S-MATE +can O +be S-MATE +achieved O +by O +testing S-CHAR +only O +1–3 O +SVM O +optimized O +conditions O +. O + + +We O +demonstrate O +the O +current O +method O +is O +effective O +for O +optimizing O +SEBM S-MANP +process S-CONPRI +, O +especially O +when O +multiple O +parameters S-CONPRI +need O +to O +be S-MATE +considered O +simultaneously O +. O + + +Besides O +, O +this O +method O +can O +rapidly O +provide O +not O +only O +a O +batch O +of O +conditions O +leading O +to O +samples S-CONPRI +with O +good O +top O +surfaces S-CONPRI +but O +also O +the O +optimum O +conditions O +leading O +to O +good O +building O +quality S-CONPRI +and O +superior O +mechanical B-CONPRI +properties E-CONPRI +. O + + +In O +gas B-MANP +tungsten I-MANP +arc I-MANP +welding E-MANP +( O +GTAW S-MANP +) O +based O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +, O +omni-directional O +deposition S-CONPRI +with O +side O +feeding O +is O +common O +when O +depositing O +complex O +parts O +, O +which O +is O +different O +from O +the O +gas B-MANP +metal I-MANP +arc I-MANP +welding E-MANP +( O +GMAW S-MANP +) O +. O + + +While O +side O +feeding O +may O +lead S-MATE +to O +unstable O +deposition B-MANP +process E-MANP +and O +deposition S-CONPRI +deviation O +. O + + +In O +this O +paper O +, O +a O +wire O +melting S-MANP +simulation O +model S-CONPRI +was O +established O +to O +analyse O +the O +behaviour O +of O +the O +wire O +in O +the O +arc S-CONPRI +column O +. O + + +An O +index O +of O +weld B-PARA +bead I-PARA +offset E-PARA +tolerance B-PARA +capacity E-PARA +is O +proposed O +to O +quantitatively S-CONPRI +analyse O +the O +sensitivity S-PARA +of O +the O +weld B-PARA +bead I-PARA +offset E-PARA +to O +the O +wire O +feed S-PARA +speed O +. O + + +Single-layer O +experiments O +were O +conducted O +to O +analyse O +the O +relationships O +between O +the O +deposition S-CONPRI +parameters O +and O +the O +weld S-FEAT +melting/bead O +offset S-CONPRI +. O + + +A O +multi-layer O +sample S-CONPRI +with O +an O +actual O +usable O +area S-PARA +ratio O +of O +95.11 O +% O +was O +deposited O +by O +using O +the O +proposed O +model S-CONPRI +and O +the O +optimized O +deposition S-CONPRI +parameters O +. O + + +The O +experimental S-CONPRI +results O +show O +that O +the O +control O +of O +the O +weld S-FEAT +melting S-MANP +offset O +is O +the O +key O +factor O +in O +realizing O +the O +stability S-PRO +and O +accuracy S-CHAR +of O +omni-directional O +GTAW-based O +AM S-MANP +. O + + +Advancement O +in O +manufacturing B-MANP +technology E-MANP +, O +prototyping S-CONPRI +, O +machining S-MANP +etc O +. O + + +are O +concerned O +with O +material S-MATE +optimization O +, O +process B-CONPRI +optimization E-CONPRI +, O +financial O +optimization S-CONPRI +and O +sustainable S-CONPRI +development O +. O + + +The O +current O +review O +on O +characterization O +, O +applications O +and O +process S-CONPRI +study O +of O +various O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +processes S-CONPRI +deals O +with O +the O +systematic O +use O +of O +resources O +in O +product B-CONPRI +development E-CONPRI +. O + + +The O +comprehensive O +description O +on O +additive B-MANP +manufacturing E-MANP +techniques O +, O +its O +applications O +and O +needs O +are O +illustrated O +. O + + +The O +attempt O +is O +to O +diagnose O +the O +research S-CONPRI +gap O +in O +the O +process S-CONPRI +study O +and O +to O +forecast O +the O +new O +methodology S-CONPRI +and O +applications O +in O +the O +all O +the O +field O +like O +automobile S-APPL +, O +aerospace S-APPL +, O +biomedical S-APPL +etc O +. O + + +through O +AM S-MANP +. O + + +The O +tool S-MACEQ +making O +for O +friction B-MANP +stir I-MANP +welding E-MANP +purpose O +, O +complex B-CONPRI +geometries E-CONPRI +, O +etc O +. O + + +were O +fabricated S-CONPRI +without O +increasing O +the O +overall O +cost O +through O +AM B-MANP +techniques E-MANP +. O + + +The O +applications O +of O +AM B-MANP +techniques E-MANP +in O +composite S-MATE +based O +materials S-CONPRI +are O +also O +characterized O +. O + + +The O +comparative O +analysis O +between O +subtractive S-MANP +and O +additive B-MANP +manufacturing E-MANP +are O +highlighted O +and O +future O +scope O +is O +tried O +to O +identify O +. O + + +Internal O +defects S-CONPRI +in O +additive B-MANP +manufactured E-MANP +Mo O +are O +analyzed O +. O + + +3D S-CONPRI +Computed O +Tomography O +is O +used O +to O +analyze O +the O +3D S-CONPRI +information O +. O + + +Volume S-CONPRI +and O +sphericity O +distribution S-CONPRI +of O +defects S-CONPRI +are O +studied O +. O + + +Formation O +mechanisms O +of O +different O +internal O +defects S-CONPRI +are O +proposed O +. O + + +Relationship O +between O +defects S-CONPRI +and O +process B-CONPRI +parameters E-CONPRI +is O +disclosed O +. O + + +Molybdenum S-MATE +( O +Mo S-MATE +) O +is O +an O +important O +high-temperature O +structural O +material S-MATE +but O +has O +poor O +processability O +. O + + +Additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +leads O +to O +a O +new O +possibility O +of O +fabricating S-MANP +Mo O +structural O +parts O +. O + + +However O +, O +a O +large O +number O +of O +internal O +defects S-CONPRI +appear O +during O +welding S-MANP +and O +AM B-MANP +processes E-MANP +in O +Mo S-MATE +and O +its O +alloys S-MATE +, O +which O +is O +far O +from O +well O +understood O +and O +has O +greatly O +limited O +their O +application O +. O + + +In O +this O +paper O +, O +the O +formation O +and O +evolution S-CONPRI +mechanisms O +of O +internal O +defects S-CONPRI +in O +Mo S-MATE +are O +systematically O +studied O +, O +based O +on O +the O +state-of-the-art S-CONPRI +high-resolution S-PARA +computed B-CHAR +tomography E-CHAR +. O + + +This O +study O +demonstrates O +three O +main O +types O +of O +defects S-CONPRI +in O +Mo S-MATE +: O +( O +1 O +) O +small O +spherical S-CONPRI +pores S-PRO +; O +( O +2 O +) O +inverted O +pear-shaped O +pores S-PRO +; O +and O +( O +3 O +) O +cavities O +. O + + +The O +first O +type O +is O +similar O +to O +the O +observation O +in O +welded S-MANP +Mo S-MATE +, O +while O +the O +last O +two O +types O +are O +not O +reported O +before O +, O +which O +are O +associated O +with O +the O +heat S-CONPRI +cycling O +process S-CONPRI +during O +AM S-MANP +. O + + +The O +formation O +mechanism S-CONPRI +of O +different O +types O +of O +internal O +defects S-CONPRI +is O +proposed O +based O +on O +the O +experimental S-CONPRI +observations O +. O + + +Material B-MANP +extrusion E-MANP +( O +MatEx O +) O +additive B-MANP +manufacturing E-MANP +ranges O +in O +size O +from O +the O +desktop O +scale O +fused B-MANP +filament I-MANP +fabrication E-MANP +( O +FFF S-MANP +) O +to O +the O +room O +scale O +big O +area S-PARA +additive B-MANP +manufacturing E-MANP +( O +BAAM O +) O +. O + + +The O +principles O +of O +how O +FFF S-MANP +and O +BAAM O +operate O +are O +similar O +– O +polymer B-MATE +feedstocks E-MATE +are O +heated O +until O +molten O +and O +then O +extruded S-MANP +to O +form O +three-dimensional S-CONPRI +parts O +through O +layer-by-layer S-CONPRI +additive B-MANP +manufacturing E-MANP +. O + + +This O +study O +compares O +heat B-CONPRI +transfer E-CONPRI +in O +FFF S-MANP +and O +BAAM O +using O +finite B-CONPRI +element E-CONPRI +thermal O +modeling S-ENAT +. O + + +Parameterization O +is O +performed O +across O +material B-CONPRI +properties E-CONPRI +, O +layer S-PARA +number O +, O +and O +print S-MANP +speed O +at O +the O +desktop O +and O +room O +scale O +for O +MatEx O +. O + + +BAAM O +stays O +hotter O +than O +FFF S-MANP +for O +a O +longer O +period O +of O +time O +, O +which O +facilitates O +interlayer O +diffusion S-CONPRI +and O +weld S-FEAT +formation O +, O +but O +can O +also O +lead S-MATE +to O +slumping O +or O +sagging O +. O + + +Changes O +in O +thermal B-CONPRI +diffusivity E-CONPRI +affect O +FFF S-MANP +more O +than O +BAAM O +, O +with O +FFF S-MANP +exhibiting O +a O +local O +maximum O +in O +weld S-FEAT +time O +at O +the O +thermal B-CONPRI +diffusivity E-CONPRI +of O +ABS S-MATE +. O + + +For O +BAAM O +, O +the O +temperature S-PARA +and O +thermal O +history O +of O +the O +center O +of O +an O +extruded S-MANP +bead S-CHAR +differs O +greatly O +from O +the O +surface S-CONPRI +of O +the O +bead S-CHAR +, O +which O +has O +important O +implications O +for O +process B-CONPRI +monitoring E-CONPRI +, O +property S-CONPRI +prediction S-CONPRI +, O +and O +part O +performance S-CONPRI +. O + + +Wire B-MANP +arc I-MANP +additive I-MANP +manufacturing E-MANP +, O +WAAM S-MANP +, O +is O +a O +popular O +wire-feed O +additive B-MANP +manufacturing E-MANP +technology O +that O +creates O +components S-MACEQ +through O +the O +deposition S-CONPRI +of O +material S-MATE +layer-by-layer S-CONPRI +. O + + +WAAM S-MANP +has O +become O +a O +promising O +alternative O +to O +conventional B-MANP +machining E-MANP +due O +to O +its O +high B-PARA +deposition I-PARA +rate E-PARA +, O +environmental O +friendliness O +and O +cost O +competitiveness O +. O + + +In O +this O +research S-CONPRI +work O +, O +a O +comparison O +is O +made O +between O +two O +different O +WAAM S-MANP +technologies S-CONPRI +, O +GMAW S-MANP +( O +gas B-MANP +metal I-MANP +arc I-MANP +welding E-MANP +) O +and O +PAW S-MANP +( O +plasma B-MANP +arc I-MANP +welding E-MANP +) O +. O + + +Comparative O +between O +processes S-CONPRI +is O +centered O +in O +the O +main O +variations S-CONPRI +while O +manufacturing S-MANP +Mn4Ni2CrMo O +steel S-MATE +walls O +concerning O +geometry S-CONPRI +and O +process B-CONPRI +parameters E-CONPRI +maintaining O +the O +same O +deposition S-CONPRI +ratio O +as S-MATE +well O +as S-MATE +the O +mechanical S-APPL +and O +metallographic O +properties S-CONPRI +obtained O +in O +the O +walls O +with O +both O +processes S-CONPRI +, O +in O +which O +the O +applied O +energy O +is O +significantly O +different O +. O + + +This O +study O +shows O +that O +acceptable O +mechanical S-APPL +characteristics O +are O +obtained O +in O +both O +processes S-CONPRI +compared O +to O +the O +corresponding O +forging S-MANP +standard O +for O +the O +tested O +material S-MATE +, O +values O +are O +23 O +% O +higher O +for O +UTS S-PRO +and O +56 O +% O +for O +elongation S-PRO +in O +vertical S-CONPRI +direction O +in O +the O +PAW S-MANP +process O +compared O +to O +GMAW S-MANP +( O +no O +differences O +in O +UTS S-PRO +and O +elongation S-PRO +results O +for O +horizontal O +direction O +and O +in O +Charpy O +for O +both O +directions O +) O +and O +without O +significant O +directional O +effects O +of O +the O +additive B-MANP +manufacturing E-MANP +technology O +used O +. O + + +Based O +on O +cold B-MANP +metal I-MANP +transfer E-MANP +welding O +, O +wire B-MANP +and I-MANP +arc I-MANP +additive I-MANP +manufacturing E-MANP +is O +used O +to O +manufacture S-CONPRI +9Cr O +ferritic/martensitic O +nuclear O +grade O +steel S-MATE +component S-MACEQ +for O +the O +first O +time O +. O + + +The O +microstructure S-CONPRI +mainly O +consists O +of O +untempered O +martensite S-MATE +laths O +showing O +columnar O +laths O +and O +equiaxed O +laths O +. O + + +Positions O +at O +different O +heights O +along O +the O +deposition B-PARA +direction E-PARA +have O +no O +significant O +influence O +on O +micro O +hardness S-PRO +and O +tensile B-PRO +properties E-PRO +. O + + +Tensile B-PRO +properties E-PRO +in O +the O +horizontal O +and O +vertical S-CONPRI +directions O +show O +anisotropy S-PRO +. O + + +Fracture S-CONPRI +surfaces O +mainly O +exhibit O +typical O +mixed O +mode O +fracture S-CONPRI +. O + + +Wire B-MANP +and I-MANP +arc I-MANP +additive I-MANP +manufacturing E-MANP +( O +WAAM S-MANP +) O +technology S-CONPRI +was O +successfully O +applied O +to O +manufacture S-CONPRI +the O +9Cr O +ferritic/martensitic O +nuclear O +grade O +steel S-MATE +for O +the O +first O +time O +. O + + +With O +the O +purpose O +of O +revealing O +how O +microstructure S-CONPRI +and O +mechanical B-CONPRI +properties E-CONPRI +are O +affected O +by O +the O +different O +locations O +within O +the O +manufactured S-CONPRI +wall O +, O +cold B-MANP +metal I-MANP +transfer E-MANP +( O +CMT S-MANP +) O +welding S-MANP +was O +used O +as S-MATE +heat O +source S-APPL +, O +the O +microstructure S-CONPRI +and O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +additively B-MANP +manufactured E-MANP +9Cr O +ferritic/martensitic O +wall O +in O +the O +different O +locations O +have O +been O +investigated O +. O + + +The O +results O +show O +that O +the O +differences O +in O +the O +mechanical B-CONPRI +properties E-CONPRI +were O +related O +to O +the O +anisotropy S-PRO +in O +microstructure S-CONPRI +. O + + +The O +microstructure S-CONPRI +mainly O +consisted O +of O +untempered O +martensite S-MATE +laths O +showing O +columnar O +laths O +and O +equiaxed O +laths O +. O + + +As S-MATE +the O +height O +of O +the O +deposited O +wall O +increased O +, O +the O +microstructures S-MATE +exhibited O +differences O +. O + + +Positions O +at O +different O +heights O +had O +no O +significant O +influence O +on O +micro O +hardness S-PRO +and O +room-temperature O +tensile B-CHAR +testing E-CHAR +results O +. O + + +However O +, O +the O +tensile B-PRO +properties E-PRO +including O +the O +ultimate B-PRO +tensile I-PRO +strength E-PRO +, O +0.2 O +% O +offset S-CONPRI +yield O +strength S-PRO +and O +elongation S-PRO +exhibited O +anisotropy S-PRO +for O +the O +perpendicular O +to O +and O +parallel O +to O +the O +deposition B-PARA +direction E-PARA +. O + + +The O +defects S-CONPRI +and O +tensile S-PRO +fracture S-CONPRI +behavior O +were O +also O +analyzed O +carefully O +. O + + +The O +findings O +suggest O +that O +, O +despite O +the O +emergency O +of O +a O +few O +shortcomings O +, O +the O +WAAM S-MANP +technology S-CONPRI +is O +a O +feasible O +method O +to O +obtain O +9Cr O +ferritic/martensitic O +nuclear O +grade O +steel S-MATE +parts O +. O + + +Wire B-MANP +arc I-MANP +additive I-MANP +manufacturing E-MANP +( O +WAAM S-MANP +) O +is O +a O +metal B-MANP +additive I-MANP +manufacturing E-MANP +process O +based O +on O +gas B-MANP +metal I-MANP +arc I-MANP +welding E-MANP +and O +it O +is O +known O +to O +be S-MATE +economically O +convenient O +for O +large O +metal S-MATE +parts O +with O +low O +complexity S-CONPRI +. O + + +The O +main O +issue O +WAAM S-MANP +is O +the O +sensibility O +to O +heat B-PRO +accumulation E-PRO +, O +i.e. O +, O +a O +progressive O +increase O +in O +the O +internal O +energy O +of O +the O +workpiece S-CONPRI +due O +to O +the O +high O +heat S-CONPRI +input O +of O +the O +deposition B-MANP +process E-MANP +, O +that O +is O +responsible O +of O +excessive O +remelting O +of O +the O +lower O +layers O +and O +the O +related O +change O +in O +bead B-CHAR +geometry E-CHAR +. O + + +A O +promising O +technique O +to O +mitigate O +such O +issue O +is O +to O +use O +an O +air O +jet O +impinging O +on O +the O +deposited O +material S-MATE +to O +increase O +the O +rate O +of O +convective O +heat B-CONPRI +transfer E-CONPRI +. O + + +Different O +samples S-CONPRI +are O +manufactured S-CONPRI +using O +AWS O +ER70S-6 S-MATE +as S-MATE +filler O +material S-MATE +, O +using O +as S-MATE +cooling O +approaches O +free O +convection O +and O +air O +jet O +impingement O +, O +with O +different O +interlayer O +idle O +times O +. O + + +The O +measurement S-CHAR +of O +substrate S-MATE +temperatures O +has O +been O +used O +to O +validate O +the O +process B-ENAT +simulation E-ENAT +, O +used O +for O +obtaining O +the O +temperature S-PARA +field O +of O +the O +whole O +part O +. O + + +The O +results O +indicate O +that O +air O +jet O +impingement O +has O +a O +significant O +impact S-CONPRI +on O +the O +process S-CONPRI +, O +limiting O +the O +progressive O +increase O +in O +the O +interlayer O +temperature S-PARA +as S-MATE +compared O +to O +free O +convection O +cooling S-MANP +. O + + +From O +the O +results O +arise O +that O +the O +optimal O +idle O +time O +is O +30 O +s S-MATE +, O +as S-MATE +a O +compromise O +between O +productivity S-CONPRI +and O +reduction S-CONPRI +of O +heat B-PRO +accumulation E-PRO +, O +independently O +from O +the O +cooling S-MANP +strategy O +. O + + +Friction S-CONPRI +stir O +additive B-MANP +manufacturing E-MANP +( O +FSAM O +) O +was O +performed O +successfully O +using O +2 O +mm S-MANP +thick O +sheets S-MATE +of O +2195-T8 O +aluminum-lithium O +alloy S-MATE +. O + + +The O +influence O +of O +the O +tool S-MACEQ +pin O +shape O +and O +process B-CONPRI +parameters E-CONPRI +on O +the O +interfacial B-CONPRI +bonding E-CONPRI +features O +among O +the O +additive B-MANP +manufactured E-MANP +layers O +was O +discussed O +, O +and O +the O +effects O +of O +interfacial O +defects S-CONPRI +on O +the O +performances O +of O +the O +additive S-MATE +build O +were O +analyzed O +based O +on O +microstructures S-MATE +, O +hardness S-PRO +profiles O +, O +and O +mechanical B-CONPRI +property E-CONPRI +evaluations O +. O + + +It O +is O +shown O +that O +the O +shape O +of O +the O +tool S-MACEQ +pin O +is O +one O +of O +the O +key O +factors O +in O +influencing O +the O +bonding S-CONPRI +interface O +between O +two O +manufactured S-CONPRI +layers O +. O + + +The O +cylindrical S-CONPRI +pin O +and O +the O +conical O +pin O +with O +three O +flats O +are O +not O +suitable O +for O +the O +FSAM O +process S-CONPRI +since O +very O +poor O +material S-MATE +mixing O +features O +are O +produced O +along O +the O +bonding S-CONPRI +interface O +. O + + +Although O +the O +material S-MATE +mixing O +degree O +of O +bonding S-CONPRI +interface O +is O +obviously O +improved O +at O +the O +advancing O +side O +( O +AS S-MATE +) O +interface S-CONPRI +of O +the O +nugget O +zone O +( O +NZ O +) O +by O +using O +the O +convex O +featured O +pin O +or O +the O +pin O +with O +three O +concave O +arc S-CONPRI +grooves O +, O +the O +material S-MATE +mixing O +degree O +at O +the O +retreating O +side O +( O +RS O +) O +interface S-CONPRI +of O +the O +NZ O +is O +always O +insufficient O +. O + + +Meanwhile O +, O +the O +weak-bonding O +defects S-CONPRI +along O +the O +bonding S-CONPRI +interfaces O +could O +be S-MATE +formed O +, O +which O +are O +originated O +from O +the O +hooking O +defects S-CONPRI +on O +the O +RS O +. O + + +The O +weak-bonding O +defects S-CONPRI +are O +related O +to O +the O +oxides S-MATE +and O +impurities S-PRO +existing O +at O +the O +original O +bonding S-CONPRI +interfaces O +as S-MATE +well O +as S-MATE +the O +insufficient O +stirring O +action O +of O +the O +tool S-MACEQ +pin O +. O + + +The O +welding S-MANP +rotation O +speeds O +of O +800 O +, O +900 O +and O +1000 O +rpm O +for O +giving O +welding S-MANP +speed O +of O +100 O +mm/min O +were O +used O +in O +the O +additive B-MANP +manufacturing I-MANP +processes E-MANP +of O +2195-T8 O +aluminum-lithium O +alloy S-MATE +, O +in O +which O +the O +optimum O +microstructure S-CONPRI +is O +obtained O +with O +the O +rotation O +speed O +of O +800 O +rpm O +. O + + +The O +soften O +degree O +for O +the O +multilayered O +build S-PARA +is O +obvious O +, O +and O +the O +hardness S-PRO +profiles O +across O +the O +different O +bonding S-CONPRI +interfaces O +are O +always O +uneven O +. O + + +Meanwhile O +, O +compared O +with O +the O +AS S-MATE +interface O +, O +the O +fluctuation O +of O +the O +hardness S-PRO +value O +at O +the O +RS O +interface S-CONPRI +is O +greater O +. O + + +The O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +multilayered O +build S-PARA +are O +inhomogeneous O +, O +and O +the O +maximum O +tensile B-PRO +strength E-PRO +of O +the O +multilayered O +build S-PARA +is O +only O +reached O +the O +56.6 O +% O +of O +the O +base B-MATE +metal E-MATE +. O + + +The O +mechanical B-CONPRI +properties E-CONPRI +are O +closely O +associated O +with O +the O +soften O +tendency O +of O +the O +material S-MATE +and O +the O +degree O +of O +the O +amelioration O +of O +weak-bonding O +defect S-CONPRI +along O +the O +bonding S-CONPRI +interface O +. O + + +The O +influence O +of O +the O +addition O +of O +filler O +powder S-MATE +on O +the O +microstructure S-CONPRI +and O +properties S-CONPRI +of O +laser-welded O +Ti2AlNb O +joints O +was O +comparatively O +investigated O +using O +scanning B-CHAR +electron I-CHAR +microscopy E-CHAR +, O +transmission B-CHAR +electron I-CHAR +microscopy E-CHAR +, O +electron O +back O +scattered O +diffraction S-CHAR +, O +and O +tensile B-CHAR +tests E-CHAR +. O + + +The O +heat B-CONPRI +affected I-CONPRI +zone E-CONPRI +( O +HAZ S-CONPRI +) O +of O +laser-additive-welded O +joints O +was O +divided O +into O +B2 O +, O +B2 O ++ O +α2 O +, O +and O +B2 O ++ O +α2 O ++ O +O S-MATE +— O +three O +regions O +with O +increasing O +distance O +from O +the O +fusion S-CONPRI +line O +. O + + +The O +HAZ S-CONPRI +of O +laser-welded O +joints O +could O +only O +be S-MATE +divided O +into O +two O +regions O +, O +viz. O +, O +B2 O ++ O +α2 O +and O +B2 O ++ O +α2 O ++ O +O S-MATE +. O + + +The O +microstructure S-CONPRI +of O +the O +fusion B-CONPRI +zone E-CONPRI +was O +composed O +of O +a O +single O +B2 O +phase S-CONPRI +for O +both O +laser B-MANP +welding E-MANP +and O +laser-additive O +welding S-MANP +. O + + +Columnar B-PRO +grains E-PRO +were O +observed O +in O +the O +fusion B-CONPRI +zone E-CONPRI +of O +laser-welded O +joints O +, O +while O +the O +B2 O +grains S-CONPRI +in O +the O +fusion B-CONPRI +zone E-CONPRI +of O +laser-additive-welded O +joints O +were O +basically O +equiaxed O +. O + + +A O +misorientation O +angle O +distribution S-CONPRI +analysis O +showed O +that O +the O +fraction S-CONPRI +of O +high-angle O +grain B-CONPRI +boundaries E-CONPRI +of O +laser-additive-welded O +joints O +was O +higher O +than O +that O +of O +laser-welded O +joints O +. O + + +The O +addition O +of O +filler O +powder S-MATE +promoted O +heterogeneous B-CONPRI +nucleation E-CONPRI +during O +solidification S-CONPRI +in O +laser-additive O +welding S-MANP +. O + + +Following O +tensile B-CHAR +tests E-CHAR +at O +room O +temperature S-PARA +, O +failure S-CONPRI +tended O +to O +occur O +in O +the O +fusion B-CONPRI +zone E-CONPRI +of O +the O +laser-welded O +joints O +and O +in O +the O +HAZ S-CONPRI +of O +the O +laser-additive-welded O +joints O +. O + + +The O +laser-additive-welded O +joints O +exhibited O +better O +tensile B-PRO +properties E-PRO +because O +of O +the O +higher O +Mo S-MATE +content O +as S-MATE +well O +as S-MATE +the O +equiaxed O +microstructure S-CONPRI +of O +the O +fusion B-CONPRI +zone E-CONPRI +. O + + +A O +flat O +specimen O +and O +a O +curved O +specimen O +with O +a O +thickness O +of O +50 O +mm S-MANP +were O +excavated O +from O +a O +large O +circular O +wire+arc B-MANP +additive I-MANP +manufacturing E-MANP +( O +WAAM S-MANP +) O +mockup O +. O + + +The O +biaxial O +internal B-PRO +residual I-PRO +stress E-PRO +distributions S-CONPRI +in O +the O +specimens O +were O +measured O +using O +the O +two-cut O +contour S-FEAT +method O +. O + + +The O +stress B-PRO +distributions E-PRO +in O +the O +large O +circular O +WAAM S-MANP +mockup O +were O +deduced O +, O +and O +the O +effects O +of O +specimen O +shape O +and O +dimension S-FEAT +on O +the O +remnant O +stress B-PRO +distributions E-PRO +in O +the O +specimens O +were O +discussed O +. O + + +The O +investigated O +results O +show O +that O +the O +stress S-PRO +in O +the O +circular O +WAAM S-MANP +mockup O +has O +a O +similar O +distribution S-CONPRI +as S-MATE +that O +in O +thick O +multipass O +joints O +at O +the O +weld S-FEAT +centerline O +, O +the O +stress S-PRO +in O +the O +curved O +specimen O +extracted S-CONPRI +from O +a O +large O +circular O +WAAM S-MANP +mockup O +can O +reflect O +the O +stress B-PRO +distribution E-PRO +trend O +in O +the O +mockup O +. O + + +For O +specimens O +excavated O +from O +a O +large O +circular O +mockup O +, O +the O +specimen O +shape O +has O +no O +significant O +effect O +on O +the O +through-thickness O +axial O +stress B-PRO +distribution E-PRO +, O +while O +it O +has O +a O +significant O +effect O +on O +the O +hoop O +stress B-PRO +distribution E-PRO +. O + + +Carbon B-MATE +fiber E-MATE +reinforced O +plastic S-MATE +( O +CFRP O +) O +is O +an O +extremely O +beneficial O +composite B-MATE +material E-MATE +in O +the O +aerospace S-APPL +and O +automobile S-APPL +industries O +owing O +to O +its O +high-strength-to-weight O +ratio O +, O +high O +stiffness S-PRO +, O +lightweight S-CONPRI +, O +and O +corrosion B-CONPRI +resistance E-CONPRI +. O + + +A O +thin O +layer S-PARA +material O +such O +as S-MATE +Titanium O +( O +Ti S-MATE +) O +is O +often O +used O +along O +with O +CFRP O +laminates S-CONPRI +to O +address O +these O +issues O +. O + + +These O +techniques O +have O +several O +limitations O +including O +weight S-PARA +addition O +, O +stress B-CONPRI +cracking E-CONPRI +, O +delamination S-CONPRI +, O +and O +limited O +operating O +temperatures S-PARA +. O + + +These O +limitations O +can O +be S-MATE +readily O +addressed O +by O +the O +use O +of O +solid-state B-MANP +welding E-MANP +techniques O +based O +on O +ultrasonic O +energy O +. O + + +One O +such O +technique O +is O +the O +Ultrasonic B-MANP +Additive I-MANP +Manufacturing E-MANP +( O +UAM S-MANP +) O +process S-CONPRI +, O +which O +is O +capable O +of O +fabricating S-MANP +3D B-CONPRI +structures E-CONPRI +of O +CFRP/Ti O +laminar O +composites S-MATE +. O + + +Preliminary O +experimental S-CONPRI +studies O +proved O +the O +feasibility S-CONPRI +of O +using O +the O +UAM S-MANP +process S-CONPRI +to O +join O +CFRP/Ti O +stacks O +. O + + +Further O +development O +of O +this O +process S-CONPRI +needs O +a O +detailed O +investigation O +of O +the O +process B-CONPRI +parameters E-CONPRI +. O + + +This O +study O +aims O +to O +study O +the O +effect O +of O +critical O +process B-CONPRI +parameters E-CONPRI +including O +the O +ultrasonic O +energy O +and O +pre-surface O +roughness S-PRO +on O +the O +shear B-PRO +strength E-PRO +of O +the O +fabricated S-CONPRI +CFRP/Ti O +stacks O +using O +the O +UAM S-MANP +process S-CONPRI +. O + + +The O +study O +found O +that O +both O +ultrasonic O +energy O +and O +surface B-PRO +roughness E-PRO +have O +a O +positive O +impact S-CONPRI +on O +the O +resulting O +shear B-PRO +strengths E-PRO +of O +the O +UAM S-MANP +fabricated S-CONPRI +structures O +. O + + +Magnetic O +Arc S-CONPRI +Oscillation O +was O +applied O +during O +the O +construction S-APPL +of O +single-pass O +multi-layer O +walls O +of O +low B-MATE +carbon I-MATE +steel E-MATE +and O +Ti6Al4V S-MATE +by O +the O +Gas S-CONPRI +Tungsten O +Arc S-CONPRI +Welding-based O +Wire B-MANP +and I-MANP +Arc I-MANP +Additive I-MANP +Manufacturing E-MANP +process S-CONPRI +, O +and O +the O +influence O +on O +the O +geometry S-CONPRI +and O +the O +process S-CONPRI +stability O +was O +evaluated O +. O + + +The O +geometric O +features O +were O +assessed O +using O +transverse O +section O +macrographs O +and O +the O +effects O +of O +different O +patterns O +and O +frequencies O +of O +oscillation O +on O +the O +arc S-CONPRI +characteristics O +, O +metal S-MATE +transfer O +and O +weld B-CONPRI +pool E-CONPRI +behavior O +during O +the O +layer S-PARA +deposition S-CONPRI +were O +investigated O +using O +high O +speed O +and O +welding S-MANP +cameras O +. O + + +Furthermore O +, O +the O +distribution S-CONPRI +of O +material S-MATE +along O +the O +wall O +length O +becomes O +more O +homogeneous S-CONPRI +. O + + +An O +explanation O +of O +the O +effects O +of O +Magnetic O +Arc S-CONPRI +Oscillation O +on O +the O +wall O +geometry S-CONPRI +based O +on O +forces S-CONPRI +that O +act O +on O +the O +molten B-MATE +metal E-MATE +during O +layer S-PARA +deposition S-CONPRI +was O +made O +. O + + +Because O +of O +the O +swinging O +movement O +of O +the O +welding S-MANP +arc S-CONPRI +, O +the O +heat S-CONPRI +is O +distributed O +over O +a O +larger O +area S-PARA +, O +and O +the O +power S-PARA +density S-PRO +decreases O +. O + + +Thus O +, O +fewer O +previous O +layers O +are O +remelted O +, O +and O +the O +volume S-CONPRI +and O +the O +weight S-PARA +of O +the O +weld B-CONPRI +pool E-CONPRI +reduce O +. O + + +The O +weld B-CONPRI +pool E-CONPRI +temperature S-PARA +drops O +, O +and O +the O +surface B-PRO +tension E-PRO +force S-CONPRI +and O +the O +viscous O +friction S-CONPRI +increase O +. O + + +The O +distribution S-CONPRI +of O +arc B-PARA +pressure E-PARA +also O +becomes O +less O +concentrated O +, O +and O +the O +arc S-CONPRI +force O +on O +the O +molten B-MATE +metal E-MATE +decreases O +. O + + +Additionally O +, O +a O +magnetic O +force S-CONPRI +appears O +on O +the O +molten B-MATE +metal E-MATE +, O +which O +contributes O +to O +a O +change O +in O +the O +direction O +of O +the O +resultant B-PARA +force E-PARA +on O +the O +weld B-CONPRI +pool E-CONPRI +. O + + +The O +article O +presents O +new O +findings O +on O +arc S-CONPRI +stability O +in O +twin-wire O +robotic O +arc B-MANP +welding E-MANP +corresponding O +to O +the O +torch O +orientation S-CONPRI +and O +electrodes S-MACEQ +' O +position O +. O + + +The O +two O +mutually O +influencing O +co-existing O +arcs O +affect O +the O +stability S-PRO +of O +counterpart O +arc S-CONPRI +, O +and O +thereby O +alter O +the O +weld B-CONPRI +bead E-CONPRI +properties S-CONPRI +. O + + +The O +investigation O +divulges O +that O +electrode S-MACEQ +positions O +and O +torch O +orientation S-CONPRI +significantly O +impact B-CONPRI +arc E-CONPRI +stability O +which O +in O +turn O +impacts O +the O +heat S-CONPRI +input O +and O +weld B-PARA +bead I-PARA +geometry E-PARA +. O + + +The O +arc S-CONPRI +penetration O +in O +tandem O +orientation S-CONPRI +is O +augmented O +by O +the O +secondary O +arc S-CONPRI +that O +operates O +in O +the O +same O +weld B-CONPRI +pool E-CONPRI +. O + + +While O +the O +transverse O +orientation S-CONPRI +improves O +the O +arc S-CONPRI +stability O +and O +facilitates O +a O +wider O +weld B-CONPRI +bead E-CONPRI +with O +reasonable O +weld S-FEAT +penetration S-CONPRI +suitable O +for O +applications O +such O +as S-MATE +wire O +additive B-MANP +manufacturing E-MANP +and O +cladding S-MANP +. O + + +An O +approach O +for O +predicting O +arc S-CONPRI +stability O +as S-MATE +a O +function O +of O +process B-CONPRI +parameters E-CONPRI +is O +a O +significant O +contribution O +from O +this O +investigation O +. O + + +The O +insight O +into O +the O +arching O +phenomenon O +in O +twin-wire O +gas B-MANP +metal I-MANP +arc I-MANP +welding E-MANP +due O +to O +the O +investigation O +is O +expected O +to O +help O +the O +machine S-MACEQ +builders O +to O +design S-FEAT +an O +appropriate O +controller S-MACEQ +that O +minimizes O +arc S-CONPRI +interference O +. O + + +This O +study O +presents O +investigations O +on O +the O +additive B-MANP +manufacturing E-MANP +of O +hot B-MATE +work I-MATE +steel E-MATE +with O +the O +energy-reduced O +gas B-MANP +metal I-MANP +arc I-MANP +welding E-MANP +( O +GMAW S-MANP +) O +process S-CONPRI +, O +which O +is O +a O +cold B-MANP +metal I-MANP +transfer E-MANP +( O +CMT S-MANP +) O +process S-CONPRI +. O + + +The O +paper O +analyses O +the O +influence O +of O +arc S-CONPRI +energy O +and O +the O +thermal O +field O +on O +the O +resulting O +mechanical B-CONPRI +properties E-CONPRI +and O +microstructure S-CONPRI +of O +the O +material S-MATE +. O + + +The O +investigations O +were O +carried O +out O +with O +hot O +work O +tool S-MACEQ +steel S-MATE +X37CrMoV O +5-1 O +, O +which O +is O +used O +for O +the O +manufacturing S-MANP +of O +plastic S-MATE +moulds S-MACEQ +, O +hot B-MANP +extrusion E-MANP +dies S-MACEQ +, O +and O +forging S-MANP +dies S-MACEQ +. O + + +The O +results O +show O +that O +this O +steel S-MATE +can O +be S-MATE +used O +to O +generate O +3D S-CONPRI +metal O +components S-MACEQ +or O +structures O +with O +high O +reproducibility S-CONPRI +, O +near-net-shaped O +geometry S-CONPRI +, O +absence O +of O +cracks O +, O +and O +a O +deposition B-PARA +rate E-PARA +of O +up O +to O +3.6 O +kg/h O +. O + + +The O +variation S-CONPRI +of O +the O +wire O +feed S-PARA +speed O +and O +the O +welding S-MANP +speed O +enables O +the O +production S-MANP +of O +weld B-CONPRI +beads E-CONPRI +of O +width O +up O +to O +9.4 O +mm S-MANP +. O + + +The O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +generated O +structures O +can O +be S-MATE +adapted O +by O +the O +dominant O +thermal O +field O +, O +which O +in O +turn O +is O +influenced O +by O +the O +bypass O +temperature S-PARA +and O +the O +electric B-PARA +arc E-PARA +energy O +. O + + +If O +the O +bypass O +temperature S-PARA +is O +above O +the O +martensite S-MATE +start O +temperature S-PARA +( O +Ms O +) O +, O +there O +is O +a O +homogeneous S-CONPRI +hardness S-PRO +level O +along O +the O +height O +of O +the O +additively B-MANP +manufactured E-MANP +structure O +height O +as S-MATE +long O +as S-MATE +the O +energy O +produced O +by O +the O +welding S-MANP +arc S-CONPRI +is O +enough O +to O +keep O +the O +temperature S-PARA +of O +all O +layers O +above O +Ms. O +Wire-arc B-MANP +additive I-MANP +manufacturing E-MANP +has O +become O +an O +alternative O +way O +to O +produce O +industrial S-APPL +parts O +. O + + +In O +this O +work O +15 O +kg O +walls O +are O +built O +with O +an O +effective O +building O +rate O +of O +4.85 O +kg/h O +using O +an O +ER100 O +wire O +providing O +good O +tensile B-PRO +properties E-PRO +and O +toughness S-PRO +under O +welding S-MANP +conditions O +. O + + +The O +thermal O +evolution S-CONPRI +of O +the O +walls O +during O +manufacturing S-MANP +is O +measured O +by O +thermocouples S-MACEQ +and O +an O +IR S-CHAR +camera S-MACEQ +: O +it O +depends O +on O +process B-CONPRI +parameters E-CONPRI +, O +deposit O +strategy O +and O +the O +size O +of O +the O +part O +. O + + +The O +walls O +are O +then O +characterised O +as S-MATE +deposit O +and O +after O +heat B-MANP +treatment E-MANP +through O +hardness S-PRO +, O +tensile S-PRO +and O +Charpy-V O +notch S-FEAT +tests O +. O + + +The O +results O +show O +a O +fine O +microstructure S-CONPRI +with O +unexpected O +retained B-MATE +austenite E-MATE +and O +coarse O +allotriomorphic O +ferrite S-MATE +in O +the O +as S-MATE +deposited O +walls O +. O + + +The O +final O +hardness S-PRO +values O +vary O +from O +about O +220 O +to O +280 O +HV2 O +; O +the O +yield B-PRO +stress E-PRO +and O +tensile B-PRO +strength E-PRO +are O +520 O +and O +790 O +MPa S-CONPRI +, O +respectively O +, O +and O +a O +toughness S-PRO +of O +about O +50 O +J O +is O +obtained O +at O +room O +temperature S-PARA +. O + + +The O +heat B-MANP +treatment E-MANP +transforms O +the O +retained B-MATE +austenite E-MATE +, O +leading O +to O +an O +improvement O +of O +the O +yield B-PRO +stress E-PRO +to O +600 O +MPa S-CONPRI +. O + + +Ultrasonic B-MANP +additive I-MANP +manufacturing E-MANP +is O +a O +promising O +approach O +for O +making O +net-shaped O +multi-material B-CONPRI +laminates E-CONPRI +from O +material S-MATE +combinations O +difficult O +to O +process S-CONPRI +with O +fusion-based O +additive B-MANP +manufacturing E-MANP +techniques O +. O + + +The O +properties S-CONPRI +of O +these O +multi-material B-CONPRI +laminates E-CONPRI +depend O +sensitively O +on O +the O +interface S-CONPRI +between O +the O +constituents O +, O +which O +can O +be S-MATE +decorated O +with O +pores S-PRO +as S-MATE +well O +as S-MATE +thin O +intermetallic S-MATE +layers O +. O + + +Here O +, O +we O +develop O +process B-CONPRI +models E-CONPRI +for O +junction S-APPL +growth O +and O +interdiffusion O +during O +ultrasonic B-MANP +additive I-MANP +manufacturing E-MANP +of O +dissimilar O +metals S-MATE +. O + + +These O +process B-CONPRI +models E-CONPRI +are O +validated O +against O +published O +experimental B-CONPRI +data E-CONPRI +, O +then O +used O +to O +generate O +process S-CONPRI +diagrams O +which O +reveal O +that O +high O +normal O +loads O +and O +high O +sonotrode S-MACEQ +velocities O +can O +reduce O +intermetallic S-MATE +growth O +while O +maintaining O +strong O +interlayer O +bonding S-CONPRI +. O + + +Ultrasonic B-MANP +additive I-MANP +manufacturing E-MANP +( O +UAM S-MANP +) O +is O +a O +solid-state S-CONPRI +manufacturing B-MANP +technology E-MANP +for O +producing O +near-net O +shape O +metallic B-MACEQ +parts E-MACEQ +combining O +additive S-MATE +ultrasonic O +metal S-MATE +welding O +and O +subtractive B-MANP +machining E-MANP +. O + + +Even O +though O +UAM S-MANP +has O +been O +demonstrated O +to O +produce O +robust O +metal S-MATE +builds S-CHAR +in O +Al–Al O +, O +Al–Ti O +, O +Al-steel O +, O +Cu–Cu O +, O +Al–Cu O +, O +and O +other O +material S-MATE +systems O +, O +UAM S-MANP +welding O +of O +high O +strength S-PRO +steels S-MATE +has O +proven O +challenging O +. O + + +This O +study O +investigates S-CONPRI +process O +and O +post-processing S-CONPRI +methods O +to O +improve O +UAM S-MANP +steel S-MATE +weld O +quality S-CONPRI +and O +demonstrates O +the O +UAM B-MANP +fabrication E-MANP +of O +stainless B-MATE +steel E-MATE +410 O +( O +SS S-MATE +410 O +) O +builds S-CHAR +which O +possess O +, O +after O +post-processing S-CONPRI +, O +mechanical B-CONPRI +properties E-CONPRI +comparable O +with O +bulk O +material S-MATE +. O + + +Unlike O +UAM B-MANP +fabrication E-MANP +of O +softer O +metals S-MATE +, O +this O +study O +shows O +that O +increasing O +the O +baseplate O +temperature S-PARA +from O +38∘C O +( O +100∘F O +) O +to O +204∘C O +( O +400∘F O +) O +improves O +interfacial O +strength S-PRO +and O +structural O +homogeneity O +of O +the O +UAM S-MANP +steel S-MATE +samples S-CONPRI +. O + + +Further O +improvement O +in O +strength S-PRO +is O +achieved O +through O +post-processing S-CONPRI +. O + + +The O +hot B-MANP +isostatic I-MANP +pressing E-MANP +( O +HIP S-MANP +) O +post O +treatment O +improves O +the O +shear B-PRO +strength E-PRO +of O +UAM S-MANP +samples S-CONPRI +to O +344 O +MPa S-CONPRI +from O +154 O +MPa S-CONPRI +for O +as-welded O +samples S-CONPRI +. O + + +Microstructural B-CHAR +analyses E-CHAR +with O +SEM S-CHAR +and O +EBSD S-CHAR +show O +no O +evidence O +of O +body B-CONPRI +centered I-CONPRI +cubic E-CONPRI +( O +BCC S-CONPRI +) O +ferrite S-MATE +to O +face B-CONPRI +centered I-CONPRI +cubic E-CONPRI +( O +FCC S-CONPRI +) O +austenite S-MATE +transformation O +taking O +place O +during O +UAM S-MANP +welding O +of O +SS S-MATE +410 O +. O + + +The O +weld B-PARA +quality E-PARA +improvement O +of O +UAM S-MANP +steel S-MATE +at O +higher O +baseplate O +temperatures S-PARA +is O +believed O +to O +be S-MATE +caused O +by O +the O +reduction S-CONPRI +of O +the O +yield B-PRO +strength E-PRO +of O +SS S-MATE +410 O +at O +elevated O +temperature S-PARA +. O + + +HIP S-MANP +treatment O +is O +shown O +to O +increase O +the O +overall O +hardness S-PRO +of O +UAM S-MANP +SS S-MATE +410 O +from O +204 O +± O +7 O +HV O +to O +240 O +± O +16 O +HV O +due O +to O +the O +formation O +of O +local O +pockets O +of O +martensite S-MATE +. O + + +Nanohardness O +tests O +show O +that O +the O +top O +of O +layer S-PARA +n O +is O +harder O +than O +the O +bottom O +of O +layer S-PARA +n+1 O +due O +to O +grain B-CONPRI +boundary E-CONPRI +strengthening O +. O + + +The O +locked O +in O +residual B-PRO +stresses E-PRO +in O +a O +monopile O +structure S-CONPRI +have O +a O +great O +impact S-CONPRI +on O +its O +fatigue B-PRO +life E-PRO +. O + + +The O +new O +emerged O +technology S-CONPRI +of O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +, O +which O +is O +widely O +used O +in O +other O +industries S-APPL +such O +as S-MATE +aerospace S-APPL +and O +automotive S-APPL +, O +has O +the O +potential O +to O +significantly O +improve O +a O +lifespan O +of O +the O +structure S-CONPRI +by O +managing O +the O +residual B-PRO +stress E-PRO +fields O +and O +microstructure S-CONPRI +in O +the O +future O +monopiles O +, O +and O +moreover O +reduce O +the O +manufacturing B-CONPRI +cost E-CONPRI +. O + + +In O +order O +to O +achieve O +this O +goal O +, O +new O +materials S-CONPRI +that O +are O +used O +for O +additive B-MANP +manufacturing E-MANP +parts O +fabrication S-MANP +and O +their O +behaviour O +in O +the O +harsh O +marine O +environment O +and O +under O +operational O +loading O +conditions O +need O +to O +be S-MATE +understood O +. O + + +Also O +purely O +welding B-MANP +fabrication E-MANP +technique O +employed O +during O +AM B-MANP +process E-MANP +is O +likely O +to O +significantly O +affect O +crack B-CONPRI +growth E-CONPRI +behaviour O +in O +air O +as S-MATE +well O +as S-MATE +in O +seawater O +. O + + +This O +paper O +presents O +a O +review O +of O +additive B-MANP +manufacturing E-MANP +technology O +and O +suitable O +techniques O +for O +offshore O +structures O +. O + + +Existing O +literature O +that O +reports O +current O +data S-CONPRI +on O +fracture S-CONPRI +toughness O +and O +fatigue B-CONPRI +crack I-CONPRI +growth E-CONPRI +tests O +conducted O +on O +AM B-MACEQ +parts E-MACEQ +is O +summarised O +and O +analysed O +, O +highlighting O +different O +steel S-MATE +grades O +and O +applications O +, O +with O +the O +view O +to O +illustrating O +the O +requirements O +for O +the O +new O +optimised O +functionally B-FEAT +graded I-FEAT +structures E-FEAT +in O +offshore O +wind O +structures O +by O +means O +of O +AM B-MANP +technique E-MANP +. O + + +In O +this O +paper O +, O +the O +results O +of O +two O +different O +wire O +based O +additive-layer-manufacturing O +systems O +are O +compared O +: O +in O +one O +system O +Ti-6Al4V O +is O +deposited O +by O +a O +Nd B-MATE +: I-MATE +YAG E-MATE +laser B-CONPRI +beam E-CONPRI +, O +in O +the O +other O +by O +an O +arc S-CONPRI +beam O +( O +tungsten B-MANP +inert I-MANP +gas E-MANP +process S-CONPRI +) O +. O + + +Mechanical B-CONPRI +properties E-CONPRI +of O +the O +deposits O +and O +of O +plate O +material S-MATE +are O +presented O +and O +evaluated O +with O +respect O +to O +aerospace S-APPL +material O +specifications S-PARA +. O + + +The O +mechanical B-CHAR +tests E-CHAR +including O +static O +tension O +and O +high O +cycle O +fatigue S-PRO +were O +performed O +in O +as-built O +, O +stress-relieved O +and O +annealed O +conditions.Generally O +, O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +components S-MACEQ +are O +competitive O +to O +cast S-MANP +and O +even O +wrought B-MATE +material E-MATE +properties S-CONPRI +and O +can O +attain O +properties S-CONPRI +suitable O +for O +space O +or O +aerospace S-APPL +applications O +. O + + +Realizing O +improved O +strength S-PRO +in O +composite S-MATE +metallic O +materials S-CONPRI +remains O +a O +challenge O +using O +conventional B-MANP +welding E-MANP +and O +joining S-MANP +systems O +due O +to O +the O +generation O +and O +development O +of O +brittle S-PRO +intermetallic O +compounds O +caused O +by O +complex O +thermal B-CONPRI +profiles E-CONPRI +during O +solidification S-CONPRI +. O + + +Here O +, O +wire B-MANP +arc I-MANP +additive I-MANP +manufacturing E-MANP +( O +WAAM S-MANP +) O +process S-CONPRI +was O +used O +to O +fabricate S-MANP +a O +steel-nickel O +structural B-CONPRI +component E-CONPRI +, O +whose O +average S-CONPRI +tensile O +strength S-PRO +of O +634 O +MPa S-CONPRI +significantly O +exceeded O +that O +of O +feedstock B-MATE +materials E-MATE +( O +steel S-MATE +, O +537 O +MPa S-CONPRI +and O +nickel S-MATE +, O +455 O +MPa S-CONPRI +) O +, O +which O +has O +not O +been O +reported O +previously O +. O + + +The O +as-fabricated O +sample S-CONPRI +exhibited O +hierarchically O +structural O +heterogeneity S-CONPRI +due O +to O +the O +interweaving O +deposition S-CONPRI +strategy O +. O + + +The O +improved O +mechanical B-CONPRI +response E-CONPRI +during O +tensile B-CHAR +testing E-CHAR +was O +due O +to O +the O +inter-locking O +microstructure S-CONPRI +forming S-MANP +a O +strong O +bond O +at O +the O +interface S-CONPRI +and O +solid B-MATE +solutions E-MATE +strengthening O +from O +the O +intermixing O +of O +the O +Fe S-MATE +and O +Ni S-MATE +increased O +the O +interface S-CONPRI +strength O +, O +beyond O +the O +sum O +of O +parts O +. O + + +The O +research S-CONPRI +offers O +a O +new O +route O +for O +producing O +high-quality O +steel-nickel O +dissimilar O +structures O +and O +widens O +the O +design S-FEAT +opportunities O +of O +monolithic S-PRO +components S-MACEQ +, O +with O +site-specific O +properties S-CONPRI +, O +for O +specific O +structural O +or O +functional O +applications O +. O + + +Wire B-MANP +Arc I-MANP +Additive I-MANP +Manufacturing E-MANP +( O +WAAM S-MANP +) O +is O +a O +fusion- O +and O +wire-based B-MANP +additive I-MANP +manufacturing E-MANP +technology S-CONPRI +which O +has O +gained O +industrial S-APPL +interest O +for O +the O +production S-MANP +of O +medium-to-large O +components S-MACEQ +with O +high O +material S-MATE +deposition B-PARA +rates E-PARA +. O + + +However O +, O +in-depth O +studies O +on O +performance S-CONPRI +indicators O +that O +incorporate O +economic O +and O +environmental O +sustainability S-CONPRI +still O +have O +to O +be S-MATE +carried O +out O +. O + + +The O +first O +aim O +of O +the O +paper O +has O +been O +to O +quantify O +the O +performance S-CONPRI +metrics O +of O +WAAM-based O +manufacturing B-MANP +approaches E-MANP +, O +while O +varying O +the O +size O +and O +the O +deposited O +material S-MATE +of O +the O +component S-MACEQ +. O + + +Wire-arc B-MANP +additive I-MANP +manufacturing E-MANP +is O +an O +additive B-MANP +manufacturing E-MANP +technology O +which O +allows O +for O +high B-PARA +deposition I-PARA +rates E-PARA +and O +is O +well O +suited O +for O +manufacturing S-MANP +larger O +parts O +in O +a O +short O +time O +compared O +to O +other O +additive B-MANP +manufacturing E-MANP +technologies O +. O + + +The O +technology S-CONPRI +has O +already O +received O +considerable O +industrial S-APPL +take-up O +for O +various B-MATE +materials E-MATE +and O +applications O +. O + + +The O +aim O +of O +this O +work O +is O +to O +investigate O +the O +alloy S-MATE +EN O +AW O +6016 O +as S-MATE +wire O +stock O +for O +WAAM S-MANP +. O + + +To O +establish O +this O +, O +aluminum S-MATE +wire O +was O +produced O +by O +wire B-MANP +drawing E-MANP +. O + + +Using O +this O +wire O +, O +specimens O +were O +produced O +on O +base O +plate O +material S-MATE +using O +a O +variety O +of O +process B-CONPRI +parameters E-CONPRI +. O + + +These O +parts O +were O +then O +used O +to O +evaluate O +the O +mechanical B-CONPRI +properties E-CONPRI +. O + + +Further O +properties S-CONPRI +such O +as S-MATE +porosity O +and O +hardness S-PRO +were O +investigated O +using O +light O +optical B-CHAR +microscopy E-CHAR +. O + + +Based O +on O +the O +results O +, O +the O +potential O +of O +the O +alloy S-MATE +for O +WAAM S-MANP +of O +lightweight S-CONPRI +parts O +is O +discussed O +. O + + +Cu-Al O +alloy S-MATE +was O +in-situ B-CONPRI +fabricated E-CONPRI +by O +twin O +wire B-MANP +arc I-MANP +additive I-MANP +manufacturing E-MANP +. O + + +Addition O +of O +about O +2 O +% O +silicon S-MATE +to O +the O +copper-aluminum O +alloy S-MATE +helps O +to O +increase O +the O +hardness S-PRO +by O +0.5–1 O +times O +. O + + +With O +the O +aluminum S-MATE +content O +increases O +, O +the O +yield B-PRO +strength E-PRO +increases O +150 O +MPa S-CONPRI +. O + + +CuAl2 O +with O +the O +different O +crystal B-PRO +structures E-PRO +were O +synthetized O +. O + + +Present O +work O +investigated O +the O +use O +of O +Cold B-MANP +Metal I-MANP +Transfer E-MANP +( O +CMT S-MANP +) O +welding S-MANP +for O +additive B-MANP +manufacturing E-MANP +of O +copper‑aluminum O +alloys S-MATE +with O +addition O +of O +silicon S-MATE +in O +small O +amount O +. O + + +The O +additive B-MANP +manufacturing E-MANP +was O +successfully O +demonstrated O +through O +two O +samples S-CONPRI +with O +the O +4.34 O +% O +( O +sample-1 O +) O +and O +6.58 O +% O +( O +sample-2 O +) O +aluminum S-MATE +content O +, O +which O +is O +not O +much O +different O +with O +the O +content O +of O +the O +design S-FEAT +. O + + +The O +analyses O +of O +performance S-CONPRI +of O +samples S-CONPRI +reveal O +that O +both O +samples S-CONPRI +have O +good O +strength S-PRO +and O +ductility S-PRO +. O + + +It O +is O +also O +found O +addition O +of O +silicon S-MATE +in O +small O +amount O +( O +2.1 O +% O +–2.4 O +% O +) O +effectively O +improves O +hardness S-PRO +, O +tensile B-PRO +strength E-PRO +and O +0.2 O +% O +offset S-CONPRI +Yield O +Strength S-PRO +in O +comparison O +to O +pure O +copper‑aluminum O +alloy S-MATE +. O + + +The O +results O +of O +X-ray B-CHAR +diffraction E-CHAR +( O +XRD S-CHAR +) O +, O +showed O +that O +sample-2 O +possessed O +CuAl2 O +with O +different O +crystal B-PRO +structure E-PRO +whereas O +sample-1 O +did O +not O +. O + + +It O +is O +found O +that O +an O +increase O +in O +aluminum S-MATE +caused O +both O +tensile B-PRO +strength E-PRO +and O +0.2 O +% O +offset S-CONPRI +Yield O +Strength S-PRO +to O +increase O +, O +however O +, O +increase O +in O +yield B-PRO +strength E-PRO +was O +very O +significant O +( O +155 O +MPa S-CONPRI +i.e O +. O + + +In O +this O +study O +, O +the O +0.2Pct O +offset S-CONPRI +Yield O +Strength S-PRO +of O +sample-1 O +is O +150 O +MPa S-CONPRI +more O +than O +that O +of O +sample-2 O +. O + + +Embedding O +with O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +is O +a O +process S-CONPRI +of O +incorporating O +functional B-CONPRI +components E-CONPRI +, O +such O +as S-MATE +sensors O +and O +actuators S-MACEQ +, O +in O +the O +printed O +structure S-CONPRI +by O +inserting O +them O +into O +a O +specially O +designed S-FEAT +cavity O +. O + + +The O +print S-MANP +process O +has O +to O +be S-MATE +interrupted O +after O +the O +cavity O +is O +printed O +to O +insert S-MACEQ +the O +component S-MACEQ +. O + + +This O +allows O +for O +multifunctional O +structures O +to O +be S-MATE +created O +directly O +from O +the O +build B-MACEQ +plate E-MACEQ +. O + + +However O +, O +previous O +research S-CONPRI +has O +shown O +that O +this O +process S-CONPRI +interruption O +causes O +failure S-CONPRI +at O +the O +paused O +layer S-PARA +due O +to O +the O +cooling S-MANP +between O +the O +layers O +. O + + +The O +presence O +of O +the O +designed S-FEAT +cavity O +further O +impacts O +the O +strength S-PRO +of O +the O +part O +due O +to O +a O +reduction S-CONPRI +in O +the O +effective O +cross-section O +in O +contact S-APPL +between O +the O +paused O +and O +the O +resumed O +layers O +. O + + +This O +research S-CONPRI +presents O +a O +methodology S-CONPRI +to O +predict O +the O +weld B-PRO +strength E-PRO +between O +the O +layers O +of O +an O +embedded O +material B-MANP +extrusion E-MANP +structure O +by O +obtaining O +the O +thermal O +history O +at O +the O +layer S-PARA +interface S-CONPRI +as S-MATE +a O +result O +of O +process S-CONPRI +interruption O +. O + + +An O +infrared S-CONPRI +camera S-MACEQ +and O +an O +embedded O +thermocouple S-MACEQ +are O +used O +to O +obtain O +the O +thermal O +history O +of O +the O +depositing O +fresh O +layer S-PARA +and O +of O +the O +layer S-PARA +interface S-CONPRI +, O +respectively O +. O + + +The O +impact S-CONPRI +of O +toolpath S-PARA +design S-FEAT +on O +the O +thermal O +history O +of O +the O +layer S-PARA +interface S-CONPRI +is O +considered O +by O +dividing O +the O +cross-section O +area S-PARA +into O +zones O +with O +similar O +thermal O +history O +. O + + +Polymer S-MATE +weld O +theory O +is O +utilized O +to O +predict O +the O +strength S-PRO +at O +these O +different O +zones O +, O +where O +material B-CONPRI +properties E-CONPRI +are O +obtained O +through O +rheology S-PRO +measurements O +. O + + +These O +strength S-PRO +values O +for O +the O +zones O +are O +then O +used O +to O +predict O +the O +load O +at O +failure S-CONPRI +for O +different O +specimens O +by O +treating O +them O +as S-MATE +composites O +. O + + +Findings O +confirm O +that O +this O +approach O +can O +be S-MATE +used O +to O +more O +accurately S-CHAR +predict O +tensile B-CHAR +loads E-CHAR +at O +failure S-CONPRI +for O +embedded O +structures O +, O +with O +errors S-CONPRI +ranging O +from O +1 O +% O +to O +20 O +% O +depending O +on O +the O +toolpath S-PARA +geometry S-CONPRI +. O + + +Additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +is O +the O +umbrella O +term O +that O +covers O +a O +variety O +of O +techniques O +that O +build S-PARA +up O +structures O +layer-by-layer S-CONPRI +as S-MATE +opposed O +to O +machining S-MANP +and O +other O +subtracting O +methods O +. O + + +It O +keeps O +evolving O +as S-MATE +an O +important O +technology S-CONPRI +in O +prototyping S-CONPRI +and O +the O +development O +of O +new O +devices O +. O + + +However O +, O +using O +AM S-MANP +on O +a O +larger O +scale O +is O +still O +challenging O +, O +as S-MATE +traditional O +methods O +require O +the O +AM B-MACEQ +machines E-MACEQ +to O +be S-MATE +larger O +than O +the O +manufactured S-CONPRI +structure O +. O + + +The O +focus O +in O +this O +paper O +is O +the O +feasibility S-CONPRI +of O +large-scale O +AM S-MANP +of O +metallic B-MATE +materials E-MATE +by O +arc B-MANP +welding E-MANP +. O + + +A O +series O +of O +experiments O +with O +robotic O +arc B-MANP +welding E-MANP +using O +an O +ABB O +IRB2400/10 O +robot S-MACEQ +are O +presented O +and O +discussed O +. O + + +These O +experiment S-CONPRI +will O +help O +map O +some O +of O +the O +challenges O +that O +need O +to O +be S-MATE +addressed O +in O +future O +work O +. O + + +Hydrodynamic O +flow O +is O +used O +for O +surface B-MANP +finishing E-MANP +of O +additive B-MANP +manufactured E-MANP +channels O +. O + + +The O +surface B-FEAT +finish E-FEAT +quality S-CONPRI +( O +Ra O +and O +Rz O +) O +of O +additive B-MANP +manufactured E-MANP +channels O +improves O +by O +> O +90 O +% O +. O + + +The O +surface B-FEAT +integrity E-FEAT +of O +the O +channels O +also O +improves O +after O +surface B-MANP +finishing E-MANP +. O + + +A O +surface B-PRO +roughness E-PRO +ratio O +of O +≈1.0 O +is O +achieved O +in O +the O +additive B-MANP +manufactured E-MANP +channel O +. O + + +The O +surface B-MANP +finishing E-MANP +of O +internal O +channels O +for O +components S-MACEQ +built O +using O +additive B-MANP +manufacturing E-MANP +is O +a O +challenge O +. O + + +The O +resulting O +surface B-FEAT +finish E-FEAT +uniformity O +of O +additive B-MANP +manufactured E-MANP +internal O +channels O +( O +such O +as S-MATE +fuel O +transfer B-CONPRI +lines E-CONPRI +and O +cooling S-MANP +passages O +) O +is O +an O +issue O +. O + + +Therefore O +, O +we O +propose O +a O +novel O +surface B-MANP +finishing E-MANP +technique O +using O +controlled O +hydrodynamic O +multiphase O +flow O +with O +abrasion O +phenomenon O +to O +overcome O +the O +challenges O +in O +the O +surface B-MANP +finishing E-MANP +of O +additive B-MANP +manufactured E-MANP +internal O +channels O +. O + + +In O +this O +study O +, O +we O +performed O +the O +internal O +surface B-MANP +finishing E-MANP +on O +AlSi10Mg S-MATE +components O +manufactured S-CONPRI +by O +direct B-MANP +metal I-MANP +laser I-MANP +sintering E-MANP +. O + + +We O +investigated O +the O +surface B-FEAT +finish E-FEAT +potential O +of O +the O +proposed O +hydrodynamic O +cavitation S-CONPRI +abrasive S-MATE +finishing O +( O +HCAF O +) O +by O +varying O +the O +process B-CONPRI +parameters E-CONPRI +, O +namely O +, O +the O +hydrodynamic O +upstream O +and O +downstream O +fluid S-MATE +pressures O +, O +fluid S-MATE +temperature O +, O +abrasive S-MATE +concentration O +, O +and O +processing O +time O +. O + + +The O +HCAF O +process S-CONPRI +resulted O +in O +greater O +than O +90 O +% O +( O +Ra O +and O +Rz O +) O +surface B-FEAT +finish E-FEAT +improvements O +with O +an O +acceptable O +thickness O +loss O +from O +the O +internal O +channels O +. O + + +We O +precisely O +mapped O +the O +surface B-CHAR +morphology E-CHAR +transformation O +at O +the O +demarcated O +zones O +over O +the O +processing O +time O +and O +explained O +the O +material S-MATE +removal O +mechanism S-CONPRI +. O + + +In O +addition O +, O +we O +analyzed O +and O +discussed O +the O +surface B-FEAT +integrity E-FEAT +of O +the O +channels O +in O +terms O +of O +the O +microstructure S-CONPRI +, O +surface S-CONPRI +hardness S-PRO +, O +and O +residual B-PRO +stress E-PRO +. O + + +Furthermore O +, O +we O +performed O +large-area O +surface B-CONPRI +topography E-CONPRI +measurements O +. O + + +Then O +, O +we O +analyzed O +the O +resulting O +areal O +surface B-FEAT +texture E-FEAT +parameters S-CONPRI +to O +determine O +the O +uniformity O +and O +flatness S-PRO +of O +the O +surface S-CONPRI +after O +internal O +surface B-MANP +finishing E-MANP +. O + + +Finally O +, O +we O +discussed O +the O +significance O +of O +using O +the O +proposed O +HCAF O +process S-CONPRI +for O +complex O +additive B-MANP +manufactured E-MANP +internal O +channels O +. O + + +Additive B-MANP +manufacturing E-MANP +can O +produce O +very O +complex O +and O +highly O +integrated O +parts O +that O +can O +not O +be S-MATE +manufactured O +by O +traditional O +methods O +. O + + +The O +aim O +of O +this O +study O +was O +to O +find O +out O +the O +laser S-ENAT +weldability O +of O +the O +printed O +AlSi10Mg S-MATE +material O +without O +filler O +material S-MATE +. O + + +The O +laser S-ENAT +used O +in O +these O +welding S-MANP +experiments O +was O +Yb S-MATE +: O +YAG S-MATE +disk O +laser S-ENAT +. O + + +The O +laser S-ENAT +wavelength O +was O +1030 O +nm O +and O +the O +maximum O +output O +power S-PARA +on O +the O +workpiece S-CONPRI +surface S-CONPRI +was O +4 O +kW O +. O + + +AlSi10Mg S-MATE +is O +a O +widely O +used O +material S-MATE +in O +parts O +that O +are O +produced O +utilizing O +the O +SLM S-MANP +technique O +. O + + +The O +material S-MATE +has O +very O +good O +corrosion B-CONPRI +resistance E-CONPRI +properties O +, O +good O +electrical B-PRO +conductivity E-PRO +and O +excellent O +thermal B-PRO +conductivity E-PRO +. O + + +AlSi10Mg S-MATE +has O +proven O +to O +be S-MATE +much O +easier O +to O +print S-MANP +than O +steel B-MATE +materials E-MATE +, O +so O +it O +is O +a O +popular O +material S-MATE +also O +in O +prototype S-CONPRI +production S-MANP +. O + + +Based O +on O +welding S-MANP +tests O +, O +laser B-MANP +welding E-MANP +without O +filler O +material S-MATE +is O +suitable O +for O +AlSi10Mg S-MATE +material O +and O +the O +static O +strength S-PRO +of O +the O +weld S-FEAT +is O +reasonably O +good O +compared O +to O +the O +base O +material S-MATE +. O + + +However O +, O +AlSi10Mg S-MATE +can O +be S-MATE +found O +to O +be S-MATE +challenging O +due O +to O +its O +composition S-CONPRI +. O + + +Additive B-MANP +manufacturing E-MANP +has O +experienced O +a O +remarkably O +growth O +over O +the O +last O +few O +years O +, O +making O +possible O +not O +only O +to O +make O +prototypes S-CONPRI +, O +but O +also O +to O +produce O +final O +products O +, O +so O +nowadays O +most O +of O +recent O +works O +are O +focused O +in O +metal B-MANP +additive I-MANP +manufacturing E-MANP +. O + + +The O +main O +objective O +of O +this O +work O +is O +to O +show O +the O +first O +experiences O +in O +the O +development O +of O +a O +cost O +effective O +metal B-MANP +additive I-MANP +manufacturing E-MANP +system O +on O +the O +basis O +of O +gas B-MANP +metal I-MANP +arc I-MANP +welding E-MANP +( O +GMAW S-MANP +) O +. O + + +The O +proposed O +system O +, O +wire B-MANP +and I-MANP +arc I-MANP +additive I-MANP +manufacturing E-MANP +( O +WAAM S-MANP +) O +, O +integrates O +a O +cold B-MANP +metal I-MANP +transfer E-MANP +( O +CMT S-MANP +) O +welding S-MANP +equipment S-MACEQ +patented O +by O +Fronius® O +, O +and O +a O +CNC B-MANP +milling E-MANP +machine O +Optimus O +with O +three O +axis O +and O +it O +presents O +the O +advantages O +to O +reduce O +the O +heat B-PRO +accumulation E-PRO +originated O +using O +a O +conventional O +GMAW S-MANP +equipment S-MACEQ +and O +the O +possibility O +to O +implement O +surface B-FEAT +finish E-FEAT +operations O +by O +milling S-MANP +. O + + +Additive S-MATE +processes O +show O +a O +smaller O +amount O +of O +wasted O +material S-MATE +. O + + +For O +material S-MATE +removal O +ratios O +over O +55 O +% O +additive S-MATE +processes O +show O +less O +demand O +of O +energy O +. O + + +For O +material S-MATE +removal O +ratios O +over O +75 O +% O +additive S-MATE +processes O +show O +less O +processing O +time O +. O + + +This O +paper O +aims O +to O +analyze O +and O +compare O +the O +electrical S-APPL +energy O +and O +material S-MATE +efficiency O +of O +machining S-MANP +, O +additive S-MATE +and O +hybrid B-CONPRI +manufacturing E-CONPRI +. O + + +The O +analysis O +of O +the O +manufacturing B-MANP +processes E-MANP +is O +based O +on O +machine B-MACEQ +tool E-MACEQ +data S-CONPRI +from O +a O +sample S-CONPRI +process S-CONPRI +. O + + +To O +get O +a O +generalized O +statement O +about O +the O +energy O +consumption O +of O +the O +investigated O +processes S-CONPRI +the O +electrical S-APPL +energy O +demand O +was O +extrapolated O +as S-MATE +a O +function O +of O +the O +material S-MATE +removal O +ratio O +. O + + +The O +results O +indicate O +that O +hybrid B-CONPRI +manufacturing E-CONPRI +becomes O +beneficial O +from O +an O +environmental O +point O +of O +view O +compared O +to O +milling S-MANP +, O +when O +the O +material S-MATE +removal O +ratio O +exceeds O +55 O +% O +. O + + +The O +electrical S-APPL +break-even O +point O +for O +selective B-MANP +laser I-MANP +melting E-MANP +is O +approximated O +to O +82 O +% O +material S-MATE +removal O +ratio O +from O +data S-CONPRI +extrapolation O +. O + + +Subsequently O +, O +opportunities O +for O +electrical S-APPL +energy O +and O +material S-MATE +efficiency O +improvements O +are O +presented O +for O +these O +technologies S-CONPRI +to O +gain S-PARA +an O +understanding O +of O +how O +each O +can O +contribute O +to O +a O +more O +sustainable B-CONPRI +manufacturing E-CONPRI +landscape O +. O + + +The O +chemical B-CONPRI +composition E-CONPRI +of O +the O +deposited O +metal S-MATE +could O +be S-MATE +estimated O +. O + + +The O +chemical B-CONPRI +composition E-CONPRI +could O +be S-MATE +changed O +gradually O +using O +proposed O +process S-CONPRI +. O + + +Wire O +and O +arc-based O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +is O +an O +additive B-MANP +manufacturing E-MANP +technique O +applying O +arc B-MANP +welding E-MANP +technology O +, O +where O +the O +metal S-MATE +melted S-CONPRI +by O +the O +arc S-CONPRI +discharge O +is O +accumulated O +and O +deposited O +. O + + +High-performance O +products O +with O +an O +excellent O +mechanical S-APPL +or O +chemical O +properties S-CONPRI +can O +be S-MATE +obtained O +using O +more O +than O +two O +materials S-CONPRI +through O +wire O +and O +arc-based O +AM S-MANP +. O + + +However O +, O +thermal B-PRO +stress E-PRO +and O +residual B-PRO +stress E-PRO +can O +form O +around O +the O +interface S-CONPRI +between O +two O +materials S-CONPRI +. O + + +Therefore O +, O +the O +objective O +of O +this O +study O +is O +to O +control O +the O +chemical B-CONPRI +composition E-CONPRI +of O +the O +deposited O +metal S-MATE +so O +that O +it O +changes O +gradually O +near O +the O +interface S-CONPRI +. O + + +Intermediate O +layers O +, O +with O +controlled O +chemical B-CONPRI +compositions E-CONPRI +, O +were O +inserted O +between O +the O +materials B-CONPRI +boundary E-CONPRI +. O + + +To O +regulate O +the O +chemical B-CONPRI +composition E-CONPRI +of O +the O +deposited O +metal S-MATE +, O +a O +filler O +wire O +was O +added O +into O +the O +molten B-CONPRI +pool E-CONPRI +during O +the O +deposition B-MANP +process E-MANP +. O + + +Results O +revealed O +that O +the O +chemical B-CONPRI +composition E-CONPRI +changed O +gradually O +near O +the O +interface S-CONPRI +using O +the O +proposed O +method O +. O + + +Selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +is O +gaining O +increasing O +relevance O +in O +industry S-APPL +. O + + +Residual B-CONPRI +deformations E-CONPRI +and O +internal B-PRO +stresses E-PRO +caused O +by O +the O +repeated O +layerwise O +melting S-MANP +of O +the O +metal B-MATE +powder E-MATE +and O +transient S-CONPRI +cooling S-MANP +of O +the O +solidified O +layers O +still O +presents O +a O +significant O +challenge O +to O +the O +profitability O +and O +quality S-CONPRI +of O +the O +process S-CONPRI +. O + + +Excessive O +distortions O +or O +cracking S-CONPRI +may O +lead S-MATE +to O +expensive O +rejects O +. O + + +In O +practice O +, O +critical O +additively B-MANP +manufactured E-MANP +parts O +are O +either O +iteratively O +pre-compensated O +or O +redesigned O +based O +on O +production S-MANP +experience O +. O + + +To O +satisfy O +the O +need O +for O +improved O +understanding O +of O +this O +complex O +manufacturing B-MANP +process E-MANP +, O +CAE S-ENAT +software O +providers O +have O +recently O +developed O +solutions O +to O +simulate O +the O +SLM S-MANP +process S-CONPRI +. O + + +ANSYS S-APPL +Additive S-MATE +Print O +and O +ANSYS S-APPL +Additive S-MATE +Suite.ANSYS O +Additive S-MATE +Print O +( O +AAP O +) O +, O +a O +user-oriented O +software S-CONPRI +, O +and O +ANSYS S-APPL +Additive S-MATE +Suite O +( O +AAS O +) O +, O +a O +software S-CONPRI +requiring O +advanced O +experience O +with O +Finite B-CONPRI +Element I-CONPRI +Methods E-CONPRI +( O +FEM S-CONPRI +) O +, O +are O +investigated O +and O +validated O +with O +regard O +to O +residual B-CONPRI +deformations E-CONPRI +. O + + +For O +the O +evaluation O +of O +the O +two O +programs O +, O +calibration S-CONPRI +and O +validation B-CONPRI +geometries E-CONPRI +were O +printed O +by O +SLM S-MANP +in O +Ti–6Al–4V O +and O +residual B-CONPRI +deformations E-CONPRI +have O +been O +measured O +by O +3D B-CHAR +scanning E-CHAR +. O + + +The O +results O +have O +been O +used O +for O +the O +calibration S-CONPRI +of O +isotropic S-PRO +and O +anisotropic S-PRO +strain O +scaling O +factors O +in O +AAP O +, O +and O +for O +sensitivity B-CONPRI +analyses E-CONPRI +on O +the O +effect O +of O +basic O +model S-CONPRI +parameters O +in O +AAS O +. O + + +The O +actual O +validation S-CONPRI +of O +the O +programs O +is O +performed O +on O +the O +basis O +of O +different O +sample S-CONPRI +geometries S-CONPRI +with O +varying O +wall B-FEAT +thickness E-FEAT +and O +deformation S-CONPRI +characteristic.While O +both O +simulation S-ENAT +approaches O +, O +AAP O +and O +AAS O +, O +are O +capable O +of O +predicting O +the O +qualitative S-CONPRI +characteristics O +of O +the O +residual B-CONPRI +deformations E-CONPRI +sufficiently O +well O +, O +accurate S-CHAR +quantitative O +results O +are O +difficult O +to O +obtain O +. O + + +AAP O +is O +more O +accessible O +and O +yields O +accurate S-CHAR +results O +within O +the O +calibrated S-CONPRI +regime O +. O + + +Extrapolation O +to O +other O +geometries S-CONPRI +introduces O +uncertainties O +, O +however O +. O + + +Numerical O +efforts O +and O +modelling S-ENAT +uncertainties O +as S-MATE +well O +as S-MATE +requirements O +for O +an O +extensive O +set S-APPL +of O +material S-MATE +parameters O +reduce O +its O +practicality O +, O +however O +. O + + +More O +appropriate O +calibration S-CONPRI +geometries O +, O +continuing O +extension O +of O +a O +more O +reliable O +material S-MATE +database S-ENAT +, O +improved O +user O +guidelines O +and O +increased O +numerical O +efficiency O +are O +key O +in O +the O +future O +establishment O +of O +the O +process B-ENAT +simulation E-ENAT +approaches O +in O +the O +industrial S-APPL +practice O +. O + + +The O +loss O +of O +elemental O +Mg S-MATE +was O +non-negligible O +during O +WAAM S-MANP +. O + + +With O +the O +loss O +rate O +of O +elemental O +Mg S-MATE +increasing O +, O +the O +tensile B-PRO +strength E-PRO +and O +hardness S-PRO +of O +WAAM S-MANP +component S-MACEQ +decreased O +. O + + +In O +WAAM S-MANP +component S-MACEQ +of O +Al-Mg B-MATE +alloy E-MATE +, O +the O +lattice S-CONPRI +parameters O +decreased O +with O +the O +Mg S-MATE +loss O +rate O +increasing O +. O + + +Elemental O +Mg S-MATE +is O +easily O +evaporated S-MANP +or O +burnt O +during O +welding S-MANP +or O +wire B-MANP ++ I-MANP +arc I-MANP +additive I-MANP +manufacturing E-MANP +( O +WAAM S-MANP +) O +, O +and O +results O +in O +a O +fluctuation O +of O +the O +composition S-CONPRI +and O +mechanical S-APPL +performances O +. O + + +Elemental O +Mg S-MATE +loss O +during O +the O +WAAM S-MANP +of O +Al–Mg O +alloy S-MATE +was O +investigated O +and O +the O +effect O +of O +Mg S-MATE +loss O +on O +the O +mechanical B-CONPRI +properties E-CONPRI +was O +discussed O +based O +on O +results O +from O +the O +chemical B-CONPRI +composition E-CONPRI +measurement O +and O +mechanical B-CONPRI +properties E-CONPRI +test O +. O + + +The O +elemental O +Mg S-MATE +distribution S-CONPRI +in O +the O +WAAM S-MANP +component S-MACEQ +was O +uniform O +, O +but O +obvious O +element S-MATE +enrichment O +occurred O +near O +the O +fusion B-CONPRI +zone E-CONPRI +of O +the O +substrate S-MATE +. O + + +With O +an O +increase O +in O +the O +loss O +rate O +of O +elemental O +Mg S-MATE +, O +the O +tensile B-PRO +strength E-PRO +and O +average S-CONPRI +hardness O +of O +the O +WAAM S-MANP +component S-MACEQ +decreased O +, O +whereas O +the O +elongation S-PRO +increased O +. O + + +During O +the O +WAAM S-MANP +of O +the O +Al–Mg O +alloy S-MATE +, O +with O +an O +increase O +in O +the O +Mg S-MATE +loss O +rate O +, O +the O +lattice S-CONPRI +parameters O +decreased O +because O +the O +solid O +solubility S-PRO +decreased O +in O +the O +Al S-MATE +matrix O +during O +the O +WAAM S-MANP +. O + + +Ring B-MANP +rolling E-MANP +is O +a O +flexible O +forming B-MANP +process E-MANP +used O +to O +produce O +seamless O +rings O +with O +various O +dimensions S-FEAT +and O +cross B-CONPRI +sections E-CONPRI +. O + + +For O +smaller O +rings O +of O +up O +to O +500 O +mm S-MANP +diameter S-CONPRI +, O +mechanical S-APPL +ring O +rolling S-MANP +machines S-MACEQ +can O +be S-MATE +used O +. O + + +A O +special O +design S-FEAT +is O +a O +4-mandrel-table O +rolling B-MACEQ +mill E-MACEQ +, O +which O +achieves O +high O +productivity S-CONPRI +due O +to O +the O +fact O +that O +the O +precursor S-MATE +rings O +are O +continuously O +conveyed O +through O +the O +roll O +gap O +by O +rotation O +of O +the O +table O +. O + + +The O +mechanical S-APPL +machines S-MACEQ +are O +usually O +integrated O +into O +a O +process B-ENAT +chain E-ENAT +that O +involves O +shearing S-MANP +of O +blocks O +, O +forging S-MANP +of O +blanks O +and O +ring B-MANP +rolling E-MANP +as S-MATE +the O +final O +process S-CONPRI +step O +. O + + +Especially O +profiled O +cross B-CONPRI +sections E-CONPRI +may O +require O +multiple O +forming S-MANP +steps O +to O +reach O +the O +final O +ring O +geometry S-CONPRI +. O + + +To O +increase O +the O +flexibility S-PRO +of O +the O +process S-CONPRI +, O +it O +seems O +viable O +to O +use O +highly O +productive O +additive B-MANP +manufacturing I-MANP +processes E-MANP +such O +as S-MATE +wire-arc O +additive B-MANP +manufacturing E-MANP +( O +WAAM S-MANP +) O +to O +produce O +pre-forms O +for O +the O +ring B-MANP +rolling E-MANP +process S-CONPRI +. O + + +WAAM S-MANP +is O +based O +on O +arc B-MANP +welding E-MANP +and O +allows O +for O +processing O +various B-MATE +materials E-MATE +with O +high B-PARA +deposition I-PARA +rates E-PARA +. O + + +In O +this O +case O +, O +a O +more O +complex O +cross B-CONPRI +section E-CONPRI +can O +be S-MATE +manufactured O +, O +so O +that O +a O +single O +ring B-MANP +rolling E-MANP +stage O +may O +be S-MATE +sufficient O +. O + + +However O +, O +no O +previous O +research S-CONPRI +on O +ring B-MANP +rolling E-MANP +of O +additively B-MANP +manufactured E-MANP +pre-form O +is O +known O +. O + + +The O +present O +contribution O +aims O +at O +analyzing O +the O +hot B-MANP +forming E-MANP +behavior O +of O +pre-forms O +made O +by O +WAAM S-MANP +during O +ring B-MANP +rolling E-MANP +. O + + +The O +microstructure B-CONPRI +evolution E-CONPRI +and O +the O +achieved O +mechanical B-CONPRI +properties E-CONPRI +will O +be S-MATE +evaluated O +. O + + +The O +goal O +of O +this O +project O +is O +to O +determine O +the O +efficiency O +of O +3D B-MANP +printed E-MANP +welding O +jigs S-MACEQ +in O +pre-series O +body O +shops O +. O + + +The O +design S-FEAT +of O +these O +jigs S-MACEQ +and O +how O +they O +function O +compared O +to O +conventional O +jig S-MACEQ +systems O +is O +analyzed O +. O + + +Additive B-APPL +manufactured I-APPL +parts E-APPL +possess O +the O +advantage O +of O +easier O +production S-MANP +of O +complex O +parts O +which O +would O +serve O +the O +purpose O +of O +designing O +custom O +jigs S-MACEQ +for O +different O +intricate O +detailed O +parts O +with O +odd O +orientations S-CONPRI +. O + + +While O +machining S-MANP +custom O +jigs S-MACEQ +can O +be S-MATE +costly O +, O +3D B-MANP +printing E-MANP +these O +jigs S-MACEQ +provides O +precision S-CHAR +as S-MATE +well O +as S-MATE +reduces O +costs O +and O +setup O +time O +since O +they O +are O +designed S-FEAT +for O +their O +specific O +application O +. O + + +Large O +components S-MACEQ +can O +be S-MATE +made O +by O +laser B-MANP +welding E-MANP +EBM-built O +plates O +to O +wrought S-CONPRI +counterparts O +. O + + +Influence O +of O +the O +welding S-MANP +angles O +between O +EBM S-MANP +build B-PARA +direction E-PARA +and O +weld B-CONPRI +bead E-CONPRI +was O +studied O +. O + + +Microhardness S-CONPRI +of O +each O +zone O +is O +determined O +by O +the O +local O +microstructure S-CONPRI +. O + + +Tensile B-PRO +properties E-PRO +depend O +on O +the O +EBM S-MANP +base B-MATE +metal E-MATE +due O +to O +the O +internal O +defects S-CONPRI +. O + + +The O +mechanism S-CONPRI +of O +stress S-PRO +during O +uniaxial O +tension O +is O +discussed O +based O +on O +columnar B-PRO +grains E-PRO +and O +the O +internal O +defects S-CONPRI +. O + + +Electron B-MANP +beam I-MANP +melting E-MANP +( O +EBM S-MANP +) O +is O +an O +established O +powder-bed O +additive B-MANP +manufacturing I-MANP +process E-MANP +for O +small-to-medium-sized O +components S-MACEQ +of O +Ti-6Al-4V S-MATE +. O + + +For O +further O +employing O +EBM S-MANP +on O +fabricating S-MANP +large-scale O +components S-MACEQ +, O +an O +effort O +has O +been O +made O +by O +joining S-MANP +EBM-built O +Ti-6Al-4V S-MATE +plates O +to O +wrought S-CONPRI +counterparts O +using O +laser B-MANP +welding E-MANP +, O +and O +the O +welding S-MANP +angles O +between O +EBM S-MANP +build B-PARA +direction E-PARA +and O +weld B-CONPRI +bead E-CONPRI +have O +been O +chosen O +as S-MATE +0° O +, O +30° O +and O +45° O +. O + + +The O +influence O +of O +the O +welding S-MANP +angles O +on O +the O +microstructure S-CONPRI +, O +microhardness S-CONPRI +of O +base B-MATE +metals E-MATE +, O +fusion B-CONPRI +zone E-CONPRI +, O +and O +heat-affected O +zones O +, O +as S-MATE +well O +as S-MATE +the O +macro S-FEAT +tensile O +test O +have O +been O +characterized O +. O + + +The O +microhardness S-CONPRI +of O +each O +zone O +is O +determined O +by O +the O +local O +microstructure S-CONPRI +, O +and O +the O +macro S-FEAT +tensile O +properties S-CONPRI +largely O +depend O +on O +the O +EBM S-MANP +base B-MATE +metal E-MATE +due O +to O +the O +internal O +defects S-CONPRI +generated O +during O +the O +EBM S-MANP +process O +. O + + +The O +effect O +of O +welding S-MANP +angles O +on O +tensile B-PRO +strengths E-PRO +is O +not O +significant O +, O +while O +the O +elongation S-PRO +drops O +from O +9.4 O +% O +to O +5.8 O +% O +as S-MATE +the O +welding S-MANP +angle O +increases O +from O +0° O +to O +45° O +. O + + +The O +mechanism S-CONPRI +of O +stress S-PRO +during O +uniaxial O +tension O +on O +EBM S-MANP +base B-MATE +metal E-MATE +is O +discussed O +based O +on O +the O +stress S-PRO +state O +of O +columnar B-PRO +grains E-PRO +and O +the O +internal O +defects S-CONPRI +. O + + +Wire-arc B-MANP +additive I-MANP +manufacturing E-MANP +( O +WAAM S-MANP +) O +has O +received O +substantial O +attention O +in O +recent O +years O +due O +to O +the O +very O +high O +build B-CHAR +rates E-CHAR +. O + + +When O +bulky O +structures O +are O +generated O +using O +standard S-CONPRI +layer-by-layer S-CONPRI +tool O +paths O +, O +the O +build B-CHAR +rate E-CHAR +in O +the O +outer O +contour S-FEAT +of O +the O +part O +may O +lag O +behind O +the O +build B-CHAR +rate E-CHAR +in O +the O +interior O +. O + + +In O +WAAM S-MANP +, O +the O +profile S-FEAT +of O +a O +single O +weld B-CONPRI +bead E-CONPRI +resembles O +a O +parabola O +. O + + +In O +order O +to O +keep O +the O +build B-CHAR +rate E-CHAR +constant O +at O +each O +point O +of O +the O +layer S-PARA +, O +optimal O +overlapping O +distances O +can O +be S-MATE +determined O +. O + + +This O +paper O +presents O +novel O +multi-bead O +overlapping O +models O +for O +tool B-CONPRI +path E-CONPRI +generation O +. O + + +Mathematical S-CONPRI +models O +are O +established O +to O +minimize O +valleys O +between O +adjacent O +weld B-CONPRI +beads E-CONPRI +by O +accounting O +for O +the O +overlapping O +volume S-CONPRI +. O + + +The O +proposed O +models O +are O +validated O +by O +manufacturing S-MANP +solid O +blocks O +from O +mild B-MATE +steel E-MATE +with O +the O +recommended O +overlapping O +distances O +. O + + +Macrographs O +are O +recorded O +to O +analyze O +the O +boundary S-FEAT +profiles O +. O + + +High-integrity O +ceramic-metal S-MATE +composites O +combine O +electrical S-APPL +, O +thermal O +, O +and O +corrosion B-CONPRI +resistance E-CONPRI +with O +excellent O +mechanical S-APPL +robustness O +. O + + +Ultrasonic B-MANP +additive I-MANP +manufacturing E-MANP +( O +UAM S-MANP +) O +is O +a O +low O +temperature S-PARA +process S-CONPRI +that O +enables O +dissimilar O +material S-MATE +welds O +without O +inducing O +brittle S-PRO +phases O +. O + + +In O +this O +study O +, O +multiple O +layers O +of O +Yttria-stabilized O +zirconia S-MATE +( O +YSZ S-MATE +) O +films O +are O +jointed O +between O +layers O +of O +Al S-MATE +6061-H18 O +matrix O +using O +a O +9 O +kW O +UAM S-MANP +system O +. O + + +UAM S-MANP +is O +advantageous O +over O +existing O +metal-ceramic O +composite S-MATE +fabrication O +techniques O +by O +continuously O +joining S-MANP +ceramics S-MATE +to O +metals S-MATE +at O +a O +speed O +of O +2 O +m/min O +while O +requiring O +a O +moderate O +temperature S-PARA +that O +is O +55 O +% O +of O +the O +melting B-PRO +point E-PRO +of O +aluminum S-MATE +. O + + +The O +welding B-FEAT +interface E-FEAT +, O +which O +is O +found O +to O +include O +a O +10 O +nm O +thick O +diffusion S-CONPRI +zone O +, O +is O +investigated O +using O +optical B-CHAR +microscopy E-CHAR +and O +energy-dispersive O +X-ray S-CHAR +( O +EDX S-CHAR +) O +spectroscopy S-CONPRI +. O + + +The O +shear B-PRO +strengths E-PRO +of O +the O +as-welded O +and O +heat-treated S-MANP +composites S-MATE +are O +72 O +MPa S-CONPRI +and O +103 O +MPa S-CONPRI +, O +respectively O +. O + + +The O +shear O +deformation S-CONPRI +and O +failure B-PRO +mechanism E-PRO +of O +the O +YSZ-Al O +composites S-MATE +are O +investigated O +via O +finite B-CONPRI +element E-CONPRI +modeling O +. O + + +Additive B-MANP +manufacturing E-MANP +based O +method O +was O +used O +to O +join O +Polypropylene S-MATE +to O +Al-Mg B-MATE +alloy E-MATE +. O + + +Obtained O +joint S-CONPRI +was O +a O +combination O +of O +welding S-MANP +and O +mechanical S-APPL +lock O +among O +constituents O +. O + + +Additive S-MATE +filling O +pattern S-CONPRI +and O +printing O +temperature S-PARA +affected O +mechanical S-APPL +behavior O +. O + + +Introduced O +method O +was O +a O +fast O +and O +versatile O +technique O +for O +joining S-MANP +metal O +to O +polymer S-MATE +. O + + +Fused B-MANP +Deposition I-MANP +Modeling E-MANP +with O +Polypropylene B-MATE +filament E-MATE +was O +employed O +to O +make O +a O +lap S-CONPRI +joint S-CONPRI +between O +Polypropylene S-MATE +and O +pre-punched O +Al-Mg B-MATE +alloy E-MATE +sheets O +, O +in O +the O +form O +of O +bonds O +between O +the O +polymeric O +substrate S-MATE +and O +the O +additive S-MATE +part O +and O +mechanical S-APPL +lock O +between O +the O +additive S-MATE +part O +and O +aluminum S-MATE +base O +sheet S-MATE +. O + + +Effects O +of O +the O +joint B-CONPRI +interface E-CONPRI +area S-PARA +( O +hole O +diameter S-CONPRI +of O +5–13 O +mm S-MANP +) O +and O +preheating S-MANP +of O +the O +substrates O +( O +room O +temperature S-PARA +, O +50 O +and O +90℃ O +) O +were O +investigated O +on O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +joints O +. O + + +Peak O +load O +in O +the O +tensile-shear O +and O +cross-tension O +tests O +increased O +with O +enhancement O +of O +the O +joint B-CONPRI +interface E-CONPRI +area S-PARA +( O +up O +to O +˜280 O +N S-MATE +and O +˜160 O +N S-MATE +, O +respectively O +) O +. O + + +Preheating S-MANP +of O +the O +substrates O +increased O +the O +joint S-CONPRI +strength O +via O +improvement O +in O +the O +bonds O +between O +the O +polymer S-MATE +sheet O +and O +the O +additive S-MATE +part O +and O +increase O +in O +the O +adhesion S-PRO +force O +between O +the O +printed O +layers O +. O + + +Tungsten S-MATE +is O +receiving O +increasing O +interest O +as S-MATE +a O +plasma S-CONPRI +facing S-MANP +material O +in O +the O +ITER O +fusion S-CONPRI +reactor O +, O +collimators O +, O +and O +other O +structural O +, O +high O +temperature S-PARA +applications O +. O + + +Concurrently O +, O +there O +is O +a O +demand O +for O +manufacturing S-MANP +techniques O +capable O +of O +processing O +tungsten S-MATE +into O +the O +desired O +geometries S-CONPRI +. O + + +Additive B-MANP +manufacturing E-MANP +is O +a O +promising O +technique O +able O +to O +produce O +complex O +parts O +, O +but O +the O +structural B-PRO +integrity E-PRO +is O +compromised O +by O +microcracking O +. O + + +This O +work O +combines O +thermomechanical S-CONPRI +simulations S-ENAT +with O +in B-CONPRI +situ E-CONPRI +high-speed O +video O +of O +microcracking O +in O +single O +laser-melted O +tracks O +, O +visualizing O +the O +ductile-to-brittle O +transition S-CONPRI +. O + + +Microcracking O +is O +shown O +to O +occur O +in O +a O +narrow O +temperature S-PARA +interval O +between O +450 O +K S-MATE +– O +650 O +K S-MATE +, O +and O +to O +be S-MATE +strain O +rate O +dependent O +. O + + +The O +size O +of O +the O +crack-affected O +area S-PARA +around O +the O +scan O +track O +is O +determined O +by O +the O +maximum O +Von O +Mises O +residual B-PRO +stress E-PRO +, O +whereas O +crack O +network O +morphology S-CONPRI +depends O +on O +the O +local B-CONPRI +orientation E-CONPRI +of O +the O +principal B-PRO +stress E-PRO +. O + + +The O +fundamental O +understanding O +provided O +by O +this O +work O +contributes O +to O +future O +efforts O +in O +crack O +free O +, O +additively B-MANP +manufactured E-MANP +tungsten O +. O + + +Due O +to O +rapid O +, O +localized O +heating S-MANP +and O +cooling S-MANP +, O +distortions O +accumulate O +in O +additive B-MANP +manufactured E-MANP +laser O +metal B-CONPRI +deposition E-CONPRI +( O +LMD S-MANP +) O +components S-MACEQ +, O +leading O +to O +a O +loss O +of O +dimensional B-CHAR +accuracy E-CHAR +or O +even O +cracking S-CONPRI +. O + + +Numerical O +welding S-MANP +simulations S-ENAT +allow O +the O +prediction S-CONPRI +of O +these O +deviations O +and O +their O +optimization S-CONPRI +before O +conducting O +experiments O +. O + + +To O +assess O +the O +viability O +of O +the O +simulation S-ENAT +tool O +for O +the O +use O +in O +a O +predictive O +manner O +, O +comprehensive O +validations O +with O +experimental S-CONPRI +results O +on O +the O +newly-built O +part O +need O +to O +be S-MATE +conducted.In O +this O +contribution O +, O +a O +predictive O +, O +mechanical S-APPL +simulation O +of O +a O +thin-walled O +, O +curved O +LMD S-MANP +geometry S-CONPRI +is O +shown O +for O +a O +30-layer O +sample S-CONPRI +of O +1.4404 O +stainless B-MATE +steel E-MATE +. O + + +The O +part O +distortions O +are O +determined O +experimentally O +via O +an O +in-situ S-CONPRI +digital B-CONPRI +image I-CONPRI +correlation E-CONPRI +measurement O +using O +the O +GOM O +Aramis O +system O +and O +compared O +with O +the O +simulation S-ENAT +results O +. O + + +With O +this O +benchmark S-MANS +, O +the O +performance S-CONPRI +of O +a O +numerical O +welding S-MANP +simulation S-ENAT +in O +additive B-MANP +manufacturing E-MANP +is O +discussed O +in O +terms O +of O +result O +accuracy S-CHAR +and O +usability O +. O + + +Welding S-MANP +of O +dissimilar O +metals S-MATE +is O +challenging O +, O +particularly O +between O +crystalline O +metals S-MATE +and O +metallic B-MATE +glasses E-MATE +( O +MGs O +) O +. O + + +In O +this O +study O +, O +Zr65.7Cu15.6Ni11.7Al3.7Ti3.3 O +( O +wt O +% O +) O +MG S-MATE +structures O +were O +built O +on O +304 O +stainless B-MATE +steel E-MATE +( O +SS S-MATE +) O +substrates O +by O +laser-foil-printing O +( O +LFP S-MATE +) O +additive B-MANP +manufacturing E-MANP +technology O +in O +which O +MG S-MATE +foils O +were O +laser S-ENAT +welded O +layer-by-layer S-CONPRI +onto O +the O +SS S-MATE +substrate O +with O +a O +transition S-CONPRI +route O +, O +i.e. O +, O +SS S-MATE +→ O +V S-MATE +→ O +Ti S-MATE +→ O +Zr S-MATE +→ O +MG S-MATE +. O + + +The O +direct O +welding S-MANP +of O +MG S-MATE +on O +SS S-MATE +would O +lead S-MATE +to O +the O +formation O +of O +various O +brittle S-PRO +intermetallics O +and O +the O +consequent O +peeling O +off O +of O +the O +welded S-MANP +MG S-MATE +foils O +from O +the O +SS S-MATE +substrate O +, O +which O +could O +be S-MATE +resolved O +via O +the O +use O +of O +V/Ti/Zr O +intermediate O +layers O +. O + + +The O +chemical B-CONPRI +composition E-CONPRI +, O +formed O +phases O +, O +and O +micro-hardness O +were O +characterized O +in O +the O +dissimilar O +joints O +by O +energy B-CHAR +dispersive I-CHAR +spectroscopy E-CHAR +, O +X-ray B-CHAR +diffraction E-CHAR +, O +and O +micro-indentation O +. O + + +Since O +the O +intermediate O +materials S-CONPRI +were O +highly O +compatible O +with O +the O +base B-MATE +metals E-MATE +or O +the O +adjacent O +intermediate O +metals S-MATE +, O +undesirable O +intermetallics S-MATE +were O +not O +detected O +in O +the O +dissimilar O +joint S-CONPRI +. O + + +The O +bonding S-CONPRI +tensile O +strength S-PRO +between O +the O +SS S-MATE +substrate O +and O +the O +MG S-MATE +part O +with O +intermediate O +layers O +was O +measured O +about O +477 O +MPa S-CONPRI +. O + + +The O +manufacturing S-MANP +of O +components S-MACEQ +from O +the O +titanium B-MATE +alloy I-MATE +Ti-6Al-4 I-MATE +V E-MATE +is O +of O +great O +significance O +for O +many O +industrial B-CONPRI +sectors E-CONPRI +. O + + +The O +production S-MANP +of O +high-performance O +Ti-6Al-4 B-MATE +V E-MATE +components S-MACEQ +typically O +requires O +multiple O +hot O +forging S-MANP +steps O +and O +leads O +to O +parts O +with O +tolerances S-PARA +that O +need O +extensive O +machining S-MANP +to O +create O +the O +final O +shape O +. O + + +For O +many O +applications O +, O +net-shape O +technologies S-CONPRI +such O +as S-MATE +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +could O +enable O +a O +higher O +material S-MATE +yield O +. O + + +Thus O +, O +the O +advantages O +of O +AM S-MANP +and O +forging S-MANP +operations O +could O +be S-MATE +exploited O +by O +combining O +both O +processes S-CONPRI +to O +new O +hybrid O +process B-ENAT +chains E-ENAT +. O + + +The O +present O +study O +investigates S-CONPRI +the O +use O +of O +Wire-Arc B-MANP +additive I-MANP +manufacturing E-MANP +( O +WAAM S-MANP +) O +for O +hybrid B-CONPRI +manufacturing E-CONPRI +of O +Ti-6Al-4 B-MATE +V E-MATE +aerospace B-MACEQ +components E-MACEQ +. O + + +Two O +process S-CONPRI +routes O +are O +investigated O +that O +combine O +forming S-MANP +and O +AM B-MANP +processes E-MANP +. O + + +In O +the O +first O +process S-CONPRI +route O +, O +a O +WAAM S-MANP +process S-CONPRI +is O +used O +to O +generate O +a O +pre-shaped O +semi-finished O +part O +. O + + +The O +semi-finished O +part O +will O +then O +be S-MATE +forged O +using O +a O +single O +forming S-MANP +tool O +to O +obtain O +the O +final O +part O +contour S-FEAT +. O + + +The O +second O +process S-CONPRI +route O +utilizes O +a O +conventionally O +forged O +pre-form O +, O +onto O +which O +features O +of O +the O +final O +workpiece S-CONPRI +are O +added O +using O +WAAM S-MANP +. O + + +The O +results O +confirm O +that O +hybrid B-ENAT +technologies E-ENAT +combining O +WAAM S-MANP +and O +forging S-MANP +are O +very O +promising O +for O +Ti-6Al-4 B-MATE +V E-MATE +part O +production S-MANP +. O + + +A O +jet O +engine O +blade O +produced O +by O +WAAM S-MANP +and O +subsequent O +forging S-MANP +shows O +microstructures S-MATE +typically O +produced O +in O +conventional O +processing O +of O +Ti-6Al-4 B-MATE +V I-MATE +alloy E-MATE +and O +exhibits O +tensile B-PRO +properties E-PRO +, O +which O +exceed O +the O +specification S-PARA +level O +of O +cast S-MANP +and O +forged O +Ti-6Al-4 B-MATE +V E-MATE +material S-MATE +. O + + +Features O +created O +by O +WAAM S-MANP +on O +forged O +pre-forms O +are O +shown O +to O +reach O +the O +mechanical B-CONPRI +properties E-CONPRI +required O +to O +combine O +both O +technologies S-CONPRI +. O + + +The O +combination O +of O +WAAM S-MANP +and O +forging S-MANP +may O +hence O +be S-MATE +used O +to O +develop O +new O +manufacturing B-CONPRI +chains E-CONPRI +that O +allow O +for O +higher O +material S-MATE +yield O +and O +flexibility S-PRO +than O +conventional O +forging S-MANP +. O + + +This O +paper O +explores O +the O +application O +of O +the O +‘ O +mortise-and-tenon O +’ O +concept O +for O +joining S-MANP +hollow O +section O +aluminium S-MATE +profiles O +to O +composite S-MATE +strips O +or O +sheets S-MATE +. O + + +Wire B-MANP +arc I-MANP +additive I-MANP +manufacturing E-MANP +is O +combined O +with O +joining S-MANP +by O +forming S-MANP +to O +fabricate S-MANP +the O +tenons O +and O +to O +obtain O +the O +mechanical S-APPL +interlocking O +with O +the O +mortises O +available O +in O +the O +strips O +( O +or O +sheets S-MATE +) O +. O + + +The O +workability O +limits S-CONPRI +are O +established O +by O +means O +of O +an O +analytical O +model S-CONPRI +that O +combines O +plastic B-PRO +deformation E-PRO +, O +instability O +and O +fracture S-CONPRI +. O + + +Experimental S-CONPRI +and O +finite B-CHAR +element I-CHAR +modelling E-CHAR +are O +utilized O +to O +develop O +the O +overall O +joining S-MANP +process O +and O +to O +validate O +the O +round O +‘ O +mortise-and-tenon O +’ O +design S-FEAT +resulting O +from O +the O +analytical O +model S-CONPRI +. O + + +The O +proposed O +joining S-MANP +process O +also O +circumvents O +the O +need O +to O +design S-FEAT +extra O +fixing O +and O +interlocking O +features O +in O +low O +cost O +hollow O +section O +aluminium S-MATE +profiles O +for O +easy O +assembling O +. O + + +There O +exist O +several O +variants O +of O +Additive B-MANP +Manufacturing E-MANP +( O +AM S-MANP +) O +applicable O +for O +metals S-MATE +and O +alloys S-MATE +. O + + +The O +two O +main O +groups O +are O +Directed B-MANP +Energy I-MANP +Deposition E-MANP +( O +DED S-MANP +) O +and O +Powder B-MANP +Bed I-MANP +Fusion E-MANP +( O +PBF S-MANP +) O +. O + + +AM S-MANP +has O +advantages O +and O +disadvantages O +when O +compared O +to O +more O +traditional B-MANP +manufacturing E-MANP +methods O +. O + + +The O +best O +candidate O +products O +are O +those O +with O +complex B-PRO +shape E-PRO +and O +small O +series O +and O +particularly O +individualized O +product O +. O + + +Repair O +welding S-MANP +is O +often O +individualized O +as S-MATE +defects O +may O +occur O +at O +various O +instances O +in O +a O +component S-MACEQ +. O + + +This O +method O +was O +used O +before O +it O +became O +categorized O +as S-MATE +AM S-MANP +and O +in O +most O +cases O +, O +it O +is O +a O +DED S-MANP +process O +. O + + +PBF S-MANP +processes O +are O +more O +useful O +for O +smaller O +items O +and O +can O +give O +a O +finer O +surface S-CONPRI +. O + + +Both O +DED S-MANP +and O +PBF S-MANP +products O +require O +subsequent O +surface B-MANP +finishing E-MANP +for O +high O +performance S-CONPRI +components S-MACEQ +and O +sometimes O +there O +is O +also O +a O +need O +for O +post O +heat B-MANP +treatment E-MANP +. O + + +Modelling S-ENAT +of O +AM S-MANP +as O +well O +as S-MATE +eventual O +post-processes O +can O +be S-MATE +of O +use O +in O +order O +to O +improve O +product B-CONPRI +quality E-CONPRI +, O +reducing O +costs O +and O +material S-MATE +waste O +. O + + +The O +paper O +describes O +the O +use O +of O +the O +finite B-CONPRI +element I-CONPRI +method E-CONPRI +to O +simulate O +these O +processes S-CONPRI +with O +focus O +on O +superalloys S-MATE +. O + + +Additive B-MANP +Manufacturing E-MANP +has O +recently O +emerged O +as S-MATE +an O +important O +industrial S-APPL +process O +that O +is O +capable O +of O +manufacturing S-MANP +parts O +with O +complex B-CONPRI +geometry E-CONPRI +. O + + +One O +of O +the O +drawbacks O +of O +metal B-MANP +additive I-MANP +manufacturing E-MANP +processes O +is O +the O +thermo-mechanical B-CONPRI +distortion E-CONPRI +of O +the O +parts O +during O +and O +after O +build S-PARA +due O +to O +heat S-CONPRI +effects O +. O + + +Inherent O +strain S-PRO +is O +widely O +adopted O +by O +researchers O +as S-MATE +the O +basis O +to O +predict O +part O +distortions O +during O +Metal B-MANP +Powder I-MANP +Bed I-MANP +Fusion I-MANP +Additive I-MANP +Manufacturing E-MANP +( O +PBFAM O +) O +process S-CONPRI +and O +is O +highly O +dependent O +on O +the O +laser S-ENAT +hatch O +pattern S-CONPRI +sintering O +on O +each O +layer S-PARA +during O +the O +printing B-MANP +process E-MANP +. O + + +There O +is O +a O +clear O +need O +to O +predict O +inherent O +strains O +for O +a O +given O +arbitrary O +hatch O +pattern S-CONPRI +for O +a O +part O +model S-CONPRI +so O +that O +hatch O +patterns O +can O +be S-MATE +optimized O +for O +achieving O +part O +quality S-CONPRI +. O + + +In O +this O +paper O +, O +we O +propose O +a O +neural B-CONPRI +network E-CONPRI +based O +method O +to O +predict O +inherent O +strain S-PRO +for O +any O +given O +hatch O +pattern S-CONPRI +that O +is O +adopted O +during O +the O +part O +build S-PARA +. O + + +The O +authors O +assumed O +that O +the O +temperature S-PARA +profile S-FEAT +inside O +the O +heat B-CONPRI +affected I-CONPRI +zone E-CONPRI +within O +each O +layer S-PARA +is O +the O +same O +if O +the O +part O +model S-CONPRI +is O +reasonably O +large O +. O + + +To O +start O +with O +, O +inherent O +strains O +of O +two O +hatch O +pattern S-CONPRI +pools O +with O +different O +hatch O +angles O +were O +obtained O +by O +thermo-mechanical S-CONPRI +simulation S-ENAT +with O +temperature S-PARA +profiles S-FEAT +obtained O +through O +translation O +and O +rotation O +of O +a O +single O +layer S-PARA +of O +simulation S-ENAT +. O + + +A O +feedforward O +backpropagation O +neural B-CONPRI +network E-CONPRI +was O +created O +and O +trained O +with O +data S-CONPRI +obtained O +from O +an O +initial O +hatch O +pattern S-CONPRI +pool O +for O +predicting O +inherent O +strains O +. O + + +The O +data S-CONPRI +from O +a O +second O +hatch O +pattern S-CONPRI +pool O +was O +then O +utilized O +to O +validate O +the O +network O +and O +test O +the O +efficacy O +of O +the O +prediction S-CONPRI +of O +the O +trained O +neural B-CONPRI +network E-CONPRI +. O + + +The O +results O +show O +that O +the O +trained O +neural B-CONPRI +network E-CONPRI +is O +capable O +of O +predicting O +the O +inherent O +strain S-PRO +of O +any O +arbitrary O +hatch O +pattern S-CONPRI +within O +an O +acceptable O +error S-CONPRI +. O + + +Since O +the O +trained O +neural B-CONPRI +network E-CONPRI +can O +predict O +inherent O +strain S-PRO +quickly O +for O +any O +given O +hatch O +pattern S-CONPRI +, O +this O +could O +provide O +the O +basis O +for O +hatch O +pattern B-CONPRI +optimization E-CONPRI +of O +any O +part O +model S-CONPRI +to O +increase O +part O +build S-PARA +accuracy S-CHAR +and O +achieve O +part O +GD S-MATE +& O +T O +callouts O +. O + + +An O +innovative O +manufacturing B-MANP +process E-MANP +among O +the O +metal S-MATE +3D B-MANP +printing E-MANP +techniques O +for O +stainless B-MATE +steel E-MATE +material S-MATE +is O +first O +introduced O +in O +Structural B-CONPRI +Engineering E-CONPRI +field O +. O + + +For O +structural B-FEAT +design E-FEAT +purposes O +, O +the O +main O +issues O +in O +the O +realization O +of O +Wire-and-Arc O +Additive B-MANP +Manufactured E-MANP +stainless O +steel S-MATE +concern O +inherent O +geometrical O +imperfections S-CONPRI +to O +be S-MATE +properly O +characterized O +and O +the O +main O +material B-CONPRI +properties E-CONPRI +, O +influenced O +by O +the O +orientation S-CONPRI +of O +the O +elements S-MATE +. O + + +The O +first O +results O +of O +a O +wide O +experimental S-CONPRI +campaign O +devoted O +to O +assess O +the O +geometrical O +and O +mechanical S-APPL +characterization O +of O +Wire-and-Arc O +Additive B-MANP +Manufactured E-MANP +stainless O +steel B-MATE +elements E-MATE +evidence O +the O +need O +of O +proper O +evaluation O +of O +an O +effective O +geometry S-CONPRI +to O +derive O +the O +main O +mechanical S-APPL +parameters O +, O +which O +differ O +from O +the O +traditionally O +manufactured S-CONPRI +stainless O +steel B-MATE +material E-MATE +. O + + +Additive B-MANP +Manufacturing E-MANP +has O +recently O +gained O +great O +importance O +to O +produce O +metallic S-MATE +structural O +elements S-MATE +for O +civil O +engineering S-APPL +applications O +. O + + +While O +a O +lot O +of O +research S-CONPRI +effort O +has O +been O +focused O +on O +different O +technologies S-CONPRI +( O +such O +as S-MATE +Powder O +Bed B-MANP +Fusion E-MANP +) O +, O +there O +is O +still O +quite O +limited O +knowledge O +concerning O +the O +structural O +response O +of O +Wire-and-Arc O +Additive B-MANP +Manufactured E-MANP +( O +WAAM S-MANP +) O +metallic B-MATE +elements E-MATE +, O +as S-MATE +very O +few O +experimental S-CONPRI +campaigns O +aimed O +at O +assessing O +their O +geometrical O +and O +mechanical B-CONPRI +properties E-CONPRI +have O +been O +carried O +out O +. O + + +The O +paper O +presents O +selected O +results O +of O +a O +wide O +experimental S-CONPRI +campaign O +focused O +on O +the O +assessment O +of O +the O +main O +geometrical O +and O +mechanical B-CONPRI +properties E-CONPRI +of O +Wire-and-Arc O +Additive B-MANP +Manufactured E-MANP +( O +WAAM S-MANP +) O +stainless B-MATE +steel E-MATE +material S-MATE +, O +carried O +out O +at O +the O +Topography S-CHAR +and O +Structural B-CONPRI +Engineering E-CONPRI +Labs O +of O +University O +of O +Bologna O +. O + + +In O +detail O +, O +the O +focus O +is O +on O +the O +characterization O +of O +the O +surface S-CONPRI +irregularities O +by O +means O +of O +various O +measuring O +techniques O +and O +on O +the O +evaluation O +of O +the O +main O +material S-MATE +mechanical O +properties S-CONPRI +, O +including O +tensile S-PRO +and O +compressive B-PRO +strengths E-PRO +, O +Young O +'s O +modulus O +and O +post O +elastic S-PRO +behavior O +. O + + +Tests O +results O +have O +been O +interpreted O +through O +statistical O +tools S-MACEQ +in O +order O +to O +derive O +mean O +values O +and O +gather O +information O +about O +the O +variability S-CONPRI +of O +both O +geometrical O +and O +mechanical S-APPL +parameters O +. O + + +In O +this O +work O +, O +rapid B-ENAT +prototyping E-ENAT +and O +physical O +modelling S-ENAT +are O +used O +to O +evaluate O +four O +different O +extruder S-MACEQ +and O +deposition S-CONPRI +concepts O +for O +the O +Hybrid O +Metal S-MATE +Extrusion S-MANP +& O +Bonding S-CONPRI +( O +HYB O +) O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +process S-CONPRI +for O +aluminium B-MATE +alloys E-MATE +. O + + +The O +HYB-AM O +process S-CONPRI +is O +a O +branch O +of O +the O +HYB O +joining S-MANP +technology O +and O +is O +currently O +utilizing O +an O +extruder S-MACEQ +design S-FEAT +that O +was O +initially O +developed O +for O +welding S-MANP +purposes O +. O + + +However O +, O +due O +to O +the O +different O +operating O +conditions O +of O +an O +AM B-MANP +process E-MANP +compared O +to O +a O +welding S-MANP +process S-CONPRI +, O +it O +is O +of O +interest O +to O +compare O +the O +current O +extruder S-MACEQ +to O +that O +of O +other O +alternatives O +to O +identify O +the O +optimal O +design S-FEAT +. O + + +Plastic S-MATE +models O +of O +the O +different O +extruders O +have O +been O +produced O +by O +rapid B-ENAT +prototyping E-ENAT +and O +attached O +to O +a O +CNC-machine O +. O + + +To O +test O +the O +performance S-CONPRI +of O +each O +design S-FEAT +, O +plasticine O +has O +been O +processed S-CONPRI +through O +the O +extruders O +and O +deposited O +on O +the O +machine S-MACEQ +bed S-MACEQ +. O + + +Key O +learnings O +from O +each O +cycle O +of O +designing O +, O +building O +and O +testing S-CHAR +have O +been O +used O +as S-MATE +inputs O +for O +the O +next O +iteration O +, O +to O +finally O +end O +up O +with O +a O +design S-FEAT +and O +the O +associated O +requirements O +upon O +which O +the O +further O +development O +process S-CONPRI +will O +be S-MATE +based O +. O + + +Qualitative S-CONPRI +study O +of O +the O +mechanism S-CONPRI +of O +surface B-PRO +tension E-PRO +driven O +flow O +. O + + +Analysis O +of O +driving O +forces S-CONPRI +and O +driving O +mechanism S-CONPRI +. O + + +Quantitative S-CONPRI +investigation O +of O +surface B-PRO +tension E-PRO +and O +surface S-CONPRI +shear B-PRO +stress E-PRO +distribution S-CONPRI +. O + + +3D S-CONPRI +distribution O +of O +solidification B-CONPRI +parameters E-CONPRI +. O + + +Semi-qualitatively O +prediction S-CONPRI +of O +solidified B-PRO +microstructure E-PRO +. O + + +A O +transient B-CONPRI +three-dimensional E-CONPRI +thermal-fluid-metallurgy O +model S-CONPRI +was O +proposed O +to O +study O +the O +surface B-PRO +tension E-PRO +driven O +flow O +and O +welding S-MANP +metallurgical S-APPL +behavior O +during O +laser S-ENAT +linear O +welding S-MANP +of O +304 O +stainless B-MATE +steel E-MATE +. O + + +Numerical B-ENAT +simulation E-ENAT +and O +experimental S-CONPRI +method O +were O +both O +used O +to O +investigate O +the O +thermal O +behavior O +, O +surface B-PRO +tension E-PRO +driven O +flow O +, O +driving O +mechanism S-CONPRI +and O +solidification S-CONPRI +characteristics O +. O + + +The O +temperature S-PARA +related O +driving O +force S-CONPRI +was O +qualitatively O +analyzed O +, O +and O +surface B-PRO +tension E-PRO +and O +surface S-CONPRI +shear B-PRO +stress E-PRO +were O +quantitatively S-CONPRI +studied O +. O + + +Numerical O +method O +and O +dimensional B-CHAR +analysis E-CHAR +were O +also O +carried O +out O +to O +understand O +the O +importance O +of O +different O +driving O +forces S-CONPRI +, O +respectively O +. O + + +The O +metallurgical S-APPL +model O +was O +sequentially O +coupled O +to O +the O +thermal-fluid O +model S-CONPRI +to O +calculate O +four O +solidification B-CONPRI +parameters E-CONPRI +. O + + +Temperature B-PARA +gradient E-PARA +was O +observed O +to O +be S-MATE +much O +larger O +at O +the O +front O +of O +the O +melt B-MATE +pool E-MATE +due O +to O +the O +effect O +of O +thermal B-PRO +conductivity E-PRO +, O +and O +decreased O +from O +center O +to O +the O +periphery O +. O + + +Both O +the O +surface B-PRO +tension E-PRO +and O +surface B-PRO +tension E-PRO +driven O +flow O +were O +found O +smaller O +in O +the O +central O +area S-PARA +. O + + +The O +maximum O +shear B-PRO +stress E-PRO +may O +reach O +2500 O +N/m2 O +and O +pushed O +an O +intense O +outward O +convection O +. O + + +The O +solidification B-CONPRI +parameters E-CONPRI +were O +used O +to O +predict O +the O +solidified O +morphology S-CONPRI +, O +and O +the O +prediction S-CONPRI +was O +well O +validated O +by O +experimental S-CONPRI +results O +. O + + +The O +obtained O +basic O +conclusions O +in O +this O +work O +demonstrated O +that O +this O +study O +of O +thermal-fluid-metallurgical O +behavior O +could O +provide O +an O +improved O +understanding O +of O +the O +surface B-PRO +tension E-PRO +driven O +flow O +and O +solidification S-CONPRI +behavior O +inside O +the O +melt B-MATE +pool E-MATE +of O +welding S-MANP +and O +additive B-MANP +manufacturing I-MANP +process E-MANP +. O + + +The O +microstructure B-CONPRI +evolution E-CONPRI +and O +tensile B-PRO +properties E-PRO +of O +laser-additive O +welded S-MANP +Ti2AlNb O +joints O +under O +different O +heat B-MANP +treatments E-MANP +were O +investigated O +in O +this O +paper O +. O + + +The O +heat B-MANP +treatment E-MANP +was O +conducted O +in O +the O +B2 O ++ O +O S-MATE +( O +HT1 O +) O +and O +B2 O ++ O +α2 O ++ O +O S-MATE +( O +HT2 O +) O +phase S-CONPRI +field O +to O +obtain O +different O +microstructural S-CONPRI +characteristics O +. O + + +For O +HT1 O +, O +due O +to O +the O +B2 O +→ O +O S-MATE +transformation O +, O +the O +microstructure S-CONPRI +of O +heat B-CONPRI +affected I-CONPRI +zone E-CONPRI +was O +B2 O ++ O +α2 O ++ O +O S-MATE +, O +B2 O ++ O +residual S-CONPRI +α2 O ++ O +O S-MATE +, O +and O +B2 O ++ O +O S-MATE +as S-MATE +the O +distance O +from O +the O +base B-MATE +metal E-MATE +increased O +. O + + +As S-MATE +for O +HT2 O +, O +the O +microstructure S-CONPRI +of O +heat B-CONPRI +affected I-CONPRI +zone E-CONPRI +was O +composed O +of O +B2 O ++ O +α2 O ++ O +rim-O O ++ O +primary O +O S-MATE ++ O +acicular O +O S-MATE +in O +the O +region O +close O +to O +the O +base B-MATE +metal E-MATE +, O +B2 O ++ O +intergranular O +α2 O ++ O +transformed O +O S-MATE ++ O +primary O +O S-MATE ++ O +acicular O +O S-MATE +in O +the O +region O +close O +to O +the O +fusion B-CONPRI +zone E-CONPRI +. O + + +The O +fusion B-CONPRI +zone E-CONPRI +was O +composed O +of O +B2 O ++ O +O S-MATE +laths O +after O +HT1 O +, O +and O +B2 O ++ O +intergranular O +α2 O ++ O +transformed O +O S-MATE ++ O +primary O +O S-MATE ++ O +acicular O +O S-MATE +after O +HT2 O +. O + + +The O +joints O +composed O +of O +B2 O ++ O +O S-MATE +phase O +exhibited O +higher O +tensile B-PRO +strength E-PRO +compared O +with O +the O +as-welded O +joints O +due O +to O +the O +strengthening S-MANP +effects O +of O +O S-MATE +phase O +. O + + +The O +intergranular O +α2 O +phase S-CONPRI +formed O +during O +HT2 O +was O +detrimental O +for O +the O +tensile B-PRO +strength E-PRO +. O + + +The O +joints O +exhibited O +no O +plastic B-PRO +deformation E-PRO +at O +room O +temperature S-PARA +after O +both O +heat B-MANP +treatments E-MANP +on O +account O +of O +the O +lack O +of O +independent O +slip O +systems O +in O +the O +O S-MATE +phase O +. O + + +The O +ductility S-PRO +of O +the O +heat-treated S-MANP +joints O +at O +650 O +°C O +was O +better O +than O +that O +at O +room O +temperature S-PARA +because O +more O +slip O +systems O +were O +activated O +in O +the O +O S-MATE +phase O +. O + + +Compared O +with O +the O +joints O +heat-treated S-MANP +in O +HT1 O +, O +the O +joints O +after O +HT2 O +exhibited O +better O +ductility S-PRO +at O +650 O +°C O +resulting O +from O +the O +coarse O +primary O +O S-MATE +laths O +and O +lower O +volume B-PARA +fraction E-PARA +of O +O S-MATE +phase O +. O + + +Corrosion B-CONPRI +resistance E-CONPRI +of O +carbon B-MATE +steel E-MATE +cladding O +is O +better O +than O +high B-MATE +speed I-MATE +steel E-MATE +. O + + +Wear B-PRO +resistance E-PRO +of O +specific O +carbon B-MATE +steel E-MATE +cladding O +is O +close O +to O +high B-MATE +speed I-MATE +steel E-MATE +. O + + +Submerged B-MANP +arc I-MANP +welding E-MANP +is O +available O +technology S-CONPRI +to O +improve O +wear S-CONPRI +and O +corrosion B-CONPRI +resistance E-CONPRI +of O +carbon B-MATE +steel E-MATE +. O + + +High-speed O +steel S-MATE +( O +HSS S-MATE +) O +, O +traditionally O +used O +in O +the O +hot B-MANP +rolling E-MANP +industry O +, O +suffers O +from O +the O +problem O +of O +wear S-CONPRI +and O +corrosion S-CONPRI +. O + + +For O +modifying O +the O +surface S-CONPRI +property S-CONPRI +of O +metal B-MATE +materials E-MATE +, O +submerged B-MANP +arc I-MANP +welding E-MANP +, O +among O +the O +industrial S-APPL +additive B-MANP +manufacturing E-MANP +technologies O +, O +is O +employed O +. O + + +In O +this O +study O +, O +we O +aim O +at O +improving O +the O +resistance S-PRO +of O +carbon B-MATE +steel E-MATE +cladding O +against O +corrosion S-CONPRI +and O +wear S-CONPRI +. O + + +To O +reduce O +cost O +, O +the O +HSS S-MATE +matrix O +is O +replaced O +by O +carbon B-MATE +steel E-MATE +. O + + +Electrochemical B-CONPRI +corrosion E-CONPRI +and O +high-temperature O +dry O +sliding O +wear S-CONPRI +experiments O +are O +implemented O +to O +study O +the O +corrosion S-CONPRI +and O +tribological S-CONPRI +behavior O +of O +HSS S-MATE +and O +surface-modified O +claddings O +. O + + +The O +wear S-CONPRI +and O +corrosion B-PRO +behaviors E-PRO +are O +characterized O +by O +potentiodynamic B-CHAR +polarization E-CHAR +, O +electrochemical S-CONPRI +impedance O +spectroscopy S-CONPRI +, O +wear S-CONPRI +rate O +, O +coefficient B-PRO +of I-PRO +friction E-PRO +, O +and O +worn O +surface B-CHAR +morphology E-CHAR +. O + + +The O +experimental S-CONPRI +results O +indicate O +that O +the O +corrosion S-CONPRI +current O +density S-PRO +( O +Icorr O +) O +of O +carbon B-MATE +steel E-MATE +claddings O +, O +ranging O +from O +11.023 O +× O +10−3 O +to O +3.372 O +× O +10−3 O +mA∙cm−2 O +, O +is O +lower O +than O +that O +of O +the O +HSS S-MATE +alloy S-MATE +( O +19.247 O +× O +10−3 O +mA∙cm−2 O +) O +. O + + +The O +passive O +film O +resistance S-PRO +of O +prepared O +carbon B-MATE +steel E-MATE +cladding-3 O +( O +1870 O +Ω∙cm2 O +) O +is O +in O +fact O +larger O +than O +the O +resistance S-PRO +of O +HSS S-MATE +( O +1075 O +Ω∙cm2 O +) O +. O + + +The O +corrosion B-CONPRI +resistance E-CONPRI +of O +surface-modified O +carbon B-MATE +steel E-MATE +claddings O +is O +better O +than O +that O +of O +the O +HSS S-MATE +. O + + +The O +wear S-CONPRI +rates O +of O +carbon B-MATE +steel E-MATE +cladding-2 O +( O +1.99 O +× O +10−7 O +mm3·N−1·mm−1 O +) O +and O +carbon B-MATE +steel E-MATE +cladding-3 O +( O +2.49 O +× O +10−7 O +mm3·N−1·mm−1 O +) O +approximate O +the O +wear S-CONPRI +rate O +of O +HSS S-MATE +( O +1.59 O +× O +10−7 O +mm3·N−1·mm−1 O +) O +. O + + +Moreover O +, O +the O +wear S-CONPRI +width O +of O +prepared O +carbon B-MATE +steel E-MATE +cladding-3 O +( O +550 O +μm O +) O +is O +slightly O +larger O +than O +that O +of O +HSS S-MATE +( O +500 O +μm O +) O +. O + + +The O +wear B-PRO +resistance E-PRO +of O +carbon B-MATE +steel E-MATE +cladding-3 O +approximates O +that O +of O +HSS S-MATE +. O + + +With O +the O +increase O +in O +the O +deposition S-CONPRI +height O +, O +the O +heat B-CONPRI +dissipation E-CONPRI +changes O +from O +three-dimensional S-CONPRI +on O +the O +substrate S-MATE +to O +one-dimensional O +on O +the O +depositing O +layer S-PARA +. O + + +The O +residual B-CONPRI +distortion E-CONPRI +can O +be S-MATE +effectively O +reduced O +by O +changing O +the O +depositing O +direction O +. O + + +The O +distortion S-CONPRI +of O +the O +reverse O +directions O +can O +be S-MATE +reduced O +by O +25 O +% O +. O + + +The O +stress B-CHAR +concentration E-CHAR +at O +the O +end O +of O +the O +arc S-CONPRI +point O +and O +the O +stress S-PRO +produced O +by O +the O +reverse O +depositing O +model S-CONPRI +are O +more O +uniform O +than O +those O +produced O +by O +the O +same O +depositing O +model S-CONPRI +. O + + +The O +complex O +residual B-PRO +stress E-PRO +and O +distortion S-CONPRI +experienced O +in O +wire B-MANP +arc I-MANP +additive I-MANP +manufacturing E-MANP +( O +WAAM S-MANP +) O +can O +have O +a O +serious O +impact S-CONPRI +on O +production S-MANP +. O + + +In O +this O +paper O +, O +a O +series O +of O +ten-layer O +depositing O +walls O +were O +deposited O +by O +WAAM S-MANP +using O +the O +same O +depositing O +direction O +and O +reverse O +depositing O +direction O +to O +study O +the O +effect O +of O +different O +heat S-CONPRI +conditions O +on O +the O +residual B-PRO +stress E-PRO +and O +distortion S-CONPRI +of O +the O +deposition S-CONPRI +wall O +. O + + +The O +temperature S-PARA +field O +, O +distortion S-CONPRI +, O +and O +residual B-PRO +stress E-PRO +under O +different O +paths O +were O +obtained O +by O +performing O +experiments O +. O + + +Meanwhile O +, O +to O +calculate O +the O +variations S-CONPRI +in O +the O +temperature S-PARA +, O +stress S-PRO +, O +and O +distortion S-CONPRI +under O +different O +depositing O +paths O +, O +a O +model S-CONPRI +of O +wire B-MANP +arc I-MANP +additive I-MANP +manufacturing E-MANP +was O +established O +by O +using O +a O +numerical O +model S-CONPRI +. O + + +The O +stress B-PRO +distribution E-PRO +in O +the O +reverse O +directions O +is O +more O +uniform O +than O +that O +in O +the O +same O +directions O +. O + + +By O +comparison O +with O +the O +results O +from O +an O +experimental S-CONPRI +and O +numerical O +analysis O +, O +the O +same O +depositing O +directions O +have O +a O +large O +temperature B-PARA +gradient E-PARA +and O +produce O +greater O +plastic S-MATE +distortion S-CONPRI +during O +solidification S-CONPRI +. O + + +A O +concept O +of O +layer B-CONPRI +by I-CONPRI +layer E-CONPRI +constrained O +optimisation O +of O +multi-axis O +additive B-MANP +manufacturing E-MANP +trajectory O +for O +parts O +of O +revolution O +is O +presented O +. O + + +For O +a O +constrained O +device O +configuration S-CONPRI +, O +the O +use O +of O +non-optimised O +trajectories O +can O +lead S-MATE +to O +manufacturing S-MANP +failure S-CONPRI +due O +to O +an O +axis O +overtravel O +or O +singularity O +state O +; O +problem O +which O +can O +be S-MATE +avoided O +thanks O +to O +the O +proposed O +methodology S-CONPRI +. O + + +The O +methodology S-CONPRI +has O +been O +validated O +by O +manufacturing S-MANP +parts O +of O +revolution O +on O +a O +multi-axis O +additive B-MANP +manufacturing E-MANP +device O +using O +a O +coaxial O +PLA S-MATE +deposition S-CONPRI +system O +. O + + +Parts O +manufactured S-CONPRI +with O +an O +optimised O +trajectory O +provide O +better O +geometrical O +accuracy S-CHAR +and O +less O +results O +dispersion S-CONPRI +than O +parts O +manufactured S-CONPRI +without O +optimisation O +. O + + +This O +work O +focuses O +on O +additive B-MANP +manufacturing E-MANP +by O +Directed B-MANP +Energy I-MANP +Deposition E-MANP +( O +DED S-MANP +) O +using O +a O +6-axis O +robot S-MACEQ +. O + + +To O +achieve O +this O +goal O +, O +a O +new O +layer-by-layer S-CONPRI +method O +coupled O +with O +a O +trajectory O +constrained O +optimization S-CONPRI +is O +presented O +. O + + +The O +layer-by-layer S-CONPRI +generation O +of O +optimized O +trajectories O +is O +validated O +experimentally O +on O +a O +6-axis O +robot S-MACEQ +using O +a O +PLA S-MATE +extrusion S-MANP +system O +. O + + +Experimental S-CONPRI +results O +show O +that O +the O +layer-by-layer S-CONPRI +trajectory O +optimization S-CONPRI +strategy O +applied O +to O +parts O +of O +revolution O +provides O +better O +geometrical O +accuracy S-CHAR +while O +improving O +the O +efficiency O +of O +the O +manufacturing S-MANP +device O +compared O +to O +non-optimized O +solutions O +. O + + +In O +the O +cold B-MANP +metal I-MANP +transfer I-MANP +additive I-MANP +manufacturing E-MANP +process O +of O +Ti-6Al-4V S-MATE +thin O +wall O +structure S-CONPRI +, O +ultrasonic B-MANP +peening E-MANP +treatment O +( O +UPT O +) O +in O +three O +directions O +is O +proposed O +to O +refine O +the O +large O +columnar O +prior-β O +grains S-CONPRI +and O +secondary O +α O +grains S-CONPRI +, O +and O +to O +improve O +anisotropy S-PRO +in O +tensile B-PRO +properties E-PRO +. O + + +The O +experimental S-CONPRI +results O +showed O +that O +UPT O +in O +three O +directions O +applied O +to O +each O +weld S-FEAT +right O +after O +arc S-CONPRI +extinguishing O +has O +a O +minor O +influence O +on O +the O +surface S-CONPRI +appearance O +, O +which O +shows O +no O +apparent O +plastic B-PRO +deformation E-PRO +, O +but O +has O +a O +great O +improvement O +in O +grain B-CHAR +refinement E-CHAR +. O + + +The O +changes O +in O +microstructure S-CONPRI +and O +dislocations S-CONPRI +of O +thin O +wall O +structure S-CONPRI +treated O +by O +UPT O +in O +three O +directions O +were O +observed O +. O + + +By O +comparing O +with O +those O +without O +UPT O +, O +the O +main O +causes O +for O +refinement O +of O +columnar O +prior-β O +and O +secondary O +α O +grains S-CONPRI +was O +explored O +, O +namely O +mechanical S-APPL +effects O +of O +ultrasonic O +at O +the O +temperature B-PARA +range E-PARA +of O +α O +’ O +dissolution O +temperature S-PARA +Tdiss O +– O +liquidus S-CONPRI +temperature O +Tl S-MATE +. O + + +Specimens O +with O +UPT O +have O +better O +properties S-CONPRI +, O +higher O +loads O +with O +the O +same O +indentation S-CONPRI +displacement O +in O +nano-indentation O +tests O +, O +an O +increase O +in O +ultimate B-PRO +tensile I-PRO +strength E-PRO +and O +a O +reduction S-CONPRI +in O +anisotropic S-PRO +percentage O +in O +tensile B-CHAR +tests E-CHAR +. O + + +2Cr13 O +thin-wall O +part O +with O +defect-free O +was O +additively B-MANP +manufactured E-MANP +by O +robot-assisted O +CMT S-MANP +technology O +. O + + +Martensite S-MATE +coarsened O +gradually O +from O +FZ S-CONPRI +to O +CZ O +while O +only O +ultra-fine O +acicular O +martensite S-MATE +in O +the O +top O +layer S-PARA +. O + + +A O +random O +crystallographic O +orientation S-CONPRI +in O +the O +middle O +region O +while O +a O +slightly O +fiber S-MATE +texture O +in O +the O +top O +layer S-PARA +Mechanical O +properties S-CONPRI +were O +evolved O +periodically O +due O +to O +the O +periodic O +microstructural B-CONPRI +evolution E-CONPRI +. O + + +Based O +on O +cold B-MANP +metal I-MANP +transfer E-MANP +( O +CMT S-MANP +) O +welding S-MANP +, O +wire-arc B-MANP +additive I-MANP +manufacturing E-MANP +( O +WAAM S-MANP +) O +technology S-CONPRI +was O +adopted O +to O +manufacture S-CONPRI +2Cr13 O +part O +. O + + +The O +spatial O +periodicity O +of O +the O +microstructural B-CONPRI +evolution E-CONPRI +and O +the O +anti-indentation O +properties S-CONPRI +was O +explored O +. O + + +The O +results O +show O +that O +the O +as-deposited O +part O +was O +featured O +by O +periodic O +martensite S-MATE +laths O +within O +the O +block-shaped O +ferrite S-MATE +matrix O +in O +the O +inner O +layers O +, O +followed O +by O +epitaxial S-PRO +ferrite O +grains S-CONPRI +containing O +ultra-fine O +acicular O +martensite S-MATE +in O +the O +top O +layer S-PARA +only O +. O + + +A O +slightly O +decreased O +Fe S-MATE +intensity O +was O +caused O +by O +local O +elemental O +segregation S-CONPRI +during O +the O +re-melting O +process S-CONPRI +; O +the O +homogeneity O +of O +Fe S-MATE +and O +Cr S-MATE +was O +attributed O +to O +similar O +cooling S-MANP +conditions O +in O +the O +top O +layer S-PARA +. O + + +Elongated O +ferrite S-MATE +grains O +exhibited O +a O +slight O +fiber S-MATE +texture O +in O +the O +top O +layer S-PARA +and O +a O +random O +crystallographic O +orientation S-CONPRI +in O +the O +middle O +region O +. O + + +The O +anti-indentation O +properties S-CONPRI +evolved O +periodically O +due O +to O +the O +periodic O +microstructural S-CONPRI +characteristics O +. O + + +The O +obtained O +experimental S-CONPRI +results O +confirmed O +higher O +anti-indentation O +properties S-CONPRI +of O +the O +as-deposited O +part O +following O +comparison O +with O +the O +as-annealed O +base B-MATE +metal E-MATE +, O +while O +the O +elastic B-PRO +moduli E-PRO +of O +samples S-CONPRI +were O +not O +significantly O +different O +. O + + +Titanium B-MATE +alloys E-MATE +have O +high O +strength S-PRO +to O +low O +weight S-PARA +ratio O +, O +good O +creep S-PRO +resistance O +and O +high O +temperature S-PARA +strength B-PRO +properties E-PRO +. O + + +Based O +on O +these O +properties S-CONPRI +, O +Ti B-MATE +alloys E-MATE +are O +used O +as S-MATE +a O +‘ O +workhorse O +’ O +material S-MATE +in O +the O +aerospace B-APPL +industry E-APPL +such O +as S-MATE +engine O +blades O +, O +landing O +gear S-MACEQ +assemblies O +, O +large O +structural O +parts O +, O +airframe O +and O +drums O +etc O +. O + + +Traditional O +fabrication S-MANP +methods O +of O +Ti B-MATE +alloy E-MATE +are O +expensive O +and O +inferior O +in O +their O +mechanical B-CONPRI +properties E-CONPRI +. O + + +Due O +to O +continuous O +development O +in O +science O +and O +technology S-CONPRI +, O +many O +researchers O +have O +been O +attracted O +towards O +Wire O +Feed S-PARA +Additive B-MANP +Manufacturing E-MANP +( O +WFAM O +) O +for O +the O +fabrication S-MANP +of O +titanium S-MATE +and O +its O +alloys S-MATE +. O + + +WFAM O +has O +set S-APPL +a O +new O +trend S-CONPRI +by O +accomplishing O +the O +production S-MANP +demand O +of O +components S-MACEQ +from O +medium O +to O +large O +scale O +with O +moderate O +complexity S-CONPRI +. O + + +This O +additive B-MANP +manufacturing E-MANP +technology O +generally O +employes O +for O +high O +material B-CHAR +utilization E-CHAR +and O +higher O +deposition S-CONPRI +. O + + +This O +state O +of O +art S-APPL +highlights O +the O +remarkable O +achievements O +of O +WFAM O +processes S-CONPRI +followed O +by O +their O +effect O +of O +process B-CONPRI +parameters E-CONPRI +, O +microstructural S-CONPRI +changes O +, O +residual B-PRO +stresses E-PRO +and O +mechanical B-CONPRI +properties E-CONPRI +of O +Ti-6Al-4V B-MATE +alloy E-MATE +. O + + +Accurate S-CHAR +on-line O +weld S-FEAT +defects S-CONPRI +detection O +is O +still O +challenging O +for O +robotic B-MANP +welding I-MANP +manufacturing E-MANP +due O +to O +the O +complexity S-CONPRI +of O +weld S-FEAT +defects S-CONPRI +. O + + +This O +paper O +studied O +deep O +learning–based O +on-line O +defects S-CONPRI +detection O +for O +aluminum B-MATE +alloy E-MATE +in O +robotic O +arc B-MANP +welding E-MANP +using O +Convolutional O +Neural B-CONPRI +Networks E-CONPRI +( O +CNN O +) O +and O +weld S-FEAT +images S-CONPRI +. O + + +Firstly O +, O +an O +image S-CONPRI +acquisition O +system O +was O +developed O +to O +simultaneously O +collect O +weld S-FEAT +images S-CONPRI +, O +which O +can O +provide O +more O +information O +of O +the O +real-time O +weld S-FEAT +images S-CONPRI +from O +different O +angles O +including O +top O +front O +, O +top O +back O +and O +back O +seam S-MANP +. O + + +Then O +, O +a O +new O +CNN O +classification S-CONPRI +model O +with O +11 O +layers O +based O +on O +weld S-FEAT +image S-CONPRI +was O +designed S-FEAT +to O +identify O +weld B-CONPRI +penetration I-CONPRI +defects E-CONPRI +. O + + +In O +order O +to O +improve O +the O +robustness S-PRO +and O +generalization O +ability O +of O +the O +CNN O +model S-CONPRI +, O +weld S-FEAT +images S-CONPRI +from O +different O +welding S-MANP +current O +and O +feeding O +speed O +were O +captured O +for O +the O +CNN O +model S-CONPRI +. O + + +Based O +on O +the O +actual O +industry S-APPL +challenges O +such O +as S-MATE +the O +instability O +of O +welding S-MANP +arc S-CONPRI +, O +the O +complexity S-CONPRI +of O +the O +welding S-MANP +environment O +and O +the O +random O +changing O +of O +plate O +gap O +condition O +, O +two O +kinds O +of O +data S-CONPRI +augmentation O +including O +noise O +adding O +and O +image S-CONPRI +rotation O +were O +used O +to O +boost O +the O +CNN O +dataset O +while O +parameters B-CONPRI +optimization E-CONPRI +was O +carried O +out O +. O + + +Instead O +of O +decreasing O +the O +interference O +from O +arc S-CONPRI +light O +as S-MATE +in O +traditional O +way O +, O +the O +CNN O +model S-CONPRI +has O +taken O +full O +use O +of O +those O +arc S-CONPRI +lights O +by O +combining O +them O +in O +a O +various O +way O +to O +form O +the O +complementary O +features O +. O + + +Test O +results O +shows O +that O +the O +CNN O +model S-CONPRI +has O +better O +performance S-CONPRI +than O +our O +previous O +work O +with O +the O +mean O +classification S-CONPRI +accuracy S-CHAR +of O +99.38 O +% O +. O + + +This O +paper O +can O +provide O +some O +guidance O +for O +on-line O +detection O +of O +manufacturing S-MANP +quality O +in O +metal B-MANP +additive I-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +and O +laser B-MANP +welding E-MANP +. O + + +A O +high O +temperature S-PARA +gas-to-gas O +manifold-microchannel O +heat B-MACEQ +exchanger E-MACEQ +was O +fabricated S-CONPRI +. O + + +The O +heat B-MACEQ +exchanger E-MACEQ +core S-MACEQ +was O +3D B-MANP +printed E-MANP +using O +Inconel B-MATE +718 E-MATE +through O +DMLS S-MANP +. O + + +The O +heat B-MACEQ +exchanger E-MACEQ +was O +tested O +at O +600 O +°C O +with O +inlet S-MACEQ +pressure O +of O +450 O +kPa O +. O + + +The O +experimental S-CONPRI +results O +validated O +the O +numerical O +model S-CONPRI +. O + + +25 O +% O +higher O +heat B-PARA +transfer I-PARA +density E-PARA +compared O +to O +conventional O +plate O +fin O +heat B-MACEQ +exchangers E-MACEQ +. O + + +This O +work O +presents O +an O +additively B-MANP +manufactured E-MANP +manifold-microchannel O +heat B-MACEQ +exchanger E-MACEQ +made O +of O +Inconel B-MATE +718 E-MATE +and O +experimentally O +tested O +for O +high O +temperature S-PARA +aerospace S-APPL +applications O +. O + + +The O +heat B-MACEQ +exchanger E-MACEQ +core S-MACEQ +with O +a O +size O +of O +66 O +mm S-MANP +× O +74 O +mm S-MANP +× O +27 O +mm S-MANP +was O +fabricated S-CONPRI +as S-MATE +a O +single O +piece O +through O +the O +direct B-MANP +metal I-MANP +laser I-MANP +sintering E-MANP +process O +. O + + +Successful O +welding S-MANP +of O +additively B-MANP +manufactured E-MANP +headers O +with O +the O +heat B-MACEQ +exchanger E-MACEQ +core S-MACEQ +and O +conventionally O +manufactured S-CONPRI +flanges O +was O +demonstrated O +through O +the O +fabrication S-MANP +of O +the O +unit O +. O + + +The O +heat B-MACEQ +exchanger E-MACEQ +was O +tested O +using O +nitrogen S-MATE +( O +N2 S-MATE +) O +on O +the O +hot-side O +and O +air O +on O +the O +cold-side O +as S-MATE +the O +working O +fluids S-MATE +. O + + +A O +maximum O +heat S-CONPRI +duty O +of O +2.78 O +kW O +and O +a O +maximum O +overall O +heat B-CONPRI +transfer E-CONPRI +coefficient O +of O +1000 O +W/m2K O +were O +achieved O +during O +the O +experiments O +. O + + +The O +decent O +agreement O +between O +the O +experimental S-CONPRI +and O +the O +numerical O +results O +demonstrates O +the O +validity O +of O +the O +numerical O +analysis O +model S-CONPRI +used O +for O +heat B-CONPRI +transfer E-CONPRI +and O +pressure S-CONPRI +drop O +prediction S-CONPRI +of O +the O +additively B-MANP +manufactured E-MANP +manifold-microchannel O +heat B-MACEQ +exchanger E-MACEQ +. O + + +Compared O +to O +conventional O +plate O +fin O +heat B-MACEQ +exchangers E-MACEQ +, O +nearly O +25 O +% O +improvement O +in O +heat B-CONPRI +transfer E-CONPRI +density— O +the O +ratio O +between O +heat S-CONPRI +duty O +and O +mass O +( O +Q/m O +) O +—was O +noted O +at O +a O +coefficient O +of O +performance S-CONPRI +( O +COP O +) O +of O +62 O +. O + + +A O +3D S-CONPRI +heat O +and O +fluid B-PRO +flow E-PRO +model O +is O +developed O +for O +the O +multilayer O +deposition S-CONPRI +of O +wire B-MANP +and I-MANP +arc I-MANP +additive I-MANP +manufacture E-MANP +. O + + +Utilizing O +a O +modified O +double O +ellipsoidal O +heat B-CONPRI +source E-CONPRI +model O +which O +shows O +better O +adaptability O +to O +free B-CONPRI +surface E-CONPRI +deformation S-CONPRI +. O + + +Predicting O +the O +morphology S-CONPRI +of O +molten B-CONPRI +pool E-CONPRI +and O +deposited B-CHAR +bead E-CHAR +in O +WAAM S-MANP +process S-CONPRI +using O +CFD S-APPL +model O +for O +the O +first O +time O +. O + + +Conduction O +is O +the O +dominant O +method O +of O +heat B-CONPRI +dissipation E-CONPRI +compared O +to O +convection O +and O +radiation S-MANP +to O +the O +air O +during O +deposition S-CONPRI +. O + + +A O +three-dimensional S-CONPRI +numerical O +model S-CONPRI +has O +been O +developed O +to O +investigate O +the O +fluid B-PRO +flow E-PRO +and O +heat B-CONPRI +transfer E-CONPRI +behaviors O +in O +multilayer O +deposition S-CONPRI +of O +plasma B-MANP +arc I-MANP +welding E-MANP +( O +PAW S-MANP +) O +based O +wire B-MANP +and I-MANP +arc I-MANP +additive I-MANP +manufacture E-MANP +( O +WAAM S-MANP +) O +. O + + +The O +volume B-CONPRI +of I-CONPRI +fluid E-CONPRI +( O +VOF S-CONPRI +) O +and O +porosity S-PRO +enthalpy O +methods O +are O +employed O +to O +track O +the O +molten B-CONPRI +pool I-CONPRI +free I-CONPRI +surface E-CONPRI +and O +solidification S-CONPRI +front O +, O +respectively O +. O + + +A O +modified O +double O +ellipsoidal O +heat B-CONPRI +source E-CONPRI +model O +is O +utilized O +to O +ensure O +constant O +arc S-CONPRI +heat O +input O +in O +calculation O +in O +the O +case O +that O +molten B-CONPRI +pool E-CONPRI +surface O +dynamically O +changes O +. O + + +Transient S-CONPRI +simulations S-ENAT +were O +conducted O +for O +the O +1st O +, O +2nd O +and O +21st O +layer S-PARA +depositions O +. O + + +The O +shape O +and O +size O +of O +deposited B-CHAR +bead E-CHAR +and O +weld B-CONPRI +pool E-CONPRI +were O +predicted S-CONPRI +and O +compared O +with O +experimental S-CONPRI +results O +. O + + +The O +results O +show O +that O +for O +each O +layer S-PARA +of O +deposition S-CONPRI +the O +Marangoni O +force S-CONPRI +plays O +the O +most O +important O +role O +in O +affecting O +fluid B-PRO +flow E-PRO +, O +conduction O +is O +the O +dominant O +method O +of O +heat B-CONPRI +dissipation E-CONPRI +compared O +to O +convection O +and O +radiation S-MANP +to O +the O +air O +. O + + +As S-MATE +the O +layer S-PARA +number O +increases O +, O +the O +length O +and O +width O +of O +molten B-CONPRI +pool E-CONPRI +and O +the O +width O +of O +deposited B-CHAR +bead E-CHAR +increase O +, O +whilst O +the O +layer B-PARA +height E-PARA +decreases O +. O + + +In O +high O +layer S-PARA +deposition S-CONPRI +, O +where O +side O +support S-APPL +is O +absent O +, O +the O +depth O +of O +the O +molten B-CONPRI +pool E-CONPRI +at O +the O +rear O +part O +is O +almost O +flat O +in O +the O +Y S-MATE +direction O +. O + + +The O +profile S-FEAT +of O +the O +deposited B-CHAR +bead E-CHAR +is O +mainly O +determined O +by O +static O +pressure S-CONPRI +caused O +by O +gravity O +and O +surface B-PRO +tension E-PRO +pressure S-CONPRI +, O +therefore O +the O +bead S-CHAR +profile O +is O +nearly O +circular O +. O + + +The O +simulated O +profiles S-FEAT +and O +size O +dimensions S-FEAT +of O +deposited B-CHAR +bead E-CHAR +and O +molten B-CONPRI +pool E-CONPRI +were O +validated O +with O +experimental S-CONPRI +weld O +appearance O +, O +cross-sectional O +images S-CONPRI +and O +process S-CONPRI +camera S-MACEQ +images O +. O + + +Wire-based O +directed B-MANP +energy I-MANP +deposition I-MANP +additive I-MANP +manufacturing E-MANP +techniques O +( O +AM S-MANP +) O +permit O +the O +rapid O +production S-MANP +of O +large-scale O +structural B-CONPRI +components E-CONPRI +which O +are O +not O +currently O +possible O +using O +the O +more O +common O +powder B-MANP +bed I-MANP +fusion E-MANP +( O +PBF S-MANP +) O +AM S-MANP +methods O +. O + + +However O +, O +due O +to O +larger O +melt B-MATE +pool E-MATE +widths O +and O +higher O +energy O +inputs O +than O +PBF S-MANP +methods O +, O +local O +thermal O +history O +effects O +produce O +significant O +location-dependent O +microstructure S-CONPRI +, O +porosity S-PRO +, O +and O +mechanical S-APPL +behavior O +that O +necessitates O +thorough O +quantification O +of O +this O +emergent O +technology S-CONPRI +. O + + +Wire B-MANP ++ I-MANP +Arc I-MANP +Additive I-MANP +Manufacturing E-MANP +( O +WAAM S-MANP +) O +was O +used O +to O +produce O +austenitic S-MATE +stainless-steel O +single O +bead S-CHAR +walls O +in O +order O +to O +statistically O +quantify O +the O +variation S-CONPRI +of O +critical O +material B-CONPRI +properties E-CONPRI +within O +the O +build S-PARA +. O + + +Individual O +grain S-CONPRI +geometric O +properties S-CONPRI +evaluated O +using O +electron B-ENAT +back I-ENAT +scatter I-ENAT +diffraction E-ENAT +at O +different O +points O +in O +the O +build S-PARA +were O +well O +fit S-CONPRI +by O +a O +three-parameter O +Weibull O +cumulative O +distribution S-CONPRI +function O +, O +yet O +sufficiently O +different O +from O +averaged O +values O +. O + + +X-ray B-CHAR +diffraction E-CHAR +for O +each O +location O +disclosed O +a O +strong O +wire O +texture S-FEAT +in O +the O +build B-PARA +direction E-PARA +, O +leading O +to O +anisotropic S-PRO +elastic O +moduli O +values O +that O +were O +well O +described O +by O +directionally-dependent O +modulus O +predictions S-CONPRI +obtained O +from O +diffraction S-CHAR +peak O +analysis O +. O + + +Location-dependent O +mechanical S-APPL +behavior O +was O +examined O +and O +accurately S-CHAR +captured O +by O +an O +elasto-viscoplastic O +model S-CONPRI +based O +on O +the O +Fast-Fourier O +Transforms O +( O +EvpFFT O +) O +using O +the O +local O +microstructure S-CONPRI +orientation O +data S-CONPRI +as S-MATE +input O +. O + + +Overall O +, O +a O +high-quality O +build S-PARA +was O +realized O +, O +with O +minimal O +porosity S-PRO +of O +less O +than O +0.32 O +% O +, O +and O +median O +yield O +and O +tensile B-PRO +strength E-PRO +values O +of O +approximately O +320.4 O +± O +8.0 O +MPa S-CONPRI +and O +531.6 O +± O +8.2 O +MPa S-CONPRI +, O +respectively O +. O + + +Additively B-MANP +manufactured E-MANP +components O +made O +of O +metallic B-MATE +material E-MATE +are O +subject O +to O +special O +consideration O +for O +many O +R O +& O +D O +departments O +, O +since O +the O +process B-CONPRI +control E-CONPRI +is O +not O +yet O +sufficiently O +reliable O +and O +therefore O +an O +extensive O +quality S-CONPRI +assurance O +is O +necessary O +. O + + +For O +this O +reason O +, O +few O +structural B-CONPRI +components E-CONPRI +for O +aviation O +have O +been O +established O +so O +far O +. O + + +In O +this O +paper O +, O +a O +feasibility S-CONPRI +study O +for O +the O +use O +of O +laser B-MANP +metal I-MANP +deposition E-MANP +( O +LMD S-MANP +) O +for O +the O +additive B-MANP +manufacturing E-MANP +of O +a O +fuselage S-MACEQ +made O +of O +aluminum S-MATE +is O +carried O +out O +. O + + +The O +redistribution O +of O +alloying B-MATE +elements E-MATE +and O +the O +crystallographic O +characterizations O +in O +wire O +and O +arc S-CONPRI +additive B-MANP +manufactured E-MANP +( O +WAAM S-MANP +) O +super O +duplex O +stainless B-MATE +steel E-MATE +( O +SDSS O +) O +was O +investigated O +from O +the O +wire O +to O +the O +final O +as-deposited O +structure S-CONPRI +. O + + +The O +results O +showed O +that O +elemental O +partitioning O +between O +austenite S-MATE +and O +ferrite S-MATE +was O +suppressed O +in O +the O +last O +layer S-PARA +and O +the O +solidified O +droplet S-CONPRI +. O + + +The O +high O +Ni S-MATE +content O +but O +low O +Cr S-MATE +and O +N S-MATE +contents O +in O +the O +initial O +state O +of O +the O +intragranular O +austenite S-MATE +( O +IGA O +) O +confirmed O +the O +predominance O +of O +the O +chromium S-MATE +nitrides O +acted O +as S-MATE +the O +nucleation S-CONPRI +sites O +. O + + +Gathering O +of O +nitrogen S-MATE +was O +found O +more O +distinct O +in O +the O +coarsening O +IGA O +, O +Widmanstätten O +austenite S-MATE +( O +WA S-MANP +) O +than O +the O +grain B-CONPRI +boundary E-CONPRI +austenite S-MATE +( O +GBA O +) O +. O + + +The O +columnar O +epitaxial S-PRO +ferrite O +presented O +a O +strong O +< O +001 O +> O +texture S-FEAT +in O +the O +deposition B-PARA +direction E-PARA +, O +while O +the O +< O +001 O +> O +and O +< O +101 O +> O +orientations S-CONPRI +was O +found O +in O +the O +austenite S-MATE +. O + + +Random O +orientations S-CONPRI +of O +the O +intragranular O +secondary O +austenite S-MATE +was O +revealed O +. O + + +The O +Rotated O +Cube S-CONPRI +texture O +of O +the O +austenite S-MATE +grains O +were O +consumed O +by O +the O +“ O +recrystallization S-CONPRI +” O +textures O +( O +Brass S-MATE +, O +Rotated O +Brass S-MATE +, O +Cu S-MATE +, O +R O +, O +E O +, O +and O +F S-MANP +) O +caused O +by O +the O +austenite S-MATE +reformation O +. O + + +The O +low-angle O +interphase S-CONPRI +boundaries S-FEAT +between O +austenite S-MATE +and O +ferrite S-MATE +were O +predominated O +in O +the O +as-deposited O +wall O +, O +and O +, O +at O +which O +, O +the O +K–S O +orientation S-CONPRI +took O +the O +crucial O +part O +. O + + +A O +Taylor O +factor O +analysis O +revealed O +that O +through O +fabrication S-MANP +via O +additive S-MATE +process O +, O +the O +austenite S-MATE +became O +oriented O +“ O +harder O +” O +and O +contributed O +most O +to O +good O +mechanical B-CONPRI +properties E-CONPRI +. O + + +The O +textured O +microstructure S-CONPRI +contributed O +about O +a O +2.6 O +% O +higher O +engineering S-APPL +strain O +in O +the O +Z O +direction O +and O +a O +27.8 O +MPa S-CONPRI +higher O +yield B-PRO +strength E-PRO +in O +the O +X O +direction O +. O + + +As-deposited O +Wire B-MANP ++ I-MANP +Arc I-MANP +Additively I-MANP +Manufactured E-MANP +( O +WAAM S-MANP +) O +Inconel S-MATE +( O +IN O +) O +718 O +contains O +Laves B-CONPRI +phase E-CONPRI +in O +the O +microstructure S-CONPRI +. O + + +A O +modified O +post-deposition O +heat B-MANP +treatment E-MANP +successfully O +dissolved O +Laves B-CONPRI +phase E-CONPRI +without O +precipitating O +δ O +phase S-CONPRI +. O + + +Changes O +to O +the O +grain B-CONPRI +structure E-CONPRI +through O +heat B-MANP +treatments E-MANP +reduced O +anisotropy S-PRO +in O +elevated O +temperature S-PARA +tensile O +properties S-CONPRI +. O + + +Elevated O +temperature S-PARA +tensile O +properties S-CONPRI +of O +WAAM S-MANP +IN O +718 O +meet O +minimum O +specifications S-PARA +for O +cast S-MANP +but O +not O +for O +wrought B-MATE +material E-MATE +. O + + +Wire B-MANP ++ I-MANP +Arc I-MANP +Additive I-MANP +Manufacturing E-MANP +( O +WAAM S-MANP +) O +can O +be S-MATE +used O +to O +create O +large O +free-form O +components S-MACEQ +out O +of O +specialist O +materials S-CONPRI +such O +as S-MATE +nickel-base O +superalloys S-MATE +. O + + +Inconel S-MATE +( O +IN O +) O +718 O +is O +well O +suited O +for O +the O +WAAM S-MANP +process S-CONPRI +due O +to O +its O +excellent O +weldability S-PRO +. O + + +However O +, O +during O +deposition S-CONPRI +, O +WAAM S-MANP +IN718 S-MATE +is O +susceptible O +to O +micro-segregation S-CONPRI +, O +leading O +to O +undesirable O +Laves B-CONPRI +phase E-CONPRI +formation O +in O +the O +interdendritic O +regions O +. O + + +Further O +, O +the O +WAAM S-MANP +process S-CONPRI +encourages O +columnar B-PRO +grain E-PRO +growth O +and O +the O +development O +of O +a O +strong O +fibre S-MATE +texture O +, O +leading O +to O +anisotropy S-PRO +in O +grain B-CONPRI +structure E-CONPRI +. O + + +This O +unfavourable O +microstructure S-CONPRI +can O +be S-MATE +addressed O +through O +specialised O +post-deposition O +homogenisation O +heat B-MANP +treatments E-MANP +. O + + +A O +new O +modified O +heat B-MANP +treatment E-MANP +was O +found O +to O +be S-MATE +effective O +in O +dissolving O +Laves B-CONPRI +phase E-CONPRI +, O +whereas O +a O +standard S-CONPRI +treatment O +precipitated O +δ O +phase S-CONPRI +. O + + +Tensile B-CHAR +test E-CHAR +results O +revealed O +that O +Laves S-CONPRI +and O +δ O +phases O +lead S-MATE +to O +low O +ductility S-PRO +when O +present O +in O +a O +precipitation-hardened O +matrix O +. O + + +The O +modified O +heat B-MANP +treatment E-MANP +also O +reduced O +the O +anisotropy S-PRO +in O +grain B-CONPRI +structure E-CONPRI +, O +leading O +to O +almost O +isotropic S-PRO +elevated O +temperature S-PARA +tensile O +properties S-CONPRI +, O +which O +meet O +minimum O +specifications S-PARA +for O +conventional O +cast S-MANP +but O +not O +for O +wrought B-MATE +material E-MATE +. O + + +Specialised O +post-deposition O +heat B-MANP +treatments E-MANP +, O +which O +address O +the O +unique O +microstructure S-CONPRI +of O +WAAM S-MANP +IN718 S-MATE +, O +are O +crucial O +to O +achieving O +optimal O +mechanical B-CONPRI +properties E-CONPRI +. O + + +Powder B-MANP +bed I-MANP +fusion I-MANP +process E-MANP +is O +one O +of O +the O +basic O +technique O +associated O +with O +additive B-MANP +manufacturing E-MANP +. O + + +It O +follows O +the O +basic O +principle O +of O +manufacturing S-MANP +the O +product O +layer B-CONPRI +by I-CONPRI +layer E-CONPRI +and O +their O +fusion S-CONPRI +. O + + +A O +heat B-CONPRI +source E-CONPRI +focuses O +its O +heat S-CONPRI +over O +a O +powder S-MATE +base O +material S-MATE +and O +heats O +the O +selected O +cross B-CONPRI +section E-CONPRI +area S-PARA +. O + + +Sources O +like O +laser B-CONPRI +beam E-CONPRI +, O +electron B-CONPRI +beam E-CONPRI +and O +infrared S-CONPRI +beam S-MACEQ +are O +used O +as S-MATE +heating O +tool S-MACEQ +. O + + +The O +process S-CONPRI +of O +heating S-MANP +allows O +the O +powder S-MATE +to O +take O +the O +shape O +of O +the O +intended O +object O +. O + + +Powder B-MANP +bed I-MANP +fusion I-MANP +process E-MANP +is O +compatible O +to O +every O +engineering B-MATE +material E-MATE +such O +as S-MATE +metals O +, O +ceramics S-MATE +polymers O +, O +composites S-MATE +etc O +. O + + +this O +technique O +is O +widely O +used O +in O +many O +industrial B-CONPRI +sectors E-CONPRI +such O +as S-MATE +aerospace S-APPL +, O +energy O +sector O +, O +transportation O +etc O +. O + + +A O +comprehensive O +overview O +on O +powder B-MANP +bed I-MANP +fusion I-MANP +process E-MANP +is O +presented O +in O +this O +review O +paper O +. O + + +Other O +popular O +techniques O +like O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +, O +selective B-MANP +laser I-MANP +sintering E-MANP +( O +SLS S-MANP +) O +, O +and O +electron B-MANP +beam I-MANP +melting E-MANP +( O +EBM S-MANP +) O +are O +also O +reviewed O +. O + + +Wire B-MANP +and I-MANP +arc I-MANP +additive I-MANP +manufacturing E-MANP +( O +WAAM S-MANP +) O +, O +using O +cold B-MANP +metal I-MANP +transfer E-MANP +( O +CMT S-MANP +) O +as S-MATE +heat O +source S-APPL +, O +exhibits O +a O +great O +potential O +for O +additive B-MANP +manufacturing E-MANP +of O +magnesium B-MATE +alloys E-MATE +due O +to O +low O +heat S-CONPRI +input O +. O + + +With O +the O +purpose O +of O +revealing O +the O +relationship O +between O +the O +microstructure S-CONPRI +and O +mechanical B-CONPRI +properties E-CONPRI +of O +WAAMed O +AZ31 O +material S-MATE +, O +the O +present O +study O +has O +been O +carried O +out O +. O + + +The O +average S-CONPRI +primary O +dendrite S-BIOP +arm O +spacing O +increases O +from O +17 O +μm O +at O +the O +bottom O +to O +39 O +μm O +at O +the O +top O +of O +the O +deposit O +, O +and O +the O +volume B-PARA +fraction E-PARA +of O +the O +interdendritic O +eutectic S-CONPRI +decreases O +from O +52.1 O +% O +to O +39.3 O +% O +. O + + +The O +microstructure S-CONPRI +of O +each O +layer S-PARA +except O +the O +top O +layer S-PARA +consists O +of O +vertical S-CONPRI +columnar B-MATE +dendrites E-MATE +and O +direction-changed O +columnar B-MATE +dendrites E-MATE +in O +sequence O +. O + + +The O +top O +layer S-PARA +appears O +equiaxed O +dendrites S-BIOP +due O +to O +columnar O +to O +equiaxed O +transition S-CONPRI +( O +CET O +) O +. O + + +The O +tensile B-PRO +properties E-PRO +present O +obvious O +anisotropic S-PRO +characteristics O +because O +of O +the O +epitaxial S-PRO +columnar O +dendritic O +growth O +along O +the O +building B-PARA +direction E-PARA +. O + + +The O +tensile B-PRO +properties E-PRO +also O +show O +obvious O +variation S-CONPRI +from O +the O +bottom O +to O +the O +top O +of O +the O +deposit O +because O +of O +the O +differing O +microstructures S-MATE +in O +different O +regions O +. O + + +The O +results O +are O +further O +analyzed O +in O +detail O +through O +the O +microstructure B-CONPRI +evolution E-CONPRI +resulted O +from O +the O +new O +manufacturing S-MANP +method O +. O + + +Using O +Electrical B-MANP +Discharge I-MANP +Machining E-MANP +in O +combination O +with O +forming S-MANP +is O +an O +option O +to O +manufacture S-CONPRI +a O +U-shaped O +First O +Wall O +without O +welding S-MANP +. O + + +Additive B-MANP +Manufacturing E-MANP +( O +e.g O +. O + + +Selective B-MANP +Laser I-MANP +Melting E-MANP +and O +Metal B-MATE +Powder E-MATE +Application O +) O +provides O +promising O +options O +for O +nuclear O +fusion S-CONPRI +applications O +. O + + +Selective B-MANP +Laser I-MANP +Melting E-MANP +is O +suitable O +to O +manufacture S-CONPRI +high O +complex O +and O +thin O +walled O +segments O +with O +internal O +channel S-APPL +structures O +. O + + +Metal B-MATE +Powder E-MATE +Application O +provides O +cost O +effective O +options O +to O +build S-PARA +First O +Wall O +relevant O +components S-MACEQ +. O + + +Different O +manufacturing S-MANP +routes O +are O +investigated O +at O +the O +KIT O +INR O +for O +the O +realization O +of O +First O +Walls O +( O +FW O +) O +for O +nuclear O +fusion S-CONPRI +components S-MACEQ +, O +such O +as S-MATE +the O +ITER O +Test O +Blanket O +Module O +( O +TBM O +) O +and O +DEMO O +Breeding O +Blankets O +( O +BB O +) O +for O +the O +Helium S-MATE +Cooled O +Pebble O +Bed S-MACEQ +( O +HCPB O +) O +Breeding O +concept O +. O + + +One O +conventional B-MANP +manufacturing E-MANP +route O +mainly O +basing O +of O +Electrical B-MANP +Discharge I-MANP +Machining E-MANP +( O +EDM S-MANP +) O +and O +forming S-MANP +was O +demonstrated O +successfully O +. O + + +Therefore O +, O +options O +also O +to O +apply O +Additive B-MANP +Manufacturing E-MANP +( O +AM S-MANP +) O +as S-MATE +alternative O +were O +investigated O +. O + + +This O +paper O +compares O +the O +HCPB O +reference O +concept O +for O +FW O +fabrication S-MANP +to O +innovative O +concepts O +basing O +on O +AM S-MANP +. O + + +The O +solid-state S-CONPRI +friction B-MANP +stir I-MANP +welding E-MANP +( O +FSW S-MANP +) O +process S-CONPRI +was O +used O +to O +join O +Al–Si12 O +parts O +fabricated S-CONPRI +via O +the O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +technique O +. O + + +The O +effect O +of O +the O +welding S-MANP +process S-CONPRI +on O +microstructural B-CONPRI +evolution E-CONPRI +and O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +samples S-CONPRI +is O +investigated O +in O +present O +work O +. O + + +Microstructural S-CONPRI +studies O +demonstrate O +that O +FSW S-MANP +is O +capable O +of O +changing O +Si S-MATE +phase B-CONPRI +morphologies E-CONPRI +( O +i.e O +. O + + +shape O +and O +size O +) O +resulting O +in O +various O +mechanical B-CONPRI +properties E-CONPRI +. O + + +The O +stir O +zone O +of O +the O +welded B-FEAT +joint E-FEAT +shows O +significantly O +lower O +micro-hardness O +in O +comparison O +to O +the O +as-built O +SLM S-MANP +samples S-CONPRI +. O + + +Correspondingly O +, O +the O +friction B-MANP +stir I-MANP +welding E-MANP +process O +results O +in O +significant O +reduction S-CONPRI +of O +tensile B-PRO +strength E-PRO +, O +while O +ductility S-PRO +is O +strongly O +improved O +. O + + +The O +fully-reversed O +strain-controlled O +low-cycle O +fatigue S-PRO +( O +LCF O +) O +tests O +imply O +that O +at O +low O +strain S-PRO +amplitudes O +the O +FSW S-MANP +and O +SLM S-MANP +samples S-CONPRI +show O +almost O +the O +same O +fatigue B-PRO +life E-PRO +, O +while O +at O +the O +high O +strain S-PRO +amplitudes O +the O +SLM S-MANP +samples S-CONPRI +show O +superior O +LCF O +performance S-CONPRI +. O + + +Fracture S-CONPRI +analysis O +of O +fatigued O +samples S-CONPRI +reveals O +that O +the O +near-surface O +pores S-PRO +lead S-MATE +to O +the O +crack O +initiation O +in O +both O +SLM S-MANP +and O +FSW S-MANP +cases O +. O + + +Various O +methods O +have O +been O +reported O +to O +join O +carbon B-MATE +fiber E-MATE +reinforced O +polymer S-MATE +( O +CFRP O +) O +composites S-MATE +with O +aluminum B-MATE +alloy E-MATE +( O +AA O +) O +, O +with O +strengths S-PRO +ranging O +from O +13 O +MPa S-CONPRI +to O +112 O +MPa S-CONPRI +. O + + +This O +paper O +presents O +a O +new O +method O +for O +joining S-MANP +carbon B-MATE +fiber E-MATE +reinforced O +composites S-MATE +and O +metals S-MATE +using O +ultrasonic B-MANP +additive I-MANP +manufacturing E-MANP +( O +UAM S-MANP +) O +. O + + +Although O +UAM S-MANP +is O +a O +metal S-MATE +3D B-MANP +printing E-MANP +process O +, O +it O +is O +applied O +here O +to O +produce O +continuous O +CF-AA O +transition S-CONPRI +joints O +that O +can O +have O +uniform O +thickness O +across O +the O +CF O +and O +AA O +constituents O +. O + + +Joint S-CONPRI +strength O +is O +achieved O +by O +mechanical S-APPL +interlocking O +of O +CF O +loops O +within O +the O +AA O +matrix O +; O +tensile B-CHAR +tests E-CHAR +demonstrate O +that O +UAM S-MANP +CFRP-AA O +joints O +reach O +strengths S-PRO +of O +129.5 O +MPa S-CONPRI +. O + + +The O +dry O +CF O +fabric O +extending O +from O +these O +joints O +can O +be S-MATE +laid O +up O +and O +cured S-MANP +into O +a O +CFRP O +part O +, O +whereas O +the O +AA O +can O +be S-MATE +welded O +to O +metal S-MATE +structures O +using O +traditional O +metal S-MATE +welding O +techniques O +– O +hence O +their O +designation O +as S-MATE +“ O +transition S-CONPRI +joints. O +” O +This O +approach O +enables O +the O +incorporation O +of O +CFRP O +parts O +into O +vehicle O +structures O +without O +requiring O +modifications O +to O +existing O +metal S-MATE +welding O +infrastructure O +. O + + +Two O +failure B-PRO +modes E-PRO +, O +CF O +tow O +failure S-CONPRI +and O +AA O +failure S-CONPRI +, O +have O +been O +identified O +. O + + +It O +is O +shown O +that O +the O +joint B-CONPRI +failure E-CONPRI +mode O +can O +be S-MATE +designed O +for O +maximum O +strength S-PRO +or O +maximum O +energy O +dissipation O +by O +adjusting O +the O +ratio O +of O +embedded O +CF O +to O +AA O +matrix O +. O + + +Welded B-FEAT +joints E-FEAT +of O +SLM S-MANP +and O +CR S-MATE +stainless O +steels S-MATE +were O +produced O +by O +laser B-MANP +welding E-MANP +. O + + +A O +comparison O +of O +keyhole O +and O +heat B-CONPRI +conduction E-CONPRI +laser O +welding S-MANP +was O +performed O +. O + + +The O +influence O +of O +pre-heat B-MANP +treatment E-MANP +on O +the O +strength S-PRO +and O +weldability S-PRO +was O +revealed O +. O + + +The O +hardness S-PRO +of O +welding S-MANP +seams O +produced O +by O +head O +conduction O +is O +500 O +HV O +, O +by O +keyhole O +– O +280 O +HV O +. O + + +The O +welded B-FEAT +joints E-FEAT +strength S-PRO +is O +comparable O +to O +the O +SLM S-MANP +metal S-MATE +strength O +( O +1450 O +MPa S-CONPRI +) O +. O + + +The O +details O +produced O +by O +additive B-MANP +manufacturing E-MANP +have O +limitations O +in O +sizes O +, O +if O +you O +produce O +large O +details O +then O +there O +are O +large O +residual B-PRO +stresses E-PRO +. O + + +It O +is O +also O +economically O +advantageous O +to O +produce O +complexly O +configured O +details O +by O +additive B-MANP +manufacturing E-MANP +and O +then O +weld S-FEAT +them O +to O +rolled O +or O +wrought S-CONPRI +cheaper O +details O +. O + + +The O +aim O +of O +this O +study O +is O +to O +investigate O +the O +influence O +of O +pre-heat B-MANP +treatment E-MANP +on O +laser B-CONPRI +beam E-CONPRI +weldability O +of O +Selective B-MANP +Laser E-MANP +Welding O +( O +SLM S-MANP +) O +stainless B-MATE +steel E-MATE +to O +Cold B-MANP +Rolled E-MANP +( O +CR S-MATE +) O +stainless B-MATE +steel E-MATE +. O + + +The O +results O +of O +metallographic O +studies O +and O +mechanical B-CHAR +tests E-CHAR +of O +produced O +welds S-FEAT +are O +presented O +. O + + +The O +results O +showed O +that O +the O +pre-heat B-MANP +treatment E-MANP +of O +SLM S-MANP +workpieces O +affects O +the O +welded B-FEAT +joint E-FEAT +strength S-PRO +. O + + +The O +laser B-MANP +welding E-MANP +mode O +, O +keyhole O +or O +conduction O +, O +affected O +the O +microstructure S-CONPRI +and O +microhardness S-CONPRI +of O +the O +welds S-FEAT +. O + + +With O +the O +recent O +rise O +in O +the O +demand O +for O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +, O +the O +need O +for O +reliable O +simulation S-ENAT +tools O +to O +support S-APPL +experimental S-CONPRI +efforts O +grows O +steadily O +. O + + +Computational O +welding S-MANP +mechanics O +approaches O +can O +simulate O +the O +AM B-MANP +processes E-MANP +but O +are O +generally O +not O +validated O +for O +AM-specific O +effects O +originating O +from O +multiple O +heating S-MANP +and O +cooling S-MANP +cycles O +. O + + +To O +increase O +confidence O +in O +the O +outcomes O +and O +to O +use O +numerical B-ENAT +simulation E-ENAT +reliably O +, O +the O +result O +quality S-CONPRI +needs O +to O +be S-MATE +validated O +against O +experiments O +for O +in-situ S-CONPRI +and O +post-process S-CONPRI +cases O +. O + + +In O +this O +article O +, O +a O +validation S-CONPRI +is O +demonstrated O +for O +a O +structural O +thermomechanical S-CONPRI +simulation S-ENAT +model S-CONPRI +on O +an O +arbitrarily O +curved O +Directed B-MANP +Energy I-MANP +Deposition E-MANP +( O +DED S-MANP +) O +part O +: O +at O +first O +, O +the O +validity O +of O +the O +heat S-CONPRI +input O +is O +ensured O +and O +subsequently O +, O +the O +model S-CONPRI +’ O +s S-MATE +predictive O +quality S-CONPRI +for O +in-situ B-CONPRI +deformation E-CONPRI +and O +the O +bulging O +behaviour O +is O +investigated O +. O + + +For O +the O +in-situ B-CONPRI +deformations E-CONPRI +, O +3D-Digital O +Image S-CONPRI +Correlation O +measurements O +are O +conducted O +that O +quantify O +periodic O +expansion O +and O +shrinkage S-CONPRI +as S-MATE +they O +occur O +. O + + +The O +results O +show O +a O +strong O +dependency O +of O +the O +local O +stiffness S-PRO +of O +the O +surrounding O +geometry S-CONPRI +. O + + +The O +numerical B-ENAT +simulation E-ENAT +model S-CONPRI +is O +set S-APPL +up O +in O +accordance O +with O +the O +experiment S-CONPRI +and O +can O +reproduce O +the O +measured O +3-dimensional O +in-situ S-CONPRI +displacements O +. O + + +Furthermore O +, O +the O +deformations S-CONPRI +due O +to O +removal O +from O +the O +substrate S-MATE +are O +quantified O +via O +3D-scanning O +, O +exhibiting O +considerable O +distortions O +due O +to O +stress B-CONPRI +relaxation E-CONPRI +. O + + +Finally O +, O +the O +prediction S-CONPRI +of O +the O +deformed B-PRO +shape E-PRO +is O +discussed O +in O +regards O +to O +bulging O +simulation S-ENAT +: O +to O +improve O +the O +accuracy S-CHAR +of O +the O +calculated O +final O +shape O +, O +a O +novel O +extension O +of O +the O +model S-CONPRI +relying O +on O +the O +modified O +stiffness S-PRO +of O +inactive O +upper O +layers O +is O +proposed O +and O +the O +experimentally O +observed O +bulging O +could O +be S-MATE +reproduced O +in O +the O +finite B-CONPRI +element I-CONPRI +model E-CONPRI +. O + + +High-performance O +components S-MACEQ +from O +titanium B-MATE +alloy E-MATE +Ti-6Al-4V S-MATE +are O +used O +in O +many O +industries S-APPL +, O +particularly O +in O +aerospace S-APPL +, O +but O +also O +in O +the O +automotive S-APPL +and O +medical S-APPL +market O +. O + + +Traditionally O +, O +such O +components S-MACEQ +are O +produced O +by O +hot O +forging S-MANP +and O +subsequent O +post B-CONPRI +processing E-CONPRI +. O + + +The O +multi-stage O +forging S-MANP +process O +requires O +several O +expensive O +dies S-MACEQ +and O +leads O +to O +components S-MACEQ +with O +a O +high O +material S-MATE +oversize O +. O + + +Therefore O +, O +costly O +machining S-MANP +operations O +with O +machining S-MANP +removal O +up O +to O +more O +than O +90 O +% O +are O +necessary O +to O +produce O +the O +final O +geometry S-CONPRI +. O + + +New O +technologies S-CONPRI +, O +such O +as S-MATE +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +, O +could O +support S-APPL +traditional O +process B-ENAT +chains E-ENAT +and O +could O +enable O +a O +more O +resource-efficient O +production S-MANP +. O + + +However O +, O +in O +additive B-MANP +manufacturing E-MANP +production O +cycles O +are O +still O +long O +and O +manufacturing B-CONPRI +costs E-CONPRI +are O +very O +high O +, O +especially O +for O +larger O +parts O +. O + + +Thus O +, O +the O +production S-MANP +by O +AM S-MANP +is O +often O +limited O +to O +low O +quantities O +and O +smaller O +components S-MACEQ +. O + + +To O +overcome O +the O +above-mentioned O +disadvantages O +the O +present O +study O +proposes O +a O +hybrid B-CONPRI +manufacturing E-CONPRI +route O +, O +combining O +the O +advantages O +of O +forging S-MANP +and O +AM S-MANP +. O + + +The O +new O +manufacturing S-MANP +route O +could O +reduce O +the O +number O +of O +processing O +steps O +and O +forging S-MANP +dies S-MACEQ +, O +and O +additionally O +could O +provide O +efficient O +near-net-shape S-MANP +production O +. O + + +These O +features O +, O +such O +as S-MATE +ribs O +or O +other O +structural O +or O +functional O +geometries S-CONPRI +, O +will O +be S-MATE +added O +by O +additive B-MANP +manufacturing E-MANP +. O + + +The O +present O +study O +investigates S-CONPRI +the O +use O +of O +powder S-MATE +laser B-MANP +metal I-MANP +deposition E-MANP +( O +p-LMD O +) O +and O +wire-arc B-MANP +additive I-MANP +manufacturing E-MANP +( O +WAAM S-MANP +) O +for O +hybrid B-CONPRI +manufacturing E-CONPRI +of O +Ti-6Al-4V S-MATE +aerospace S-APPL +forgings O +. O + + +BackgroundAdditive O +manufacturing S-MANP +( O +AM S-MANP +) O +is O +a O +rapidly O +expanding O +new O +technology S-CONPRI +involving O +challenges O +to O +occupational O +health O +. O + + +Here O +, O +metal S-MATE +exposure S-CONPRI +in O +an O +AM S-MANP +facility O +with O +large-scale O +metallic S-MATE +component S-MACEQ +production O +was O +investigated O +during O +two O +consecutive O +years O +with O +preventive O +actions O +in O +between.MethodsGravimetric O +analyzes O +measured O +airborne O +particle S-CONPRI +concentrations O +, O +and O +filters S-APPL +were O +analyzed O +for O +metal S-MATE +content O +. O + + +Particles S-CONPRI +from O +recycled S-CONPRI +powder S-MATE +were O +characterized O +. O + + +Airborne O +particle S-CONPRI +concentrations O +( O +< O +300 O +nm O +) O +showed O +transient S-CONPRI +peaks O +in O +the O +AM S-MANP +facility O +but O +were O +lower O +than O +those O +of O +the O +welding S-MANP +facility O +. O + + +Particle S-CONPRI +characterization O +of O +recycled S-CONPRI +powder S-MATE +showed O +fragmentation O +and O +condensates O +enriched O +in O +volatile O +metals S-MATE +. O + + +Biomonitoring O +showed O +a O +nonsignificant O +increase O +in O +the O +level O +of O +metals S-MATE +in O +urine O +in O +AM S-MANP +operators O +. O + + +Dermal O +cobalt S-MATE +and O +a O +trend S-CONPRI +for O +increasing O +urine O +metals S-MATE +during O +Workweek O +Year O +1 O +, O +but O +not O +in O +Year O +2 O +, O +indicated O +reduced O +exposure S-CONPRI +after O +preventive O +actions.ConclusionGravimetric O +analyses O +showed O +low O +total O +and O +inhalable O +dust O +exposure S-CONPRI +in O +AM S-MANP +operators O +. O + + +However O +, O +transient S-CONPRI +emission S-CHAR +of O +smaller O +particles S-CONPRI +constitutes O +exposure S-CONPRI +risks O +. O + + +Preventive O +actions O +implemented O +by O +the O +company S-APPL +reduced O +the O +workers O +' O +metal S-MATE +exposure S-CONPRI +despite O +unchanged O +emissions O +of O +particles S-CONPRI +, O +indicating O +a O +need O +for O +careful O +design S-FEAT +and O +regulation O +of O +the O +AM S-MANP +environments O +. O + + +HDPE S-MATE +polymer O +HX O +is O +fabricated S-CONPRI +using O +layer-by-layer S-CONPRI +line O +welding S-MANP +of O +plastic S-MATE +sheets O +. O + + +The O +polymer S-MATE +HX O +shows O +superior O +air-side O +performance S-CONPRI +over O +plane O +plate O +fin O +surface S-CONPRI +. O + + +In O +addition O +to O +their O +low O +cost O +and O +weight S-PARA +, O +polymer S-MATE +heat B-MACEQ +exchangers E-MACEQ +offer O +good O +anticorrosion O +and O +antifouling O +properties S-CONPRI +. O + + +In O +this O +work O +, O +a O +cost O +effective O +air-water O +polymer S-MATE +heat B-MACEQ +exchanger E-MACEQ +made O +of O +thin O +polymer S-MATE +sheets O +using O +layer-by-layer S-CONPRI +line O +welding S-MANP +with O +a O +laser S-ENAT +through O +an O +additive B-MANP +manufacturing I-MANP +process E-MANP +was O +fabricated S-CONPRI +and O +experimentally O +tested O +. O + + +The O +flow O +channels O +were O +made O +of O +150 O +μm-thick O +high B-MATE +density I-MATE +polyethylene E-MATE +sheets O +, O +which O +were O +15.5 O +cm O +wide O +and O +29 O +cm O +long O +. O + + +The O +experimental S-CONPRI +results O +show O +that O +the O +overall O +heat B-CONPRI +transfer E-CONPRI +coefficient O +of O +35–120 O +W/m2 O +K S-MATE +is O +achievable O +for O +an O +air-water O +fluid S-MATE +combination O +for O +air-side O +flow B-PARA +rate E-PARA +of O +3–24 O +L/s O +and O +water-side O +flow B-PARA +rate E-PARA +of O +12.5 O +mL/s O +. O + + +In O +addition O +, O +by O +fabricating S-MANP +a O +very O +thin O +wall O +heat B-MACEQ +exchanger E-MACEQ +( O +150 O +μm O +) O +, O +the O +wall O +thermal O +resistance S-PRO +, O +which O +usually O +becomes O +the O +limiting O +factor O +on O +polymer S-MATE +heat B-MACEQ +exchangers E-MACEQ +, O +was O +calculated O +to O +account O +for O +only O +3 O +% O +of O +the O +total O +thermal O +resistance S-PRO +. O + + +A O +comparison O +of O +the O +air-side O +heat B-CONPRI +transfer E-CONPRI +coefficient O +of O +the O +present O +polymer S-MATE +heat B-MACEQ +exchanger E-MACEQ +with O +some O +of O +the O +commercially O +available O +plain O +plate O +fin O +heat B-MACEQ +exchanger E-MACEQ +surfaces O +suggests O +that O +its O +performance S-CONPRI +in O +general O +is O +superior O +to O +that O +of O +common O +plain O +plate O +fin O +surfaces S-CONPRI +. O + + +Additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +offers O +the O +possibility O +of O +locally O +reinforcing O +sheet B-MATE +metal E-MATE +or O +sheet B-MATE +metal E-MATE +products O +by O +adding O +patches O +that O +are O +metallurgically O +bonded O +to O +the O +substrate S-MATE +. O + + +Due O +to O +the O +high O +design B-CONPRI +freedom E-CONPRI +of O +AM S-MANP +, O +patches O +can O +be S-MATE +easily O +adapted O +to O +loads O +in O +geometry S-CONPRI +and O +thickness O +. O + + +However O +, O +the O +heat S-CONPRI +input O +and O +the O +high O +cooling B-PARA +rates E-PARA +during O +AM B-MANP +processes E-MANP +have O +a O +strong O +influence O +on O +the O +microstructure S-CONPRI +in O +the O +patch O +as S-MATE +well O +as S-MATE +in O +the O +substrate S-MATE +, O +which O +will O +affect O +forming S-MANP +properties O +. O + + +The O +aim O +of O +this O +work O +is O +to O +investigate O +the O +influence O +of O +patches O +produced O +by O +laser S-ENAT +material O +deposition S-CONPRI +( O +LMD S-MANP +) O +on O +formability S-PRO +of O +micro-alloyed O +sheet B-MATE +metals E-MATE +. O + + +After O +determining O +a O +suitable O +process S-CONPRI +window O +for O +metallurgically O +bonded O +patches O +without O +cracks O +and O +pores S-PRO +, O +investigations O +were O +carried O +out O +on O +the O +microstructure S-CONPRI +and O +mechanical B-CONPRI +properties E-CONPRI +of O +reinforced S-CONPRI +samples O +. O + + +This O +work O +includes O +metallographic O +examinations O +using O +optical B-CHAR +microscopy E-CHAR +, O +hardness S-PRO +measurements O +and O +tensile B-CHAR +tests E-CHAR +. O + + +The O +formability S-PRO +of O +sheets S-MATE +with O +local O +reinforcement S-PARA +was O +investigated O +by O +stretching O +and O +Nakajima O +tests O +. O + + +The O +heat S-CONPRI +input O +creates O +a O +heat B-CONPRI +affected I-CONPRI +zone E-CONPRI +( O +HAZ S-CONPRI +) O +directly O +next O +to O +the O +patches O +with O +a O +reduced O +strength S-PRO +, O +caused O +by O +recrystallization S-CONPRI +that O +may O +lead S-MATE +to O +failure S-CONPRI +in O +the O +forming B-MANP +process E-MANP +and O +thus O +limits S-CONPRI +the O +forming S-MANP +capacity S-CONPRI +of O +locally O +reinforced S-CONPRI +sheet O +metals S-MATE +. O + + +A O +subsequent O +laser B-PARA +heat E-PARA +treatment O +can O +homogenize O +the O +properties S-CONPRI +in O +the O +HAZ S-CONPRI +. O + + +Ti-6Al-4V S-MATE +samples S-CONPRI +produced O +by O +electron B-MANP +beam I-MANP +melting E-MANP +( O +EBM S-MANP +) O +are O +welded S-MANP +using O +solid-state S-CONPRI +friction B-MANP +welding E-MANP +( O +FW O +) O +process S-CONPRI +. O + + +The O +microstructure S-CONPRI +of O +the O +weld S-FEAT +sample S-CONPRI +shows O +the O +presence O +of O +fine O +equiaxed O +α O +grains S-CONPRI +with O +irregular O +β O +phase S-CONPRI +. O + + +Microstructural S-CONPRI +investigations O +reveal O +a O +pronounced O +change O +in O +the O +shape O +and O +size O +of O +the O +α O +phase S-CONPRI +in O +the O +weld B-MATE +metal E-MATE +as-compared O +to O +the O +base O +material S-MATE +along O +with O +the O +disappearance O +of O +columnar O +prior O +β O +grains S-CONPRI +. O + + +Such O +variations S-CONPRI +in O +the O +microstructure S-CONPRI +significantly O +change O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +FW O +material S-MATE +. O + + +The O +hardness S-PRO +in O +the O +weld B-CONPRI +zone E-CONPRI +increases O +and O +a O +decrease O +of O +hardness S-PRO +is O +observed O +along O +the O +heat B-CONPRI +affected I-CONPRI +zone E-CONPRI +( O +HAZ S-CONPRI +) O +with O +respect O +to O +the O +base B-MATE +metal E-MATE +as S-MATE +expected O +. O + + +Similarly O +, O +the O +room O +temperature S-PARA +tensile O +tests O +show O +an O +improvement O +of O +ductility S-PRO +in O +the O +welded B-MANP +EBM E-MANP +samples S-CONPRI +. O + + +However O +, O +the O +yield O +and O +the O +ultimate B-PRO +strength E-PRO +show O +a O +marginal O +drop O +in O +the O +welded S-MANP +samples S-CONPRI +compared O +to O +the O +as-prepared O +EBM S-MANP +specimens O +. O + + +The O +present O +work O +demonstrates O +that O +solid-state S-CONPRI +FW O +process S-CONPRI +not O +only O +permits O +successful O +joining S-MANP +of O +additively B-MANP +manufactured E-MANP +materials O +, O +but O +also O +helps O +in O +improving O +their O +ductility S-PRO +. O + + +Laser S-ENAT +zone O +with O +refined O +grains S-CONPRI +and O +more O +uniform O +element S-MATE +distribution S-CONPRI +forms O +by O +laser-arc O +hybrid O +additive B-MANP +manufacturing E-MANP +. O + + +Outstanding O +micro-hardness O +and O +tensile B-PRO +strength E-PRO +can O +be S-MATE +obtained O +by O +laser-arc O +hybrid O +additive B-MANP +manufacturing E-MANP +. O + + +Finer O +grains S-CONPRI +and O +significant O +decreasing O +of O +element S-MATE +segregation O +in O +laser S-ENAT +zone O +can O +help O +to O +strengthen O +mechanical B-CONPRI +properties E-CONPRI +. O + + +4043 O +AlSi O +alloy S-MATE +samples O +are O +fabricated S-CONPRI +by O +laser-arc O +hybrid O +additive B-MANP +manufacturing E-MANP +and O +wire B-MANP +arc I-MANP +additive I-MANP +manufacturing E-MANP +. O + + +To O +investigate O +the O +influence O +of O +laser B-CONPRI +energy E-CONPRI +on O +the O +fabricated S-CONPRI +sample O +, O +the O +microstructure S-CONPRI +evaluation O +and O +mechanical B-CONPRI +properties E-CONPRI +are O +studied O +. O + + +After O +the O +input O +of O +laser B-CONPRI +energy E-CONPRI +, O +there O +are O +laser S-ENAT +zones O +with O +finer O +grains S-CONPRI +and O +reduced O +Si S-MATE +segregation S-CONPRI +. O + + +As S-MATE +a O +result O +, O +the O +Si S-MATE +phases O +at O +grain B-CONPRI +boundaries E-CONPRI +in O +laser S-ENAT +zone O +are O +smaller O +than O +that O +in O +other O +zones O +. O + + +And O +it O +is O +found O +that O +semi-coherent O +interface S-CONPRI +between O +Al S-MATE +and O +Si S-MATE +phases O +with O +crystal B-PRO +orientation E-PRO +relations O +, O +[ O +110 O +] O +Al∥ O +[ O +110 O +] O +Si S-MATE +and O +( O +111 O +) O +Al∥ O +( O +220 O +) O +Si S-MATE +, O +indicating O +the O +Si S-MATE +phase S-CONPRI +tends O +to O +grow O +along O +( O +111 O +) O +Al S-MATE +plane O +. O + + +The O +results O +of O +mechanical B-CONPRI +properties E-CONPRI +show O +that O +the O +micro-hardness O +in O +laser S-ENAT +zone O +is O +54.3 O +HV0.05 O +, O +with O +the O +increment O +of O +19.08 O +% O +compared O +to O +that O +in O +heat-affected O +zone O +. O + + +And O +the O +tensile B-PRO +strength E-PRO +, O +yield B-PRO +strength E-PRO +and O +elongation S-PRO +after O +the O +input O +of O +laser B-CONPRI +energy E-CONPRI +are O +163.39 O +± O +1.68 O +MPa S-CONPRI +, O +75.60 O +± O +4.91 O +MPa S-CONPRI +and O +17.38 O +± O +5.44 O +% O +, O +which O +are O +7.56 O +% O +, O +8.45 O +% O +and O +3.45 O +% O +higher O +than O +that O +without O +laser S-ENAT +. O + + +The O +improved O +mechanical B-CONPRI +properties E-CONPRI +are O +due O +to O +the O +finer O +gains O +, O +reduced O +Si S-MATE +segregation S-CONPRI +and O +the O +crack O +deflection O +in O +LAHAM O +samples S-CONPRI +. O + + +The O +structure S-CONPRI +and O +properties S-CONPRI +of O +welded S-MANP +and O +additively B-MANP +manufactured E-MANP +alloys O +are O +affected O +by O +the O +microstructural B-CONPRI +evolution E-CONPRI +in O +the O +fusion B-CONPRI +zone E-CONPRI +( O +FZ S-CONPRI +) O +and O +heat B-CONPRI +affected I-CONPRI +zone E-CONPRI +( O +HAZ S-CONPRI +) O +. O + + +The O +motion O +of O +the O +liquid O +pool O +and O +the O +interdependence O +of O +grain B-CONPRI +growth E-CONPRI +in O +both O +the O +solid O +and O +liquid O +regions O +are O +important O +in O +the O +evolution S-CONPRI +of O +the O +final O +grain B-CONPRI +structure E-CONPRI +. O + + +Previous O +investigations O +of O +microstructure B-CONPRI +evolution E-CONPRI +have O +been O +limited O +to O +either O +the O +HAZ S-CONPRI +or O +the O +FZ S-CONPRI +and O +in O +many O +cases O +in O +idealized O +isothermal S-CONPRI +systems O +. O + + +Here O +we O +report O +the O +evolution S-CONPRI +of O +grain B-CONPRI +structure E-CONPRI +and O +topology S-CONPRI +in O +three O +dimensions S-FEAT +in O +both O +the O +FZ S-CONPRI +and O +the O +HAZ S-CONPRI +considering O +the O +motion O +of O +the O +liquid O +pool O +. O + + +Temporal O +and O +spatial B-CHAR +distributions E-CHAR +of O +temperature S-PARA +obtained O +from O +a O +well-tested O +heat B-CONPRI +transfer E-CONPRI +and O +liquid B-MATE +metal E-MATE +flow O +calculation O +are O +combined O +with O +Monte O +Carlo O +and O +topology S-CONPRI +calculations O +in O +a O +computationally O +efficient O +manner O +. O + + +The O +computed O +results O +are O +tested O +against O +independent O +experimental B-CONPRI +data E-CONPRI +for O +arc B-MANP +welding E-MANP +of O +an O +aluminum B-MATE +alloy E-MATE +. O + + +The O +average S-CONPRI +size O +of O +the O +columnar B-PRO +grains E-PRO +in O +the O +FZ S-CONPRI +and O +the O +equiaxed B-CONPRI +grains E-CONPRI +in O +the O +HAZ S-CONPRI +are O +shown O +to O +decrease O +with O +increasing O +scanning B-PARA +speed E-PARA +. O + + +For O +a O +given O +weld S-FEAT +, O +the O +size O +and O +aspect B-FEAT +ratio E-FEAT +of O +the O +columnar B-PRO +grains E-PRO +in O +the O +longitudinal O +and O +horizontal O +planes O +are O +shown O +to O +decrease O +with O +distance O +from O +the O +weld S-FEAT +interface S-CONPRI +. O + + +It O +is O +further O +shown O +that O +the O +grain B-PRO +size E-PRO +distributions S-CONPRI +and O +topological O +class O +distributions S-CONPRI +in O +the O +HAZ S-CONPRI +are O +largely O +unaffected O +by O +the O +temporal O +and O +spatial B-FEAT +variations E-FEAT +of O +the O +temperature S-PARA +created O +by O +different O +welding S-MANP +parameters S-CONPRI +. O + + +In O +laser B-MANP +welding E-MANP +and O +other O +processes S-CONPRI +, O +such O +as S-MATE +cladding O +and O +additive B-MANP +manufacturing E-MANP +, O +the O +weld B-PARA +bead I-PARA +geometry E-PARA +( O +depth O +of O +penetration S-CONPRI +and O +weld S-FEAT +width O +) O +can O +be S-MATE +controlled O +with O +different O +parameters S-CONPRI +. O + + +A O +common O +practice O +is O +to O +develop O +process B-CONPRI +parameters E-CONPRI +for O +a O +particular O +application O +based O +on O +an O +engineering S-APPL +approach O +using O +the O +system O +parameters S-CONPRI +i.e O +. O + + +laser B-PARA +power E-PARA +and O +travel O +speed O +. O + + +This O +study O +is O +focused O +on O +understanding O +of O +the O +phenomena O +controlling O +the O +weld S-FEAT +profile S-FEAT +in O +conduction O +welding S-MANP +for O +a O +wide O +range S-PARA +of O +beam B-PARA +diameters E-PARA +from O +0.07 O +mm S-MANP +to O +5.50 O +mm S-MANP +. O + + +It O +has O +been O +shown O +that O +the O +weld B-PARA +bead I-PARA +geometry E-PARA +can O +be S-MATE +controlled O +by O +the O +spatial O +and O +temporal O +distribution S-CONPRI +of O +laser B-CONPRI +energy E-CONPRI +on O +the O +surface S-CONPRI +of O +workpiece S-CONPRI +, O +such O +as S-MATE +power O +density S-PRO +, O +interaction O +time O +and O +energy B-PARA +density E-PARA +. O + + +This O +means O +that O +similar O +depths O +of O +penetration S-CONPRI +can O +be S-MATE +achieved O +with O +various O +optical S-CHAR +set-ups O +. O + + +It O +has O +been O +also O +found O +that O +it O +is O +more O +difficult O +to O +achieve O +pure O +conduction O +welds S-FEAT +with O +small O +beam B-PARA +diameters E-PARA +, O +which O +are O +typically O +used O +in O +powder B-MANP +bed I-MANP +additive I-MANP +manufacturing E-MANP +, O +due O +to O +high O +conduction O +losses O +and O +low O +vaporisation O +threshold O +. O + + +Ultrasonic B-MANP +Additive I-MANP +Manufacturing E-MANP +( O +UAM S-MANP +) O +is O +a O +hybrid B-CONPRI +manufacturing E-CONPRI +process O +that O +involves O +the O +layer-by-layer S-CONPRI +ultrasonic O +welding S-MANP +of O +metal S-MATE +foils O +in O +the O +solid B-CONPRI +state E-CONPRI +with O +periodic O +CNC B-MANP +machining E-MANP +to O +achieve O +the O +desired O +3D S-CONPRI +shape O +. O + + +UAM S-MANP +enables O +the O +fabrication S-MANP +of O +metal S-MATE +smart O +structures O +, O +because O +it O +allows O +the O +embedding O +of O +various O +components S-MACEQ +into O +the O +metal B-CONPRI +matrix E-CONPRI +, O +due O +to O +the O +high O +degree O +of O +plastic B-MATE +metal E-MATE +flow O +and O +the O +relatively O +low O +temperatures S-PARA +encountered O +during O +the O +layer S-PARA +bonding S-CONPRI +process O +. O + + +To O +further O +the O +embedding O +capabilities O +of O +UAM S-MANP +, O +in O +this O +paper O +we O +examine O +the O +ultrasonic B-MANP +welding E-MANP +of O +aluminium S-MATE +foils O +with O +features O +machined S-MANP +prior O +to O +bonding S-CONPRI +. O + + +These O +pre-machined O +features O +can O +be S-MATE +stacked O +layer-by-layer S-CONPRI +to O +create O +pockets O +for O +the O +accommodation O +of O +fragile S-CONPRI +components S-MACEQ +, O +such O +as S-MATE +electronic O +circuitry O +, O +prior O +to O +encapsulation S-CONPRI +. O + + +This O +manufacturing B-MANP +approach E-MANP +transforms O +UAM S-MANP +into O +a O +“ O +form-then-bond O +” O +process S-CONPRI +. O + + +By O +studying O +the O +deformation S-CONPRI +of O +aluminium S-MATE +foils O +during O +UAM S-MANP +, O +a O +statistical O +model S-CONPRI +was O +developed O +that O +allowed O +the O +prediction S-CONPRI +of O +the O +final O +location O +, O +dimensions S-FEAT +and O +tolerances S-PARA +of O +pre-machined O +features O +for O +a O +set S-APPL +of O +UAM S-MANP +process B-CONPRI +parameters E-CONPRI +. O + + +The O +predictive O +power S-PARA +of O +the O +model S-CONPRI +was O +demonstrated O +by O +designing O +a O +cavity O +to O +accommodate O +an O +electronic O +component S-MACEQ +( O +i.e O +. O + + +a O +surface B-ENAT +mount E-ENAT +resistor S-MACEQ +) O +prior O +to O +its O +encapsulation S-CONPRI +within O +the O +metal B-CONPRI +matrix E-CONPRI +. O + + +We O +also O +further O +emphasised O +the O +importance O +of O +the O +tensioning O +force S-CONPRI +in O +the O +UAM S-MANP +process S-CONPRI +. O + + +The O +current O +work O +paves O +the O +way O +for O +the O +creation O +of O +a O +novel O +system O +for O +the O +fabrication S-MANP +of O +three-dimensional S-CONPRI +electronic O +circuits O +embedded O +into O +an O +additively B-MANP +manufactured E-MANP +complex O +metal B-MATE +composite E-MATE +. O + + +Additive B-MANP +manufacturing E-MANP +of O +metals S-MATE +is O +an O +innovative O +near-net-shaped O +manufacturing B-MANP +technology E-MANP +used O +for O +producing O +final O +solid O +objects O +by O +depositing O +successive O +layers O +of O +material S-MATE +melted O +in O +powder S-MATE +or O +wire O +form O +using O +a O +focused O +heat B-CONPRI +source E-CONPRI +directed O +from O +an O +electron B-CONPRI +beam E-CONPRI +, O +laser B-CONPRI +beam E-CONPRI +, O +or O +plasma S-CONPRI +or O +electric B-PARA +arc E-PARA +. O + + +Wire B-MANP +arc I-MANP +additive I-MANP +manufacturing E-MANP +( O +WAAM S-MANP +) O +techniques O +, O +although O +have O +lesser O +precision S-CHAR +as S-MATE +compared O +to O +laser S-ENAT +or O +electron B-CONPRI +beam E-CONPRI +techniques O +but O +have O +the O +advantage O +of O +lower O +cost O +and O +lesser O +time O +required O +. O + + +In O +this O +research S-CONPRI +, O +gas B-MANP +metal I-MANP +arc I-MANP +welding E-MANP +( O +GMAW S-MANP +) O +process S-CONPRI +has O +been O +used O +using O +AWS O +ER70S-6 S-MATE +electrode S-MACEQ +wire O +to O +create O +a O +multi-layer O +single O +pass O +structure S-CONPRI +after O +controlling O +the O +parameters S-CONPRI +including O +current O +, O +voltage O +and O +travel O +speed O +so O +that O +uniform O +height O +is O +attained O +throughout O +the O +weld B-CONPRI +bead E-CONPRI +. O + + +The O +resulting O +material S-MATE +may O +have O +different O +directional O +mechanical B-CONPRI +properties E-CONPRI +because O +of O +factors O +including O +different O +penetration S-CONPRI +properties O +and O +bonding B-PRO +strength E-PRO +and O +also O +preheating S-MANP +and O +post-heating O +effects O +of O +successive O +layers O +. O + + +This O +study O +focuses O +on O +the O +impact S-CONPRI +toughness O +of O +the O +resulting O +material S-MATE +. O + + +Charpy O +impact B-CHAR +test E-CHAR +is O +carried O +out O +on O +the O +samples S-CONPRI +taken O +in O +both O +along O +the O +direction O +of O +deposition S-CONPRI +and O +in O +the O +direction O +perpendicular O +to O +it O +to O +analyze O +the O +impact S-CONPRI +toughness O +in O +different O +directions O +. O + + +To O +further O +investigate O +the O +behavior O +of O +the O +structure S-CONPRI +, O +Brinell B-PRO +hardness E-PRO +, O +metallography S-CONPRI +and O +fractography S-CHAR +have O +been O +performed O +. O + + +The O +results O +show O +that O +material S-MATE +has O +high O +impact S-CONPRI +toughness O +with O +very O +ductile S-PRO +behavior O +. O + + +High-efficiency O +elastocaloric O +refrigeration O +requires O +high-performance O +elastocaloric O +materials S-CONPRI +with O +both O +large O +surface B-PARA +areas E-PARA +to O +promote O +heat S-CONPRI +exchange O +rate O +and O +large O +elastocaloric O +effects O +to O +increase O +the O +amount O +of O +heat B-CONPRI +transfer E-CONPRI +. O + + +Ni-Ti O +shape B-MATE +memory I-MATE +alloys E-MATE +( O +SMAs S-MATE +) O +are O +the O +most O +promising O +elastocaloric O +materials S-CONPRI +but O +they O +are O +difficult O +to O +process S-CONPRI +by O +conventional O +methods O +due O +to O +their O +poor O +manufacturability S-CONPRI +. O + + +Here O +, O +we O +successfully O +developed O +Ni-Ti O +SMAs S-MATE +with O +large O +elastocaloric O +effects O +by O +additive B-MANP +manufacturing E-MANP +which O +has O +the O +capability O +to O +fabricate S-MANP +complex B-CONPRI +geometries E-CONPRI +with O +large O +surface B-PARA +areas E-PARA +. O + + +The O +phase S-CONPRI +transformation O +temperatures S-PARA +of O +these O +additively B-MANP +manufactured E-MANP +Ni-Ti O +SMAs S-MATE +, O +fabricated S-CONPRI +by O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +, O +can O +be S-MATE +tuned O +by O +varying O +the O +SLM S-MANP +processing O +parameters S-CONPRI +and/or O +post O +heat B-MANP +treatments E-MANP +and O +thus O +tunable O +large O +elastocaloric O +effects O +were O +achieved O +at O +different O +temperatures S-PARA +, O +which O +can O +be S-MATE +used O +for O +different O +applications O +. O + + +Owing O +to O +its O +large O +transformation O +entropy O +change O +and O +high O +yield B-PRO +strength E-PRO +as S-MATE +a O +result O +of O +precipitation B-MANP +hardening E-MANP +, O +the O +aged O +SLM S-MANP +fabricated S-CONPRI +alloy S-MATE +exhibits O +a O +remarkably O +large O +elastocaloric O +effect O +with O +an O +adiabatic O +temperature S-PARA +change O +as S-MATE +high O +as S-MATE +23.2 O +K S-MATE +, O +which O +is O +among O +the O +highest O +values O +reported O +for O +all O +Ni-Ti O +SMAs S-MATE +fabricated S-CONPRI +by O +both O +conventional O +methods O +and O +additive B-MANP +manufacturing E-MANP +. O + + +Furthermore O +, O +by O +virtue O +of O +the O +high O +yield B-PRO +strength E-PRO +and O +low O +stress B-PRO +hysteresis E-PRO +of O +the O +aged O +alloy S-MATE +, O +this O +large O +elastocaloric O +effect O +shows O +good O +stability S-PRO +during O +cycling O +. O + + +The O +achievement O +of O +such O +large O +elastocaloric O +effects O +in O +alloys S-MATE +fabricated O +by O +near-net-shape S-MANP +additive B-MANP +manufacturing E-MANP +may O +accelerate O +the O +implementation O +of O +high-efficiency O +elastocaloric O +refrigeration O +. O + + +This O +study O +is O +instructive O +for O +the O +development O +of O +advanced O +high-performance O +solid-state S-CONPRI +refrigeration O +materials S-CONPRI +by O +additive B-MANP +manufacturing E-MANP +. O + + +Due O +to O +the O +practicability O +of O +economically O +generating O +large-scale O +metal S-MATE +components S-MACEQ +with O +relatively O +high B-PARA +deposition I-PARA +rates E-PARA +, O +consequential O +progress O +has O +been O +made O +in O +the O +perspective O +of O +the O +Wire B-MANP +Arc I-MANP +Additive I-MANP +Manufacturing E-MANP +( O +WAAM S-MANP +) O +process S-CONPRI +. O + + +This O +article O +reviews O +the O +looming O +research S-CONPRI +on O +WAAM S-MANP +techniques O +and O +the O +commonly O +used O +metallic S-MATE +feedstock B-MATE +materials E-MATE +. O + + +The O +frequent O +defects S-CONPRI +that O +are O +produced O +in O +components S-MACEQ +during O +the O +WAAM S-MANP +process S-CONPRI +using O +different O +alloys S-MATE +are O +characterized O +including O +deformity O +, O +porosity S-PRO +, O +and O +cracking S-CONPRI +. O + + +Methods O +for O +enhancing O +the O +fabrication S-MANP +quality O +of O +the O +additively B-MANP +manufactured E-MANP +components O +are O +also O +discussed O +, O +with O +the O +consideration O +of O +the O +requirements O +of O +the O +distinct O +alloys S-MATE +. O + + +The O +implementation O +of O +the O +standardized O +Conventional O +Heat B-MANP +Treatment E-MANP +procedure O +to O +mitigate O +the O +defects S-CONPRI +in O +the O +WAAM S-MANP +process S-CONPRI +and O +in O +capturing O +the O +future O +possibilities O +that O +are O +efficient O +has O +been O +discussed O +. O + + +The O +unification O +of O +materials S-CONPRI +and O +manufacturing B-MANP +process E-MANP +to O +produce O +defect-free O +and O +structurally-sound O +deposited O +parts O +remains O +a O +crucial O +effort O +in O +the O +future O +. O + + +Additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +, O +through O +directed B-MANP +energy I-MANP +deposition E-MANP +, O +supports S-APPL +planned O +composition S-CONPRI +changes O +between O +locations O +within O +a O +single O +component S-MACEQ +, O +allowing O +for O +functionally B-MATE +graded I-MATE +materials E-MATE +( O +FGMs O +) O +to O +be S-MATE +developed O +and O +fabricated S-CONPRI +. O + + +The O +formation O +of O +deleterious O +phases O +along O +a O +particular O +composition S-CONPRI +path O +can O +cause O +significant O +cracking S-CONPRI +during O +the O +AM S-MANP +build O +process S-CONPRI +that O +makes O +the O +composition S-CONPRI +path O +unviable O +to O +produce O +these O +FGMs O +, O +but O +it O +is O +challenging O +to O +predict O +which O +phases O +will O +be S-MATE +present O +in O +as-built O +additively B-MANP +manufactured E-MANP +parts O +by O +analyzing O +only O +equilibrium S-CONPRI +phase O +relations O +. O + + +Solute O +segregation S-CONPRI +during O +solidification S-CONPRI +can O +lead S-MATE +to O +the O +formation O +of O +non-equilibrium O +phases O +that O +are O +stable O +at O +compositions O +far O +from O +the O +nominal O +composition S-CONPRI +of O +the O +melt S-CONPRI +, O +leading O +to O +crack O +formation O +. O + + +We O +used O +this O +tool S-MACEQ +to O +compare O +the O +non-equilibrium O +phases O +predicted S-CONPRI +to O +form O +during O +the O +AM S-MANP +build O +process S-CONPRI +using O +the O +Scheil-Gulliver B-CONPRI +model E-CONPRI +with O +experimentally O +measured O +phases O +at O +several O +locations O +with O +different O +composition S-CONPRI +in O +a O +Ti-6Al-4V S-MATE +to O +Invar-36 O +FGM S-MANP +and O +a O +commercially O +pure O +Ti S-MATE +to O +Invar-36 O +FGM S-MANP +. O + + +We O +showed O +that O +the O +phases O +predicted S-CONPRI +to O +form O +by O +the O +Scheil-Gulliver B-CONPRI +model E-CONPRI +agree O +better O +with O +the O +experimental S-CONPRI +results O +than O +the O +predictions S-CONPRI +made O +by O +assuming O +equilibrium S-CONPRI +solidification O +, O +proving O +that O +the O +Scheil-Gulliver B-CONPRI +model E-CONPRI +can O +be S-MATE +applied O +to O +FGMs O +. O + + +Further O +, O +we O +demonstrated O +the O +use O +of O +our O +Scheil-Gulliver O +simulation S-ENAT +tool O +as S-MATE +a O +method O +of O +designing O +FGMs O +through O +screening O +potential O +FGM S-MANP +pathways O +by O +calculating O +the O +solidification B-CONPRI +phase E-CONPRI +fractions O +along O +the O +experimental S-CONPRI +gradient O +path O +in O +composition S-CONPRI +space O +. O + + +Ultrasonic B-MANP +additive I-MANP +manufacturing E-MANP +( O +UAM S-MANP +) O +is O +a O +solid-state S-CONPRI +manufacturing S-MANP +technique O +employing O +principles O +of O +ultrasonic B-MANP +welding E-MANP +coupled O +with O +mechanized O +tape O +layering O +to O +fabricate S-MANP +fully O +functional O +parts O +. O + + +However O +, O +UAM-fabricated O +parts O +often O +exhibit O +a O +reduction S-CONPRI +in O +strength S-PRO +when O +loaded O +normal O +to O +the O +welding B-FEAT +interfaces E-FEAT +( O +Z-direction S-FEAT +) O +. O + + +Here O +, O +the O +effect O +of O +hot B-MANP +isostatic I-MANP +pressing E-MANP +( O +HIP S-MANP +) O +on O +UAM S-MANP +builds S-CHAR +of O +aluminum B-MATE +alloy E-MATE +was O +explored O +. O + + +Tensile B-CHAR +testing E-CHAR +and O +microstructure S-CONPRI +characterization O +were O +conducted O +; O +it O +was O +established O +that O +HIP S-MANP +eliminated O +the O +brittle S-PRO +Z-direction O +fracture S-CONPRI +and O +improved O +the O +strength S-PRO +and O +ductility S-PRO +of O +the O +Z-direction S-FEAT +specimens O +. O + + +HIP S-MANP +eliminated O +voids S-CONPRI +and O +produced O +recrystallized S-MANP +structure O +; O +however O +, O +welding B-FEAT +interfaces E-FEAT +survived O +the O +HIP S-MANP +treatment O +. O + + +A O +virtual B-MACEQ +binocular E-MACEQ +vision O +system O +is O +designed S-FEAT +to O +monitor S-CONPRI +molten B-CONPRI +pool E-CONPRI +appearance O +. O + + +Effects O +of O +different O +stereo O +matching O +algorithms S-CONPRI +on O +reconstruction S-CONPRI +accuracy S-CHAR +are O +conducted O +. O + + +Molten B-CONPRI +pool E-CONPRI +appearance O +in O +wire B-MANP +and I-MANP +arc I-MANP +additive I-MANP +manufacturing E-MANP +is O +reconstructed O +. O + + +Robust O +measurement S-CHAR +of O +layer S-PARA +geometry S-CONPRI +can O +help O +better O +understand O +the O +complex O +deposition B-MANP +process E-MANP +and O +provide O +feedback S-PARA +control O +to O +increase O +process S-CONPRI +stability O +of O +wire B-MANP +and I-MANP +arc I-MANP +additive I-MANP +manufacturing E-MANP +( O +WAAM S-MANP +) O +. O + + +In O +this O +study O +, O +a O +virtual B-ENAT +binocular I-ENAT +vision I-ENAT +sensing E-ENAT +system O +is O +designed S-FEAT +to O +measure O +the O +layer S-PARA +width O +and O +torch O +height O +from O +top O +layer S-PARA +simultaneously O +. O + + +Considering O +that O +stereo O +matching O +is O +the O +most O +crucial O +step S-CONPRI +for O +3-D S-CONPRI +reconstruction O +in O +stereovision O +sensing S-APPL +, O +various O +matching O +algorithms S-CONPRI +, O +i.e O +. O + + +The O +matching O +algorithms S-CONPRI +are O +tested O +based O +on O +the O +standard S-CONPRI +datasets O +, O +indicating O +that O +the O +highest O +matching O +accuracy S-CHAR +comes O +from O +the O +GCI O +matching O +algorithm S-CONPRI +. O + + +Then O +, O +a O +standard S-CONPRI +cylinder O +is O +taken O +as S-MATE +an O +example O +to O +verify O +the O +effectiveness S-CONPRI +of O +the O +sensing B-CHAR +system E-CHAR +and O +algorithms S-CONPRI +. O + + +Finally O +, O +layer S-PARA +geometries S-CONPRI +in O +WAAM S-MANP +with O +various O +process B-CONPRI +parameters E-CONPRI +are O +determined O +. O + + +The O +width O +and O +height O +errors S-CONPRI +of O +layer S-PARA +geometry S-CONPRI +with O +the O +GCI O +matching O +algorithm S-CONPRI +are O +less O +than O +3.2 O +% O +. O + + +This O +study O +will O +lay S-CONPRI +a O +solid O +foundation O +for O +subsequent O +feedback S-PARA +control O +for O +layer S-PARA +geometry S-CONPRI +in O +WAAM S-MANP +. O + + +High-strain-rate O +deformation S-CONPRI +in O +ultrasonic B-MANP +additive I-MANP +manufacturing E-MANP +was O +analyzed O +by O +performing O +microstructural B-CHAR +characterization E-CHAR +via O +electron B-CHAR +microscopy E-CHAR +. O + + +The O +micro-asperities O +on O +the O +top O +tape O +surface S-CONPRI +, O +which O +were O +formed O +by O +contact S-APPL +with O +the O +sonotrode S-MACEQ +surface O +, O +underwent O +cyclic O +deformation S-CONPRI +in O +the O +shear B-PRO +direction E-PRO +at O +high O +strain B-CONPRI +rates E-CONPRI +during O +welding S-MANP +with O +an O +additional O +tape O +. O + + +This O +caused O +plastic S-MATE +flow O +and O +crushing S-CONPRI +of O +the O +micro-asperities O +, O +and O +a O +flattened O +interface S-CONPRI +was O +formed O +between O +the O +upper O +and O +lower O +tapes O +. O + + +Further O +, O +surface S-CONPRI +oxide S-MATE +films O +were O +fractured O +and O +dispersed O +by O +ultrasonic B-PARA +vibration E-PARA +, O +and O +metallurgical S-APPL +welding O +was O +achieved O +. O + + +304L O +stainless B-MATE +steel E-MATE +manufactured S-CONPRI +via O +LENS S-MANP +was O +characterized O +in O +its O +as-deposited O +state O +in O +3D S-CONPRI +using O +TriBeam O +tomography O +. O + + +Orientation S-CONPRI +gradients O +are O +linked O +to O +chemical O +segregation S-CONPRI +occurring O +during O +solidification S-CONPRI +. O + + +A O +sample S-CONPRI +of O +304L O +stainless B-MATE +steel E-MATE +manufactured S-CONPRI +by O +Laser B-MANP +Engineered I-MANP +Net I-MANP +Shaping E-MANP +( O +LENS S-MANP +) O +was O +characterized O +in O +3D S-CONPRI +using O +TriBeam O +tomography O +. O + + +The O +crystallographic O +, O +structural O +, O +and O +chemical O +properties S-CONPRI +of O +the O +as-deposited O +microstructure S-CONPRI +have O +been O +studied O +in O +detail O +. O + + +3D S-CONPRI +characterization O +reveals O +complex O +grain S-CONPRI +morphologies O +and O +large O +orientation S-CONPRI +gradients O +, O +in O +excess O +of O +10∘ O +, O +that O +are O +not O +easily O +interpreted O +from O +2D S-CONPRI +cross-sections O +alone O +. O + + +Misorientations O +were O +calculated O +via O +a O +methodology S-CONPRI +that O +locates O +the O +initial O +location O +and O +orientation S-CONPRI +of O +grains S-CONPRI +that O +grow O +during O +the O +build S-PARA +process O +. O + + +For O +larger O +grains S-CONPRI +, O +misorientation O +increased O +along O +the O +direction O +of O +solidification S-CONPRI +. O + + +For O +grains S-CONPRI +with O +complex B-CONPRI +morphologies E-CONPRI +, O +K-means O +clustering O +in O +orientation S-CONPRI +space O +is O +demonstrated O +as S-MATE +a O +useful O +approach O +for O +determining O +the O +initial O +growth O +orientation S-CONPRI +. O + + +The O +accumulation O +of O +misorientation O +is O +linked O +to O +the O +solutal O +and O +thermal O +solidification S-CONPRI +path O +, O +offering O +potential O +design S-FEAT +pathways O +for O +novel O +alloys S-MATE +more O +suited O +for O +additive B-MANP +manufacturing E-MANP +. O + + +In O +this O +study O +, O +Wire B-MANP +Arc I-MANP +Additive I-MANP +Manufacturing E-MANP +( O +WAAM S-MANP +) O +based O +Directed B-MANP +Energy I-MANP +Deposition E-MANP +( O +DED S-MANP +) O +process S-CONPRI +is O +used O +to O +build S-PARA +two O +parts O +, O +tube O +and O +wall O +from O +2209 O +Duplex O +Stainless B-MATE +Steel E-MATE +. O + + +Duplex O +stainless B-MATE +steel E-MATE +is O +extremely O +effective O +against O +stress B-CONPRI +corrosion I-CONPRI +cracking E-CONPRI +due O +to O +existence O +of O +an O +equal O +portion O +of O +austenite S-MATE +and O +ferrite S-MATE +phases O +. O + + +The O +challenge O +is O +monitoring O +of O +the O +process B-CONPRI +parameters E-CONPRI +and O +cooling B-PARA +rate E-PARA +to O +promote O +ferrite S-MATE +phase O +formation O +. O + + +To O +this O +end O +, O +three-dimensional S-CONPRI +transient O +thermal O +models O +of O +the O +additive B-MANP +manufactured E-MANP +( O +AM S-MANP +) O +parts O +are O +presented O +and O +the O +simulated O +thermal B-PARA +cycles E-PARA +are O +verified O +with O +the O +experimental S-CONPRI +results O +. O + + +The O +correlation O +between O +the O +calculated O +cooling B-PARA +rates E-PARA +and O +the O +phases O +formation O +in O +the O +WAAM S-MANP +parts O +is O +studied O +and O +revealed O +. O + + +The O +results O +highlight O +that O +slow O +cooling B-PARA +rate E-PARA +of O +the O +built O +layers O +at O +elevated O +temperatures S-PARA +promote O +austenite S-MATE +formation O +significantly O +in O +a O +ferrite S-MATE +matrix O +. O + + +Furthermore O +, O +the O +experimental S-CONPRI +mechanical O +examinations O +will O +illustrate O +the O +quality S-CONPRI +of O +the O +WAAM-made O +parts O +and O +compare O +their O +mechanical B-CONPRI +properties E-CONPRI +with O +their O +wrought S-CONPRI +counter-parts O +. O + + +Beam-based O +processes S-CONPRI +are O +popularly O +used O +for O +metal B-MANP +additive I-MANP +manufacturing E-MANP +, O +but O +there O +are O +significant O +gaps O +between O +their O +capabilities O +and O +the O +demand O +from O +industry S-APPL +and O +society O +. O + + +Examples O +include O +solidification S-CONPRI +issues O +, O +anisotropic S-PRO +mechanical O +properties S-CONPRI +, O +and O +restrictions O +on O +powder S-MATE +attributes O +. O + + +Non-beam-based O +additive S-MATE +processes O +are O +promising O +to O +bridge S-APPL +these O +gaps O +. O + + +In O +this O +viewpoint O +article O +, O +we O +introduce O +and O +discuss O +additive S-MATE +friction O +stir O +deposition S-CONPRI +, O +which O +is O +a O +fast O +, O +scalable O +, O +solid-state B-CONPRI +process E-CONPRI +that O +results O +in O +refined O +microstructures S-MATE +and O +has O +flexible O +options O +for O +feed S-PARA +materials O +. O + + +With O +comparisons O +to O +other O +additive S-MATE +processes O +, O +we O +discuss O +its O +benefits O +and O +limitations O +along O +with O +the O +pathways O +to O +widespread O +implementation O +of O +metal B-MANP +additive I-MANP +manufacturing E-MANP +. O + + +Metal B-MANP +additive I-MANP +manufacturing E-MANP +is O +nowadays O +a O +well-established O +technology S-CONPRI +for O +cutting S-MANP +edge O +applications O +in O +the O +automotive S-APPL +, O +aerospace S-APPL +, O +defense O +and O +medical S-APPL +sectors O +. O + + +Since O +additive S-MATE +metal O +deposition S-CONPRI +is O +basically O +a O +welding S-MANP +method O +, O +which O +creates O +parts O +by O +successively O +adding O +layers O +of O +material S-MATE +, O +there O +is O +a O +chance O +for O +defects S-CONPRI +like O +pores S-PRO +, O +cracks O +, O +inclusions S-MATE +and O +lack O +of O +fusion S-CONPRI +to O +develop O +. O + + +As S-MATE +a O +matter O +of O +fact O +, O +interlayer O +and O +intralayer O +defects S-CONPRI +are O +often O +observed O +in O +additive B-MANP +manufactured E-MANP +components O +. O + + +However O +, O +if O +one O +considers O +the O +typical O +end O +applications O +along O +with O +the O +high O +costs O +involved O +in O +metal S-MATE +additive B-MANP +manufactured E-MANP +components O +, O +a O +“ O +zero O +defect S-CONPRI +” O +target O +is O +close O +to O +mandatory O +for O +this O +technology S-CONPRI +. O + + +Planning S-MANP +an O +inclusion S-MATE +of O +the O +integrity S-CONPRI +assessment O +right O +into O +the O +additive B-MANP +manufacturing I-MANP +process E-MANP +would O +allow O +for O +quick O +corrective O +actions O +to O +be S-MATE +performed O +before O +the O +component S-MACEQ +is O +completed O +. O + + +Some O +effort O +has O +been O +spent O +in O +the O +quest O +of O +an O +efficient O +in-process O +flaw S-CONPRI +inspection O +, O +however O +, O +no O +conventional O +nondestructive B-CHAR +testing E-CHAR +( O +NDT S-CONPRI +) O +approach O +has O +been O +fully O +satisfying O +yet O +. O + + +This O +work O +suggests O +an O +experimental S-CONPRI +evaluation O +of O +the O +effectiveness S-CONPRI +of O +flying O +laser S-ENAT +scanning O +thermography O +, O +when O +detecting O +flaws S-CONPRI +on O +an O +Additively B-MANP +Manufactured E-MANP +acetabular O +cup O +prosthesis O +made O +in O +titanium B-MATE +alloy E-MATE +, O +where O +some O +defects S-CONPRI +have O +been O +artificially O +created O +. O + + +The O +rough O +surface S-CONPRI +scanned O +is O +what O +’ O +s S-MATE +typically O +left O +by O +the O +additive B-MANP +manufacturing I-MANP +process E-MANP +, O +and O +has O +been O +left O +so O +in O +order O +to O +prove O +the O +efficacy O +of O +the O +NDT S-CONPRI +inspection S-CHAR +in O +real O +conditions O +. O + + +Robot S-MACEQ +assisted O +additive B-MANP +manufacturing E-MANP +is O +an O +emerging O +disruptive O +technology S-CONPRI +. O + + +Multiple O +robots S-MACEQ +can O +be S-MATE +used O +to O +produce O +multi-material S-CONPRI +large O +objects O +. O + + +Robotic-systems O +can O +be S-MATE +used O +to O +develop O +hybrid B-ENAT +systems E-ENAT +where O +additive S-MATE +and O +subtractive B-MANP +process E-MANP +are O +combined O +. O + + +The O +additive B-MANP +manufacturing E-MANP +and O +the O +robotic O +applications O +are O +tremendously O +increasing O +in O +the O +manufacturing S-MANP +field O +. O + + +This O +review O +paper O +discusses O +the O +concept O +of O +robotic-assisted O +additive B-MANP +manufacturing E-MANP +. O + + +The O +leading O +additive B-MANP +manufacturing E-MANP +methods O +that O +can O +be S-MATE +used O +with O +a O +robotic O +system O +are O +presented O +and O +discussed O +in O +detail O +. O + + +The O +information O +flow O +required O +to O +produce O +an O +object O +from O +a O +CAD B-ENAT +model E-ENAT +through O +a O +robotic-assisted O +system O +, O +different O +from O +the O +traditional O +information O +flow O +in O +a O +conventional O +additive B-MANP +manufacturing E-MANP +approach O +is O +also O +detailed O +. O + + +Examples O +of O +the O +use O +of O +robotic-assisted O +additive B-MACEQ +manufacturing I-MACEQ +systems E-MACEQ +are O +presented O +. O + + +130 O +mm S-MANP +thick O +welds S-FEAT +were O +manufactured S-CONPRI +in O +a O +nuclear O +steel S-MATE +using O +gas-tungsten O +arc S-CONPRI +, O +submerged-arc O +and O +electron B-MANP +beam I-MANP +welding E-MANP +. O + + +Residual B-PRO +stresses E-PRO +were O +measured O +using O +the O +contour S-FEAT +method O +and O +incremental O +deep-hole O +drilling S-MANP +, O +before O +and O +after O +PWHT S-CONPRI +. O + + +Results O +show O +that O +the O +effectiveness S-CONPRI +of O +PWHT S-CONPRI +is O +best O +assessed O +on O +large O +weld S-FEAT +mock-ups O +. O + + +In O +this O +study O +we O +aim O +to O +determine O +how O +the O +choice O +of O +welding S-MANP +process S-CONPRI +might O +impact S-CONPRI +on O +the O +through-life O +performance S-CONPRI +of O +critical O +nuclear O +components S-MACEQ +such O +as S-MATE +the O +reactor O +pressure S-CONPRI +vessel O +, O +steam O +generators O +and O +pressuriser O +in O +a O +pressurised O +water O +reactor O +. O + + +Attention O +is O +devoted O +to O +technologies S-CONPRI +that O +are O +currently O +employed O +in O +the O +fabrication S-MANP +of O +such O +components S-MACEQ +, O +i.e O +. O + + +narrow-gap O +variants O +of O +gas-tungsten O +arc B-MANP +welding E-MANP +( O +GTAW S-MANP +) O +and O +submerged B-MANP +arc I-MANP +welding E-MANP +( O +SAW S-MANP +) O +, O +as S-MATE +well O +as S-MATE +a O +technology S-CONPRI +that O +might O +be S-MATE +applied O +in O +the O +future O +( O +electron B-MANP +beam I-MANP +welding E-MANP +) O +. O + + +The O +residual B-PRO +stresses E-PRO +that O +are O +introduced O +by O +welding S-MANP +operations O +will O +have O +an O +influence O +on O +the O +integrity S-CONPRI +of O +critical O +components S-MACEQ +over O +a O +design S-FEAT +lifetime O +that O +exceeds O +60 O +years O +. O + + +With O +a O +view O +to O +making O +an O +assessment O +based O +on O +residual B-PRO +stress E-PRO +as S-MATE +pertinent O +as S-MATE +possible O +, O +weld S-FEAT +test O +pieces O +were O +manufactured S-CONPRI +with O +each O +process S-CONPRI +at O +a O +thickness O +that O +is O +representative O +for O +such O +components S-MACEQ +, O +i.e O +. O + + +130 O +mm S-MANP +. O + + +Stability S-PRO +in O +robotic O +GTA O +additive B-MANP +manufacturing E-MANP +is O +detected O +by O +optical B-CHAR +measurements E-CHAR +. O + + +Deposition S-CONPRI +height O +is O +controlled O +with O +a O +feedback S-PARA +controller S-MACEQ +. O + + +Comparison O +between O +open O +and O +closed-loop B-MACEQ +control E-MACEQ +is O +conducted O +. O + + +Additive B-MANP +manufacturing E-MANP +employing O +Gas S-CONPRI +Tungsten O +Arc S-CONPRI +( O +GTA O +) O +as S-MATE +the O +heat B-CONPRI +source E-CONPRI +is O +capable O +of O +fabricating S-MANP +fully O +dense O +metal S-MATE +components S-MACEQ +layer O +upon O +layer S-PARA +. O + + +In O +this O +work O +, O +a O +visual O +sensor S-MACEQ +, O +comprising O +a O +camera S-MACEQ +and O +composite S-MATE +filters O +, O +is O +developed O +for O +automatically O +real-time O +sensing S-APPL +of O +the O +fabrication S-MANP +process O +. O + + +The O +aim O +is O +to O +keep O +stable O +manufacture S-CONPRI +, O +and O +the O +deviations O +of O +the O +deposited O +height O +are O +compensated O +by O +designing O +an O +integral O +separation O +PID O +controller S-MACEQ +to O +adjust O +the O +wire O +feed S-PARA +speed O +in O +the O +next O +layer S-PARA +. O + + +The O +optical B-CHAR +measurement E-CHAR +technique O +and O +the O +controller S-MACEQ +are O +estimated O +via O +building O +multi-layer O +single-pass O +walls O +. O + + +The O +results O +show O +that O +the O +process S-CONPRI +stability O +in O +GTA-based O +additive B-MANP +manufacturing E-MANP +is O +well O +controlled O +when O +the O +designed S-FEAT +visual O +sensor S-MACEQ +and O +the O +proposed O +closed-loop B-MACEQ +controller E-MACEQ +are O +applied O +. O + + +Titanium S-MATE +is O +one O +of O +the O +best O +suitable O +materials S-CONPRI +for O +manufacturing S-MANP +bio O +implants S-APPL +and O +its O +application O +areas S-PARA +are O +orthopedics O +, O +dentistry S-APPL +etc O +. O + + +There O +are O +many O +features O +possess O +by O +titanium S-MATE +which O +make O +it O +appropriate O +are O +its O +biocompatibility S-PRO +, O +resistance S-PRO +to O +corrosion S-CONPRI +, O +wearing O +, O +osteoporosis O +etc O +. O + + +The O +Cp- O +Titanium S-MATE +and O +titanium-based O +alloys S-MATE +are O +categorized O +in O +three O +ways O +depending O +upon O +its O +microstructure S-CONPRI +such O +as S-MATE +( O +α O ++ O +β O +) O +, O +α- O +type O +, O +β-type O +and O +comparative O +analysis O +are O +done O +its O +behavior O +, O +stability S-PRO +through O +SEM S-CHAR +. O + + +This O +review O +paper O +discussed O +the O +conventional O +and O +modern O +methods O +of O +fabricating S-MANP +the O +bio-implants O +and O +also O +summarizes O +the O +various O +additive B-MANP +manufacturing E-MANP +techniques O +. O + + +Two O +NiCu O +alloys S-MATE +with O +various O +contents O +of O +Mn S-MATE +, O +Ti S-MATE +, O +Al S-MATE +and O +C S-MATE +were O +deposited O +in O +a O +shape O +of O +single-bead O +multi O +layered O +walls O +using O +wire B-MANP +arc I-MANP +additive I-MANP +manufacturing E-MANP +technology S-CONPRI +. O + + +To O +modify O +solute B-MATE +atom E-MATE +concentrations O +and O +particle S-CONPRI +number O +density S-PRO +values O +, O +the O +as-welded O +alloys S-MATE +were O +subjected O +to O +annealing S-MANP +at O +1100 O +°C O +and O +age-hardening O +heat B-MANP +treatment E-MANP +in O +the O +610-480 O +°C O +temperature B-PARA +range E-PARA +. O + + +Microstructure S-CONPRI +characterisation O +was O +carried O +out O +using O +optical S-CHAR +, O +scanning S-CONPRI +, O +conventional O +transmission S-CHAR +and O +atomic O +resolution S-PARA +transmission O +electron B-CHAR +microscopy E-CHAR +. O + + +Work B-MANP +hardening E-MANP +behaviour O +was O +studied O +using O +tensile B-CHAR +testing E-CHAR +. O + + +For O +similar O +deposition S-CONPRI +and O +heat B-MANP +treatment E-MANP +conditions O +, O +an O +alloy S-MATE +with O +higher O +C S-MATE +and O +Al S-MATE +, O +and O +lower O +Mn S-MATE +contents O +exhibited O +a O +higher O +number O +density S-PRO +of O +> O +20 O +nm O +TiC O +particles S-CONPRI +, O +higher O +number O +density S-PRO +of O +< O +20 O +nm O +γ′-Ni3 O +( O +Al S-MATE +, O +Ti S-MATE +) O +particles S-CONPRI +, O +and O +, O +associated O +with O +these O +, O +superior O +hardness S-PRO +, O +tensile B-PRO +strength E-PRO +, O +strain B-MANP +hardening E-MANP +rate O +and O +toughness S-PRO +. O + + +The O +comparative O +effect O +of O +solid B-MATE +solution E-MATE +and O +precipitation S-CONPRI +strengthening O +on O +work B-MANP +hardening E-MANP +behaviour O +and O +fracture S-CONPRI +mode O +is O +discussed O +. O + + +PCA-RF O +was O +proposed O +for O +on-line O +defect S-CONPRI +detection O +in O +arc B-MANP +welding E-MANP +. O + + +The O +classification S-CONPRI +accuracy S-CHAR +was O +improved O +from O +79.3 O +% O +to O +91.8 O +% O +. O + + +Feature S-FEAT +importance O +was O +qualitatively O +evaluated O +and O +selection O +pattern S-CONPRI +was O +given O +. O + + +Higher O +gradient O +of O +Fe S-MATE +might O +cause O +the O +greater O +change O +of O +Fe S-MATE +I O +( O +407.84 O +nm O +) O +Accurate S-CHAR +on-line O +weld S-FEAT +defect S-CONPRI +detection O +in O +robotic O +arc B-MANP +welding E-MANP +manufacturing O +is O +still O +challenging O +, O +due O +to O +the O +complexity S-CONPRI +and O +diversity O +of O +weld S-FEAT +defects S-CONPRI +. O + + +In O +this O +study O +, O +a O +new O +real-time O +defect S-CONPRI +identification O +method O +is O +proposed O +for O +Al B-MATE +alloys E-MATE +in O +robotic O +arc B-MANP +welding E-MANP +, O +using O +arc S-CONPRI +optical O +spectroscopy S-CONPRI +and O +an O +integrated O +learning O +method O +. O + + +Spectrum O +feature S-FEAT +was O +extracted S-CONPRI +, O +based O +on O +the O +absolute O +coefficients O +of O +the O +principal O +components S-MACEQ +. O + + +Feature S-FEAT +importance O +was O +quantitatively S-CONPRI +evaluated O +using O +the O +mean O +decrease O +accuracy S-CHAR +of O +Principal O +Component S-MACEQ +Analysis-Random O +Forest O +( O +PCA-RF O +) O +. O + + +The O +proposed O +PCA-RF O +proved O +to O +effectively O +identify O +five O +classes O +of O +weld S-FEAT +defects S-CONPRI +with O +better O +performance S-CONPRI +than O +support S-APPL +vector O +machine S-MACEQ +and O +back O +propagation O +neural B-CONPRI +network E-CONPRI +. O + + +Finally O +, O +the O +selection O +pattern S-CONPRI +of O +spectrum O +feature S-FEAT +subset O +was O +investigated O +, O +before O +revealing O +the O +correlation O +mechanism S-CONPRI +of O +the O +selected O +lines O +spectrum O +and O +weld S-FEAT +process S-CONPRI +. O + + +Barriers O +for O +the O +integration O +of O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +technologies S-CONPRI +in O +the O +commercial O +vehicle O +industry S-APPL +are O +identified O +. O + + +A O +cost B-CONPRI +model E-CONPRI +for O +estimating O +the O +manufacturing B-CONPRI +cost E-CONPRI +of O +a O +build S-PARA +task O +using O +selective B-MANP +laser I-MANP +melting E-MANP +is O +proposed O +in O +a O +cost B-CONPRI +estimation E-CONPRI +. O + + +A O +general O +procedure O +and O +framework S-CONPRI +to O +develop O +a O +hybrid O +additive-subtractive O +process B-ENAT +chain E-ENAT +has O +been O +proposed O +. O + + +A O +closed-loop O +quality B-CONPRI +control E-CONPRI +model S-CONPRI +to O +realize O +a O +long-term O +product O +and O +process S-CONPRI +quality O +control O +with O +AM S-MANP +is O +developed O +. O + + +Additive B-MANP +Manufacturing E-MANP +( O +AM S-MANP +) O +is O +the O +umbrella O +term O +for O +manufacturing B-MANP +processes E-MANP +that O +add O +materials S-CONPRI +layer B-CONPRI +by I-CONPRI +layer E-CONPRI +to O +create O +parts O +. O + + +AM B-MANP +technologies E-MANP +show O +numerous O +potentials O +in O +terms O +of O +rapid B-ENAT +prototyping E-ENAT +, O +tooling S-CONPRI +and O +direct B-CONPRI +manufacturing E-CONPRI +of O +functional O +parts O +and O +imply O +revolutionary O +benefits O +for O +the O +manufacturing S-MANP +industry S-APPL +. O + + +Currently O +, O +many O +industrial S-APPL +areas S-PARA +are O +marching O +to O +a O +more O +comprehensive O +application O +of O +AM S-MANP +. O + + +Hence O +, O +the O +development O +of O +new O +tools S-MACEQ +, O +methods O +, O +and O +concepts O +for O +guiding O +companies S-APPL +to O +implement O +AM B-MANP +technologies E-MANP +requires O +more O +research S-CONPRI +attention O +. O + + +This O +paper O +introduces O +the O +results O +of O +a O +research S-CONPRI +project O +carried O +out O +by O +academic O +and O +industrial S-APPL +partners O +from O +the O +German O +commercial O +vehicle O +industry S-APPL +. O + + +The O +research S-CONPRI +project O +addressed O +four O +issues O +for O +a O +long-term O +application O +of O +AM B-MANP +technologies E-MANP +: O +identification O +of O +barriers O +for O +AM S-MANP +applications O +, O +cost B-CONPRI +estimation E-CONPRI +for O +AM S-MANP +application O +, O +design S-FEAT +of O +hybrid O +additive-subtractive O +process B-ENAT +chains E-ENAT +, O +and O +quality S-CONPRI +management O +with O +AM S-MANP +. O + + +Wire B-MANP +and I-MANP +arc I-MANP +additive I-MANP +manufacturing E-MANP +( O +WAAM S-MANP +) O +is O +a O +competitive O +technology S-CONPRI +for O +fabricating S-MANP +metallic O +parts O +with O +complex B-CONPRI +structure E-CONPRI +and O +geometry S-CONPRI +. O + + +The O +basis O +of O +planning S-MANP +the O +deposition B-PARA +paths E-PARA +is O +the O +beads S-CHAR +overlapping O +model S-CONPRI +( O +BOM O +) O +. O + + +The O +existing O +overlapping O +models O +consider O +only O +the O +geometric O +area S-PARA +of O +adjacent O +beads S-CHAR +, O +but O +ignore O +the O +spreading O +of O +the O +melted S-CONPRI +weld O +beads S-CHAR +. O + + +The O +objective O +of O +the O +research S-CONPRI +was O +to O +develop O +an O +enhanced O +BOM O +( O +E.BOM O +) O +for O +WAAM S-MANP +, O +which O +takes O +the O +spreading O +of O +the O +weld B-CONPRI +beads E-CONPRI +into O +consideration O +. O + + +A O +deposited B-CHAR +bead E-CHAR +spreads O +to O +the O +already O +deposited O +neighboring O +bead S-CHAR +and O +as S-MATE +a O +consequence O +, O +its O +center O +point O +deviates O +from O +the O +center O +point O +of O +the O +fed O +( O +to O +be S-MATE +melted O +) O +wire O +. O + + +Experiments O +were O +designed S-FEAT +to O +explore O +the O +relationships O +between O +the O +geometries S-CONPRI +of O +the O +beads S-CHAR +, O +and O +the O +offset S-CONPRI +distance O +between O +the O +center O +of O +a O +weld B-CONPRI +bead E-CONPRI +and O +the O +center O +of O +the O +fed O +wire O +. O + + +An O +artificial B-ENAT +neural I-ENAT +network E-ENAT +was O +used O +to O +predict O +the O +offset S-CONPRI +distance O +of O +a O +certain O +weld B-CONPRI +bead E-CONPRI +based O +on O +the O +results O +of O +the O +experiments O +. O + + +In O +addition O +, O +a O +reasoning O +algorithm S-CONPRI +was O +implemented O +to O +calculate O +the O +optimal O +distance O +between O +the O +centers O +of O +adjacent O +deposition B-PARA +paths E-PARA +in O +order O +to O +achieve O +a O +planned O +center O +distance O +between O +adjacent O +beads S-CHAR +. O + + +The O +E.BOM O +has O +been O +tested O +by O +validation S-CONPRI +experiments O +. O + + +On O +the O +one O +hand O +, O +it O +improves O +the O +surface S-CONPRI +flatness S-PRO +of O +layers O +of O +MLMB O +parts O +produced O +by O +WAAM S-MANP +. O + + +Wire B-MANP ++ I-MANP +Arc I-MANP +Additive I-MANP +Manufacture E-MANP +is O +a O +suitable O +technique O +to O +manufacture S-CONPRI +large-scale O +unalloyed O +tungsten S-MATE +components S-MACEQ +The O +orientation S-CONPRI +of O +the O +wire B-PARA +feeding E-PARA +influences O +the O +occurrence O +of O +defects S-CONPRI +as S-MATE +lack O +of O +fusion S-CONPRI +, O +pores S-PRO +and O +micro-cracks S-CONPRI +The O +orientation S-CONPRI +of O +the O +wire B-PARA +feeding E-PARA +influences O +the O +microstructure S-CONPRI +of O +the O +tungsten S-MATE +deposits O +Front O +wire B-PARA +feeding E-PARA +allowed O +to O +produce O +fully-dense O +crack-free O +unalloyed O +tungsten S-MATE +deposits O +The O +manufacturing S-MANP +of O +refractory-metals O +components S-MACEQ +presents O +some O +limitations O +induced O +by O +the O +materials S-CONPRI +' O +characteristic O +low-temperature O +brittleness O +and O +high O +susceptibility S-PRO +to O +oxidation S-MANP +. O + + +Powder B-MANP +metallurgy E-MANP +is O +typically O +the O +manufacturing B-MANP +process E-MANP +of O +choice O +. O + + +Recently O +, O +Wire B-MANP ++ I-MANP +Arc I-MANP +Additive I-MANP +Manufacture E-MANP +has O +proven O +capable O +to O +produce O +fully-dense O +large-scale O +metal S-MATE +parts O +at O +relatively O +low O +cost O +, O +by O +using O +high-quality O +wire O +as S-MATE +feedstock O +. O + + +In O +this O +study O +, O +this O +technique O +has O +been O +used O +for O +the O +production S-MANP +of O +large-scale O +tungsten S-MATE +linear O +structures O +. O + + +The O +orientation S-CONPRI +of O +the O +wire B-PARA +feeding E-PARA +has O +been O +studied O +and O +optimised O +to O +obtain O +defect-free O +tungsten S-MATE +deposits O +. O + + +In O +particular O +, O +front O +wire B-PARA +feeding E-PARA +eliminated O +the O +occurrence O +of O +pores S-PRO +and O +micro-cracks S-CONPRI +, O +when O +compared O +to O +side O +wire B-PARA +feeding E-PARA +. O + + +The O +microstructure S-CONPRI +, O +the O +occurrence O +of O +defects S-CONPRI +and O +their O +relationship O +with O +the O +deposition B-MANP +process E-MANP +have O +also O +been O +discussed O +. O + + +Despite O +the O +repetitive O +thermal B-PARA +cycles E-PARA +and O +the O +inherent O +brittleness O +of O +the O +material S-MATE +, O +the O +as-deposited O +structures O +were O +free O +from O +internal O +cracks O +and O +the O +layer S-PARA +dimensions S-FEAT +were O +stable O +during O +the O +entire O +deposition B-MANP +process E-MANP +. O + + +This O +enabled O +the O +production S-MANP +of O +a O +relatively O +large-scale O +component S-MACEQ +, O +with O +the O +dimension S-FEAT +of O +210 O +× O +75 O +× O +12 O +mm S-MANP +. O + + +This O +study O +has O +demonstrated O +that O +Wire B-MANP ++ I-MANP +Arc I-MANP +Additive I-MANP +Manufacture E-MANP +can O +be S-MATE +used O +to O +produce O +large-scale O +parts O +in O +unalloyed O +tungsten S-MATE +by O +complete O +fusion S-CONPRI +, O +presenting O +a O +potential O +alternative O +to O +the O +powder B-MANP +metallurgy E-MANP +manufacturing S-MANP +route O +. O + + +An O +innovative O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +system O +using O +low O +power S-PARA +pulsed O +laser B-MANP +assisted I-MANP +MIG I-MANP +arc I-MANP +welding E-MANP +( O +L-M O +) O +was O +proposed O +to O +manufacture S-CONPRI +metal O +products O +. O + + +With O +the O +purpose O +of O +revealing O +how O +width O +and O +height O +dimension S-FEAT +of O +the O +manufactured S-CONPRI +thin-wall O +component S-MACEQ +are O +affected O +by O +the O +laser B-PARA +power E-PARA +, O +the O +present O +study O +has O +been O +carried O +out O +. O + + +The O +width O +decreased O +with O +the O +increasing O +of O +the O +laser B-PARA +power E-PARA +within O +a O +certain O +range S-PARA +of O +laser B-PARA +power E-PARA +, O +and O +the O +height O +increased O +proportionally O +under O +the O +equal O +deposition B-PARA +rate E-PARA +. O + + +The O +width O +and O +height O +fluctuation O +reduced O +while O +adding O +the O +low O +power S-PARA +laser S-ENAT +, O +both O +the O +standard B-CHAR +deviation E-CHAR +decreased O +by O +more O +than O +50% O +when O +the O +laser B-PARA +power E-PARA +was O +400 O +W. O +The O +coefficient O +of O +materials S-CONPRI +utilization O +was O +up O +to O +91.12 O +% O +, O +and O +increased O +by O +more O +than O +15 O +% O +while O +using O +L-M O +based O +AM S-MANP +to O +fabricate S-MANP +thin-wall O +parts O +with O +a O +proper O +laser B-PARA +power E-PARA +. O + + +In O +comparison O +with O +the O +common O +GMAW-based O +AM S-MANP +method O +, O +the O +L-M O +based O +AM S-MANP +method O +shows O +feasibility S-CONPRI +to O +manufacture S-CONPRI +a O +narrower O +thin-wall O +component S-MACEQ +with O +better O +surface B-PARA +quality E-PARA +and O +higher O +stability S-PRO +, O +and O +also O +with O +higher O +deposition S-CONPRI +efficiency O +. O + + +Wire B-MANP +and I-MANP +Arc I-MANP +Additive I-MANP +Manufacturing E-MANP +( O +WAAM S-MANP +) O +is O +a O +metal S-MATE +3D B-MANP +printing E-MANP +technique O +based O +on O +robotic B-MANP +welding E-MANP +. O + + +This O +technique O +yields O +potential O +in O +decreasing O +material S-MATE +consumption O +due O +to O +its O +high O +material S-MATE +efficiency O +and O +freedom O +of O +shape O +. O + + +Empirical S-CONPRI +measurements O +of O +WAAM S-MANP +, O +using O +a O +deposition B-PARA +rate E-PARA +of O +1 O +kg/h O +, O +were O +performed O +on O +site O +of O +MX3D O +. O + + +The O +measured O +power S-PARA +consumption O +per O +kg O +stainless B-MATE +steel E-MATE +is O +2.72 O +kW O +, O +of O +which O +1.74 O +is O +consumed O +by O +the O +welder O +, O +0.44 O +by O +the O +robotic B-MACEQ +arm E-MACEQ +, O +and O +0.54 O +by O +the O +ventilation O +. O + + +The O +material S-MATE +loss O +was O +1.1 O +% O +. O + + +A O +98 O +% O +argon S-MATE +2 O +% O +CO2 S-MATE +welding O +gas S-CONPRI +was O +used O +with O +a O +flow O +of O +12 O +l/min.A O +cradle-to-gate O +Life B-CONPRI +Cycle E-CONPRI +Assessment O +( O +LCA O +) O +was O +performed O +. O + + +To O +give O +this O +assessment O +context O +, O +green O +sand B-MANP +casting E-MANP +and O +CNC B-MANP +milling E-MANP +were O +additionally O +assessed O +, O +through O +literature O +and O +databases S-ENAT +. O + + +The O +purpose O +of O +this O +study O +is O +to O +develop O +insight O +into O +the O +environmental O +impact S-CONPRI +of O +WAAM S-MANP +. O + + +Results O +indicate O +that O +, O +in O +terms O +of O +total O +ReCiPe O +endpoints O +, O +the O +environmental O +impact S-CONPRI +of O +producing O +a O +kg O +of O +stainless B-MATE +steel E-MATE +308 O +l O +product O +using O +WAAM S-MANP +is O +comparable O +to O +green O +sand B-MANP +casting E-MANP +. O + + +It O +equals O +CNC B-MANP +milling E-MANP +with O +a O +material B-PARA +utilization I-PARA +fraction E-PARA +of O +0.75 O +. O + + +Stainless B-MATE +steel E-MATE +is O +the O +main O +cause O +of O +environmental O +damage S-PRO +in O +all O +three O +techniques O +, O +emphasizing O +the O +importance O +of O +WAAM S-MANP +'s O +mass O +reduction S-CONPRI +potential O +. O + + +When O +environmentally O +comparing O +the O +three O +techniques O +for O +fulfilling O +a O +certain O +function O +, O +optimized O +designs S-FEAT +should O +be S-MATE +introduced O +for O +each O +manufacturing S-MANP +technique O +. O + + +Results O +can O +vary O +significantly O +based O +on O +product O +shape O +, O +function O +, O +materials S-CONPRI +, O +and O +process B-PARA +settings E-PARA +. O + + +Method O +of O +tensile S-PRO +triangles O +was O +applied O +to O +weld S-FEAT +shape O +design S-FEAT +. O + + +Method O +of O +tensile S-PRO +triangles O +and O +low O +transformation O +temperature S-PARA +weld O +metal S-MATE +were O +combined O +for O +weld B-FEAT +joint E-FEAT +design S-FEAT +. O + + +Effect O +of O +interpass B-PARA +temperature E-PARA +on O +residual B-PRO +stress E-PRO +in O +welded B-FEAT +joint E-FEAT +was O +investigated O +. O + + +Stress B-CHAR +concentration E-CHAR +and O +residual B-PRO +stress E-PRO +have O +a O +significant O +influence O +on O +fatigue B-PRO +life E-PRO +of O +welded B-FEAT +joints E-FEAT +. O + + +In O +order O +to O +reduce O +the O +stress B-CHAR +concentration E-CHAR +of O +welded B-FEAT +joints E-FEAT +, O +a O +mathematical S-CONPRI +design S-FEAT +method O +of O +tensile S-PRO +triangles O +( O +MTT O +) O +based O +on O +bionics O +was O +applied O +to O +weld S-FEAT +shape O +design S-FEAT +. O + + +Accordingly O +, O +the O +stress B-CHAR +concentration E-CHAR +of O +various O +weld B-CONPRI +beads E-CONPRI +in O +the O +corner O +boxing O +welded B-FEAT +joint E-FEAT +and O +the O +fillet S-FEAT +welded O +T-joint S-FEAT +was O +dissected O +using O +our O +in-house O +FEM S-CONPRI +software O +JWRIAN O +. O + + +It O +was O +found O +that O +there O +existed O +a O +large O +stress B-CHAR +concentration E-CHAR +in O +the O +conventional O +welded B-FEAT +joints E-FEAT +, O +whereas O +those O +welded B-FEAT +joints E-FEAT +with O +elongated O +weld B-CONPRI +bead E-CONPRI +were O +accompanied O +by O +a O +lower O +stress B-CHAR +concentration E-CHAR +, O +especially O +for O +elongated O +weld B-CONPRI +bead E-CONPRI +with O +MTT O +design S-FEAT +. O + + +Furthermore O +, O +among O +the O +weld S-FEAT +shapes O +of O +the O +corner O +boxing O +fillet S-FEAT +welded O +joint S-CONPRI +, O +the O +rectangle O +shape O +of O +weld B-CONPRI +bead E-CONPRI +had O +the O +minimum O +stress B-CHAR +concentration E-CHAR +factor O +( O +1.05 O +) O +. O + + +For O +the O +fillet S-FEAT +welded O +T-joint S-FEAT +with O +MTT O +design S-FEAT +, O +the O +stress B-CHAR +concentration E-CHAR +of O +weld S-FEAT +toe O +decreased O +dramatically O +with O +the O +increase O +of O +the O +index O +of O +designed S-FEAT +shape O +, O +but O +there O +was O +a O +minor O +difference O +of O +stress B-CHAR +concentration E-CHAR +at O +weld S-FEAT +root O +between O +the O +weld B-CONPRI +beads E-CONPRI +with O +MTT O +design S-FEAT +. O + + +In O +addition O +, O +application O +of O +low O +transformation O +temperature S-PARA +( O +LTT O +) O +weld B-MATE +metal E-MATE +utilizing O +martensitic O +transformation O +to O +the O +fillet S-FEAT +welded O +T-joints O +can O +produce O +compressive O +residual B-PRO +stress E-PRO +at O +weld S-FEAT +toe O +. O + + +Additive-manufactured O +AlSi10Mg S-MATE +boxes O +were O +studied O +under O +lateral O +crushing S-CONPRI +. O + + +Experimental S-CONPRI +tests O +and O +numerical B-ENAT +simulations E-ENAT +were O +conducted O +. O + + +The O +constitutive O +model S-CONPRI +was O +calibrated S-CONPRI +using O +tensile B-CHAR +tests E-CHAR +in O +three O +directions O +. O + + +The O +influence O +of O +the O +yield O +surface S-CONPRI +, O +the O +adopted O +thickness O +and O +the O +element S-MATE +type O +were O +studied O +. O + + +An O +experimental S-CONPRI +and O +numerical O +study O +on O +the O +quasi-static S-CONPRI +loading O +of O +AlSi10Mg S-MATE +square O +boxes O +produced O +by O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +was O +carried O +out O +. O + + +The O +goal O +was O +to O +evaluate O +the O +applicability O +of O +common O +finite B-CHAR +element I-CHAR +modelling E-CHAR +techniques O +to O +3D-printed B-APPL +parts E-APPL +at O +material S-MATE +and O +component S-MACEQ +scales O +, O +under O +large O +deformations S-CONPRI +and O +fracture S-CONPRI +. O + + +Uniaxial O +tensile B-MACEQ +specimens E-MACEQ +were O +extracted S-CONPRI +and O +tested O +at O +different O +orientations S-CONPRI +, O +and O +a O +hypo-elastic–plastic O +model S-CONPRI +with O +Voce O +hardening S-MANP +and O +Cockcroft–Latham O +’ O +s S-MATE +fracture S-CONPRI +criterion O +was O +calibrated S-CONPRI +against O +the O +experimental S-CONPRI +results O +. O + + +The O +boxes O +were O +crushed O +laterally O +until O +failure S-CONPRI +using O +a O +spherical S-CONPRI +actuator S-MACEQ +. O + + +The O +considered O +material S-MATE +and O +finite B-CONPRI +element I-CONPRI +models E-CONPRI +were O +proved O +well O +suited O +for O +the O +prediction S-CONPRI +of O +the O +structural O +response O +of O +the O +additively B-MANP +manufactured E-MANP +components O +in O +the O +studied O +scenario O +. O + + +Wire B-MANP +and I-MANP +arc I-MANP +additive I-MANP +manufacturing E-MANP +( O +WAAM S-MANP +) O +is O +an O +efficient O +technique O +for O +fabricating S-MANP +large O +and O +complex O +components S-MACEQ +that O +are O +applied O +in O +the O +manufacturing S-MANP +industry S-APPL +. O + + +In O +this O +study O +, O +anisotropic S-PRO +mechanical O +properties S-CONPRI +of O +a O +low-carbon O +high-strength O +steel S-MATE +component S-MACEQ +fabricated O +by O +WAAM S-MANP +were O +investigated O +via O +mechanical B-CHAR +testing E-CHAR +, O +and O +the O +transversal O +and O +longitudinal O +deformation S-CONPRI +behavior O +of O +the O +component S-MACEQ +were O +studied O +using O +the O +digital B-CONPRI +image I-CONPRI +correlation E-CONPRI +( O +DIC S-CONPRI +) O +method O +. O + + +Additionally O +, O +the O +features O +of O +microstructure S-CONPRI +, O +texture S-FEAT +, O +and O +fracture S-CONPRI +mode O +of O +the O +inter-layer O +area S-PARA +and O +deposited O +area S-PARA +were O +also O +investigated O +to O +reveal O +the O +mechanism S-CONPRI +of O +anisotropy S-PRO +. O + + +The O +results O +showed O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +longitudinal O +specimens O +were O +inferior O +to O +that O +of O +the O +transversal O +specimens O +. O + + +Several O +strain S-PRO +concentration O +zones O +in O +the O +longitudinal O +specimen O +were O +relevant O +to O +the O +inter-layer O +characteristics O +observed O +from O +the O +fracture S-CONPRI +surface O +and O +macrostructure O +, O +which O +was O +confirmed O +by O +the O +strain S-PRO +evolution S-CONPRI +recorded O +by O +DIC S-CONPRI +. O + + +The O +inter-layer O +areas S-PARA +were O +proved O +to O +be S-MATE +the O +weak O +link O +in O +the O +deposited O +component S-MACEQ +by O +scanning B-MACEQ +electron I-MACEQ +microscope E-MACEQ +( O +SEM S-CHAR +) O +and O +electron B-CHAR +backscatter I-CHAR +diffraction E-CHAR +( O +EBSD S-CHAR +) O +analysis O +results O +, O +including O +various O +phase B-CONPRI +composition E-CONPRI +, O +phase B-CONPRI +morphology E-CONPRI +, O +misorientation O +angle O +, O +grain B-PRO +size E-PRO +, O +Schmid O +factor O +, O +and O +texture S-FEAT +. O + + +Finally O +, O +based O +on O +the O +fractography S-CHAR +analysis O +, O +anisotropy S-PRO +resulted O +from O +inter-layer O +zones O +is O +also O +confirmed O +via O +the O +comparison O +of O +transversal O +and O +longitudinal O +fracture S-CONPRI +morphology O +. O + + +In O +the O +present O +work O +, O +a O +novel O +direct B-MANP +energy I-MANP +deposition E-MANP +method O +for O +metal B-MANP +additive I-MANP +manufacturing E-MANP +is O +developed O +employing O +laminar O +plasma S-CONPRI +as S-MATE +the O +heat B-CONPRI +source E-CONPRI +. O + + +With O +a O +combination O +of O +modified O +process B-CONPRI +parameters E-CONPRI +, O +a O +high-performance O +308L O +stainless B-MATE +steel E-MATE +component S-MACEQ +with O +four O +hollow O +straight O +walls O +is O +prepared O +. O + + +The O +behavior O +of O +phase S-CONPRI +formation O +, O +microstructure S-CONPRI +, O +density S-PRO +and O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +samples S-CONPRI +with O +different O +heights O +were O +investigated O +. O + + +Transformation O +from O +columnar O +to O +equiaxed O +dendrites S-BIOP +can O +be S-MATE +observed O +as S-MATE +the O +height O +of O +wall O +increases O +from O +the O +substrate S-MATE +to O +about O +30 O +mm S-MANP +. O + + +The O +average S-CONPRI +density O +of O +the O +sample S-CONPRI +reaches O +98.3 O +% O +. O + + +Anisotropic S-PRO +property O +is O +observed O +in O +the O +bottom O +and O +middle O +regions O +, O +while O +the O +top O +region O +is O +isotropic S-PRO +. O + + +Laser S-ENAT +welding–brazing O +of O +Ti/Al O +butt O +joints O +was O +performed O +with O +coaxial O +Al–10Si–Mg O +powders S-MATE +feeding O +. O + + +The O +experimental S-CONPRI +results O +indicated O +that O +a O +sound O +Ti/Al O +butt O +joint S-CONPRI +could O +be S-MATE +obtained O +by O +an O +additive S-MATE +layer O +approach O +. O + + +The O +influence O +of O +the O +laser S-ENAT +melting O +deposition B-PARA +layers E-PARA +on O +the O +weld S-FEAT +appearance O +, O +interfacial O +microstructure S-CONPRI +and O +tensile B-PRO +properties E-PRO +were O +investigated O +. O + + +The O +morphology S-CONPRI +and O +thickness O +distributions S-CONPRI +of O +the O +interfacial O +intermetallic B-MATE +compounds E-MATE +( O +IMC O +) O +at O +the O +brazing S-APPL +interface O +along O +the O +thickness O +direction O +of O +the O +joint S-CONPRI +varied O +with O +the O +number O +of O +deposition B-PARA +layers E-PARA +. O + + +Continuous O +serrated O +IMC O +was O +obtained O +in O +joints O +produced O +by O +seven O +deposition B-PARA +layers E-PARA +, O +and O +the O +IMC O +layer S-PARA +was O +distributed O +homogenously O +along O +the O +thickness O +direction O +. O + + +The O +microstructure S-CONPRI +of O +the O +IMC O +layer S-PARA +was O +composed O +of O +a O +nanosized O +granular O +Ti7Al5Si12 S-MATE +phase S-CONPRI +and O +serrated O +Ti S-MATE +( O +Al S-MATE +, O +Si S-MATE +) O +3 O +phase S-CONPRI +. O + + +The O +maximum O +tensile S-PRO +joint S-CONPRI +strength O +reached O +240 O +MPa S-CONPRI +, O +80 O +% O +of O +that O +of O +the O +aluminum S-MATE +base O +metal S-MATE +, O +and O +the O +lower O +tensile B-PRO +strength E-PRO +of O +the O +other O +joints O +was O +caused O +by O +insufficient O +IMC O +layer S-PARA +or O +a O +porosity S-PRO +defect S-CONPRI +. O + + +The O +bypass-coupled O +wire B-MANP +arc I-MANP +additive I-MANP +manufacturing E-MANP +( O +WAAM S-MANP +) O +process S-CONPRI +was O +studied O +, O +and O +the O +arc S-CONPRI +characteristics O +and O +droplet S-CONPRI +transfer O +behavior O +during O +the O +deposition B-MANP +process E-MANP +were O +examined O +. O + + +The O +effects O +of O +the O +bypass O +current O +, O +wire B-PARA +feeding E-PARA +speed O +, O +wire B-PARA +feeding E-PARA +height O +, O +and O +wire B-PARA +feeding E-PARA +angle O +on O +the O +droplet S-CONPRI +transfer O +mode O +were O +investigated O +via O +a O +single O +variable O +experiment S-CONPRI +. O + + +There O +are O +two O +primary O +modes O +of O +droplet S-CONPRI +transfer O +during O +the O +deposition B-MANP +process E-MANP +: O +free O +droplet S-CONPRI +transfer O +and O +bridging S-CONPRI +transfer O +. O + + +When O +the O +transfer O +process S-CONPRI +is O +in O +the O +bridging S-CONPRI +transfer O +mode O +, O +a O +smooth O +deposition S-CONPRI +wall O +is O +obtained O +. O + + +As S-MATE +the O +wire B-PARA +feeding E-PARA +speed O +increases O +, O +the O +transfer O +mode O +of O +the O +droplet S-CONPRI +gradually O +changes O +from O +the O +free O +transfer O +mode O +to O +the O +bridging S-CONPRI +transfer O +mode O +. O + + +The O +larger O +the O +distance O +between O +the O +wire O +tip O +and O +the O +surface S-CONPRI +of O +the O +base B-MATE +metal E-MATE +, O +the O +higher O +the O +wire O +feed S-PARA +speed O +required O +to O +achieve O +bridging S-CONPRI +transfer O +. O + + +There O +is O +a O +linear O +relationship O +between O +the O +droplet S-CONPRI +diameter S-CONPRI +and O +the O +cubic O +root O +of O +the O +wire B-PARA +feeding E-PARA +speed O +. O + + +Finally O +, O +the O +droplet S-CONPRI +transfer O +behavior O +is O +discussed O +using O +droplet S-CONPRI +force O +analysis O +. O + + +This O +article O +describes O +the O +results O +of O +the O +study O +of O +optimal O +conditions O +for O +welding S-MANP +alloy S-MATE +products O +- O +Inconel B-MATE +718 E-MATE +, O +made O +with O +the O +method O +of O +layered O +laser S-ENAT +growing O +( O +SLM S-MANP +) O +. O + + +The O +results O +of O +the O +study O +of O +the O +influence O +of O +linear O +energy O +, O +rigid O +fixation O +of O +parts O +during O +welding S-MANP +and O +heat B-MANP +treatment E-MANP +on O +microhardness S-CONPRI +, O +welding S-MANP +deformation S-CONPRI +and O +the O +microstructure S-CONPRI +of O +the O +welded B-FEAT +joint E-FEAT +are O +presented O +. O + + +An O +adaptive O +quadrature O +technique O +for O +calculating O +linear O +heat B-CONPRI +conduction E-CONPRI +in O +metal B-MANP +additive I-MANP +manufacturing E-MANP +was O +derived O +. O + + +A O +melt B-MATE +pool E-MATE +tracking O +algorithm S-CONPRI +is O +also O +described O +for O +improved O +calculation O +efficiency O +. O + + +The O +adaptive O +algorithm S-CONPRI +was O +verified O +against O +an O +analytical B-CONPRI +solution E-CONPRI +and O +Riemann O +sum O +integration O +approach O +. O + + +The O +adaptive O +integration O +technique O +is O +demonstrated O +for O +a O +highly O +transient S-CONPRI +scan B-PARA +pattern E-PARA +at O +long O +length O +and O +time B-FEAT +scales E-FEAT +. O + + +Solidification S-CONPRI +dynamics O +are O +important O +for O +determining O +final O +microstructure S-CONPRI +in O +additively B-MANP +manufactured E-MANP +parts O +. O + + +Recently O +, O +researchers O +have O +adopted O +semi-analytical B-CONPRI +approaches E-CONPRI +for O +predicting O +heat B-CONPRI +conduction E-CONPRI +effects O +at O +length O +and O +time B-FEAT +scales E-FEAT +not O +accessible O +to O +complex O +multi-physics O +numerical O +models O +. O + + +The O +present O +work O +focuses O +on O +improving O +a O +semi-analytical O +heat B-CONPRI +conduction E-CONPRI +model O +for O +additive B-MANP +manufacturing E-MANP +by O +designing O +an O +adaptive O +integration O +technique O +. O + + +The O +proposed O +scheme O +considers O +material B-CONPRI +properties E-CONPRI +, O +process S-CONPRI +conditions O +, O +and O +the O +inherent O +physical O +behavior O +of O +the O +transient B-CONPRI +heat I-CONPRI +conduction E-CONPRI +around O +both O +stationary O +and O +moving O +heat B-CONPRI +sources E-CONPRI +. O + + +The O +full O +algorithm S-CONPRI +is O +then O +implemented O +and O +compared O +against O +a O +simple S-MANP +Riemann O +sum O +integration O +scheme O +for O +a O +variety O +of O +cases O +that O +highlight O +process S-CONPRI +and O +material S-MATE +variations O +relevant O +to O +additive B-MANP +manufacturing E-MANP +. O + + +The O +new O +scheme O +is O +shown O +to O +have O +significant O +improvements O +in O +computational B-CONPRI +efficiency E-CONPRI +, O +solution S-CONPRI +accuracy S-CHAR +, O +and O +usability O +. O + + +WAAM S-MANP +was O +carried O +out O +to O +build S-PARA +a O +flange O +using O +robotic O +GMAW S-MANP +with O +AA5183 O +wire O +on O +an O +AA6082 O +support S-APPL +plate O +. O + + +Some O +intergranular O +hot B-CONPRI +cracking E-CONPRI +was O +found O +in O +the O +reheated O +areas S-PARA +close O +to O +the O +fusion B-CONPRI +boundary E-CONPRI +. O + + +The O +hardness S-PRO +level O +was O +around O +75 O +kg/mm2 O +and O +70–75 O +kg/mm2 O +in O +the O +hoorisontal O +and O +vertical S-CONPRI +plane O +, O +respectively O +. O + + +Reasonable O +isotropic S-PRO +yield O +and O +tensile B-PRO +strength E-PRO +of O +145 O +and O +293MPa O +were O +achieved O +, O +respectively O +. O + + +The O +present O +study O +addresses O +wire B-MANP +arc I-MANP +additive I-MANP +manufacturing E-MANP +of O +AA5183 O +aluminium B-MATE +alloy E-MATE +using O +conventional O +gas B-MANP +metal I-MANP +arc I-MANP +welding E-MANP +deposition S-CONPRI +on O +20 O +mm S-MANP +thick O +AA6082-T6 O +plate O +as S-MATE +support O +material S-MATE +. O + + +Microscopic O +examination O +demonstrates O +that O +the O +process S-CONPRI +is O +feasible O +, O +but O +can O +be S-MATE +further O +optimized O +to O +reduce O +gas S-CONPRI +porosity O +and O +hot B-CONPRI +cracking E-CONPRI +. O + + +Hardness S-PRO +measurements O +confirmed O +relative O +high O +hardness S-PRO +, O +i.e. O +, O +around O +75 O +kg/mm2 O +in O +the O +horizontal O +plane O +, O +and O +between O +70 O +and O +75 O +kg/mm2 O +in O +the O +vertical S-CONPRI +plane O +down O +to O +the O +AA6082 O +support S-APPL +plate O +with O +100 O +kg/mm2 O +. O + + +Mechanical B-CHAR +testing E-CHAR +resulted O +in O +yield O +and O +tensile B-PRO +strength E-PRO +of O +145 O +and O +293 O +MPa S-CONPRI +, O +respectively O +, O +with O +lowest O +value O +in O +the O +through O +thickness O +( O +Z O +) O +direction O +. O + + +The O +ductility S-PRO +was O +high O +for O +orientations S-CONPRI +parallel O +( O +X O +) O +with O +and O +perpendicular O +( O +Y S-MATE +) O +to O +the O +layer S-PARA +deposition B-PARA +direction E-PARA +. O + + +The O +thickness O +of O +intermetallic B-MATE +compounds E-MATE +( O +IMCs O +) O +is O +one O +of O +the O +main O +factors O +affecting O +the O +weld B-PARA +quality E-PARA +. O + + +In O +addition O +, O +the O +IMC O +thickness O +will O +affect O +the O +product B-CHAR +functionality E-CHAR +, O +e.g. O +, O +the O +thermal O +or O +electrical B-PRO +conductivity E-PRO +of O +the O +IMC O +layer S-PARA +can O +be S-MATE +the O +limiting O +factor O +in O +the O +related O +applications O +. O + + +Modeling S-ENAT +and O +prediction S-CONPRI +of O +the O +IMC O +thickness O +in O +the O +friction B-MANP +stir I-MANP +welding E-MANP +( O +FSW S-MANP +) O +process S-CONPRI +is O +an O +important O +role O +that O +has O +not O +been O +elaborated O +in O +the O +literature O +. O + + +That O +model S-CONPRI +is O +suitable O +for O +the O +pure O +( O +intrinsic O +) O +diffusion S-CONPRI +process O +and O +does O +not O +consider O +the O +main O +unique O +characteristic O +of O +FSW S-MANP +, O +i.e. O +, O +the O +stirring O +and O +subsequent O +linear O +velocity O +of O +particles S-CONPRI +( O +that O +has O +an O +impact S-CONPRI +on O +the O +diffusion S-CONPRI +process O +) O +. O + + +To O +address O +this O +research S-CONPRI +gap O +, O +first O +, O +we O +develop O +a O +new O +model S-CONPRI +for O +the O +IMC O +thickness O +that O +takes O +the O +velocity O +of O +particles S-CONPRI +into O +account O +. O + + +Second O +, O +we O +provide O +an O +analysis O +on O +the O +velocity O +of O +particles S-CONPRI +in O +FSW S-MANP +based O +on O +vortex O +dynamics O +. O + + +Third O +, O +we O +analyze O +the O +proposed O +IMC O +thickness O +model S-CONPRI +with O +experimental B-CONPRI +data E-CONPRI +from O +the O +literature O +, O +discuss O +the O +added O +values O +of O +our O +model S-CONPRI +, O +and O +finally O +examine O +a O +case B-CONPRI +study E-CONPRI +. O + + +Understanding O +various O +manufacturing B-MANP +processes E-MANP +can O +further O +lead S-MATE +to O +the O +improvement O +of O +the O +existing O +processes S-CONPRI +and O +the O +development O +of O +novel O +processes S-CONPRI +. O + + +Inconel B-MATE +718 E-MATE +thin O +wall O +was O +fabricated S-CONPRI +by O +PPAAM O +. O + + +Both O +CET O +and O +DCT O +can O +be S-MATE +found O +in O +the O +as-built O +sample S-CONPRI +. O + + +Temperature B-PARA +gradient E-PARA +and O +SDA O +remelting O +contribute O +to O +grain B-CONPRI +structure E-CONPRI +transformation O +. O + + +The O +morphology S-CONPRI +of O +Nb-rich O +phases O +is O +sensitive O +to O +the O +grain B-CONPRI +structure E-CONPRI +and O +cooling B-PARA +rate E-PARA +. O + + +Abundant O +γ′/γ″ O +phases O +precipitate S-MATE +during O +HT O +and O +enhance O +mechanical B-CONPRI +properties E-CONPRI +. O + + +Inconel B-MATE +718 E-MATE +thin O +wall O +has O +been O +fabricated S-CONPRI +by O +pulsed B-MANP +plasma I-MANP +arc I-MANP +additive I-MANP +manufacturing E-MANP +( O +PPAAM O +) O +technology S-CONPRI +, O +which O +is O +more O +convenient O +and O +cost-saving O +in O +comparison O +with O +other O +high O +energy O +beam S-MACEQ +additive B-MANP +manufacturing E-MANP +technologies O +. O + + +During O +PPAAM O +, O +heat S-CONPRI +input O +was O +reduced O +layer B-CONPRI +by I-CONPRI +layer E-CONPRI +to O +decrease O +the O +heat B-PRO +accumulation E-PRO +. O + + +The O +as-fabricated O +sample S-CONPRI +exhibited O +diverse O +grain S-CONPRI +morphologies O +at O +different O +locations O +. O + + +Columnar B-MATE +dendrites E-MATE +, O +cellular O +dendrites S-BIOP +, O +cells S-APPL +and O +equiaxial O +dendrites S-BIOP +accompanying O +many O +Laves B-CONPRI +phases E-CONPRI +, O +MC S-MATE +particles O +in O +the O +interdendritic O +regions O +can O +be S-MATE +observed O +. O + + +The O +largest O +primary O +dendritic B-BIOP +arm I-BIOP +spacing E-BIOP +( O +∼41.7 O +μm O +) O +and O +Nb-rich O +phases O +area S-PARA +fraction O +( O +3.68 O +% O +) O +were O +found O +in O +the O +middle O +region O +of O +the O +as-fabricated O +sample S-CONPRI +. O + + +After O +standard S-CONPRI +heat B-MANP +treatment E-MANP +, O +Laves B-CONPRI +phases E-CONPRI +dissolved O +into O +the O +matrix O +so O +that O +a O +number O +of O +γ′ O +and O +γ″ O +phases O +were O +formed O +. O + + +Besides O +, O +some O +rod-like O +δ O +phases O +could O +also O +be S-MATE +found O +near O +grain B-CONPRI +boundaries E-CONPRI +. O + + +The O +mechanisms O +of O +microstructural B-CONPRI +evolution E-CONPRI +and O +phases O +precipitation S-CONPRI +were O +analyzed O +in O +detail O +. O + + +The O +test O +values O +of O +the O +as-fabricated O +sample S-CONPRI +demonstrated O +a O +slightly O +higher O +tensile B-PRO +strength E-PRO +and O +dramatically O +outstanding O +ductility S-PRO +compared O +with O +cast S-MANP +Inconel O +718 O +alloy S-MATE +. O + + +Applying O +standard S-CONPRI +heat B-MANP +treatment E-MANP +could O +remarkably O +enhance O +the O +tensile B-PRO +strength E-PRO +but O +decrease O +the O +ductility S-PRO +and O +make O +them O +comparable O +with O +wrought B-MATE +Inconel I-MATE +718 I-MATE +alloy E-MATE +due O +to O +the O +precipitation S-CONPRI +of O +strengthening B-CONPRI +phases E-CONPRI +. O + + +Maraging B-MATE +steel E-MATE +microlattice O +was O +printed O +by O +SLM S-MANP +, O +crushed O +, O +and O +simulated O +using O +FEM S-CONPRI +. O + + +SEM S-CHAR +and O +micro-CT S-CHAR +was O +performed O +on O +as-built O +samples S-CONPRI +to O +verify O +structural B-PRO +integrity E-PRO +. O + + +Two O +modeling S-ENAT +techniques O +are O +presented O +based O +on O +as-built O +and O +as-designed O +geometries S-CONPRI +. O + + +FESEM S-CHAR +was O +performed O +on O +the O +crushed O +lattice S-CONPRI +for O +failure S-CONPRI +analysis O +. O + + +Good O +agreement O +is O +found O +between O +the O +experiment S-CONPRI +and O +the O +simulations S-ENAT +. O + + +Additive S-MATE +metal O +manufacturing S-MANP +techniques O +, O +in O +particular O +laser-based O +powder B-MANP +bed I-MANP +fusion E-MANP +methods O +, O +are O +revolutionary O +in O +their O +capabilities O +to O +fabricating S-MANP +new O +classes O +of O +lightweight S-CONPRI +and O +complex O +materials S-CONPRI +called O +metallic S-MATE +microlattices O +. O + + +In O +this O +paper O +, O +a O +microlattice O +structure S-CONPRI +was O +designed S-FEAT +for O +energy B-CHAR +absorption E-CHAR +purposes O +and O +further O +additively B-MANP +manufactured E-MANP +using O +maraging B-MATE +steel E-MATE +( O +Maraging300 O +) O +powder S-MATE +through O +Laser-powder O +bed B-MANP +fusion E-MANP +( O +L-PBF S-MANP +) O +technique O +. O + + +In O +addition O +, O +several O +cylindrical S-CONPRI +bars O +and O +cubes O +in O +horizontal O +and O +vertical S-CONPRI +directions O +were O +manufactured S-CONPRI +to O +perform O +uniaxial O +tensile S-PRO +and O +compression B-CHAR +tests E-CHAR +on O +bulk O +L-PBF S-MANP +Maraging300 O +. O + + +The O +manufactured S-CONPRI +microlattices O +were O +characterized O +using O +different O +electron B-CHAR +microscopy E-CHAR +techniques O +including O +scanning B-CHAR +electron I-CHAR +microscopy E-CHAR +and O +micro-CT B-CHAR +analysis E-CHAR +to O +ensure O +that O +the O +desired O +structural B-PRO +integrity E-PRO +was O +achieved O +. O + + +In O +addition O +, O +the O +microlattice O +was O +then O +crushed O +using O +a O +universal O +mechanical B-CHAR +testing E-CHAR +machine S-MACEQ +to O +evaluate O +its O +performance S-CONPRI +experimentally O +under O +quasi-static S-CONPRI +uniaxial O +compressive B-PRO +loading E-PRO +conditions O +. O + + +Along O +with O +the O +crush O +, O +a O +nonlinear O +finite B-CONPRI +element I-CONPRI +model E-CONPRI +with O +predictive O +capabilities O +was O +then O +developed O +using O +commercial O +package O +( O +LS-DYNA O +) O +for O +axial O +crush O +of O +the O +microlattice O +to O +compare O +its O +expected O +performance S-CONPRI +. O + + +Two O +finite B-CONPRI +element I-CONPRI +models E-CONPRI +are O +developed O +using O +the O +as-built O +geometry S-CONPRI +from O +the O +printed O +lattice S-CONPRI +, O +and O +the O +as-designed O +geometry S-CONPRI +. O + + +The O +effect O +of O +model S-CONPRI +parameters O +is O +discussed O +and O +very O +good O +agreement O +between O +the O +experimental S-CONPRI +results O +and O +the O +finite B-CONPRI +element E-CONPRI +prediction O +was O +observed O +. O + + +Finally O +statistical O +analysis O +of O +the O +model S-CONPRI +and O +failure S-CONPRI +analysis O +of O +the O +crushed O +lattice S-CONPRI +is O +presented O +. O + + +Hybrid O +Metal S-MATE +Extrusion S-MANP +and O +Bonding S-CONPRI +Additive B-MANP +Manufacturing E-MANP +( O +HYB-AM O +) O +is O +a O +new O +solid-state B-CONPRI +process E-CONPRI +for O +the O +production S-MANP +of O +3D B-FEAT +metal I-FEAT +structures E-FEAT +. O + + +In O +HYB-AM O +, O +the O +wire O +feedstock S-MATE +is O +continuously O +processed S-CONPRI +through O +an O +extruder S-MACEQ +and O +deposited O +in O +a O +stringer-by-stringer O +manner O +to O +form O +layers O +and O +eventually O +a O +near O +net-shape O +component S-MACEQ +. O + + +In O +this O +work O +, O +the O +layer S-PARA +bonding S-CONPRI +of O +AA6082 O +samples S-CONPRI +produced O +by O +this O +process S-CONPRI +has O +been O +investigated O +by O +means O +of O +tensile B-CHAR +testing E-CHAR +, O +hardness S-PRO +measurements O +and O +microscope S-MACEQ +analyses O +. O + + +Furthermore O +, O +a O +novel O +method O +for O +the O +fabrication S-MANP +of O +miniature O +tensile B-MACEQ +specimens E-MACEQ +for O +assessing O +the O +bond B-CONPRI +strength E-CONPRI +across O +the O +layers O +is O +presented O +and O +applied O +. O + + +The O +test O +results O +reveal O +that O +the O +ultimate B-PRO +tensile I-PRO +strength E-PRO +is O +approaching O +that O +of O +the O +substrate B-MATE +material E-MATE +of O +the O +same O +alloy S-MATE +, O +yet O +with O +a O +somewhat O +lower O +elongation S-PRO +prior O +to O +fracture S-CONPRI +. O + + +Microscope S-MACEQ +analyses O +show O +that O +the O +bonded O +interfaces O +are O +fully B-PARA +dense E-PARA +; O +however O +, O +the O +fracture S-CONPRI +surfaces O +reveal O +regions O +of O +kissing-bonds O +and O +lack O +of O +bonding S-CONPRI +. O + + +Still O +, O +these O +preliminary O +investigations O +indicate O +that O +the O +HYB-AM O +process S-CONPRI +, O +upon O +further O +optimization S-CONPRI +, O +has O +the O +potential O +of O +processing O +high O +quality S-CONPRI +aluminum B-MATE +alloy E-MATE +components O +. O + + +Ferritic/martensitic O +( O +FM O +) O +steels S-MATE +are O +being O +targeted O +for O +use O +in O +a O +range S-PARA +of O +advanced O +reactor O +concepts O +as S-MATE +cladding O +and O +structural B-CONPRI +components E-CONPRI +. O + + +FM O +steels S-MATE +for O +nuclear O +reactor O +applications O +have O +historically O +been O +produced O +using O +traditional O +methods O +( O +e.g. O +, O +casting S-MANP +and O +forging S-MANP +) O +, O +but O +recently O +, O +additive B-MANP +manufacturing I-MANP +processes E-MANP +have O +become O +of O +interest O +for O +making O +FM-based O +components S-MACEQ +. O + + +Here O +, O +the O +laser-blown-powder O +additive B-MANP +manufacturing I-MANP +process E-MANP +was O +used O +to O +fabricate S-MANP +an O +FM O +steel S-MATE +, O +HT9 O +, O +followed O +by O +microstructural S-CONPRI +and O +mechanical S-APPL +performance O +evaluations O +to O +determine O +the O +viability O +of O +future O +use O +of O +additive B-MANP +manufacturing E-MANP +for O +FM-based O +component S-MACEQ +fabrication O +. O + + +Results O +showed O +that O +the O +as-built O +condition O +formed O +a O +layered B-CONPRI +structure E-CONPRI +with O +alternating O +layers O +of O +δ-ferrite O +and O +martensite S-MATE +, O +which O +resulted O +in O +anisotropic S-PRO +engineering O +and O +true-stress O +, O +true-strain O +mechanical S-APPL +performance O +. O + + +Post-build O +normalizing S-CONPRI +and O +tempering S-MANP +treatments O +alerted O +the O +prior O +austenite S-MATE +grain O +size O +and O +precipitate S-MATE +distributions S-CONPRI +, O +and O +drove O +the O +mechanical S-APPL +performance O +to O +near-isotropic O +properties S-CONPRI +that O +mimic S-MACEQ +wrought-processed O +properties S-CONPRI +. O + + +A O +new O +method O +to O +forming S-MANP +bulk O +metallic B-MATE +glass E-MATE +employed O +ultrasonic B-MANP +additive I-MANP +manufacturing E-MANP +is O +proposed O +. O + + +The O +bulk O +Ni-based O +metallic B-MATE +glass E-MATE +can O +be S-MATE +formed O +layer-by-layer S-CONPRI +with O +ultrasonic B-PARA +vibration E-PARA +energy O +. O + + +The O +internal O +hardness S-PRO +and O +modulus O +of O +the O +bulk O +metallic B-MATE +glass E-MATE +are O +higher O +with O +ultrasonic B-MANP +additive I-MANP +manufacturing E-MANP +. O + + +It O +is O +difficult O +to O +produce O +bulk O +blanks O +directly O +from O +metallic B-MATE +glass E-MATE +, O +which O +limits S-CONPRI +its O +application O +. O + + +Ni-based O +metallic-glass O +thin O +strips O +that O +can O +be S-MATE +manufactured O +easily O +were O +used O +to O +manufacture S-CONPRI +bulk O +metallic B-MATE +glass E-MATE +additively O +by O +ultrasonic B-MANP +bonding E-MANP +. O + + +The O +effects O +of O +ultrasonic B-PARA +vibration E-PARA +energy O +on O +the O +quality S-CONPRI +of O +the O +additive B-MANP +manufacturing E-MANP +of O +bulk O +Ni-based O +metallic B-MATE +glass E-MATE +were O +studied O +. O + + +The O +experimental S-CONPRI +results O +showed O +that O +a O +fully O +amorphous B-CONPRI +structure E-CONPRI +of O +bulk O +Ni-based O +metallic B-MATE +glass E-MATE +can O +be S-MATE +obtained O +with O +an O +appropriate O +ultrasonic B-PARA +vibration E-PARA +energy O +. O + + +The O +thermal B-CONPRI +properties E-CONPRI +were O +almost O +unchanged O +, O +and O +the O +hardness S-PRO +and O +elastic B-PRO +modulus E-PRO +of O +the O +Ni-based O +metallic B-MATE +glass E-MATE +were O +improved O +compared O +with O +the O +original O +material S-MATE +. O + + +Additive B-MANP +manufacturing E-MANP +of O +bulk O +metallic B-MATE +glass E-MATE +by O +ultrasonic B-MANP +bonding E-MANP +can O +broaden O +the O +application O +field O +of O +metallic B-MATE +glass E-MATE +. O + + +A O +key O +challenge O +for O +successful O +exploitation O +of O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +across O +a O +broad O +range S-PARA +of O +industries S-APPL +is O +the O +development O +of O +fundamental O +understanding O +of O +the O +relationships O +between O +process B-CONPRI +control E-CONPRI +and O +mechanical S-APPL +performance O +of O +manufactured S-CONPRI +components S-MACEQ +. O + + +In O +particular O +, O +laser B-CONPRI +beam E-CONPRI +powder O +bed B-MANP +fusion E-MANP +( O +PBF-LB O +) O +is O +identified O +as S-MATE +a O +key O +process S-CONPRI +for O +manufacture S-CONPRI +of O +metallic B-MANP +AM E-MANP +components S-MACEQ +. O + + +Ti-6Al-4V B-MATE +alloy E-MATE +is O +an O +important O +metal B-MATE +alloy E-MATE +for O +numerous O +high-performance O +applications O +, O +including O +the O +biomedical S-APPL +and O +aerospace B-APPL +industries E-APPL +. O + + +This O +paper O +presents O +initial O +developments O +on O +a O +model S-CONPRI +for O +microstructure S-CONPRI +prediction O +in O +PBF-LB O +manufacturing S-MANP +of O +Ti-6Al-4V S-MATE +, O +primarily O +focused O +on O +solid-state B-CONPRI +phase E-CONPRI +transformation O +and O +dislocation B-PRO +density E-PRO +evolution O +. O + + +The O +motivation O +is O +to O +quantify O +microstructure S-CONPRI +variables O +which O +control O +mechanical S-APPL +behavior O +, O +including O +tensile B-PRO +strength E-PRO +and O +ductility S-PRO +. O + + +A O +finite B-CONPRI +element E-CONPRI +( O +FE S-MATE +) O +based O +model S-CONPRI +of O +the O +process S-CONPRI +is O +adopted O +for O +thermal O +history O +prediction S-CONPRI +. O + + +Phase S-CONPRI +transformation O +kinetics O +for O +transient S-CONPRI +non-isothermal O +conditions O +are O +adopted O +and O +implemented O +within O +a O +stand-alone O +code O +, O +based O +on O +the O +FE-predicted O +thermal O +histories O +of O +sample S-CONPRI +material S-MATE +points O +. O + + +The O +evolution S-CONPRI +and O +spatial B-FEAT +variations E-FEAT +of O +phase B-CONPRI +fractions E-CONPRI +, O +α O +lath O +width O +and O +dislocation B-PRO +density E-PRO +are O +presented O +, O +to O +provide O +an O +assessment O +of O +the O +resulting O +microstructure-sensitivity O +of O +mechanical B-CONPRI +properties E-CONPRI +. O + + +Friction S-CONPRI +stir O +processing O +( O +FSP O +) O +is O +combined O +with O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +with O +selective B-MANP +laser I-MANP +melting E-MANP +to O +locally O +enhance O +the O +material B-CONPRI +properties E-CONPRI +of O +a O +metallic B-MACEQ +part E-MACEQ +. O + + +A O +groove O +inside O +aluminium S-MATE +1060 O +alloy S-MATE +sheet O +is O +filled O +with O +an O +aluminium S-MATE +7075 O +alloy S-MATE +powder O +by O +AM S-MANP +. O + + +While O +the O +overall O +hardness S-PRO +of O +the O +stir O +zone O +( O +SZ O +) O +increases O +significantly O +, O +the O +heterogeneous S-CONPRI +microstructure O +results O +in O +a O +unique O +uneven O +hardness S-PRO +distribution S-CONPRI +in O +the O +SZ O +. O + + +Tensile B-CHAR +tests E-CHAR +confirm O +the O +effectiveness S-CONPRI +of O +the O +suggested O +technique O +. O + + +In O +laser-foil-printing O +additive B-MANP +manufacturing E-MANP +, O +3D S-CONPRI +metallic O +glass S-MATE +structures O +can O +be S-MATE +built O +by O +laser B-MANP +welding E-MANP +of O +amorphous O +foils O +, O +layer B-CONPRI +by I-CONPRI +layer E-CONPRI +, O +upon O +a O +crystalline O +metal S-MATE +substrate O +. O + + +In O +this O +paper O +, O +weldability S-PRO +studies O +for O +laser B-MANP +welding E-MANP +of O +Zr52.5Ti5Al10Ni14.6Cu17.9 O +amorphous O +foils O +onto O +a O +Ti-6Al-4V S-MATE +( O +Ti S-MATE +6-4 O +) O +or O +Zr S-MATE +702 O +substrate S-MATE +are O +conducted O +. O + + +After O +laser B-MANP +welding E-MANP +, O +the O +weldments O +are O +analyzed O +using O +X-ray S-CHAR +diffractometer O +, O +optical S-CHAR +microscope S-MACEQ +, O +scanning B-MACEQ +electron I-MACEQ +microscope E-MACEQ +equipped O +with O +energy B-CHAR +dispersive I-CHAR +spectroscopy E-CHAR +and O +micro-hardness O +tester O +. O + + +The O +results O +show O +that O +Zr S-MATE +702 O +is O +a O +suitable O +substrate S-MATE +for O +Zr-based O +metallic B-MATE +glass E-MATE +structure O +since O +crack-free B-CONPRI +weld E-CONPRI +joints O +can O +be S-MATE +obtained O +owing O +to O +the O +formation O +of O +ductile S-PRO +α-Zr O +, O +while O +Ti S-MATE +6-4 O +is O +not O +an O +appropriate O +substrate S-MATE +since O +it O +has O +high O +cracking S-CONPRI +susceptibility O +due O +to O +the O +formation O +of O +a O +large O +amount O +of O +hard O +and O +brittle S-PRO +intermetallics O +near O +the O +foil-substrate O +interface S-CONPRI +. O + + +It O +was O +found O +that O +the O +mixing S-CONPRI +between O +melted S-CONPRI +substrate O +and O +foil S-MATE +is O +not O +uniform O +but O +exhibits O +a O +distinct O +“ O +swirl O +” O +pattern S-CONPRI +. O + + +The O +swirl O +structure S-CONPRI +is O +more O +pronounced O +in O +Ti S-MATE +6-4 O +than O +in O +Zr S-MATE +702 O +substrate S-MATE +which O +may O +contribute O +to O +its O +high O +cracking S-CONPRI +susceptibility O +. O + + +The O +aforementioned O +mixing S-CONPRI +leads O +to O +partial O +crystallization S-CONPRI +of O +the O +first O +amorphous O +layer S-PARA +; O +however O +, O +fully O +amorphous O +is O +achieved O +in O +the O +additional O +welding S-MANP +layers O +. O + + +The O +deposition B-MANP +process E-MANP +of O +wire B-MANP +and I-MANP +arc I-MANP +additive I-MANP +manufacturing E-MANP +( O +WAAM S-MANP +) O +is O +usually O +planned O +based O +on O +a O +bead B-CHAR +geometry E-CHAR +model O +( O +BGM O +) O +, O +which O +represents O +the O +relationship O +between O +bead B-CHAR +geometries E-CHAR +( O +e.g O +. O + + +width O +, O +height O +) O +and O +required O +deposition S-CONPRI +parameters O +. O + + +However O +, O +the O +actual O +deposition S-CONPRI +situation O +may O +deviate O +from O +the O +one O +in O +which O +the O +BGM O +is O +built O +, O +such O +as S-MATE +varied O +heat B-CONPRI +dissipation E-CONPRI +conditions O +, O +resulting O +in O +morphological O +changes O +of O +deposited B-CHAR +beads E-CHAR +and O +geometrical O +errors S-CONPRI +in O +the O +formed O +parts O +. O + + +In O +this O +paper O +, O +a O +novel O +control O +mechanism S-CONPRI +for O +enhancing O +the O +fabrication S-MANP +accuracy S-CHAR +of O +WAAM S-MANP +based O +on O +fuzzy-logic O +inference S-CONPRI +is O +proposed O +. O + + +It O +considers O +the O +geometrical O +errors S-CONPRI +measured O +on O +already O +deposited B-CHAR +layers E-CHAR +and O +deposition S-CONPRI +context O +to O +adjust O +deposition S-CONPRI +parameters O +of O +beads S-CHAR +in O +the O +subsequent O +layer S-PARA +, O +forming S-MANP +an O +interlayer O +closed-loop B-MACEQ +control E-MACEQ +( O +ICLC O +) O +mechanism S-CONPRI +. O + + +This O +paper O +not O +only O +presents O +the O +theoretical S-CONPRI +fundamentals O +of O +the O +ICLC O +mechanism S-CONPRI +but O +also O +reports O +the O +technical O +details O +about O +utilizing O +this O +mechanism S-CONPRI +to O +control O +the O +forming S-MANP +height O +of O +multi-layer O +multi-bead O +( O +MLMB O +) O +components S-MACEQ +. O + + +A O +fuzzy-logic O +inference S-CONPRI +machine O +was O +applied O +as S-MATE +the O +core B-MACEQ +component E-MACEQ +for O +calculating O +speed O +change O +of O +bead S-CHAR +deposition O +based O +on O +height O +error S-CONPRI +and O +previously O +applied O +change O +. O + + +In O +terms O +of O +validation S-CONPRI +, O +the O +effectiveness S-CONPRI +of O +the O +proposed O +control O +mechanism S-CONPRI +and O +the O +implemented O +controller S-MACEQ +was O +investigated O +through O +both O +simulative O +studies O +and O +real-life O +experiments O +. O + + +The O +fabricated S-CONPRI +cuboid O +blocks O +showed O +good O +accuracy S-CHAR +in O +height O +with O +a O +maximum O +error S-CONPRI +of O +0.20 O +mm S-MANP +. O + + +The O +experimental S-CONPRI +results O +implied O +that O +the O +proposed O +ICLC O +approach O +facilitates O +deposition S-CONPRI +continuity O +of O +WAAM S-MANP +, O +and O +thus O +enables O +process B-CONPRI +automation E-CONPRI +for O +robotic O +manufacturing S-MANP +. O + + +A O +hybrid O +additive B-MANP +manufacturing E-MANP +technology O +for O +fabricating S-MANP +functionally O +graded O +materials S-CONPRI +( O +FGMs O +) O +is O +proposed O +in O +this O +paper O +. O + + +The O +new O +process S-CONPRI +represents O +a O +combination O +of O +two O +existing O +additive B-MANP +manufacturing I-MANP +processes E-MANP +, O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +and O +cold O +spraying O +( O +CS O +) O +. O + + +The O +targeted O +experiment S-CONPRI +of O +Al S-MATE +and O +Al S-MATE ++ O +Al2O3 S-MATE +deposited O +onto O +SLM S-MANP +Ti6Al4V O +via O +CS O +reveals O +that O +the O +hybrid O +additive B-MANP +manufacturing I-MANP +process E-MANP +can O +produce O +thick O +, O +dense O +and O +machinable O +FGMs O +composed O +of O +non-weldable O +metals S-MATE +without O +intermetallic S-MATE +phase O +formation O +at O +the O +multi-materials O +interface S-CONPRI +. O + + +The O +SLM S-MANP +Ti6Al4V O +part O +exhibited O +fully O +acicular O +martensitic O +microstructure S-CONPRI +in O +contrast O +with O +α O ++ O +β O +microstructure S-CONPRI +in O +the O +Ti6Al4V B-MATE +feedstock E-MATE +, O +while O +the O +grain B-CONPRI +structure E-CONPRI +of O +the O +CS O +Al S-MATE +part O +had O +no O +significant O +change O +as S-MATE +compared O +with O +the O +Al S-MATE +feedstock O +. O + + +Due O +to O +the O +phase S-CONPRI +transformation O +of O +the O +SLM S-MANP +part O +and O +work B-MANP +hardening E-MANP +of O +the O +CS O +part O +, O +the O +overall O +hardness S-PRO +of O +the O +FMGs O +was O +higher O +than O +that O +of O +the O +feedstock S-MATE +. O + + +The O +emerging O +trend S-CONPRI +of O +manufacturing S-MANP +is O +keenly O +focused O +on O +increasing O +the O +productivity S-CONPRI +. O + + +Many O +alternatives O +to O +enhance O +the O +productivity S-CONPRI +of O +a O +manufacturing S-MANP +industry S-APPL +involves O +reformation O +of O +production S-MANP +cycle O +, O +increasing O +the O +life O +of O +cutting B-APPL +tool E-APPL +, O +reducing O +the O +design S-FEAT +complexity S-CONPRI +, O +etc O +. O + + +However O +, O +the O +increasing O +nature O +of O +size O +reduction S-CONPRI +and O +complexion O +in O +design S-FEAT +seeks O +alternate O +method O +of O +manufacturing S-MANP +. O + + +The O +additive B-MANP +manufacturing E-MANP +is O +an O +emerging O +methodology S-CONPRI +used O +for O +meeting O +the O +needs O +of O +growing O +demand O +. O + + +It O +is O +a O +process S-CONPRI +of O +manufacturing S-MANP +parts O +by O +depositing O +materials S-CONPRI +which O +is O +contrary O +to O +that O +of O +conventional O +. O + + +This O +work O +presents O +a O +complete O +investigational O +survey O +on O +various O +additive B-MANP +manufacturing E-MANP +techniques O +, O +integration O +of O +digital O +pre-processing O +procedures O +, O +and O +product-based O +process S-CONPRI +designing O +. O + + +The O +process S-CONPRI +of O +creating O +models O +with O +reduced O +development O +and O +manufacturing S-MANP +time O +is O +discussed O +in O +an O +absolute O +manner O +. O + + +Several O +application-based O +materials S-CONPRI +are O +described O +in O +details O +along O +with O +few O +properties S-CONPRI +at O +the O +end O +of O +rapid B-MANP +manufacturing E-MANP +. O + + +Additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +processes S-CONPRI +such O +as S-MATE +Wire-Arc O +Additive B-MANP +Manufacturing E-MANP +( O +WAAM S-MANP +) O +are O +highly O +flexible O +and O +particularly O +suited O +for O +manufacturing S-MANP +complex B-CONPRI +geometries E-CONPRI +in O +small O +batch-sizes O +. O + + +In O +the O +case O +of O +large O +batch-sizes O +, O +the O +low O +production S-MANP +rate O +of O +WAAM S-MANP +is O +a O +bottleneck S-CONPRI +, O +and O +therefore O +forming B-MANP +processes E-MANP +with O +higher O +production S-MANP +rates O +are O +more O +suitable O +. O + + +However O +, O +forming B-MANP +processes E-MANP +such O +as S-MATE +closed O +die S-MACEQ +forging O +require O +dedicated O +tooling S-CONPRI +and O +hence O +lack O +the O +flexibility S-PRO +needed O +to O +produce O +product O +variants O +. O + + +The O +current O +study O +proposes O +to O +combine O +additive B-MANP +manufacturing E-MANP +with O +forging S-MANP +to O +form O +hybrid O +components S-MACEQ +with O +high O +complexity S-CONPRI +and O +acceptable O +production S-MANP +rates O +. O + + +However O +, O +the O +main O +challenge O +in O +achieving O +a O +combination O +of O +these O +manufacturing B-MANP +technologies E-MANP +is O +the O +design S-FEAT +of O +the O +process B-ENAT +chain E-ENAT +, O +ensuring O +that O +the O +final O +properties S-CONPRI +meet O +the O +specifications S-PARA +of O +the O +part O +. O + + +In O +this O +regard O +, O +the O +process S-CONPRI +sequence O +of O +forming S-MANP +followed O +by O +WAAM S-MANP +is O +investigated O +. O + + +The O +base O +material S-MATE +EN O +AW-6082 O +was O +formed O +to O +a O +preform O +by O +forging S-MANP +, O +followed O +by O +the O +deposition S-CONPRI +of O +different O +aluminum B-MATE +alloys E-MATE +by O +WAAM S-MANP +. O + + +The O +evolution S-CONPRI +of O +mechanical B-CONPRI +properties E-CONPRI +such O +as S-MATE +hardness O +and O +microstructure S-CONPRI +was O +analyzed O +. O + + +Based O +on O +the O +experimental S-CONPRI +observations O +, O +strategies O +to O +improve O +the O +performance S-CONPRI +of O +the O +hybrid O +components S-MACEQ +are O +presented O +. O + + +In O +order O +to O +achieve O +a O +polytropic O +expansion O +through O +a O +reciprocating O +machine S-MACEQ +, O +an O +extremely O +compact S-MANP +heat O +exchanger O +is O +designed S-FEAT +. O + + +It O +is O +a O +Mini O +Channel S-APPL +Heat O +Exchanger O +( O +MCHE O +) O +, O +cross-flow O +configuration S-CONPRI +, O +aluminium S-MATE +made O +. O + + +So O +, O +the O +additive B-MANP +manufacturing E-MANP +DMLS O +technique O +was O +used O +to O +make O +the O +exchanger O +. O + + +Then O +a O +simplified O +design S-FEAT +calculation O +is O +used O +to O +roughly O +predict O +its O +performance S-CONPRI +. O + + +Finally O +, O +the O +experimental S-CONPRI +test O +rig O +and O +the O +experimental B-CONPRI +data E-CONPRI +are O +shown O +. O + + +The O +rapid B-ENAT +prototyping E-ENAT +has O +been O +developed O +from O +the O +1980s O +to O +produce O +models O +and O +prototypes S-CONPRI +until O +the O +technologies B-CONPRI +evolution E-CONPRI +today O +. O + + +Nowadays O +, O +these O +technologies S-CONPRI +have O +other O +names O +such O +as S-MATE +3D B-MANP +printing E-MANP +or O +additive B-MANP +manufacturing E-MANP +, O +and O +so O +forth O +, O +but O +they O +all O +have O +the O +same O +origins O +from O +rapid B-ENAT +prototyping E-ENAT +. O + + +The O +design S-FEAT +and O +manufacturing B-MANP +process E-MANP +stood O +the O +same O +until O +new O +requirements O +such O +as S-MATE +a O +better O +integration O +on O +production B-MANP +line E-MANP +, O +a O +largest O +series O +of O +manufacturing S-MANP +or O +the O +reduce O +weight S-PARA +of O +products O +due O +to O +heavy O +costs O +of O +machines S-MACEQ +and O +materials S-CONPRI +. O + + +The O +ability O +to O +produce O +complex B-CONPRI +geometries E-CONPRI +allows O +proposing O +of O +design S-FEAT +and O +manufacturing S-MANP +solutions O +in O +the O +industrial S-APPL +field O +in O +order O +to O +be S-MATE +ever O +more O +effective O +. O + + +The O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +technology S-CONPRI +develops O +rapidly O +with O +news O +solutions O +and O +markets O +which O +sometimes O +need O +to O +demonstrate O +their O +reliability S-CHAR +. O + + +The O +community O +needs O +to O +survey O +some O +evolutions S-CONPRI +such O +as S-MATE +the O +new O +exchange B-CONPRI +format E-CONPRI +, O +the O +faster O +3D B-MANP +printing E-MANP +systems O +, O +the O +advanced O +numerical B-ENAT +simulation E-ENAT +or O +the O +emergence O +of O +new O +use O +. O + + +We O +propose O +to O +review O +the O +different O +AM B-MANP +technologies E-MANP +and O +the O +new O +trends S-CONPRI +to O +get O +a O +global O +overview O +through O +the O +engineering S-APPL +and O +manufacturing B-MANP +process E-MANP +. O + + +This O +article O +describes O +the O +engineering S-APPL +and O +manufacturing B-CONPRI +cycle E-CONPRI +with O +the O +3D B-APPL +model E-APPL +management O +and O +the O +most O +recent O +technologies S-CONPRI +from O +the O +evolution S-CONPRI +of O +additive B-MANP +manufacturing E-MANP +. O + + +Finally O +, O +the O +use O +of O +AM S-MANP +resulted O +in O +new O +trends S-CONPRI +that O +are O +exposed O +below O +with O +the O +description O +of O +some O +new O +economic B-CONPRI +activities E-CONPRI +. O + + +The O +first O +method O +to O +create O +a O +three-dimensional S-CONPRI +object O +layer B-CONPRI +by I-CONPRI +layer E-CONPRI +using O +computer-aided B-ENAT +design E-ENAT +( O +CAD S-ENAT +) O +was O +rapid B-ENAT +prototyping E-ENAT +, O +developed O +in O +the O +1980s O +to O +produce O +models O +and O +prototype S-CONPRI +parts O +. O + + +The O +main O +advantage O +of O +the O +Additive B-MANP +Manufacturing E-MANP +( O +AM S-MANP +) O +is O +its O +ability O +to O +create O +almost O +any O +possible O +shape O +and O +this O +capacity S-CONPRI +is O +run O +by O +the O +layer-by-layer S-CONPRI +manufacturing O +. O + + +AM B-MANP +technology E-MANP +is O +most O +commonly O +used O +for O +modelling S-ENAT +, O +prototyping S-CONPRI +, O +tooling S-CONPRI +through O +an O +exclusive O +machine S-MACEQ +or O +3D B-MACEQ +printer E-MACEQ +. O + + +AM S-MANP +is O +largely O +used O +for O +manufacturing S-MANP +short-term O +prototypes S-CONPRI +but O +it O +is O +also O +used O +for O +small-scale O +series O +production S-MANP +and O +tooling S-CONPRI +applications O +( O +Rapid B-MANP +Tooling E-MANP +) O +. O + + +This O +technology S-CONPRI +was O +created O +to O +help O +and O +support S-APPL +the O +engineers O +in O +their O +conceptualisation S-CONPRI +. O + + +Among O +the O +major O +advances O +that O +this O +process S-CONPRI +presented O +to O +product B-CONPRI +development E-CONPRI +are O +the O +time O +and O +cost B-CONPRI +reduction E-CONPRI +, O +human B-CONPRI +interaction E-CONPRI +, O +and O +consequently O +the O +product B-CONPRI +cycle E-CONPRI +development O +. O + + +Those O +shapes O +could O +indeed O +be S-MATE +very O +difficult O +to O +manufacture S-CONPRI +with O +other O +processes S-CONPRI +( O +e.g O +. O + + +milling S-MANP +, O +moulding S-CONPRI +) O +. O + + +The O +complex B-CONPRI +geometries E-CONPRI +or O +the O +curved B-CONPRI +surfaces E-CONPRI +needed O +have O +to O +be S-MATE +maintained O +with O +a O +support B-MATE +material E-MATE +. O + + +The O +feedback S-PARA +has O +a O +great O +influence O +on O +the O +quality S-CONPRI +or O +effectiveness S-CONPRI +of O +the O +manufactured S-CONPRI +model O +. O + + +From O +one O +technology S-CONPRI +to O +another O +, O +the O +manufacture B-CONPRI +direction E-CONPRI +, O +the O +model B-CONPRI +orientation E-CONPRI +and O +the O +material S-MATE +behaviour O +are O +important O +to O +get O +an O +accurate S-CHAR +model O +and O +an O +efficient O +production S-MANP +. O + + +Nowadays O +, O +these O +technologies S-CONPRI +have O +other O +names O +such O +as S-MATE +3D B-MANP +printing E-MANP +, O +and O +so O +forth O +, O +but O +they O +all O +have O +the O +same O +origins O +from O +rapid B-ENAT +prototyping E-ENAT +. O + + +The O +demand O +of O +AM B-MACEQ +machines E-MACEQ +is O +increasingly O +growing O +since O +the O +1990s O +. O + + +Due O +to O +the O +evolution S-CONPRI +of O +rapid B-ENAT +prototyping E-ENAT +technologies O +, O +it O +has O +become O +possible O +to O +obtain O +parts O +representative O +of O +a O +mass B-CONPRI +production E-CONPRI +within O +a O +very O +short O +time O +. O + + +AM S-MANP +perfectly O +fits S-CONPRI +into O +the O +numerical B-CONPRI +design E-CONPRI +and O +manufacturing B-CONPRI +chain E-CONPRI +. O + + +AM S-MANP +is O +very O +complementary O +with O +the O +reverse B-CONPRI +engineering E-CONPRI +to O +reproduce O +or O +repair O +a O +model S-CONPRI +. O + + +Many O +rapid B-ENAT +prototyping E-ENAT +technologies O +have O +appeared O +on O +the O +market O +based O +on O +the O +same O +layers B-MANP +manufacturing E-MANP +approach O +. O + + +AM S-MANP +or O +3D B-MANP +printing E-MANP +have O +strongly O +been O +developed O +and O +currently O +propose O +several O +solutions O +. O + + +Use O +of O +AM S-MANP +leads O +to O +new O +practices O +in O +different O +domains O +which O +push O +the O +manufacturer S-CONPRI +to O +adapt O +. O + + +The O +evolution S-CONPRI +of O +AM B-MANP +technologies E-MANP +also O +leads O +to O +news O +solutions O +driven O +by O +very O +strong O +demand O +. O + + +Use O +and O +evolution S-CONPRI +change O +gradually O +the O +product B-CONPRI +life I-CONPRI +cycle E-CONPRI +in O +order O +to O +reducing O +the O +manufacturing B-CONPRI +cost E-CONPRI +and O +time O +while O +increasing O +reliability S-CHAR +. O + + +We O +propose O +to O +realise O +a O +technologic S-CONPRI +review O +of O +manufacturing B-MANP +processes E-MANP +followed O +by O +their O +illustrative O +scheme O +. O + + +We O +have O +chosen O +to O +classify O +the O +AM S-MANP +by O +manufacturing B-MANP +technologies E-MANP +to O +explain O +them O +. O + + +First O +of O +all O +, O +we O +will O +describe O +the O +design B-CONPRI +process E-CONPRI +before O +the O +technologies S-CONPRI +description O +while O +involving O +some O +industrial S-APPL +and O +academic O +trends S-CONPRI +. O + + +The O +stages O +involved O +to O +the O +product B-FEAT +design E-FEAT +and O +the O +rapid B-ENAT +prototyping E-ENAT +show O +that O +the O +cycle B-CONPRI +development E-CONPRI +is O +specific O +. O + + +These O +rapid B-ENAT +prototyping E-ENAT +processes S-CONPRI +generally O +consist O +of O +a O +substance S-CONPRI +, O +such O +as S-MATE +fluids O +, O +waxes S-MATE +, O +powders S-MATE +or O +laminates S-CONPRI +, O +which O +serve O +as S-MATE +basis O +for O +model B-MANP +construction E-MANP +as S-MATE +well O +as S-MATE +sophisticated O +computer-automated B-MACEQ +equipment E-MACEQ +to O +control O +the O +processing B-CONPRI +techniques E-CONPRI +such O +as S-MATE +deposition O +, O +sintering S-MANP +, O +lasing S-ENAT +, O +etc O +. O + + +There O +exist O +two O +possibilities O +to O +start O +an O +AM S-MANP +cycle O +, O +begin O +with O +a O +virtual B-ENAT +model E-ENAT +or O +a O +physical B-CONPRI +model E-CONPRI +. O + + +The O +virtual B-ENAT +model E-ENAT +created O +by O +a O +CAD S-ENAT +software O +can O +be S-MATE +either O +a O +surface S-CONPRI +or O +a O +solid B-CONPRI +model E-CONPRI +. O + + +On O +the O +other O +hand O +, O +3D B-CONPRI +data E-CONPRI +from O +the O +physical B-CONPRI +model E-CONPRI +is O +not O +at O +all O +straightforward O +and O +it O +requires O +data B-CHAR +acquisition E-CHAR +through O +a O +method O +known O +as S-MATE +a O +reverse B-CONPRI +engineering E-CONPRI +. O + + +The O +process S-CONPRI +begins O +with O +a O +3D B-APPL +model E-APPL +in O +CAD S-ENAT +software O +before O +converting O +it O +in O +STL B-MANS +format E-MANS +file S-MANS +. O + + +This O +format O +is O +treated O +by O +specific O +software S-CONPRI +, O +own O +to O +the O +AM B-MANP +technology E-MANP +, O +which O +cuts O +the O +piece O +in O +slices S-CONPRI +to O +get O +a O +new O +file S-MANS +containing O +the O +information O +for O +each O +layer S-PARA +. O + + +The O +specific O +software S-CONPRI +generates O +the O +hold O +to O +maintain O +the O +complex B-CONPRI +geometries E-CONPRI +automatically O +with O +sometimes O +the O +possibility O +to O +choose O +some O +parameters S-CONPRI +. O + + +We O +can O +decompose O +the O +engineering S-APPL +and O +manufacturing B-CONPRI +cycle E-CONPRI +by O +Part O +design S-FEAT +in O +CAD S-ENAT +or O +reverse B-CONPRI +engineering E-CONPRI +by O +3D B-CHAR +scanning E-CHAR +. O + + +Skills O +optimisation O +in O +CAE S-ENAT +to O +adapt O +the O +part O +to O +the O +manufacturing B-MANP +technology E-MANP +chosen O +. O + + +Conversion O +of O +part O +geometry S-CONPRI +in O +exchange B-CONPRI +format E-CONPRI +( O +STL S-MANS +) O +. O + + +Exchange O +file S-MANS +implementation O +into O +the O +specific O +software S-CONPRI +of O +the O +AM B-MACEQ +machine E-MACEQ +. O + + +Configuration S-CONPRI +and O +orientation S-CONPRI +of O +the O +set S-APPL +( O +parts O +and O +supports S-APPL +) O +. O + + +Slicing S-CONPRI +of O +the O +part O +by O +the O +specific O +software S-CONPRI +. O + + +Computation S-CONPRI +and O +layers B-MANP +manufacturing E-MANP +. O + + +Post-processing S-CONPRI +. O + + +This O +new O +file S-MANS +is O +often O +proprietary O +of O +the O +machine S-MACEQ +manufacturer O +. O + + +Rapid B-MANP +manufacturing E-MANP +machine S-MACEQ +implement O +the O +last O +file S-MANS +to O +realise O +the O +layer-by-layer S-CONPRI +manufacturing O +. O + + +The O +operator O +has O +to O +prepare O +the O +machine S-MACEQ +with O +its O +raw B-MATE +material E-MATE +( O +powder S-MATE +, O +resin S-MATE +cartridge S-MACEQ +( O +s S-MATE +) O +, O +polymer S-MATE +spool O +( O +s S-MATE +) O +, O +etc O +) O +and O +the O +manufacturing S-MANP +source O +( O +laser S-ENAT +, O +printing B-MACEQ +head E-MACEQ +( O +s S-MATE +) O +, O +binder S-MATE +cartridge O +( O +s S-MATE +) O +, O +etc O +) O +. O + + +For O +the O +manufacturing S-MANP +, O +the O +support B-MATE +material E-MATE +maintains O +the O +external O +and O +internal O +surfaces S-CONPRI +to O +keep O +a O +steady O +geometry S-CONPRI +with O +a O +structure S-CONPRI +using O +scaffolding S-ENAT +. O + + +In O +most O +cases O +, O +the O +support B-MATE +material E-MATE +is O +cleaned O +during O +the O +finishing S-MANP +( O +ex O +. O + + +MJM S-MANP +Technology O +) O +or O +recycled S-CONPRI +during O +the O +post-processing S-CONPRI +( O +e.g O +. O + + +SLS S-MANP +, O +SLM S-MANP +, O +CJD/3DP S-MANP +Technologies O +) O +. O + + +This O +step S-CONPRI +depends O +on O +the O +complex B-CONPRI +geometry E-CONPRI +fabricated O +and O +if O +there O +is O +need O +an O +additional O +hold O +resulting O +in O +a O +loss O +of O +material S-MATE +. O + + +Some O +technologies S-CONPRI +allow O +extracting S-CONPRI +of O +the O +main O +material S-MATE +, O +thanks O +to O +holes O +inside O +closed O +geometry S-CONPRI +. O + + +The O +post-processing S-CONPRI +step O +sometimes O +includes O +a O +hardening S-MANP +or O +infiltration S-CONPRI +of O +the O +main O +material S-MATE +to O +obtain O +the O +final O +piece O +. O + + +Several O +manufacturing B-CONPRI +constraints E-CONPRI +require O +a O +feedback S-PARA +while O +involving O +rules O +to O +get O +a O +precisely O +and O +compliant O +model S-CONPRI +. O + + +Rapid B-ENAT +prototyping E-ENAT +techniques O +are O +classified O +in O +two O +categories O +: O +subtractive S-MANP +, O +and O +additive S-MATE +. O + + +Subtractive S-MANP +technologies O +work O +by O +removing O +raw B-MATE +material E-MATE +out O +of O +a O +workpiece S-CONPRI +until O +the O +desired O +shape O +is O +obtained O +. O + + +They O +include O +cutting S-MANP +( O +laser-cutting S-MANP +or O +water-jet B-MANP +cutting E-MANP +) O +and O +machining S-MANP +( O +lathing S-MANP +and O +milling S-MANP +) O +. O + + +Conversely O +, O +the O +additive B-ENAT +technologies E-ENAT +work O +by O +adding O +of O +the O +raw B-MATE +material E-MATE +. O + + +Modelling S-ENAT +is O +a O +very O +important O +step S-CONPRI +in O +AM S-MANP +because O +it O +shapes O +the O +product O +but O +it O +also O +must O +take O +in O +account O +some O +knowledge O +since O +the O +experiments O +and O +equipment S-MACEQ +are O +costly O +. O + + +Various O +potential O +empirical S-CONPRI +modelling O +techniques O +coexist O +so O +that O +the O +choice O +of O +an O +appropriate O +modelling S-ENAT +technique O +for O +a O +given O +AM B-MANP +process E-MANP +can O +be S-MATE +made O +. O + + +To O +develop O +models O +based O +on O +only O +given O +data S-CONPRI +, O +several O +well-known O +statistical B-CONPRI +methods E-CONPRI +such O +as S-MATE +regression O +analysis O +or O +response B-CONPRI +surface I-CONPRI +methodology E-CONPRI +can O +be S-MATE +applied O +. O + + +The O +formulation O +of O +the O +physics-based B-CONPRI +models E-CONPRI +requires O +in-depth O +understanding O +of O +the O +process S-CONPRI +and O +is O +not O +an O +easy O +task O +in O +presence O +of O +partial B-CONPRI +information E-CONPRI +about O +the O +process S-CONPRI +. O + + +Few O +research S-CONPRI +studies O +have O +been O +conducted O +to O +improve O +the O +prediction S-CONPRI +ability O +of O +the O +GP S-CONPRI +( O +Genetic B-ENAT +Programming E-ENAT +) O +and O +the O +MGGP S-ENAT +( O +Multi-Gene B-ENAT +Genetic I-ENAT +Programming E-ENAT +) O +models O +by O +hybridising S-CONPRI +them O +with O +the O +other O +potential O +computational B-CONPRI +intelligence E-CONPRI +methods O +such O +as S-MATE +artificial B-ENAT +neural I-ENAT +network E-ENAT +( O +ANN S-ENAT +) O +, O +fuzzy B-CONPRI +logic E-CONPRI +, O +M5 O +’ O +regression S-CONPRI +trees O +and O +support B-CONPRI +vector I-CONPRI +regression E-CONPRI +. O + + +MGGP S-ENAT +is O +the O +most O +popular O +variant O +of O +GP S-CONPRI +used O +recently O +. O + + +Those O +approaches O +provide O +a O +model S-CONPRI +in O +the O +form O +of O +a O +mathematical B-CONPRI +equation E-CONPRI +reflecting O +the O +relationship O +between O +the O +mechanical B-CONPRI +behaviours E-CONPRI +and O +the O +given O +input O +parameters S-CONPRI +. O + + +The O +performance S-CONPRI +of O +ANN S-ENAT +is O +found O +to O +be S-MATE +better O +than O +those O +of O +GP S-CONPRI +and O +regression S-CONPRI +, O +showing O +the O +effectiveness S-CONPRI +of O +ANN S-ENAT +in O +predicting O +the O +performance S-CONPRI +characteristics O +of O +prototype S-CONPRI +. O + + +The O +STL S-MANS +( O +STereoLithography S-MANP +or O +Standard B-MANS +Tessellation I-MANS +Language E-MANS +) O +file S-MANS +format O +was O +created O +by O +3D B-APPL +Systems E-APPL +in O +1987 O +and O +became O +a O +standard S-CONPRI +for O +the O +additive B-MANP +manufacturing E-MANP +. O + + +The O +STL S-MANS +file S-MANS +creation O +process S-CONPRI +mainly O +converts O +the O +continuous O +geometry S-CONPRI +in O +the O +CAD B-MANS +file E-MANS +into O +a O +header S-CONPRI +, O +small O +triangles O +or O +coordinates B-CONPRI +triplet E-CONPRI +list O +of O +x O +, O +y S-MATE +and O +z O +coordinates S-PARA +and O +the O +normal B-CONPRI +vector E-CONPRI +to O +the O +triangles O +. O + + +Each O +facet S-CONPRI +is O +uniquely O +identified O +by O +a O +normal B-CONPRI +vector E-CONPRI +and O +three O +vertices S-PARA +. O + + +The O +facets S-CONPRI +define O +the O +surfaces S-CONPRI +of O +a O +3D B-APPL +object E-APPL +. O + + +Each O +facet S-CONPRI +is O +part O +of O +the O +boundary S-FEAT +between O +the O +interior O +and O +the O +exterior O +of O +the O +object O +and O +each O +triangle O +facet S-CONPRI +must O +share O +two O +vertices S-PARA +with O +each O +of O +its O +adjacent B-CONPRI +triangles E-CONPRI +. O + + +The O +surface S-CONPRI +creation O +can O +generate O +errors S-CONPRI +because O +of O +holes O +or O +intersecting O +triangles O +and O +it O +is O +sometimes O +necessary O +to O +repair O +the O +STL S-MANS +model S-CONPRI +. O + + +The O +slicing B-CONPRI +process E-CONPRI +also O +introduces O +inaccuracy O +to O +the O +file S-MANS +because O +here O +the O +algorithm S-CONPRI +replaces O +the O +continuous O +contour S-FEAT +with O +discrete B-CONPRI +stair I-CONPRI +steps E-CONPRI +. O + + +Edges O +are O +added O +after O +the O +slicing B-CONPRI +process E-CONPRI +. O + + +Today O +, O +the O +computation S-CONPRI +data O +and O +the O +mesh B-CONPRI +generation E-CONPRI +is O +no O +longer O +an O +obstacle O +to O +process B-CONPRI +models E-CONPRI +. O + + +The O +computer S-ENAT +power O +used O +is O +sufficient O +to O +get O +a O +refined O +STL S-MANS +file S-MANS +with O +many O +triangles O +. O + + +More O +the O +3D B-APPL +model E-APPL +refined O +is O +high O +, O +the O +clearer O +the O +details O +are O +and O +the O +bigger O +the O +file B-PARA +size E-PARA +is O +. O + + +According O +to O +the O +2014 O +Wohlers O +Report O +, O +consumers O +of O +3D B-MACEQ +printers E-MACEQ +are O +classified O +as S-MATE +those O +that O +cost O +less O +than O +$ O +5000 O +. O + + +The O +Cornell O +University O +and O +the O +University O +of O +Bath O +have O +designed S-FEAT +the O +first O +open-source S-CONPRI +3D B-MACEQ +printers E-MACEQ +which O +are O +widely O +recognised O +in O +the O +area S-PARA +: O +Fab O +@ O +home O +and O +RepRap S-APPL +. O + + +The O +entered O +range S-PARA +3D B-MACEQ +printers E-MACEQ +are O +predominantly O +based O +on O +Fused B-MANP +Deposition I-MANP +Modeling E-MANP +( O +FDM S-MANP +) O +technology S-CONPRI +, O +but O +more O +recently O +machines S-MACEQ +derived O +from O +stereolithography S-MANP +have O +entered O +the O +market O +due O +to O +expiring O +patents S-CONPRI +. O + + +It O +is O +typically O +to O +demonstrate O +that O +low-cost O +machines S-MACEQ +have O +a O +low O +performance S-CONPRI +. O + + +For O +example O +, O +the O +FDM S-MANP +consumer O +technology S-CONPRI +suffers O +from O +anisotropic S-PRO +mechanical O +properties S-CONPRI +as S-MATE +well O +as S-MATE +a O +limited O +selection O +of O +thermoplastic B-MATE +materials E-MATE +. O + + +A O +FDM S-MANP +professional O +printer S-MACEQ +costs O +between O +$ O +10,000 O +and O +$ O +300,000 O +. O + + +Typical O +laser S-ENAT +and O +electron B-ENAT +beam-based E-ENAT +systems O +can O +cost O +anywhere O +between O +$ O +500,000 O +and O +$ O +1 O +M. O +While O +these O +machines S-MACEQ +are O +typically O +high O +in O +performance S-CONPRI +, O +they O +come O +at O +a O +high O +cost O +. O + + +The O +commercial O +3D B-MACEQ +printers E-MACEQ +that O +use O +more O +advanced O +techniques O +to O +print S-MANP +objects O +are O +usually O +equipped O +with O +proprietary O +software S-CONPRI +which O +slice S-CONPRI +the O +3D B-APPL +model E-APPL +and O +command O +the O +machine S-MACEQ +. O + + +Companies S-APPL +that O +sell O +professional O +3D B-MACEQ +printers E-MACEQ +include O +3D B-APPL +Systems E-APPL +, O +Stratasys S-APPL +, O +Solido B-APPL +LTD E-APPL +, O +Voxeljet O +and O +ExOne O +. O + + +Both O +Hewlett B-APPL +Packard E-APPL +and O +Xerox S-APPL +‘ O +are O +investing O +in O +3D B-MANP +printing E-MANP +research O +and O +technology S-CONPRI +development O +. O + + +Each O +AM B-MANP +technologies E-MANP +have O +manufacturing B-CONPRI +constraints E-CONPRI +linked O +by O +printing B-ENAT +technology E-ENAT +, O +used O +material S-MATE +and O +expected O +functions O +( O +aesthetic S-CONPRI +, O +mechanical S-APPL +, O +use O +, O +etc O +) O +. O + + +Areas B-CONPRI +of I-CONPRI +interest E-CONPRI +which O +have O +used O +3D B-MANP +printing E-MANP +to O +create O +objects O +include O +aeronautics S-APPL +, O +architecture S-APPL +, O +automotive B-APPL +industries E-APPL +, O +art S-APPL +, O +dentistry S-APPL +, O +fashion S-CONPRI +, O +food O +, O +jewellery S-CONPRI +, O +medicine S-CONPRI +, O +pharmaceuticals S-APPL +, O +robotics S-APPL +and O +toys S-MACEQ +. O + + +Automotive S-APPL +manufacturers O +exploited O +the O +technology S-CONPRI +because O +of O +the O +ability O +to O +help O +new O +products O +get O +quickly O +to O +the O +market O +and O +in O +a O +predictable S-CONPRI +manner O +. O + + +Aerospace S-APPL +companies O +are O +interested O +in O +these O +technologies S-CONPRI +because O +of O +the O +ability O +to O +realise O +highly O +complex O +and O +high-performance O +products O +. O + + +Integrating O +mechanical B-CONPRI +functionality E-CONPRI +, O +eliminating O +assembly S-MANP +features O +and O +making O +it O +possible O +to O +create O +internal O +functionality O +( O +like O +cooling B-MACEQ +channels E-MACEQ +) O +, O +internal O +honeycomb S-CONPRI +style O +structures O +, O +new O +topological B-FEAT +optimisation E-FEAT +structure S-CONPRI +etc O +. O + + +combine O +to O +create O +lightweight B-MACEQ +structures E-MACEQ +. O + + +Medical B-APPL +industries E-APPL +are O +particularly O +interested O +in O +AM B-MANP +technology E-MANP +because O +of O +the O +ease O +in O +which O +3D B-ENAT +medical I-ENAT +imaging E-ENAT +data O +can O +be S-MATE +converted O +into O +solid O +objects O +. O + + +Thus O +, O +each O +AM B-MANP +technology E-MANP +have O +advantages O +and O +disadvantages O +for O +own O +applications O +and O +we O +propose O +to O +review O +them O +. O + + +Authors O +have O +chosen O +to O +classify O +the O +technologies S-CONPRI +according O +to O +hardening B-MACEQ +system E-MACEQ +or O +melting B-MACEQ +system E-MACEQ +which O +are O +characterised O +by O +a O +laser S-ENAT +, O +a O +flashing B-CONPRI +source E-CONPRI +, O +an O +extrusion S-MANP +or O +a O +jetting S-MANP +. O + + +SLA S-MACEQ +– O +Stereolithography S-MANP +is O +the O +first O +of O +the O +technologies S-CONPRI +developed O +originally O +and O +simultaneously O +in O +France O +and O +in O +the O +USA O +to O +tackle O +rapid B-ENAT +prototyping E-ENAT +bottlenecks S-CONPRI +, O +as S-MATE +well O +as S-MATE +faster O +and O +better O +design S-FEAT +needs O +( O +CAD S-ENAT +induced O +) O +. O + + +In O +1986 O +, O +3D B-APPL +Systems E-APPL +was O +founded O +by O +Chuck S-MACEQ +Hull O +to O +commercialise O +this O +process S-CONPRI +. O + + +Photolithographic B-MANP +systems E-MANP +build S-PARA +shapes O +using O +light O +to O +selectively O +solidify S-CONPRI +photosensitive B-MATE +resins E-MATE +. O + + +The O +laser B-MANP +lithography E-MANP +approach O +is O +currently O +one O +of O +the O +most O +used O +AM B-MANP +technologies E-MANP +. O + + +Models O +are O +defined O +by O +scanning S-CONPRI +a O +laser B-CONPRI +beam E-CONPRI +over O +a O +photopolymer S-MATE +surface O +. O + + +For O +a O +few O +years O +, O +researchers O +have O +developed O +techniques O +to O +apply O +SLA S-MACEQ +to O +directly O +make O +ceramics S-MATE +. O + + +Ceramic B-MATE +powder E-MATE +( O +silica S-MATE +and O +alumina S-MATE +) O +is O +dispersed O +in O +a O +fluid B-MATE +UV I-MATE +curable I-MATE +monomer E-MATE +to O +prepare O +a O +ceramic–UV O +curable O +monomer S-MATE +suspension O +. O + + +The O +building B-CHAR +process E-CHAR +is O +the O +same O +as S-MATE +conventional O +SLA S-MACEQ +and O +the O +monomer B-MATE +solution E-MATE +is O +cured S-MANP +forming O +a O +ceramic–polymer O +composite S-MATE +layer O +. O + + +The O +prototypes S-CONPRI +have O +higher O +stiffness S-PRO +than O +a O +standard S-CONPRI +workpiece O +and O +their O +temperature B-PRO +resistance E-PRO +over O +200 O +°C O +. O + + +A O +higher B-PARA +resolution E-PARA +machine O +has O +been O +developed O +and O +called O +microstereolithography S-MANP +and O +it O +can O +print S-MANP +a O +layer S-PARA +with O +thickness O +of O +less O +than O +10 O +μm O +. O + + +The O +microstereolithography S-MANP +shares O +the O +same O +principle O +with O +its O +macro B-CONPRI +scale E-CONPRI +counterpart O +, O +but O +in O +different O +dimensions S-FEAT +. O + + +In O +microstereolithography S-MANP +, O +an O +UV B-CONPRI +laser I-CONPRI +beam E-CONPRI +is O +focused O +to O +1–2 O +μm O +to O +solidify S-CONPRI +a O +thin O +layer S-PARA +of O +1–10 O +μm O +in O +thickness O +. O + + +Submicron B-PARA +resolution E-PARA +of O +the O +x–y–z O +translation O +stages O +and O +the O +fine O +UV B-CONPRI +beam E-CONPRI +spot O +enable O +precise B-MANP +fabrication E-MANP +of O +real O +3D S-CONPRI +complex O +microstructures S-MATE +. O + + +SLM S-MANP +– O +Selective B-MANP +Laser I-MANP +Melting E-MANP +– O +the O +system O +starts O +by O +applying O +a O +thin O +layer S-PARA +of O +the O +powder B-MATE +material E-MATE +spread O +by O +a O +roller S-MACEQ +on O +the O +building B-MACEQ +platform E-MACEQ +. O + + +A O +powerful O +laser B-CONPRI +beam E-CONPRI +then O +fuses S-MANP +the O +powder S-MATE +at O +exactly O +the O +points O +defined O +by O +the O +computer-generated S-CONPRI +component S-MACEQ +design O +data S-CONPRI +. O + + +The O +platform S-MACEQ +is O +then O +lowered O +and O +another O +layer S-PARA +of O +powder S-MATE +is O +applied O +. O + + +Once O +again O +the O +material S-MATE +is O +fused S-CONPRI +so O +as S-MATE +to O +bond O +with O +the O +layer S-PARA +below O +at O +the O +predefined B-CONPRI +points E-CONPRI +. O + + +During O +the O +process S-CONPRI +, O +successive O +layers O +of O +metal B-MATE +powder E-MATE +are O +fully O +melted S-CONPRI +and O +consolidated O +on O +top O +of O +each O +other O +. O + + +Today O +, O +the O +3D B-MACEQ +printer E-MACEQ +manufacturers O +propose O +machines S-MACEQ +with O +powerful O +double O +or O +multi B-CONPRI +laser I-CONPRI +technology E-CONPRI +with O +layers O +from O +75 O +to O +150 O +μm O +in O +thickness O +. O + + +The O +material S-MATE +types O +that O +can O +be S-MATE +processed O +include O +steel S-MATE +, O +stainless B-MATE +steel E-MATE +, O +cobalt B-MATE +chrome E-MATE +, O +titanium S-MATE +and O +aluminium S-MATE +. O + + +Electron B-MANP +Beam I-MANP +Melting E-MANP +is O +a O +powder B-MANP +process E-MANP +which O +distinguishes O +by O +its O +superior O +accuracy S-CHAR +and O +high-power O +electron B-CONPRI +beam E-CONPRI +( O +up O +to O +3000 O +W O +while O +maintaining O +a O +scan B-PARA +speed E-PARA +) O +that O +generates O +the O +energy O +needed O +for O +high O +melting B-CONPRI +capacity E-CONPRI +and O +high O +productivity S-CONPRI +. O + + +Selective B-MANP +Laser I-MANP +Sintering E-MANP +( O +SLS S-MANP +) O +– O +use O +a O +high-power B-CONPRI +laser E-CONPRI +to O +fuse S-MANP +small O +particles S-CONPRI +( O +polyamide S-MATE +, O +steel S-MATE +, O +titanium S-MATE +, O +alloys S-MATE +, O +ceramic B-MATE +powders E-MATE +, O +etc O +) O +. O + + +As S-MATE +the O +SLM S-MANP +, O +the O +powder B-MACEQ +bed E-MACEQ +is O +lowered O +by O +one O +layer B-PARA +thickness E-PARA +, O +a O +new O +layer S-PARA +of O +powder S-MATE +is O +applied O +on O +top O +, O +and O +the O +process S-CONPRI +is O +repeated O +until O +the O +model S-CONPRI +is O +completed O +. O + + +But O +what O +sets O +sintering S-MANP +apart O +from O +melting S-MANP +is O +that O +the O +sintering S-MANP +processes S-CONPRI +do O +not O +fully O +melt S-CONPRI +the O +powder S-MATE +, O +but O +heat S-CONPRI +it O +to O +the O +point O +that O +the O +powder S-MATE +can O +fuse S-MANP +together O +on O +a O +molecular O +level O +. O + + +The O +latest O +SLS S-MANP +machines S-MACEQ +offer O +laser B-PARA +powers E-PARA +from O +30 O +W O +to O +200 O +W O +in O +a O +CO² O +chamber B-MACEQ +controlled E-MACEQ +( O +in O +range S-PARA +ProX O +and O +sPro O +) O +. O + + +The O +porosity S-PRO +of O +the O +material S-MATE +can O +be S-MATE +controlled O +. O + + +This O +porosity S-PRO +requests O +a O +post-treatment S-MANP +by O +infiltration S-CONPRI +to O +harden S-CONPRI +the O +final O +model S-CONPRI +like O +the O +bronze S-MATE +use O +to O +the O +steel S-MATE +. O + + +The O +SLS B-CONPRI +prototypes E-CONPRI +have O +a O +greater O +dimensional B-CHAR +accuracy E-CHAR +than O +the O +PolyJet S-CONPRI +and O +3DP S-MANP +models O +. O + + +Direct B-MANP +Metal I-MANP +Laser I-MANP +Sintering E-MANP +( O +DMLS S-MANP +) O +– O +is O +similar O +to O +SLS S-MANP +with O +some O +differences O +. O + + +The O +technology S-CONPRI +is O +a O +powder B-MANP +bed I-MANP +fusion I-MANP +process E-MANP +by O +melting S-MANP +the O +metal B-MATE +powder E-MATE +locally O +using O +the O +focused B-CONPRI +laser I-CONPRI +beam E-CONPRI +. O + + +A O +product O +is O +manufactured S-CONPRI +layer B-CONPRI +by I-CONPRI +layer E-CONPRI +along O +the O +Z O +axis O +and O +the O +powder S-MATE +is O +deposited O +via O +a O +scraper S-MACEQ +moving O +in O +the O +XY O +plane O +. O + + +The O +DMLS S-MANP +process O +from O +EOS© O +is O +well O +established O +for O +the O +net B-MANP +shape E-MANP +fabrication S-MANP +of O +prototype S-CONPRI +and O +short B-CONPRI +series I-CONPRI +tooling E-CONPRI +for O +plastic B-MANP +injection I-MANP +moulding E-MANP +. O + + +The O +first O +generation O +of O +EOS S-APPL +machine O +includes O +a O +200-W O +laser B-MACEQ +source E-MACEQ +when O +the O +second O +generation O +( O +EOSINT O +M280 O +) O +was O +launched O +with O +a O +400-W O +fibre B-CONPRI +laser E-CONPRI +. O + + +The O +trend S-CONPRI +shows O +an O +increase O +in O +laser B-PARA +power E-PARA +and O +also O +an O +increase O +in O +work O +chamber O +. O + + +DMLS S-MANP +often O +refers O +to O +the O +process S-CONPRI +that O +is O +applied O +to O +metal B-MATE +alloys E-MATE +for O +the O +manufacturing S-MANP +direct O +parts O +in O +the O +industry S-APPL +including O +aerospace S-APPL +, O +dental S-APPL +, O +medical S-APPL +and O +other O +industry S-APPL +that O +have O +small O +to O +medium O +size O +, O +highly O +complex O +parts O +and O +the O +tooling B-APPL +industry E-APPL +to O +make O +direct O +tooling B-MACEQ +inserts E-MACEQ +. O + + +Today O +, O +recent O +developments O +in O +the O +powders S-MATE +coupled O +with O +the O +durability S-PRO +of O +the O +materials S-CONPRI +are O +extending O +its O +reach O +to O +the O +direct B-CONPRI +manufacturing E-CONPRI +of O +functional B-CONPRI +prototypes E-CONPRI +for O +powder B-MANP +metallurgical E-MANP +and O +cast S-MANP +components O +. O + + +Support B-FEAT +structures E-FEAT +are O +required O +for O +most O +geometry S-CONPRI +because O +the O +powder S-MATE +alone O +is O +not O +sufficient O +to O +hold O +in O +place O +the O +liquid B-PRO +phase E-PRO +created O +when O +the O +laser S-ENAT +is O +scanning S-CONPRI +the O +powder S-MATE +. O + + +The O +rapid B-MANP +manufacturing E-MANP +of O +parts O +by O +the O +DMLS S-MANP +process O +requires O +the O +use O +of O +a O +powder S-MATE +, O +which O +is O +composed O +of O +two O +types O +of O +particles S-CONPRI +. O + + +One O +type O +has O +a O +low O +melting B-PRO +point E-PRO +, O +and O +the O +other O +a O +high O +melting B-PRO +point E-PRO +. O + + +The O +high-melting B-PRO +point E-PRO +particles O +generate O +a O +solid B-CONPRI +matrix E-CONPRI +, O +while O +the O +particles S-CONPRI +with O +the O +low O +melting B-PRO +point E-PRO +bind S-MANP +the O +matrix O +after O +being O +melted S-CONPRI +by O +the O +laser B-CONPRI +energy E-CONPRI +input O +. O + + +In O +order O +to O +reduce O +lead B-PARA +time E-PARA +and O +increase O +in O +build B-PARA +speed E-PARA +, O +a O +new O +technology S-CONPRI +has O +emerged O +derivative O +from O +SLA S-MACEQ +. O + + +On O +the O +same O +principle O +proposed O +by O +Pomerantz O +a O +photomask S-MATE +system O +( O +masking S-CONPRI +technology O +) O +to O +produce O +3D B-APPL +models E-APPL +, O +the O +DLP S-MANP +– O +Digital B-MANP +Light I-MANP +Processing E-MANP +, O +also O +known O +as S-MATE +FTI O +– O +Film B-MANP +Transfer I-MANP +Imaging E-MANP +, O +use O +the O +UV S-CONPRI +photopolymerised B-MATE +materials E-MATE +. O + + +A O +film O +is O +coated S-APPL +in O +resin S-MATE +which O +is O +then O +cured S-MANP +by O +a O +UV B-CONPRI +flash E-CONPRI +of O +light O +from O +a O +projector S-MACEQ +for O +each O +slice S-CONPRI +of O +product O +. O + + +Unlike O +the O +3D B-MACEQ +laser I-MACEQ +printer E-MACEQ +, O +the O +DLP S-MANP +projector O +projects O +the O +entire O +layer S-PARA +, O +and O +not O +only O +of O +lines O +or O +points O +. O + + +This O +method O +allows O +building O +much O +quicker O +than O +other O +methods O +of O +rapid B-ENAT +prototyping E-ENAT +by O +substituting O +scanning B-PARA +time E-PARA +of O +a O +laser S-ENAT +. O + + +With O +SLA S-MACEQ +, O +the O +part O +descends O +downward O +into O +the O +resin S-MATE +, O +whereas O +it O +is O +pulled O +upward O +out O +of O +the O +resin S-MATE +in O +a O +DLP B-MACEQ +printer E-MACEQ +. O + + +SLA S-MACEQ +process S-CONPRI +is O +gentler O +on O +the O +forming B-MACEQ +implant E-MACEQ +than O +the O +DLP S-MANP +process O +because O +, O +in O +DLP S-MANP +, O +the O +part O +must O +attach O +much O +more O +firmly O +to O +the O +build B-MACEQ +platform E-MACEQ +to O +prevent O +damage S-PRO +when O +newly O +formed O +layers O +are O +peeled O +from O +the O +basement B-MACEQ +plate E-MACEQ +after O +each O +exposure S-CONPRI +. O + + +The O +building B-MACEQ +platform E-MACEQ +can O +be S-MATE +angled O +upward O +and O +the O +light B-MACEQ +source E-MACEQ +down O +in O +some O +masking B-MACEQ +machines E-MACEQ +( O +e.g O +. O + + +Phidias O +technologies S-CONPRI +with O +Prodways O +3D B-MACEQ +printer E-MACEQ +) O +. O + + +The O +DLP S-MANP +technology O +is O +known O +for O +its O +high B-PARA +resolution E-PARA +, O +typically O +able O +to O +reach O +a O +layer B-PARA +thickness E-PARA +of O +down O +to O +30 O +μm O +. O + + +A O +new O +innovation O +in O +mask-image-projection S-CONPRI +based O +on O +the O +stereolithography S-MANP +process S-CONPRI +has O +been O +developed O +to O +produce O +objects O +with O +digital B-CONPRI +materials E-CONPRI +. O + + +The O +proposed O +approach O +is O +based O +on O +projecting O +mask B-CONPRI +images E-CONPRI +with O +a O +new O +two-channel S-CONPRI +system O +design S-FEAT +which O +reduces O +the O +separation B-CONPRI +force E-CONPRI +between O +a O +cured B-CONPRI +layer E-CONPRI +and O +the O +resin B-MACEQ +vat E-MACEQ +. O + + +The O +fabrication S-MANP +results O +demonstrate O +that O +the O +developed O +dual-material S-CONPRI +process O +can O +successfully O +produce O +3D B-APPL +objects E-APPL +with O +spatial B-CONPRI +control E-CONPRI +over O +placement O +of O +both O +material S-MATE +and O +structure S-CONPRI +. O + + +Close O +to O +DLP S-MANP +principle O +, O +the O +Continuous B-MANP +Liquid I-MANP +Interface I-MANP +Production E-MANP +( O +CLIP S-MANP +) O +production S-MANP +is O +a O +new O +type O +of O +AM S-MANP +that O +uses O +photopolymerisation S-CONPRI +working O +in O +continuous O +, O +thanks O +to O +a O +projector S-MACEQ +and O +the O +ability O +to O +control O +oxygen S-MATE +levels O +throughout O +an O +oxygen-permeable B-MATE +membrane E-MATE +. O + + +This O +latter O +process S-CONPRI +is O +30 O +times O +faster O +than O +the O +SLS S-MANP +or O +the O +MJM S-MANP +. O + + +Extrusion S-MANP +technologies- O +Fused B-MANP +Deposition I-MANP +Modeling E-MANP +( O +FDM S-MANP +) O +is O +a O +layer S-PARA +AM B-MANP +process E-MANP +that O +uses O +a O +thermoplastic B-MATE +filament E-MATE +by O +fused B-MANP +depositing E-MANP +. O + + +FDM S-MANP +is O +trademarked O +by O +Stratasys S-APPL +Inc O +in O +the O +late O +1980s O +and O +the O +equivalent O +term O +is O +Fused B-MANP +Filament I-MANP +Fabrication E-MANP +( O +FFF S-MANP +) O +. O + + +The O +filament S-MATE +is O +extruded S-MANP +through O +a O +nozzle S-MACEQ +to O +print S-MANP +one O +cross B-CONPRI +section E-CONPRI +of O +an O +object O +, O +then O +moving O +up O +vertically O +to O +repeat O +the O +process S-CONPRI +for O +a O +new O +layer S-PARA +. O + + +The O +most O +used O +materials S-CONPRI +in O +FDM S-MANP +are O +ABS S-MATE +, O +PLA S-MATE +and O +PC S-MATE +( O +Polycarbonate S-MATE +) O +but O +you O +can O +find O +out O +new O +blends S-MATE +containing O +wood S-MATE +and O +stone S-MATE +as S-MATE +well O +as S-MATE +filaments O +with O +rubbery B-CONPRI +characteristics E-CONPRI +. O + + +Compared O +to O +ABS S-MATE +, O +PLA S-MATE +responds O +differently O +to O +moisture O +, O +to O +ageing B-ENAT +UV E-ENAT +with O +a O +discoloration S-CONPRI +and O +to O +withdrawal O +of O +material S-MATE +. O + + +To O +predict O +the O +mechanical B-CONPRI +behaviour E-CONPRI +of O +FDM S-MANP +parts O +, O +it O +is O +critical O +to O +understand O +the O +material B-CONPRI +properties E-CONPRI +of O +the O +raw O +FDM S-MANP +process O +material S-MATE +, O +and O +the O +effect O +that O +FDM S-MANP +build B-PARA +parameters E-PARA +have O +on O +anisotropic B-PRO +material I-PRO +properties E-PRO +. O + + +The O +support B-MATE +material E-MATE +is O +often O +made O +of O +another O +material S-MATE +and O +is O +detachable S-CONPRI +or O +soluble S-CONPRI +from O +the O +actual O +part O +at O +the O +end O +of O +the O +manufacturing B-MANP +process E-MANP +( O +except O +for O +the O +low-cost O +solutions O +, O +which O +use O +the O +same O +raw B-MATE +material E-MATE +) O +. O + + +The O +disadvantages O +are O +that O +the O +resolution S-PARA +on O +the O +z O +axis O +is O +low O +compared O +to O +other O +AM B-MANP +process E-MANP +( O +0.25 O +mm S-MANP +) O +, O +so O +if O +a O +smooth B-CONPRI +surface E-CONPRI +is O +needed O +a O +finishing B-MANP +process E-MANP +is O +required O +and O +it O +is O +a O +slow O +process S-CONPRI +sometimes O +taking O +days O +to O +build S-PARA +large O +complex O +parts O +. O + + +FDM S-MANP +technology O +is O +the O +most O +popular O +of O +desktop B-MACEQ +3D I-MACEQ +printers E-MACEQ +and O +the O +less O +expensive O +professional O +printers S-MACEQ +. O + + +Directed B-MANP +Energy I-MANP +Deposition E-MANP +( O +DED S-MANP +) O +– O +covers O +a O +range S-PARA +of O +terminology O +: O +Laser B-MANP +Engineered I-MANP +Net I-MANP +Shaping E-MANP +( O +LENS S-MANP +) O +, O +directed B-MANP +light I-MANP +fabrication E-MANP +( O +IFF S-MANP +– O +Ion B-MANP +Fusion I-MANP +Formation E-MANP +) O +, O +Direct B-MANP +Metal I-MANP +Deposition E-MANP +( O +DMD S-MANP +) O +, O +3D B-MANP +laser I-MANP +cladding E-MANP +. O + + +It O +is O +a O +more O +complex O +printing B-MANP +process E-MANP +commonly O +used O +to O +repair O +or O +add O +additional O +material S-MATE +to O +existing O +components S-MACEQ +. O + + +LENS S-MANP +is O +used O +to O +melt S-CONPRI +the O +surface S-CONPRI +of O +the O +target O +point O +while O +a O +stream O +of O +powdered B-MATE +metal E-MATE +is O +delivered O +onto O +the O +small O +targeted O +point O +. O + + +IFF S-MANP +melts O +a O +metal B-MATE +wire E-MATE +or O +powder S-MATE +with O +a O +plasma B-MACEQ +welding I-MACEQ +torch E-MACEQ +to O +form O +an O +object O +. O + + +This O +is O +a O +near-net-shape B-MANP +manufacturing E-MANP +process O +that O +uses O +a O +very O +hot O +ionised B-CONPRI +gas E-CONPRI +to O +deposit O +a O +metal S-MATE +in O +small O +amounts O +. O + + +DMD S-MANP +melts O +metal B-MATE +wire E-MATE +by O +electron B-CONPRI +beam E-CONPRI +as S-MATE +feedstock O +used O +to O +form O +an O +object O +within O +a O +vacuum B-MACEQ +chamber E-MACEQ +. O + + +The O +objects O +created O +in O +DED S-MANP +can O +be S-MATE +larger O +, O +even O +up O +to O +several O +feet O +long O +. O + + +Dough B-CONPRI +Deposition I-CONPRI +Modeling E-CONPRI +( O +DDM S-CONPRI +) O +– O +groups O +the O +marginal O +processes S-CONPRI +which O +file S-MANS +different O +doughs S-MATE +( O +Figure O +6 O +) O +. O + + +Some O +technologies S-CONPRI +based O +on O +FDM B-MACEQ +printers E-MACEQ +use O +a O +syringe S-MACEQ +to O +deposit O +a O +dough B-MATE +material E-MATE +like O +silicone S-MATE +, O +food B-MATE +dough E-MATE +, O +chocolate S-MATE +, O +etc O +. O + + +A O +syringe-based B-MACEQ +extrusion I-MACEQ +tool E-MACEQ +which O +uses O +a O +linear B-MACEQ +stepper I-MACEQ +motor E-MACEQ +to O +control O +the O +syringe B-PARA +plunger I-PARA +position E-PARA +. O + + +The O +medical S-APPL +research O +uses O +the O +deposition S-CONPRI +of O +biomaterial S-MATE +and O +cells S-APPL +to O +realise O +a O +tissue B-CONPRI +structure E-CONPRI +. O + + +It O +presents O +a O +novel O +method O +for O +the O +deposition S-CONPRI +of O +biopolymers S-MATE +in O +high-resolution S-PARA +structures O +, O +using O +a O +pressure-activated B-MACEQ +microsyringe E-MACEQ +. O + + +Other O +works O +show O +applications O +to O +extrude S-MANP +a O +bio-based B-MATE +material E-MATE +to O +reconstitute O +a O +model S-CONPRI +and O +preserve O +the O +ecological B-CONPRI +environment E-CONPRI +. O + + +Experimentation O +uses O +a O +piston S-APPL +and O +3D B-MACEQ +printer I-MACEQ +head E-MACEQ +adapted O +on O +a O +CNC B-MACEQ +machine E-MACEQ +to O +deposit O +a O +pulpwood S-MATE +based O +on O +wood B-MATE +flour E-MATE +to O +create O +a O +reconstituted B-CONPRI +wood I-CONPRI +product E-CONPRI +. O + + +Jet B-MANP +technologies E-MANP +- O +MJM S-MANP +– O +Multi B-MANP +Jet I-MANP +Modeling E-MANP +– O +deposits O +droplets S-CONPRI +of O +photopolymer B-MATE +materials E-MATE +with O +multi B-MACEQ +jets E-MACEQ +on O +a O +building B-MACEQ +platform E-MACEQ +in O +ultra-thin B-CONPRI +layers E-CONPRI +until O +the O +part O +is O +completed O +. O + + +Two O +different O +photopolymer B-MATE +materials E-MATE +are O +used O +for O +building O +, O +one O +for O +the O +actual O +model S-CONPRI +and O +another O +gel S-MATE +like O +material S-MATE +for O +supporting O +. O + + +The O +photopolymer B-MATE +layers E-MATE +are O +cured S-MANP +by O +UV B-MACEQ +lamps E-MACEQ +and O +a O +gel-like B-MATE +polymer E-MATE +supports O +the O +complexity S-CONPRI +of O +geometry S-CONPRI +in O +wrapping S-CONPRI +it O +. O + + +The O +soluble S-CONPRI +gel-like S-MATE +( O +support B-MATE +material E-MATE +) O +is O +then O +removed O +by O +a O +water B-MANP +jet E-MANP +. O + + +The O +PolyJet B-MANP +technique E-MANP +reproduced O +details O +more O +accurately S-CHAR +with O +a O +very O +good O +surface B-FEAT +finish E-FEAT +and O +smoothness S-CONPRI +. O + + +The O +accuracy S-CHAR +of O +a O +PolyJet B-MACEQ +machine E-MACEQ +can O +reach O +thickness O +from O +50 O +to O +25 O +μm O +, O +besides O +the O +parts O +have O +a O +higher B-PARA +resolution E-PARA +. O + + +Also O +known O +as S-MATE +Thermojet O +, O +some O +systems O +can O +produce O +wax S-MATE +models O +in O +jetting S-MANP +tiny O +droplets S-CONPRI +of O +melted B-MATE +liquid I-MATE +material E-MATE +which O +cool O +and O +harden S-CONPRI +on O +impact S-CONPRI +to O +form O +the O +solid O +object O +. O + + +3DP S-MANP +– O +three-dimensional B-MANP +printing E-MANP +, O +also O +known O +as S-MATE +CJP O +– O +Colour B-MANP +Jet I-MANP +Printing E-MANP +, O +combines O +powders S-MATE +and O +binders S-MATE +. O + + +3DP S-MANP +has O +been O +developed O +by O +the O +MIT O +. O + + +Each O +layer S-PARA +is O +created O +by O +spreading O +a O +thin O +powder S-MATE +layer S-PARA +with O +a O +roller S-MACEQ +and O +the O +powder S-MATE +is O +selectively O +linked O +by O +inkjet B-MANP +printing E-MANP +of O +a O +binder S-MATE +. O + + +The O +build B-MACEQ +tray E-MACEQ +goes O +down O +to O +create O +the O +next O +layer S-PARA +. O + + +This O +process S-CONPRI +has O +been O +used O +to O +fabricate S-MANP +numerous O +metal S-MATE +, O +ceramic S-MATE +, O +silica S-MATE +and O +polymeric B-MATE +components E-MATE +of O +any O +geometry S-CONPRI +for O +a O +wide O +array O +of O +applications O +. O + + +Other O +powders S-MATE +have O +been O +tested O +to O +realise O +green B-PRO +products E-PRO +in O +wood S-MATE +. O + + +3DP S-MANP +can O +print S-MANP +in O +multicolour O +directly O +into O +the O +part O +during O +the O +build S-PARA +process O +from O +a O +colour O +cartridge S-MACEQ +. O + + +The O +final O +model S-CONPRI +is O +extracted S-CONPRI +from O +the O +powder B-MACEQ +bed E-MACEQ +to O +realise O +infiltration S-CONPRI +with O +liquid B-MATE +glue E-MATE +. O + + +The O +infiltrate O +improves O +the O +colour O +definition O +and O +the O +mechanical B-CONPRI +behaviours E-CONPRI +. O + + +3DP S-MANP +can O +provide O +architects O +a O +useful O +tool S-MACEQ +to O +quickly O +create O +a O +realistic O +model S-CONPRI +. O + + +Prometal S-MANP +is O +a O +3D B-MANP +printing E-MANP +process O +to O +build S-PARA +rapid O +tools S-MACEQ +and O +dies S-MACEQ +. O + + +This O +is O +a O +powder-based O +process S-CONPRI +in O +which O +stainless B-MATE +steel E-MATE +is O +used O +. O + + +The O +printing B-MANP +process E-MANP +occurs O +when O +a O +liquid B-MATE +binder E-MATE +is O +spurt O +out O +in O +jets O +to O +steel B-MATE +powder E-MATE +. O + + +A O +final O +treatment O +is O +required O +to O +solidify S-CONPRI +the O +part O +like O +sintering S-MANP +, O +infiltration S-CONPRI +and O +finishing B-MANP +processes E-MANP +. O + + +Liquid B-MANP +Metal I-MANP +Jetting E-MANP +( O +LMJ S-MANP +) O +involves O +the O +jetting S-MANP +of O +molten B-MATE +metal E-MATE +in O +a O +process S-CONPRI +similar O +to O +inkjet B-MANP +printing E-MANP +, O +whereby O +individual O +molten O +droplets S-CONPRI +are O +ejected O +and O +connected O +to O +each O +other O +. O + + +This O +process S-CONPRI +is O +not O +commercially O +available O +yet O +. O + + +LOM S-MANP +– O +Laminated O +Objet O +Manufacturing S-MANP +– O +is O +a O +rapid B-ENAT +prototyping E-ENAT +process S-CONPRI +where O +a O +part O +is O +sequentially O +built O +from O +layers O +of O +paper O +. O + + +The O +process S-CONPRI +consists O +of O +the O +thermal O +adhesive B-CONPRI +bonding E-CONPRI +and O +laser B-CONPRI +patterning E-CONPRI +of O +uniformly-thick O +paper O +layers O +. O + + +The O +system O +includes O +an O +x-y O +plotter B-MACEQ +device E-MACEQ +positioned O +above O +a O +work B-MACEQ +table E-MACEQ +vertically O +movable O +. O + + +The O +x-y O +plotter B-MACEQ +device E-MACEQ +includes O +a O +forming S-MANP +tool O +to O +create O +a O +layer S-PARA +from O +a O +sheet S-MATE +of O +material S-MATE +positioned O +on O +the O +work B-MACEQ +table E-MACEQ +. O + + +The O +layers O +are O +bonded O +to O +each O +other O +with O +heat-sensitive B-MATE +adhesives E-MATE +provided O +on O +one O +side O +thereof O +. O + + +A O +bonding S-CONPRI +tool O +or O +fuser S-MACEQ +is O +mounted O +to O +translate O +across O +the O +work B-MACEQ +table E-MACEQ +and O +apply O +a O +lamination B-PARA +force E-PARA +and O +heat S-CONPRI +to O +each O +of O +the O +layers O +. O + + +The O +layers O +are O +superimposed O +to O +give O +the O +final O +object O +and O +the O +layer B-PARA +resolution E-PARA +is O +defined O +by O +the O +thickness O +of O +the O +paper B-MATE +sheet E-MATE +. O + + +3D B-MACEQ +printers E-MACEQ +can O +print S-MANP +in O +full O +colours O +( O +Mcor O +Technologies S-CONPRI +) O +. O + + +Stratoconception S-CONPRI +is O +a O +rapid B-ENAT +prototyping E-ENAT +process S-CONPRI +with O +layers O +of O +sheets S-MATE +. O + + +It O +consists O +in O +the O +decomposition S-PRO +of O +a O +model S-CONPRI +by O +calculating O +a O +set S-APPL +of O +elementary O +layers O +called O +‘ O +strata S-CONPRI +’ O +and O +by O +placing O +reinforcing B-MACEQ +pieces E-MACEQ +and O +inserts S-MACEQ +in O +strata S-CONPRI +. O + + +The O +elementary O +layer S-PARA +are O +displayed O +and O +manufactured S-CONPRI +by O +rapid O +milling S-MANP +or O +laser-cutting S-MANP +. O + + +The O +strata S-CONPRI +are O +assembled O +with O +inserts S-MACEQ +to O +rebuild O +the O +final O +object O +. O + + +This O +process S-CONPRI +is O +useful O +thanks O +to O +milling S-MANP +of O +a O +low-cost O +sheet S-MATE +in O +raw B-MATE +material E-MATE +( O +wood S-MATE +, O +MDF S-MATE +, O +PVC S-MATE +, O +aluminium S-MATE +, O +etc O +) O +. O + + +When O +you O +find O +out O +the O +AM B-MANP +technologies E-MANP +and O +you O +can O +use O +some O +of O +them O +, O +experts O +know O +that O +several O +manufacturing B-CONPRI +constraints E-CONPRI +and O +mechanical B-CONPRI +behaviours E-CONPRI +bring O +complications O +. O + + +For O +example O +, O +the O +powder B-ENAT +technology E-ENAT +leads O +to O +extract O +the O +final O +product O +outside O +of O +a O +power S-PARA +bed S-MACEQ +before O +cleaning S-MANP +it O +and O +often O +to O +applying O +a O +post-treatment S-MANP +. O + + +Moreover O +, O +the O +manufacturing S-MANP +orientation O +of O +the O +model S-CONPRI +influences O +the O +quality S-CONPRI +of O +geometry S-CONPRI +because O +of O +material B-CONPRI +gradient E-CONPRI +and O +the O +manufacturing S-MANP +direction O +. O + + +The O +part O +orientation S-CONPRI +can O +deeply O +modify O +the O +planarity S-CONPRI +, O +the O +circularity S-CONPRI +and O +the O +surface B-CHAR +accuracy E-CHAR +. O + + +You O +have O +the O +same O +constraints O +with O +other O +technologies S-CONPRI +as S-MATE +the O +3DP S-MANP +or O +DED S-MANP +. O + + +The O +internal B-PRO +structure E-PRO +of O +product O +due O +to O +the O +material B-CONPRI +orientation E-CONPRI +, O +the O +manufacturing B-MANP +technology E-MANP +and O +its O +manufacturing S-MANP +by O +layers O +generates O +use O +constraints O +which O +need O +to O +be S-MATE +integrated O +. O + + +We O +can O +quote O +in O +a O +non-exhaustive O +list O +the O +anisotropy S-PRO +for O +the O +part O +made O +by O +FDM S-MANP +, O +the O +crack B-CONPRI +propagation E-CONPRI +for O +powdered O +parts O +and O +the O +ageing B-ENAT +UV E-ENAT +for O +the O +models O +in O +photopolymers S-MATE +. O + + +You O +can O +find O +out O +the O +accuracy S-CHAR +of O +some O +AM B-MACEQ +machines E-MACEQ +from O +manufacturer S-CONPRI +sources O +on O +the O +Table O +1 O +. O + + +From O +a O +3D B-MACEQ +printer E-MACEQ +to O +another O +, O +designer O +does O +not O +answer O +to O +the O +same O +need O +and O +accuracy S-CHAR +is O +often O +decisive O +to O +get O +a O +reliable O +product O +or O +a O +functional B-CONPRI +mechanism E-CONPRI +. O + + +Furthermore O +, O +the O +post-treatment S-MANP +, O +post-machining S-MANP +or O +post-finishing S-MANP +are O +often O +required O +to O +get O +a O +finished O +product O +. O + + +The O +recycling S-CONPRI +and O +the O +raw B-MATE +material E-MATE +cost O +have O +to O +be S-MATE +taken O +into O +account O +too O +. O + + +To O +sum O +up O +, O +a O +set S-APPL +of O +stages O +are O +to O +define O +in O +upstream O +to O +assess O +the O +AM B-MANP +technology E-MANP +implications O +. O + + +The O +incrementation O +of O +experience O +greatly O +improves O +the O +engineering S-APPL +and O +manufacturing B-MANP +process E-MANP +. O + + +The O +expiring O +patents S-CONPRI +open O +the O +market O +for O +others O +manufacturers O +proposing O +of O +new O +machines S-MACEQ +. O + + +Since O +February O +2014 O +, O +a O +major O +patent S-CONPRI +related O +to O +SLS S-MANP +expired O +( O +Apparatus O +for O +producing O +parts O +by O +selective B-MANP +sintering E-MANP +n.d. O +) O +. O + + +New O +technologies S-CONPRI +resulting O +from O +expiring O +patents S-CONPRI +appear O +with O +the O +solutions O +proposed O +by O +the O +companies S-APPL +DWS O +Systems O +( O +Italy O +) O +or O +Formlabs O +( O +USA O +) O +. O + + +3D B-MANP +printing E-MANP +applied O +to O +medical S-APPL +has O +appeared O +for O +some O +years O +through O +different O +applications O +. O + + +The O +organ B-CONPRI +transplantation E-CONPRI +sector O +has O +difficulties O +and O +the O +organ B-MANP +printing E-MANP +by O +jet O +based O +on O +3d B-APPL +tissue I-APPL +engineering E-APPL +offers O +a O +possible O +solution S-CONPRI +. O + + +Some O +research S-CONPRI +define O +organ B-MANP +printing E-MANP +as S-MATE +a O +rapid B-ENAT +prototyping E-ENAT +computer-aided O +3D B-ENAT +printing I-ENAT +technology E-ENAT +based O +on O +using O +layer-by-layer B-CONPRI +deposition E-CONPRI +of O +cell S-APPL +and/or O +cell S-APPL +aggregates S-MATE +into O +a O +3D B-MATE +gel E-MATE +with O +sequential O +maturation O +of O +the O +printed B-CONPRI +construct E-CONPRI +into O +perfused O +and O +vascularised O +living O +tissue O +or O +organ O +. O + + +The O +success O +of O +an O +implantation S-MANP +depends O +on O +compatible O +materials S-CONPRI +. O + + +We O +can O +find O +a O +variety O +of O +biomaterials S-MATE +such O +as S-MATE +curable O +synthetic O +polymers S-MATE +, O +synthetic B-MATE +gels E-MATE +and O +naturally B-MATE +derived I-MATE +hydrogels E-MATE +. O + + +Prosthetic S-APPL +is O +the O +first O +biomedical S-APPL +area S-PARA +which O +has O +used O +the O +3D B-MANP +printing E-MANP +and O +it O +presents O +several O +successes O +. O + + +We O +can O +quote O +a O +patient O +’ O +s S-MATE +skull O +anatomy O +reproduced O +via O +3D B-MANP +printing E-MANP +for O +pre-surgical O +use O +in O +manual O +implant S-APPL +design S-FEAT +and O +production S-MANP +and O +the O +enhancement O +of O +the O +fixation O +stability S-PRO +of O +the O +custom O +made O +total O +hip B-MACEQ +prostheses E-MACEQ +and O +restore O +the O +original O +biomechanical S-APPL +characteristics O +of O +the O +joint S-CONPRI +. O + + +Several O +applications O +combine O +some O +degradable O +or O +allogeneic B-BIOP +scaffolding E-BIOP +with O +cellular B-APPL +bioprinting E-APPL +to O +create O +customised O +biologic O +prosthetics S-APPL +that O +have O +the O +great O +potential O +to O +serve O +as S-MATE +transplantable O +replacement O +tissue O +. O + + +New O +articles O +showed O +that O +the O +medical S-APPL +3D B-MANP +Printing E-MANP +market O +might O +reach O +983.2 O +million O +$ O +by O +the O +year O +2020 O +. O + + +Projects O +for O +home O +construction S-APPL +through O +3D B-MANP +printing E-MANP +are O +emerging O +such O +as S-MATE +the O +Shanghai O +WinSun O +Decoration O +Engineering S-APPL +Company S-APPL +. O + + +This O +company S-APPL +can O +print S-MANP +the O +basic O +components S-MACEQ +separately O +before O +assembling O +them O +on O +site O +. O + + +These O +concrete S-MATE +houses O +are O +built O +in O +one O +day O +by O +3D B-MANP +printing E-MANP +and O +their O +construction S-APPL +costs O +about O +3800 O +$ O +. O + + +The O +3D B-MACEQ +printer E-MACEQ +developed O +by O +the O +Chinese O +group O +is O +much O +larger O +than O +a O +conventional B-CONPRI +system E-CONPRI +and O +uses O +the O +same O +DDM B-ENAT +technology E-ENAT +. O + + +The O +building B-APPL +industry E-APPL +introduced O +a O +vocabulary O +such O +as S-MATE +rapid O +construction S-APPL +or O +rapid O +building O +. O + + +The O +use O +of O +the O +STL B-MANS +format E-MANS +limits S-CONPRI +the O +exchange O +of O +trades O +data S-CONPRI +. O + + +If O +the O +STL B-MANS +format E-MANS +allows O +exporting O +from O +a O +surfacing O +model S-CONPRI +towards O +the O +specific O +software S-CONPRI +, O +the O +designer O +needs O +to O +insert S-MACEQ +rules O +in O +upstream O +work O +in O +CAD S-ENAT +. O + + +The O +emergence O +of O +more O +enriched O +new O +exchange B-CONPRI +format E-CONPRI +appears O +such O +as S-MATE +the O +Additive B-MANS +Manufacturing I-MANS +file I-MANS +Format E-MANS +( O +AMF S-CONPRI +) O +with O +important O +parameters S-CONPRI +( O +< O +material S-MATE +> O +, O +< O +composite S-MATE +> O +, O +< O +metadata S-ENAT +> O +, O +etc O +. O + + +) O +or O +the O +STL S-MANS +2.0 O +. O + + +Alternative O +file S-MANS +format O +exports O +are O +also O +required O +to O +support S-APPL +depiction O +of O +complex O +organic O +geometry S-CONPRI +, O +whilst O +allowing O +multiple-material S-CONPRI +and O +mono/multicolour S-CONPRI +capabilities O +; O +the O +development O +of O +STL S-MANS +2.0 O +or O +Additive B-MANS +Manufacturing I-MANS +file I-MANS +Format E-MANS +( O +AMF S-CONPRI +) O +is O +promising O +, O +particularly O +for O +the O +composition S-CONPRI +of O +complex B-CONPRI +geometries E-CONPRI +and O +multiple-material S-CONPRI +. O + + +The O +article O +shows O +that O +we O +need O +to O +transfer O +more O +trades O +data S-CONPRI +to O +the O +additive B-MACEQ +manufacturing I-MACEQ +machine E-MACEQ +through O +an O +enriched O +exchange B-CONPRI +format E-CONPRI +. O + + +The O +standard S-CONPRI +ISO/ASTM S-MANS +52915:2013 O +Standard S-CONPRI +specification S-PARA +for O +additive B-MANS +manufacturing I-MANS +file I-MANS +format E-MANS +( O +AMF S-CONPRI +) O +Version O +1.15 O +describes O +a O +framework S-CONPRI +for O +an O +interchange O +format O +to O +address O +the O +current O +and O +future O +needs O +of O +additive B-MANP +manufacturing E-MANP +technology O +. O + + +The O +manufacturing S-MANP +units O +and O +the O +small O +size O +of O +AM B-MACEQ +build I-MACEQ +tray E-MACEQ +complicate O +the O +production B-MANP +line E-MANP +. O + + +Industrials O +seek O +to O +reduce O +the O +lead B-PARA +time E-PARA +and O +increase O +in O +build B-PARA +speed E-PARA +but O +a O +lot O +of O +additive B-MANP +manufacturing E-MANP +technologies O +are O +not O +adapted O +. O + + +The O +interoperability S-CONPRI +is O +little O +studied O +by O +3D B-MACEQ +printer E-MACEQ +manufacturers O +. O + + +Reflecting O +the O +strategy O +of O +some O +companies S-APPL +like O +ExOne O +or O +Voxeljet O +, O +the O +professional O +3D B-MACEQ +printers E-MACEQ +can O +be S-MATE +combined O +to O +the O +production B-MANP +line E-MANP +and O +offer O +the O +largest O +printers S-MACEQ +on O +the O +world O +market O +for O +3D B-MANP +printing E-MANP +of O +sand S-MATE +and O +metal B-MATE +materials E-MATE +. O + + +Announced O +as S-MATE +a O +new O +industrial B-CONPRI +revolution E-CONPRI +, O +the O +additive B-MANP +manufacturing E-MANP +technologies O +will O +make O +the O +difference O +when O +it O +will O +be S-MATE +interoperable O +with O +the O +set S-APPL +of O +manufacturing B-MANP +process E-MANP +. O + + +Development O +orientations S-CONPRI +show O +that O +the O +new O +3D B-MACEQ +printers E-MACEQ +will O +be S-MATE +more O +integrated O +inside O +the O +production B-MANP +line E-MANP +with O +the O +automation S-CONPRI +and O +the O +connectivity O +with O +the O +digital B-ENAT +chain E-ENAT +. O + + +A O +recent O +example O +is O +the O +emergence O +of O +hybrid B-ENAT +system E-ENAT +combining O +the O +3D B-MANP +printing E-MANP +by O +laser B-MANP +deposition I-MANP +of I-MANP +metals E-MANP +( O +DMD S-MANP +) O +and O +the O +CNC B-MANP +machining E-MANP +through O +the O +LASERTEC O +AdditiveManufacturing6 O +solution S-CONPRI +proposed O +by O +DMG O +MORI© O +which O +accelerates O +the O +realisation O +of O +the O +finished O +product O +. O + + +In O +order O +to O +reduce O +the O +time O +and O +cost O +of O +moulds B-MANP +fabrication E-MANP +, O +additive B-MANP +manufacturing E-MANP +is O +used O +to O +develop O +and O +manufacture S-CONPRI +systems O +of O +rapid B-MANP +tooling E-MANP +. O + + +Powder-based B-MANP +sintering E-MANP +processes O +are O +now O +able O +to O +produce O +metal S-MATE +moulds O +that O +can O +withstand O +a O +few O +thousand O +cycles O +of O +injection B-MANP +moulding E-MANP +. O + + +AM B-MANP +technologies E-MANP +propose O +to O +manufacture S-CONPRI +of O +sand B-MACEQ +moulds E-MACEQ +for O +the O +casting S-MANP +. O + + +A O +method O +to O +produce O +a O +lost B-MACEQ +mould E-MACEQ +for O +casting S-MANP +is O +used O +with O +the O +thermojet B-ENAT +technology E-ENAT +by O +wax S-MATE +. O + + +We O +saw S-MANP +that O +some O +powder B-ENAT +technologies E-ENAT +could O +realise O +sand B-MACEQ +moulds E-MACEQ +for O +casting S-MANP +( O +Voxeljet O +, O +ExOne O +) O +. O + + +Other O +approaches O +ally O +the O +additive B-MANP +manufacturing E-MANP +technology O +and O +the O +topological B-FEAT +optimisation E-FEAT +to O +realise O +a O +rapid B-MANP +tooling E-MANP +and O +to O +use O +less O +material S-MATE +while O +keeping O +its O +properties S-CONPRI +. O + + +The O +layers B-MANP +manufacturing E-MANP +is O +able O +to O +improve O +a O +product O +or O +a O +tooling S-CONPRI +by O +inserting O +new O +methods O +as S-MATE +cooling O +channels O +or O +sensors S-MACEQ +. O + + +For O +example O +, O +an O +injection B-MACEQ +mould E-MACEQ +manufactured O +by O +a O +Stratoconception S-CONPRI +and O +after O +assembly S-MANP +of O +strata S-CONPRI +, O +cooling B-MACEQ +channels E-MACEQ +are O +provided O +in O +the O +various O +inter-stratum O +planes O +for O +allowing O +a O +fluid S-MATE +to O +pass O +through O +the O +part O +. O + + +You O +must O +perceive O +that O +this O +type O +of O +method O +can O +improve O +the O +behaviour O +of O +a O +moulded S-MACEQ +part O +by O +adjusting O +the O +location O +of O +the O +cooling B-MACEQ +channels E-MACEQ +to O +a O +specific O +geometry S-CONPRI +. O + + +Another O +challenge O +is O +to O +reduce O +weight S-PARA +and O +decrease O +the O +material S-MATE +used O +while O +keeping O +the O +product O +functions O +( O +mechanical S-APPL +, O +use… O +) O +. O + + +Moreover O +, O +the O +main O +and O +support B-MATE +material E-MATE +can O +be S-MATE +expensive O +in O +the O +AM B-MANP +technology E-MANP +. O + + +Topology B-FEAT +optimisation E-FEAT +is O +a O +mathematical S-CONPRI +approach O +that O +optimises O +material S-MATE +layout S-CONPRI +within O +a O +given O +design B-CONPRI +space E-CONPRI +, O +for O +a O +given O +set S-APPL +of O +loads O +and O +boundary B-CONPRI +conditions E-CONPRI +so O +that O +the O +resulting O +layout S-CONPRI +meets O +a O +prescribed O +set S-APPL +of O +performance S-CONPRI +targets O +. O + + +Using O +topology B-FEAT +optimization E-FEAT +, O +engineers O +can O +find O +the O +best O +concept B-CONPRI +design E-CONPRI +that O +meets O +the O +design S-FEAT +requirements O +. O + + +Any O +complex B-CONPRI +geometry E-CONPRI +is O +feasible O +in O +additive B-MANP +manufacturing E-MANP +, O +the O +topological B-FEAT +optimisation E-FEAT +implementation O +of O +a O +model S-CONPRI +leads O +to O +a O +new O +internal B-PRO +structure E-PRO +while O +maintaining O +conditions O +( O +mechanical S-APPL +, O +design S-FEAT +shape O +, O +functions O +, O +etc O +) O +. O + + +Topologically S-CONPRI +, O +optimised O +parts O +have O +been O +created O +with O +internal B-FEAT +geometry E-FEAT +, O +using O +a O +narrow-waited O +structure S-CONPRI +that O +avoids O +the O +need O +for O +building O +supports S-APPL +. O + + +Additive B-MANP +manufacturing E-MANP +technology O +standards S-CONPRI +are O +intended O +to O +endorse O +the O +knowledge O +of O +the O +industry S-APPL +, O +help O +stimulate O +research S-CONPRI +and O +encourage O +the O +implementation O +of O +technology S-CONPRI +. O + + +The O +standards S-CONPRI +define O +terminology O +, O +measure O +the O +performance S-CONPRI +of O +different O +production S-MANP +processes S-CONPRI +, O +ensure O +the O +quality S-CONPRI +of O +the O +end O +products O +, O +and O +specify O +procedures O +for O +the O +calibration S-CONPRI +of O +additive B-MACEQ +manufacturing I-MACEQ +machines E-MACEQ +. O + + +Several O +major O +standards S-CONPRI +were O +created O +very O +recently O +by O +the O +International B-MANS +Organisation I-MANS +for I-MANS +Standardisation E-MANS +( O +ISO S-MANS +) O +; O +we O +can O +mention O +the O +main O +ones O +: O +ISO B-MANS +17296-2:2015 E-MANS +: O +Overview O +of O +process S-CONPRI +categories O +and O +feedstock S-MATE +. O + + +It O +describes O +the O +process S-CONPRI +fundamentals O +of O +AM S-MANP +with O +the O +existing O +processes S-CONPRI +and O +the O +different O +types O +of O +materials S-CONPRI +used O +. O + + +ISO B-MANS +17296-3:2014 E-MANS +: O +Main O +characteristics O +and O +corresponding O +test O +methods O +: O +It O +covers O +the O +principal O +requirements O +applied O +to O +testing S-CHAR +with O +the O +main O +quality S-CONPRI +characteristics O +of O +parts O +, O +the O +appropriate O +test O +procedures O +, O +and O +the O +recommendations O +. O + + +ISO/ASTM S-MANS +DIS O +2019 O +: O +Standard S-CONPRI +Practice O +– O +Guide O +for O +Design S-FEAT +for O +AM S-MANP +: O +It O +is O +being O +developed O +since O +2015 O +and O +will O +bring O +together O +good O +practices O +in O +design S-FEAT +for O +getting O +a O +reliable O +product O +. O + + +You O +can O +also O +find O +other O +standards S-CONPRI +specifying O +the O +terminology O +in O +AM S-MANP +or O +the O +requirements O +for O +purchased O +AM B-MACEQ +parts E-MACEQ +. O + + +In O +recent O +decades O +additive B-MANP +manufacturing E-MANP +has O +evolved O +from O +a O +prototyping S-CONPRI +to O +a O +production S-MANP +technology O +. O + + +It O +is O +used O +to O +produce O +end-use-parts O +for O +medical S-APPL +, O +aerospace S-APPL +, O +automotive S-APPL +and O +other O +industrial S-APPL +applications O +from O +small O +series O +up O +to O +100,000 O +of O +commercially O +successful O +products O +. O + + +Metal B-MANP +additive I-MANP +manufacturing E-MANP +processes O +are O +relatively O +slow O +, O +require O +complex O +preparation O +and O +post-processing B-MANP +treatment E-MANP +while O +using O +expensive O +machinery O +, O +resulting O +in O +high O +production B-CONPRI +costs E-CONPRI +per O +product O +. O + + +Design B-FEAT +for I-FEAT +Additive I-FEAT +Manufacturing E-FEAT +aims O +at O +optimizing O +the O +product B-FEAT +design E-FEAT +to O +deal O +with O +the O +complexity S-CONPRI +of O +the O +production S-MANP +processes S-CONPRI +, O +while O +also O +defining O +decisive O +benefits O +of O +the O +AM S-MANP +based O +product O +in O +the O +usage O +stages O +of O +its O +life B-CONPRI +cycle E-CONPRI +. O + + +Recent O +investigations O +have O +shown O +that O +the O +lack O +of O +knowledge O +on O +DfAM O +tools S-MACEQ +and O +techniques O +are O +seen O +as S-MATE +one O +of O +the O +barriers O +for O +the O +further O +implementation O +of O +AM S-MANP +. O + + +This O +paper O +presents O +a O +framework S-CONPRI +for O +DfAM O +methods O +and O +tools S-MACEQ +, O +subdivided O +into O +three O +distinct O +stages O +of O +product B-CONPRI +development E-CONPRI +: O +AM B-MANP +process E-MANP +selection O +, O +product O +redesign O +for O +functionality O +enhancement O +, O +and O +product B-CONPRI +optimization E-CONPRI +for O +the O +AM B-MANP +process E-MANP +chosen O +. O + + +It O +will O +illustrate O +the O +applicability O +of O +the O +design S-FEAT +framework O +using O +examples O +from O +both O +research S-CONPRI +and O +industry S-APPL +. O + + +Additive B-MANP +manufacturing E-MANP +was O +first O +developed O +in O +the O +late O +1980 O +with O +increasing O +quality S-CONPRI +and O +market O +penetration S-CONPRI +ever O +since O +. O + + +Starting O +as S-MATE +prototyping O +technology S-CONPRI +it O +has O +developed O +into O +a O +technology S-CONPRI +that O +allows O +for O +mass B-CONPRI +production E-CONPRI +of O +end O +use O +parts O +. O + + +In O +2018 O +BMW O +has O +reported O +on O +3D B-MANP +printing E-MANP +of O +its O +one O +millionth O +component S-MACEQ +in O +series O +production S-MANP +. O + + +Major O +AM S-MANP +markets O +that O +include O +aerospace S-APPL +, O +automotive S-APPL +, O +consumer B-APPL +products E-APPL +, O +medical S-APPL +, O +and O +general O +industries S-APPL +report O +simular O +success O +stories O +. O + + +According O +to O +a O +study O +by O +Deloitte B-ENAT +AM E-ENAT +is O +implemented O +within O +industry S-APPL +to O +increase O +the O +perceived O +value O +in O +any O +of O +three O +area S-PARA +'s O +: O +profit O +, O +risk O +and O +time O +. O + + +Next O +to O +that O +the O +tactical O +path O +along O +which O +these O +industries S-APPL +have O +incorporated O +AM S-MANP +implementation O +can O +be S-MATE +characterized O +by O +product O +and/or O +supply B-CONPRI +chain E-CONPRI +change O +. O + + +Four O +different O +paths O +have O +been O +identified O +: O +Path O +1 O +describes O +companies S-APPL +that O +do O +not O +seek O +radical O +modification O +of O +their O +products O +and O +supply B-CONPRI +chain E-CONPRI +, O +but O +look O +at O +AM S-MANP +to O +improve O +their O +value O +proposition O +to O +the O +customer O +. O + + +Typical O +examples O +of O +the O +use O +of O +AM S-MANP +for O +path O +1 O +are O +printed O +prototypes S-CONPRI +and O +tools S-MACEQ +and O +fixtures O +. O + + +Path O +2 O +looks O +at O +AM S-MANP +as O +a O +means O +to O +define O +new O +business B-APPL +cases E-APPL +in O +which O +the O +production S-MANP +of O +end O +user O +products O +can O +be S-MATE +realized O +beneficially O +. O + + +Examples O +include O +for O +example O +the O +production S-MANP +of O +spare O +parts O +and O +production S-MANP +on O +problematic O +production S-MANP +locations O +like O +space O +, O +war O +zones O +and O +the O +oil S-MATE +& O +gas S-CONPRI +industry O +. O + + +Path O +3 O +describes O +strategies O +being O +enabled O +by O +AM S-MANP +based O +new O +product O +performance S-CONPRI +. O + + +Examples O +are O +the O +fuel B-MACEQ +nozzle E-MACEQ +by O +GE S-MATE +, O +embedded B-ENAT +electronics E-ENAT +and O +lightweight B-MACEQ +structures E-MACEQ +. O + + +Path O +4 O +describes O +companies S-APPL +that O +base O +their O +new O +business B-APPL +models E-APPL +on O +changes O +in O +both O +the O +supply B-CONPRI +chains E-CONPRI +and O +the O +products O +. O + + +An O +example O +for O +this O +path O +is O +the O +3D B-CHAR +scanning E-CHAR +and O +printing O +of O +custom O +shoes O +in O +retail O +stores O +. O + + +All O +tactical O +development O +paths O +described O +above O +deal O +with O +product B-FEAT +design E-FEAT +within O +an O +AM-based O +supply B-CONPRI +chain E-CONPRI +. O + + +It O +is O +required O +both O +for O +the O +realization O +of O +AM-based O +enhanced O +product O +performance S-CONPRI +as S-MATE +well O +as S-MATE +when O +printing O +more O +standard S-CONPRI +product B-FEAT +designs E-FEAT +; O +these O +designs S-FEAT +also O +have O +to O +be S-MATE +optimized O +for O +specific O +AM B-MANP +process E-MANP +opportunities O +and O +constraints O +so O +they O +are O +produced O +reliably O +, O +on O +time O +and O +cost O +efficiently O +. O + + +Design B-FEAT +for I-FEAT +Additive I-FEAT +Manufacturing E-FEAT +describes O +methodologies O +used O +to O +optimize O +the O +product B-FEAT +design E-FEAT +with O +the O +goal O +of O +improving O +performance S-CONPRI +in O +all O +lifecycle O +stages O +. O + + +The O +lack O +of O +knowledge O +on O +DfAM O +has O +been O +identified O +as S-MATE +one O +of O +the O +barriers O +that O +holds O +back O +further O +adoption O +of O +AM S-MANP +in O +industry S-APPL +. O + + +This O +can O +be S-MATE +attributed O +to O +the O +attention O +given O +to O +AM S-MANP +as O +a O +production S-MANP +technology O +, O +which O +only O +blossomed O +over O +the O +last O +decade O +. O + + +Attention O +to O +design S-FEAT +for O +AM S-MANP +trailed O +behind O +and O +only O +grew O +in O +importance O +when O +interest O +in O +commercial O +production S-MANP +of O +end O +user O +goods O +increased O +. O + + +The O +CIRP O +community O +has O +published O +papers O +related O +to O +AM B-MANP +processes E-MANP +, O +AM B-MATE +materials E-MATE +, O +specific O +AM S-MANP +application O +areas S-PARA +and O +AM S-MANP +geometrical O +aspects O +. O + + +The O +CIRP O +keynote O +paper O +by O +Thompson O +focused O +on O +DfAM O +and O +disclosed O +the O +width O +and O +complexity S-CONPRI +of O +the O +DfAM O +theme O +, O +and O +addressed O +many O +of O +the O +themes O +that O +should O +be S-MATE +considered O +as S-MATE +part O +of O +product B-CONPRI +development E-CONPRI +for O +AM S-MANP +. O + + +These O +topics O +ranged O +from O +design S-FEAT +strategies O +and O +artefact O +design S-FEAT +up O +to O +economic O +and O +strategic O +considerations O +on O +the O +implementation O +of O +AM S-MANP +within O +industrial S-APPL +product O +development O +processes S-CONPRI +. O + + +The O +paper O +focussed O +on O +design B-CONPRI +considerations E-CONPRI +that O +should O +be S-MATE +addressed O +when O +deciding O +on O +the O +transition S-CONPRI +from O +classical O +production S-MANP +processes S-CONPRI +to O +additive B-MANP +manufacturing E-MANP +. O + + +This O +keynote O +paper O +focuses O +on O +the O +state O +of O +the O +art S-APPL +on O +methods O +and O +tools S-MACEQ +related O +to O +the O +design S-FEAT +of O +geometry S-CONPRI +or O +functional O +AM S-MANP +artefacts O +within O +an O +industrial S-APPL +setting O +. O + + +A O +general O +introduction O +to O +AM B-MANP +processes E-MANP +and O +process S-CONPRI +steps O +will O +be S-MATE +presented O +2 O +. O + + +Section O +3 O +will O +present O +a O +framework S-CONPRI +for O +the O +selection O +and O +application O +of O +DfAM O +methods O +and O +tools S-MACEQ +. O + + +In O +Sections O +4the O +DfAM O +framework S-CONPRI +will O +be S-MATE +discussed O +in O +more O +detail O +; O +lightweighting S-PRO +, O +internal B-CONPRI +topology E-CONPRI +, O +surface S-CONPRI +topolgy O +, O +material S-MATE +complexity S-CONPRI +and O +part O +integration O +. O + + +When O +required O +, O +methods O +and O +examples O +of O +application O +will O +focus O +on O +AM S-MANP +based O +production S-MANP +of O +metal S-MATE +parts O +in O +an O +industrial S-APPL +setting O +. O + + +The O +applicability O +of O +the O +design S-FEAT +framework O +is O +however O +not O +limited O +to O +the O +examples O +given O +but O +can O +, O +at O +a O +generic O +level O +, O +be S-MATE +apllied O +to O +the O +majority O +of O +the O +known O +AM B-MANP +processes E-MANP +. O + + +2 O +Additive B-MANP +manufacturing E-MANP +AM O +is O +defined O +by O +the O +ISO/ASTM S-MANS +joint O +standard S-CONPRI +52900:2018 O +as S-MATE +the O +process S-CONPRI +of O +joining S-MANP +materials O +to O +make O +parts O +from O +3D B-APPL +model E-APPL +data O +, O +usually O +layer S-PARA +upon O +layer S-PARA +, O +as S-MATE +opposed O +to O +subtractive B-MANP +manufacturing E-MANP +and O +formative O +manufacturing S-MANP +methodologies O +. O + + +Note O +that O +this O +definition O +is O +very O +general O +and O +can O +be S-MATE +applied O +to O +a O +wide O +range S-PARA +of O +technologies S-CONPRI +. O + + +Hybrid B-ENAT +technologies E-ENAT +that O +for O +example O +use O +additive S-MATE +plus O +subtractive B-MANP +processes E-MANP +within O +a O +single O +machine S-MACEQ +may O +therefore O +not O +be S-MATE +considered O +as S-MATE +AM B-MACEQ +machines E-MACEQ +in O +the O +strict O +definition O +of O +the O +term O +. O + + +For O +the O +near O +future O +it O +is O +foreseen O +that O +fully O +automated O +manufacturing S-MANP +lines O +, O +combining O +AM S-MANP +in O +tight O +and O +repetitive O +sequences O +alongside O +other O +fully O +automated O +production S-MANP +and O +handling O +processes S-CONPRI +, O +will O +become O +the O +standard S-CONPRI +for O +the O +modern O +factory O +. O + + +2.1 O +AM B-MANP +processes E-MANP +According O +to O +ISO/ASTM S-MANS +there O +are O +currently O +seven O +AM B-MANP +process E-MANP +categories O +that O +result O +in O +a O +3D S-CONPRI +CAD O +model S-CONPRI +being O +formed O +into O +a O +solid O +, O +integrated O +part O +: O +Binder B-MANP +jetting E-MANP +: O +droplet S-CONPRI +printing O +of O +a O +liquid O +used O +to O +bind S-MANP +powder O +particles S-CONPRI +together O +; O +Directed B-MANP +energy I-MANP +deposition E-MANP +: O +material S-MATE +is O +simultaneously O +fed O +into O +a O +moving O +focused O +energy O +region O +; O +Material B-MANP +extrusion E-MANP +: O +material S-MATE +is O +fed O +through O +a O +nozzle S-MACEQ +in O +a O +liquid B-CONPRI +state E-CONPRI +after O +which O +solidifies O +; O +Material B-MANP +jetting E-MANP +: O +material S-MATE +is O +jetted O +in O +liquid B-CONPRI +droplet I-CONPRI +form E-CONPRI +after O +which O +it O +solidifies O +; O +Powder B-MANP +bed I-MANP +fusion E-MANP +: O +powder B-MATE +material E-MATE +is O +selectively O +heated O +so O +that O +the O +particles S-CONPRI +partially O +or O +fully O +melt S-CONPRI +to O +form O +a O +solid B-CONPRI +matrix E-CONPRI +; O +Sheet B-MANP +lamination E-MANP +: O +sheets S-MATE +of O +material S-MATE +are O +bonded O +together O +either O +before O +or O +after O +the O +part O +outline O +is O +separated O +from O +the O +sheets S-MATE +; O +Vat B-MANP +photopolymerisation E-MANP +: O +a O +platform S-MACEQ +is O +dropped O +through O +or O +raised O +above O +a O +vat S-MACEQ +of O +liquid O +resin S-MATE +where O +light O +is O +used O +to O +selectively O +solidify S-CONPRI +it O +. O + + +Most O +of O +these O +categories O +have O +so O +far O +resulted O +mainly O +in O +machines S-MACEQ +that O +are O +designed S-FEAT +for O +one-off O +prototypes S-CONPRI +or O +for O +production S-MANP +that O +heavily O +employs O +manual O +work O +. O + + +Whilst O +the O +AM B-MANP +technology E-MANP +itself O +is O +largely O +automated O +, O +the O +design B-CONPRI +process E-CONPRI +, O +machine B-MACEQ +setup E-MACEQ +and O +finishing S-MANP +stages O +may O +require O +a O +significant O +amount O +of O +knowledge O +and O +skills O +to O +perform O +. O + + +All O +the O +above O +processes S-CONPRI +were O +initially O +developed O +to O +create O +parts O +from O +different O +polymeric B-MATE +materials E-MATE +, O +with O +the O +exception O +of O +sheet B-MANP +lamination E-MANP +. O + + +Some O +of O +these O +technologies S-CONPRI +have O +now O +been O +developed O +to O +a O +level O +where O +they O +have O +been O +incorporated O +into O +large O +batch B-CONPRI +production E-CONPRI +. O + + +Some O +of O +these O +batches O +can O +be S-MATE +considered O +to O +be S-MATE +part O +of O +a O +continuous B-MANP +production I-MANP +line E-MANP +. O + + +The O +most O +well-known O +of O +these O +would O +be S-MATE +AM B-MACEQ +machines E-MACEQ +used O +in O +production S-MANP +of O +teeth O +aligners O +and O +hearing B-APPL +aids E-APPL +. O + + +These O +examples O +show O +that O +when O +the O +additional O +complexity S-CONPRI +of O +form O +and/or O +the O +individual O +part O +cost O +allows O +it O +, O +AM S-MANP +can O +be S-MATE +used O +for O +final O +part O +production S-MANP +of O +parts O +. O + + +The O +impact S-CONPRI +of O +AM S-MANP +on O +process B-ENAT +chain E-ENAT +towards O +final O +production S-MANP +is O +however O +most O +heavily O +felt O +when O +producing O +metal S-MATE +parts O +. O + + +All O +of O +the O +above O +process S-CONPRI +categories O +have O +a O +means O +in O +which O +to O +arrive O +at O +a O +metal S-MATE +part O +. O + + +The O +first O +approach O +is O +by O +mixing S-CONPRI +metal S-MATE +particles O +with O +the O +material B-FEAT +joining E-FEAT +mechanism O +. O + + +For O +example O +, O +metal S-MATE +particles O +can O +be S-MATE +added O +to O +photopolymers S-MATE +in O +vat B-MANP +photopolymerisation E-MANP +or O +mixed O +with O +polymer S-MATE +powder O +in O +powder B-MANP +bed I-MANP +fusion E-MANP +or O +with O +filament S-MATE +in O +material B-MANP +extrusion E-MANP +. O + + +In O +general O +this O +will O +end O +in O +a O +blended O +part O +that O +exhibits O +some O +of O +the O +properties S-CONPRI +of O +the O +metal S-MATE +like O +improved O +surface S-CONPRI +hardness S-PRO +or O +heat B-CONPRI +deflection E-CONPRI +. O + + +The O +second O +approach O +is O +where O +the O +parts O +above O +are O +used O +in O +a O +secondary O +furnace S-MACEQ +cycle O +to O +burn O +off O +the O +polymer S-MATE +and O +cause O +the O +metal S-MATE +particles O +to O +sinter S-MANP +together O +. O + + +This O +process S-CONPRI +therefore O +requires O +an O +additional O +programmable O +furnace S-MACEQ +to O +achieve O +this O +effect O +. O + + +In O +addition O +to O +the O +process S-CONPRI +categories O +mentioned O +in O +the O +previous O +paragraph O +, O +binder B-MANP +jetting E-MANP +is O +also O +widely O +used O +in O +this O +manner O +. O + + +It O +should O +be S-MATE +noted O +in O +particular O +that O +part O +shrinkage S-CONPRI +will O +occur O +using O +this O +approach O +. O + + +This O +shrinkage S-CONPRI +can O +be S-MATE +minimised O +if O +an O +infiltrant O +is O +used O +to O +fill O +in O +voids S-CONPRI +prior O +to O +densification S-MANP +. O + + +For O +example O +420 B-MATE +stainless I-MATE +steel E-MATE +parts O +can O +be S-MATE +infiltrated O +with O +bronze S-MATE +at O +1100 O +. O + + +Many O +technologies S-CONPRI +have O +been O +refined O +to O +a O +level O +where O +geometric B-FEAT +tolerances E-FEAT +are O +highly O +predictable S-CONPRI +and O +achieving O +up O +to O +97 O +% O +final O +density S-PRO +values O +. O + + +Conventional O +polymer S-MATE +AM B-MATE +materials E-MATE +can O +often O +be S-MATE +used O +in O +casting S-MANP +processes O +to O +achieve O +metal S-MATE +parts O +. O + + +Some O +of O +the O +original O +processes S-CONPRI +were O +developed O +around O +waxes S-MATE +as S-MATE +a O +means O +to O +integrate O +with O +conventional B-MANP +investment I-MANP +casting E-MANP +. O + + +It O +was O +found O +later O +that O +other O +, O +stronger O +polymers S-MATE +could O +be S-MATE +used O +in O +this O +way O +provided O +the O +casting B-MACEQ +shells E-MACEQ +were O +strengthened O +and O +the O +burnout B-CHAR +conditions E-CHAR +were O +modified O +. O + + +Four O +of O +the O +above O +process S-CONPRI +categories O +can O +directly O +produce O +metal S-MATE +parts O +; O +powder B-MANP +bed I-MANP +fusion E-MANP +, O +directed B-MANP +energy I-MANP +deposition E-MANP +, O +material B-MANP +jetting E-MANP +, O +and O +sheet B-MANP +lamination E-MANP +. O + + +It O +is O +interesting O +to O +note O +that O +sheet B-MANP +lamination E-MANP +is O +largely O +a O +hybrid O +process S-CONPRI +. O + + +In O +sheet B-MANP +lamination E-MANP +there O +can O +be S-MATE +a O +large O +amount O +of O +material S-MATE +, O +often O +much O +more O +than O +is O +used O +for O +the O +part O +itself O +, O +that O +is O +separated O +from O +the O +part O +in O +a O +subtractive S-MANP +manner O +during O +the O +AM B-MANP +process E-MANP +. O + + +These O +sheets S-MATE +can O +be S-MATE +metal O +and O +bonded O +together O +using O +ultrasonic B-MANP +bonding E-MANP +. O + + +This O +is O +a O +low O +temperature S-PARA +welding O +process S-CONPRI +for O +joining S-MANP +dissimular O +metals S-MATE +and O +can O +for O +example O +allow O +embedding O +of O +electronics S-CONPRI +in O +the O +structure S-CONPRI +without O +damaging O +it O +. O + + +It O +is O +a O +niche O +AM S-MANP +route O +towards O +metal S-MATE +parts O +. O + + +By O +far O +the O +most O +widely O +used O +AM S-MANP +approach O +for O +metal S-MATE +parts O +is O +powder B-MANP +bed I-MANP +fusion E-MANP +. O + + +This O +is O +largely O +because O +of O +the O +basic O +simplicity O +of O +the O +process S-CONPRI +combined O +with O +the O +fact O +that O +a O +range S-PARA +metals S-MATE +is O +readily O +available O +and O +suitable O +for O +mainstream O +applications O +. O + + +A O +beam S-MACEQ +of O +energy O +is O +used O +to O +selectively O +melt S-CONPRI +the O +powders S-MATE +to O +form O +the O +solid O +part O +. O + + +Electron B-MANP +beam I-MANP +melting E-MANP +is O +available O +but O +most O +systems O +use O +laser B-CONPRI +energy E-CONPRI +, O +normally O +in O +a O +sealed O +chamber O +, O +in O +an O +inert B-CONPRI +gas E-CONPRI +environment O +or O +a O +vacuum O +. O + + +This O +sealed O +chamber O +may O +be S-MATE +at O +an O +elevated O +temperature S-PARA +but O +still O +considerably O +below O +the O +melting B-PRO +point E-PRO +of O +the O +metal S-MATE +. O + + +Since O +this O +means O +very O +large O +thermal B-PARA +gradients E-PARA +, O +it O +is O +normal O +to O +connect O +the O +parts O +to O +a O +solid B-MACEQ +substrate E-MACEQ +in O +a O +similar O +way O +to O +processes S-CONPRI +that O +require O +support B-FEAT +structures E-FEAT +. O + + +These O +supports S-APPL +have O +a O +different O +purpose O +in O +that O +they O +anchor O +the O +part O +to O +prevent O +internal B-PRO +stress E-PRO +warpage O +during O +build S-PARA +. O + + +Directed B-MANP +energy I-MANP +deposition E-MANP +is O +a O +process S-CONPRI +that O +almost O +entirely O +focuses O +on O +metal S-MATE +parts O +. O + + +A O +high O +energy O +source S-APPL +is O +used O +to O +melt S-CONPRI +metals O +that O +are O +delivered O +in O +either O +powder S-MATE +or O +wire O +form O +. O + + +The O +energy B-FEAT +focal I-FEAT +point E-FEAT +is O +also O +where O +the O +material S-MATE +is O +delivered O +and O +so O +there O +is O +a O +periodic O +melting S-MANP +followed O +by O +rapid B-MANP +solidification E-MANP +. O + + +Similar O +issues O +to O +powder B-MANP +bed I-MANP +fusion E-MANP +exist O +regarding O +residual B-PRO +stresses E-PRO +with O +the O +additional O +complexity S-CONPRI +of O +a O +significantly O +varying O +thermal O +environment O +. O + + +Since O +there O +is O +no O +surrounding O +powder S-MATE +to O +help O +stabilise O +the O +heat B-CONPRI +transfer E-CONPRI +, O +the O +directed B-MANP +energy I-MANP +deposition I-MANP +process E-MANP +will O +have O +differing O +cooling S-MANP +profiles O +dependent O +on O +the O +mass O +of O +surrounding O +material S-MATE +at O +the O +energy O +delivery O +point O +. O + + +Material B-MANP +jetting E-MANP +for O +the O +production S-MANP +of O +metal S-MATE +parts O +is O +hampered O +by O +the O +high O +temperatures S-PARA +needed O +to O +get O +the O +metals S-MATE +in O +the O +proper O +liquid B-CONPRI +state E-CONPRI +. O + + +As S-MATE +a O +result O +this O +technology S-CONPRI +, O +when O +used O +to O +directly O +fabricate S-MANP +metal O +parts O +, O +is O +still O +in O +the O +development O +stage O +. O + + +2.2 O +AM B-MANP +process E-MANP +steps O +The O +process S-CONPRI +of O +creating O +an O +additively B-MANP +manufactured I-MANP +product E-MANP +can O +be S-MATE +subdevided O +into O +seven O +steps O +. O + + +1 O +Model S-CONPRI +design S-FEAT +. O + + +3D S-CONPRI +CAD O +software S-CONPRI +can O +be S-MATE +used O +to O +create O +a O +solid O +or O +surface B-ENAT +model E-ENAT +or O +scan O +data S-CONPRI +is O +used O +to O +create O +the O +3D B-FEAT +geometry E-FEAT +; O +2 O +STL S-MANS +file S-MANS +creation O +. O + + +The O +3D B-APPL +model E-APPL +is O +converted O +into O +a O +file S-MANS +format O +that O +is O +understood O +by O +AM B-MACEQ +machines E-MACEQ +. O + + +The O +STL S-MANS +file S-MANS +format O +is O +widely O +used O +and O +approximates O +the O +3D B-APPL +model E-APPL +by O +a O +surface S-CONPRI +that O +is O +constructed O +using O +triangles O +. O + + +Other O +file S-MANS +formats O +exist O +that O +are O +better O +suited O +to O +advanced O +AM S-MANP +features O +like O +multi O +material S-MATE +parts O +; O +3 O +Build S-PARA +preperation O +. O + + +The O +STL S-MANS +file S-MANS +is O +transferred O +to O +the O +build B-PARA +preparation E-PARA +software O +, O +where O +the O +location O +and O +orientation S-CONPRI +of O +the O +part O +in O +the O +build B-PARA +envelope E-PARA +are O +defined O +. O + + +The O +software B-CONPRI +slices E-CONPRI +the O +geometry S-CONPRI +into O +individual O +layers O +. O + + +For O +each O +layer S-PARA +the O +geometric O +data S-CONPRI +of O +that O +layer S-PARA +, O +in O +combination O +with O +the O +machine B-PARA +parameters E-PARA +, O +like O +laser B-PARA +power E-PARA +, O +layer B-PARA +thickness E-PARA +and O +scan B-PARA +patterns E-PARA +, O +is O +translated O +into O +build S-PARA +instructions O +for O +the O +AM B-MACEQ +machine E-MACEQ +; O +4 O +The O +build S-PARA +process O +. O + + +After O +the O +build S-PARA +process O +the O +part O +is O +removed O +from O +the O +build B-PARA +plate/envelope E-PARA +and O +excess O +material S-MATE +is O +removed O +. O + + +Additional O +post-processing S-CONPRI +steps O +might O +be S-MATE +needed O +to O +improve O +the O +functional O +characteristics O +of O +the O +part O +. O + + +6 O +Quality S-CONPRI +and O +inspection S-CHAR +. O + + +Often O +quality S-CONPRI +and O +inspection S-CHAR +methods O +are O +applied O +that O +are O +based O +on O +other O +production S-MANP +technologies O +like O +casting S-MANP +and O +forging S-MANP +. O + + +But O +the O +complexity S-CONPRI +of O +the O +geometry S-CONPRI +can O +induce O +unique O +inspection S-CHAR +problems O +like O +inaccesable O +surfaces S-CONPRI +or O +the O +absence O +of O +measuring O +datum B-CHAR +planes E-CHAR +; O +7 O +Application O +. O + + +For O +most O +industrial S-APPL +parts O +produced O +by O +additive B-MANP +manufacturing E-MANP +the O +expected O +benefits O +in O +the O +use O +phase S-CONPRI +are O +the O +reason O +for O +designing O +parts O +to O +be S-MATE +created O +by O +additive B-MANP +manufacturing E-MANP +. O + + +2.3 O +AM S-MANP +design O +stages O +As S-MATE +mentioned O +in O +Thompson O +, O +the O +AM S-MANP +design O +process S-CONPRI +has O +to O +take O +into O +account O +a O +lot O +of O +aspects O +related O +to O +several O +key O +performance S-CONPRI +indicators O +. O + + +Globally O +, O +as S-MATE +defined O +in O +the O +standard S-CONPRI +ISO/ASTM S-MANS +52910:2018 O +the O +AM S-MANP +design O +steps O +can O +be S-MATE +structured O +into O +three O +global O +stages O +. O + + +The O +first O +stage O +relates O +to O +go/no-go O +evaluations O +concerning O +the O +part O +, O +tool S-MACEQ +or O +product O +to O +be S-MATE +considered O +. O + + +Manufacturability S-CONPRI +issues O +will O +have O +to O +be S-MATE +checked O +at O +this O +stage O +even O +before O +defining O +any O +geometry S-CONPRI +. O + + +Before O +that O +, O +however O +, O +crucial O +decisions O +must O +be S-MATE +made O +with O +respect O +to O +functional O +decomposition S-PRO +and O +functional O +integration O +. O + + +One O +later O +decision O +will O +be S-MATE +to O +define O +the O +complete O +manufacturing S-MANP +for O +each O +feature S-FEAT +as S-MATE +well O +as S-MATE +the O +scheduling O +of O +the O +individual O +manufacturing S-MANP +operations O +, O +with O +possible O +use O +of O +different O +manufacturing B-MANP +technologies E-MANP +. O + + +The O +material S-MATE +and O +its O +characteristics O +will O +also O +have O +to O +be S-MATE +defined O +for O +each O +voxel S-CONPRI +of O +the O +part O +. O + + +The O +definition O +of O +the O +material S-MATE +characteristics O +must O +be S-MATE +fixed O +as S-MATE +well O +as S-MATE +the O +definition O +of O +transitions O +between O +different O +materials S-CONPRI +in O +different O +regions O +of O +the O +objects O +. O + + +These O +possibilities O +are O +limited O +to O +AM B-MANP +technologies E-MANP +that O +allow O +assembly S-MANP +of O +different O +materials S-CONPRI +or O +grading O +material S-MATE +characteristics O +in O +a O +given O +part O +. O + + +The O +third O +stage O +corresponds O +to O +the O +final O +check O +and O +optimization S-CONPRI +of O +process S-CONPRI +characteristics O +with O +respect O +to O +the O +best O +possible O +properties S-CONPRI +of O +the O +manufactured S-CONPRI +objects O +. O + + +For O +example O +, O +the O +number O +of O +parts O +produced O +is O +dependent O +on O +the O +choice O +of O +orientation S-CONPRI +of O +the O +part O +and O +consequently O +on O +the O +support B-FEAT +structures E-FEAT +that O +are O +minimized O +with O +respect O +to O +an O +optimum O +part O +geometry S-CONPRI +. O + + +These O +three O +global O +design S-FEAT +stages O +serve O +to O +minimize O +the O +technical O +and O +economic O +risks O +before O +going O +to O +manufacturing S-MANP +. O + + +Design S-FEAT +does O +not O +therefore O +just O +rely O +on O +a O +simple S-MANP +set S-APPL +of O +design S-FEAT +guidelines O +. O + + +A O +global O +and O +systemic O +vision O +of O +the O +complete O +value O +chain O +has O +to O +be S-MATE +considered O +with O +respect O +to O +global O +indicators O +like O +in O +particular O +lead B-PARA +time E-PARA +, O +cost O +and O +quality S-CONPRI +, O +in O +order O +to O +evaluate O +feasibility S-CONPRI +, O +suitability O +and O +stability S-PRO +of O +AM-based O +value O +chain O +performances O +. O + + +3 O +A O +DfAM O +framework S-CONPRI +Design S-FEAT +for O +manufacturing S-MANP +and O +assembly S-MANP +has O +been O +around O +for O +many O +years O +and O +deals O +with O +the O +design S-FEAT +of O +products O +while O +focussing O +on O +both O +the O +manufacturing S-MANP +and O +assembly S-MANP +process O +. O + + +The O +goal O +of O +DfMA O +is O +to O +include O +manufacturing S-MANP +and O +assembly S-MANP +knowledge O +early O +in O +the O +design S-FEAT +proces O +to O +increase O +chances O +of O +success O +and O +shorten O +the O +development O +cycle O +. O + + +Many O +variants O +exist O +, O +focussed O +for O +example O +on O +specific O +production S-MANP +technologies O +like O +injection B-MANP +molding E-MANP +or O +casting S-MANP +. O + + +DfAM O +focusses O +on O +AM B-MANP +processes E-MANP +but O +differs O +from O +other O +DfX O +processes S-CONPRI +. O + + +It O +deals O +with O +many O +different O +AM B-MANP +process E-MANP +variants O +and O +needs O +to O +take O +the O +whole O +process B-ENAT +chain E-ENAT +into O +account O +to O +be S-MATE +successful O +while O +research S-CONPRI +has O +shown O +that O +the O +number O +of O +interacting O +aspects O +that O +define O +successful O +production S-MANP +is O +large O +. O + + +Finally O +, O +AM S-MANP +is O +a O +new O +group O +of O +processes S-CONPRI +that O +provides O +other O +opportunities O +and O +constraints O +to O +traditional O +forming S-MANP +and O +subtractive B-MANP +processes E-MANP +which O +implies O +non-traditional O +approaches O +to O +product B-FEAT +design E-FEAT +are O +required O +. O + + +Many O +papers O +exist O +on O +individual O +aspects O +of O +the O +design B-CONPRI +process E-CONPRI +while O +for O +a O +succesful O +design B-CONPRI +process E-CONPRI +all O +relevant O +aspects O +should O +be S-MATE +taken O +into O +account O +. O + + +The O +framework S-CONPRI +defines O +a O +structured O +method O +to O +link O +design S-FEAT +challenges O +to O +specific O +design S-FEAT +goals O +and O +focusses O +on O +the O +3 O +stages O +presented O +2.3 O +. O + + +Examples O +used O +will O +focus O +on O +AM-based O +manufacturing S-MANP +of O +metal S-MATE +products O +although O +the O +framework S-CONPRI +is O +generic O +in O +nature O +and O +can O +also O +be S-MATE +applied O +for O +other O +material/process O +combinations O +. O + + +3.1 O +AM S-MANP +suitability O +Additive B-MANP +manufacturing E-MANP +is O +a O +relatively O +new O +group O +of O +production S-MANP +processes S-CONPRI +, O +of O +which O +integration O +in O +industry S-APPL +is O +just O +starting O +to O +gain S-PARA +momentum O +. O + + +This O +momentum O +might O +be S-MATE +attributed O +to O +the O +claims O +of O +a O +future O +where O +AM S-MANP +will O +realize O +low O +cost O +efficient O +production S-MANP +of O +any O +shape O +in O +any O +material S-MATE +. O + + +Current O +industrial S-APPL +additive B-MANP +manufacturing E-MANP +practice O +shows O +that O +this O +bright O +future O +is O +yet O +to O +be S-MATE +. O + + +Timely O +identification O +of O +the O +match O +between O +design S-FEAT +task O +, O +product O +requirements O +and O +AM S-MANP +capabilities O +is O +needed O +. O + + +proposes O +to O +base O +this O +evaluation O +on O +the O +following O +criteria O +: O +Do O +available O +AM B-MATE +materials E-MATE +match O +the O +product O +application O +? O +Does O +the O +product B-FEAT +design E-FEAT +fit S-CONPRI +the O +build B-PARA +envelope E-PARA +of O +AM S-MANP +hardware O +? O +Can O +the O +product B-CHAR +functionality E-CHAR +improve O +when O +applying O +the O +following O +product B-FEAT +design E-FEAT +modifications O +or O +product O +opportunities O +? O +- O +Part O +customization O +- O +Lightweighting S-PRO +- O +Use O +of O +internal O +channels O +or O +structures O +- O +Functional O +integration O +- O +The O +use O +of O +designed S-FEAT +surface O +structures O +- O +The O +use O +of O +multi-material S-CONPRI +or O +gradient O +material S-MATE +parts O +. O + + +This O +is O +to O +evaluate O +the O +balance O +between O +the O +expected O +economic O +benefits O +of O +product B-FEAT +design E-FEAT +opportunities O +against O +, O +in O +most O +cases O +, O +the O +increased O +manufacturing B-CONPRI +costs E-CONPRI +. O + + +The O +dominant O +objectives O +established O +in O +that O +last O +paper O +are O +improved O +part O +performance S-CONPRI +, O +manufacturing S-MANP +and O +reduction S-CONPRI +of O +lead B-PARA +time E-PARA +. O + + +3.2 O +AM B-MATE +material E-MATE +, O +process S-CONPRI +and O +machine B-PARA +selection E-PARA +If O +AM S-MANP +potential O +has O +been O +established O +then O +AM S-MANP +resources O +should O +be S-MATE +identified O +, O +as S-MATE +these O +affect O +downstream O +design S-FEAT +choices O +. O + + +This O +includes O +the O +decision O +between O +direct O +AM-based O +production S-MANP +, O +indirect O +AM-based O +production S-MANP +or O +hybrid O +approaches O +. O + + +Also O +post-processing S-CONPRI +steps O +, O +needed O +to O +reach O +the O +required O +product O +characteristics O +, O +could O +be S-MATE +identified O +in O +this O +stage O +. O + + +For O +reasons O +of O +process B-CONPRI +chain I-CONPRI +selection E-CONPRI +, O +hybrid O +production S-MANP +processes S-CONPRI +can O +be S-MATE +subdivided O +based O +on O +the O +method O +used O +to O +generate O +the O +bulk O +of O +the O +geometry S-CONPRI +. O + + +From O +an O +industrial S-APPL +perspective O +some O +hybrid B-ENAT +technologies E-ENAT +use O +conventional O +technologies S-CONPRI +to O +create O +the O +bulk O +of O +the O +part O +and O +use O +AM S-MANP +as O +a O +subsequent O +production S-MANP +method O +to O +add O +detailing O +features O +. O + + +This O +sequencing O +of O +processes S-CONPRI +can O +have O +economic O +benefits O +or O +can O +result O +in O +parts O +that O +exceed O +the O +standard S-CONPRI +build B-PARA +chamber E-PARA +dimensions O +. O + + +An O +AM B-MANP +process E-MANP +that O +produces O +the O +bulk O +of O +the O +part O +using O +AM B-MANP +technologies E-MANP +and O +integrates O +subtractive S-MANP +technologies O +during O +the O +build S-PARA +process O +can O +be S-MATE +seen O +as S-MATE +the O +second O +group O +of O +hybrid O +processes S-CONPRI +. O + + +For O +metal S-MATE +parts O +this O +sub-group O +typically O +consists O +of O +DED-based B-ENAT +metal I-ENAT +additive I-ENAT +manufacturing I-ENAT +technologies E-ENAT +and O +with O +milling S-MANP +to O +post-process S-CONPRI +functional O +, O +internal O +or O +hard O +to O +reach O +surfaces S-CONPRI +. O + + +Based O +on O +interdependencies O +and O +sequencing O +of O +process S-CONPRI +steps O +, O +alternative O +processing O +chains O +can O +be S-MATE +generated O +and O +evaluated O +. O + + +Based O +on O +the O +design S-FEAT +requirements O +and O +selections O +already O +made O +, O +Bikas O +proposes O +to O +use O +screening O +and O +selection O +for O +AM B-MANP +processes E-MANP +based O +on O +criteria O +related O +to O +machine S-MACEQ +, O +material S-MATE +, O +process S-CONPRI +and O +part O +constraints O +. O + + +The O +Senvol B-ENAT +database E-ENAT +links O +AM B-MANP +processes E-MANP +to O +available O +materials S-CONPRI +and O +build S-PARA +envelops O +of O +industrial S-APPL +AM B-MACEQ +machines E-MACEQ +. O + + +Also O +the O +screening O +and O +ranking O +method O +proposed O +by O +Ashby O +can O +be S-MATE +applied O +for O +AM B-MATE +material E-MATE +and O +process B-CONPRI +selection E-CONPRI +. O + + +3.3 O +Initial O +cost B-CONPRI +estimation E-CONPRI +The O +decision O +to O +apply O +additive B-MANP +manufacturing E-MANP +for O +functional O +parts O +involves O +balancing O +the O +cost O +of O +additive B-MANP +manufacturing E-MANP +against O +the O +expected O +benefits O +during O +the O +design S-FEAT +, O +production S-MANP +and O +use O +phase S-CONPRI +. O + + +Although O +the O +cost/benefits B-CHAR +analysis E-CHAR +during O +the O +early O +design S-FEAT +stage O +is O +important O +, O +information O +required O +for O +detailed O +cost B-CONPRI +estimation E-CONPRI +is O +often O +missing O +. O + + +Knowledge O +on O +the O +expected O +product O +volume S-CONPRI +, O +production S-MANP +technology O +and O +required O +post-processing S-CONPRI +steps O +can O +give O +insight O +into O +the O +expected O +costs O +. O + + +For O +the O +early O +cost B-CONPRI +estimation E-CONPRI +of O +the O +production S-MANP +of O +the O +part O +, O +the O +costs O +are O +often O +expressed O +as S-MATE +cost O +per O +cm3 O +of O +the O +printed O +part O +. O + + +Most O +cost B-CONPRI +estimations E-CONPRI +found O +in O +literature O +only O +take O +the O +process S-CONPRI +related O +post-processing S-CONPRI +steps O +into O +consideration O +and O +additional O +costs O +must O +be S-MATE +taken O +into O +account O +when O +the O +functionality O +of O +the O +printed O +part O +has O +to O +be S-MATE +improved O +also O +. O + + +Most O +cost B-CONPRI +estimation E-CONPRI +calculations O +are O +based O +on O +the O +assumption O +of O +in-house O +production S-MANP +and O +an O +idealized O +representation O +of O +the O +AM B-MANP +process E-MANP +investigated O +. O + + +It O +is O +assumed O +that O +one O +AM B-MACEQ +machine E-MACEQ +is O +used O +for O +one O +product O +the O +whole O +life O +time O +of O +the O +machine S-MACEQ +, O +resulting O +in O +a O +high O +machine S-MACEQ +load O +. O + + +For O +example O +, O +Baumers O +presents O +a O +cost O +breakdown O +for O +metal B-MATE +powder E-MATE +bed S-MACEQ +based O +production S-MANP +of O +a O +stainless B-MATE +steel I-MATE +304L E-MATE +product O +with O +wire B-CONPRI +erosion E-CONPRI +support S-APPL +removal O +and O +de-powdering S-PRO +as S-MATE +post O +processing O +steps O +. O + + +Based O +on O +that O +analysis O +four O +major O +cost O +aspects O +were O +identified O +: O +Indirect O +cost O +, O +material S-MATE +costs O +, O +labor B-CONPRI +costs E-CONPRI +, O +and O +risk O +associated O +costs O +. O + + +Risk O +related O +costs O +include O +build B-CHAR +failures E-CHAR +and O +accounts O +for O +26 O +% O +of O +the O +AM S-MANP +unit O +cost O +. O + + +In O +the O +production S-MANP +of O +laser S-ENAT +based O +powder B-MANP +bed I-MANP +fusion E-MANP +system O +was O +compared O +to O +an O +electron B-CHAR +beam I-CHAR +variant E-CHAR +. O + + +The O +AM S-MANP +deposition O +rates O +are O +relatively O +slow O +and O +are O +identified O +as S-MATE +the O +major O +driver O +for O +the O +manufacturing B-CONPRI +costs E-CONPRI +. O + + +An O +alternative O +cost B-CONPRI +estimation E-CONPRI +study O +was O +presented O +by O +Baldinger O +and O +focusses O +on O +buy O +scenarios O +for O +AM B-MACEQ +parts E-MACEQ +. O + + +The O +cost B-CONPRI +estimations E-CONPRI +are O +based O +on O +reviews O +of O +the O +cost O +price O +for O +obtaining O +an O +AM B-MACEQ +part E-MACEQ +through O +commercial O +service O +providers O +and O +focused O +on O +both O +plastic B-MATE +and I-MATE +metallic I-MATE +parts E-MATE +. O + + +This O +research S-CONPRI +compared O +twenty-one O +AM S-MANP +service O +providers O +worldwide O +and O +found O +that O +the O +main O +cost O +drivers O +for O +this O +scenario O +are O +total O +volume S-CONPRI +of O +the O +order O +, O +packing O +density S-PRO +in O +the O +build B-PARA +envelope E-PARA +and O +the O +number O +of O +parts O +ordered O +. O + + +It O +seems O +that O +two O +strategies O +are O +applied O +by O +the O +companies S-APPL +; O +group O +A O +and O +B S-MATE +. O + + +Companies S-APPL +in O +group O +A O +use O +cost B-CONPRI +estimation E-CONPRI +strategies O +where O +part O +cost O +is O +almost O +independent O +of O +the O +number O +of O +parts O +ordered O +. O + + +These O +companies S-APPL +focus O +on O +optimizing O +the O +utilization O +of O +the O +build B-PARA +volume E-PARA +and O +have O +a O +slightly O +longer O +lead B-PARA +time E-PARA +. O + + +Companies S-APPL +in O +group O +B S-MATE +estimate O +cost O +for O +each O +order O +separately O +, O +have O +a O +large O +difference O +in O +cost O +per O +cm3 O +for O +order O +sizes O +one O +and O +one-hundred O +, O +but O +have O +a O +slightly O +shorter O +lead B-PARA +time E-PARA +. O + + +2 O +Post-processing S-CONPRI +can O +add O +considerably O +to O +the O +cost O +of O +AM B-MACEQ +parts E-MACEQ +. O + + +In O +many O +cost B-CONPRI +models E-CONPRI +only O +the O +costs O +of O +the O +post-processing S-CONPRI +steps O +directly O +related O +to O +the O +AM B-MANP +process E-MANP +are O +considered O +. O + + +For O +example O +, O +Lindeman O +calculated O +the O +post-processing S-CONPRI +costs O +for O +metal S-MATE +parts O +produced O +by O +L-PBF S-MANP +to O +be S-MATE +between O +4 O +and O +14 O +% O +. O + + +Simpson O +gives O +a O +more O +generic O +overview O +of O +post-processing S-CONPRI +cost O +for O +metal B-MANP +AM E-MANP +. O + + +3.4 O +Build S-PARA +job O +considerations O +Build S-PARA +jobs O +are O +usually O +considered O +during O +the O +phase S-CONPRI +of O +process B-CONPRI +planning E-CONPRI +. O + + +Process B-CONPRI +planning E-CONPRI +is O +one O +of O +the O +most O +important O +activities O +in O +manufacturing S-MANP +planning O +and O +is O +a O +pivotal O +link O +between O +design S-FEAT +and O +manufacturing S-MANP +. O + + +Compared O +to O +traditional O +processing O +, O +the O +context O +changes O +for O +Additive B-MANP +Manufacturing E-MANP +, O +but O +it O +is O +still O +within O +the O +manufacturing S-MANP +scope O +. O + + +Although O +AM B-MACEQ +machines E-MACEQ +are O +highly O +integrated O +and O +automatic O +, O +before O +enabling O +the O +building B-CHAR +process E-CHAR +for O +a O +machine S-MACEQ +, O +there O +are O +also O +some O +preparation O +tasks O +that O +should O +be S-MATE +done O +after O +receiving O +a O +design S-FEAT +model O +and O +its O +related O +production S-MANP +requirements O +. O + + +In O +this O +chain O +, O +optimization S-CONPRI +of O +the O +number O +of O +parts O +and O +their O +relative O +positioning O +in O +2D S-CONPRI +or O +in O +3D S-CONPRI +, O +is O +required O +when O +building O +multiple O +parts O +. O + + +Support B-FEAT +generation E-FEAT +could O +be S-MATE +achieved O +before O +or O +after O +the O +nesting S-CONPRI +stage O +. O + + +Layer S-PARA +building O +can O +then O +be S-MATE +normally O +achieved O +by O +slicing S-CONPRI +the O +3D S-CONPRI +set O +of O +nested O +or O +packed O +parts O +with O +their O +support B-FEAT +structures E-FEAT +. O + + +In O +some O +cases O +this O +stage O +is O +very O +different O +because O +the O +orientation S-CONPRI +of O +the O +part O +during O +the O +process S-CONPRI +changes O +. O + + +In O +such O +cases O +, O +the O +generation O +of O +the O +material S-MATE +deposition S-CONPRI +trajectory O +has O +to O +be S-MATE +achieved O +by O +taking O +into O +account O +non-planar O +layers O +. O + + +Alternative O +operations O +of O +adding O +and O +subtracting O +material S-MATE +and O +functions O +are O +sometimes O +considered O +to O +improve O +manufacturing S-MANP +efficiency O +, O +as S-MATE +an O +alternative O +solution S-CONPRI +to O +conventional O +methods O +like O +welding S-MANP +and O +machining S-MANP +. O + + +This O +approach O +, O +usually O +named O +hybrid B-CONPRI +manufacturing E-CONPRI +, O +needs O +specific O +AM B-MANP +process E-MANP +planning O +solutions O +in O +order O +to O +process S-CONPRI +from O +feature B-FEAT +decomposition E-FEAT +to O +a O +complete O +part O +recomposition O +, O +taking O +into O +account O +sequencing O +aspects O +and O +material S-MATE +excess O +regions O +for O +machining S-MANP +depending O +on O +expected O +dimensional O +and O +surface B-PARA +qualities E-PARA +. O + + +However O +, O +orientation S-CONPRI +and O +placement O +have O +to O +be S-MATE +validated O +with O +respect O +to O +global O +thermal O +conditions O +of O +manufacturing S-MANP +. O + + +As S-MATE +material O +and O +geometry S-CONPRI +are O +obtained O +at O +the O +same O +time O +, O +it O +is O +mandatory O +to O +validate O +the O +material S-MATE +quality O +induced O +by O +the O +input O +of O +energy O +during O +the O +material S-MATE +transformation O +and O +the O +consequences O +on O +the O +metallurgical S-APPL +properties O +of O +the O +part O +. O + + +Consequently O +, O +potential O +deformations S-CONPRI +are O +also O +calculated O +and O +some O +modifications O +of O +strategy O +are O +also O +possible O +in O +order O +to O +compromise O +between O +production S-MANP +performance B-CONPRI +parameters E-CONPRI +and O +part O +material B-CONPRI +properties E-CONPRI +. O + + +Some O +simulation S-ENAT +tools O +exist O +starting O +from O +the O +nested O +or O +packed O +global O +model S-CONPRI +integrating O +support B-FEAT +structures E-FEAT +. O + + +For O +some O +specific O +applications O +, O +process B-CONPRI +planning E-CONPRI +for O +AM S-MANP +may O +also O +generate O +assembly S-MANP +instructions O +. O + + +This O +occurs O +when O +a O +part O +'s O +size O +exceeds O +the O +build B-PARA +volume E-PARA +of O +a O +machine S-MACEQ +and O +it O +can O +be S-MATE +decomposed O +into O +several O +small O +sections O +to O +be S-MATE +made O +separately O +. O + + +3.5 O +AM B-MANP +process E-MANP +constraints O +Like O +with O +all O +technologies S-CONPRI +, O +there O +are O +many O +constraints O +to O +AM S-MANP +. O + + +This O +section O +will O +focus O +on O +four O +primary O +constraints O +that O +are O +common O +to O +all O +AM B-MANP +process E-MANP +categories O +and O +particularly O +relevant O +to O +the O +AM S-MANP +of O +metals S-MATE +: O +Speed O +of O +build S-PARA +, O +materials S-CONPRI +, O +build B-PARA +envelope E-PARA +, O +and O +accuracy S-CHAR +. O + + +Although O +AM S-MANP +used O +to O +be S-MATE +called O +Rapid B-ENAT +Prototyping E-ENAT +, O +one O +is O +now O +quite O +accustomed O +to O +having O +prototypes S-CONPRI +built O +quickly O +, O +but O +this O +is O +difficult O +to O +scale O +up O +. O + + +Furthermore O +, O +there O +is O +increasing O +demand O +for O +AM S-MANP +to O +be S-MATE +used O +in O +mainstream O +production S-MANP +, O +which O +requires O +much O +faster O +throughput S-CHAR +. O + + +AM S-MANP +has O +the O +benefits O +of O +geometric B-CONPRI +freedom E-CONPRI +, O +no O +minimum O +batch O +constraint O +and O +rapid O +change O +between O +batches O +, O +which O +meets O +many O +of O +the O +demands O +of O +modern O +manufacturing S-MANP +industry S-APPL +. O + + +The O +hunt O +is O +therefore O +on O +for O +faster O +AM B-MANP +technology E-MANP +. O + + +Many O +metal B-MANP +AM E-MANP +systems O +use O +lasers O +due O +to O +the O +demand O +for O +large O +amounts O +of O +focussed O +energy O +. O + + +The O +ideal O +situation O +would O +be S-MATE +to O +provide O +the O +required O +energy O +over O +an O +entire O +layer S-PARA +simultaneously O +but O +so O +far O +this O +has O +not O +been O +demonstrated O +to O +be S-MATE +possible O +. O + + +A O +compromise O +is O +the O +supply O +of O +multiple O +laser B-CONPRI +beams E-CONPRI +controlled O +simultaneously O +. O + + +Different O +lasers O +can O +be S-MATE +used O +to O +process S-CONPRI +different O +regions O +with O +finer B-CHAR +spots E-CHAR +being O +used O +for O +more O +detailed O +parts O +and O +wider O +beams O +to O +process S-CONPRI +bulk B-FEAT +regions E-FEAT +. O + + +Careful O +attention O +must O +be S-MATE +given O +to O +beam B-PARA +control E-PARA +so O +that O +they O +do O +n't O +affect O +each O +other O +, O +including O +the O +vapour O +trails O +from O +the O +molten B-MATE +metal E-MATE +regions O +. O + + +A O +contrasting O +approach O +to O +increasing O +throughput S-CHAR +for O +batch B-CONPRI +production E-CONPRI +of O +metal S-MATE +parts O +is O +the O +use O +of O +binder B-MANP +jetting I-MANP +methods E-MANP +or O +material B-MANP +extrusion E-MANP +with O +metal-filled O +binder S-MATE +materials O +. O + + +Such O +methods O +can O +achieve O +faster O +AM S-MANP +throughput O +and O +can O +be S-MATE +more O +easily O +scaled O +to O +create O +larger O +parts O +. O + + +The O +downsides O +relate O +to O +increases O +in O +post-processing S-CONPRI +times O +during O +heat B-MANP +treatment E-MANP +and O +during O +machine S-MACEQ +finishing S-MANP +, O +if O +required O +. O + + +These O +requirements O +are O +also O +driving O +the O +development O +of O +open-architecture O +, O +robot-based O +metal B-MANP +AM E-MANP +systems O +, O +like O +Wire O +Arc S-CONPRI +AM S-MANP +and O +Laser B-MANP +Metal I-MANP +Deposition E-MANP +. O + + +There O +is O +a O +huge O +and O +increasing O +number O +of O +metals S-MATE +and O +other O +materials S-CONPRI +used O +to O +make O +products O +. O + + +Most O +of O +these O +metals S-MATE +are O +carefully O +chosen O +to O +suit O +product O +requirements O +in O +strength S-PRO +, O +chemical B-PRO +resistance E-PRO +, O +thermal B-CONPRI +properties E-CONPRI +, O +processability O +, O +cost O +, O +etc O +. O + + +In O +comparison O +, O +there O +are O +a O +very O +few O +materials S-CONPRI +available O +in O +AM S-MANP +. O + + +All O +AM B-MANP +processes E-MANP +are O +suited O +to O +a O +subset O +of O +materials S-CONPRI +, O +the O +requirements O +for O +which O +can O +be S-MATE +very O +specific O +, O +like O +the O +need O +for O +photo-curable B-MATE +resins E-MATE +. O + + +Many O +materials S-CONPRI +can O +be S-MATE +formed O +by O +AM S-MANP +using O +thermal B-CONPRI +energy E-CONPRI +, O +but O +the O +amounts O +of O +energy O +vary O +considerably O +. O + + +It O +is O +not O +easy O +to O +melt S-CONPRI +metals O +in O +an O +AM B-MANP +process E-MANP +chamber O +specifically O +built O +for O +polymers S-MATE +for O +example O +. O + + +In O +addition O +, O +raw B-MATE +materials E-MATE +often O +need O +to O +be S-MATE +presented O +with O +well-defined O +morphology S-CONPRI +, O +like O +in O +filament S-MATE +or O +carefully-graded O +powder S-MATE +distributions S-CONPRI +. O + + +However O +, O +even O +within O +a O +smaller O +range S-PARA +of O +materials S-CONPRI +the O +processing O +requirements O +can O +still O +be S-MATE +difficult O +to O +specify O +. O + + +Metals S-MATE +within O +L-PBF B-MACEQ +systems E-MACEQ +for O +example O +will O +absorb O +laser B-CONPRI +energy E-CONPRI +in O +different O +proportions O +. O + + +The O +physics S-CONPRI +around O +phase S-CONPRI +change O +behaviour O +and O +effects O +in O +the O +molten O +state O +can O +all O +be S-MATE +quite O +different O +, O +significantly O +affecting O +the O +final O +material S-MATE +microstructure O +. O + + +Furthermore O +, O +much O +of O +this O +is O +significantly O +different O +from O +other O +manufacturing B-MANP +processes E-MANP +like O +casting S-MANP +and O +forging S-MANP +. O + + +All O +these O +need O +to O +be S-MATE +carefully O +studied O +before O +AM B-MATE +materials E-MATE +can O +be S-MATE +released O +to O +the O +market O +. O + + +As S-MATE +, O +AM S-MANP +becomes O +more O +widespread O +, O +one O +can O +expect O +more O +materials S-CONPRI +to O +become O +available O +but O +it O +is O +widely O +accepted O +that O +range S-PARA +of O +materials S-CONPRI +needs O +to O +be S-MATE +increased O +. O + + +Having O +said O +that O +, O +current O +AM B-MATE +materials E-MATE +like O +Ti-6Al-4V S-MATE +, O +316 O +stainless B-MATE +steel E-MATE +and O +CoCr B-MATE +alloys E-MATE +, O +etc O +. O + + +Many O +products O +are O +made O +from O +metals S-MATE +because O +of O +the O +needs O +for O +strength S-PRO +and O +accuracy S-CHAR +. O + + +In O +AM S-MANP +, O +part O +strength S-PRO +is O +often O +acceptable O +but O +part O +accuracy S-CHAR +is O +very O +often O +not O +. O + + +Metal S-MATE +parts O +are O +often O +mated O +with O +others O +and O +so O +the O +joining S-MANP +surfaces O +must O +align O +with O +each O +other O +. O + + +Most O +metal B-MANP +AM E-MANP +processes O +create O +parts O +with O +poor O +surface B-FEAT +finish E-FEAT +, O +usually O +no O +better O +than O +15 O +Rz O +and O +very O +often O +considerably O +worse O +. O + + +Machine S-MACEQ +finishing S-MANP +is O +therefore O +a O +common O +requirement O +as S-MATE +a O +post-process S-CONPRI +. O + + +Thermally O +induced O +distortion S-CONPRI +due O +to O +large O +temperature B-PARA +gradients E-PARA +during O +builds S-CHAR +and O +corresponding O +residual B-PRO +stresses E-PRO +is O +also O +a O +common O +phenomenon O +for O +metal B-MANP +AM E-MANP +. O + + +Features O +may O +therefore O +be S-MATE +imprecisely O +located O +and O +it O +may O +be S-MATE +better O +to O +provide O +a O +machining B-PARA +allowance E-PARA +in O +the O +initial O +AM B-MACEQ +part E-MACEQ +design O +. O + + +The O +introduction O +of O +hybrid O +machines S-MACEQ +that O +combine O +AM S-MANP +with O +subtractive S-MANP +and O +other O +manufacturing B-MANP +processes E-MANP +that O +operate O +in O +a O +sequential O +manner O +aim O +to O +overcome O +issues O +around O +part O +accuracy S-CHAR +. O + + +This O +is O +particularly O +useful O +where O +the O +requirement O +is O +internal O +to O +the O +part O +geometry S-CONPRI +and O +difficult O +to O +achieve O +as S-MATE +a O +post-process S-CONPRI +. O + + +3.6 O +AM S-MANP +post-processing O +constraints O +For O +much O +of O +the O +time O +that O +AM B-MANP +technology E-MANP +has O +been O +under O +development O +, O +post-processing S-CONPRI +has O +been O +something O +that O +you O +would O +rather O +not O +do O +and O +eliminate O +if O +possible O +. O + + +AM S-MANP +is O +now O +considered O +as S-MATE +something O +that O +can O +shorten O +process B-ENAT +chains E-ENAT +, O +not O +eliminate O +them O +entirely O +. O + + +Sometimes O +it O +may O +be S-MATE +appropriate O +to O +include O +a O +design S-FEAT +feature O +in O +the O +post-process S-CONPRI +rather O +than O +in O +the O +AM S-MANP +build O +itself O +. O + + +Post-processing S-CONPRI +tasks O +can O +be S-MATE +broadly O +divided O +in O +terms O +of O +those O +that O +can O +require O +significant O +manual O +intervention O +and O +those O +that O +can O +be S-MATE +carried O +out O +in O +a O +largely O +automated O +fashion S-CONPRI +. O + + +Of O +course O +this O +depends O +on O +the O +available O +technology S-CONPRI +to O +achieve O +these O +tasks O +as S-MATE +well O +as S-MATE +the O +level O +of O +investment O +, O +quality S-CONPRI +issues O +, O +volume S-CONPRI +of O +production S-MANP +, O +etc O +. O + + +Post-processing S-CONPRI +can O +also O +be S-MATE +considered O +in O +terms O +of O +those O +that O +need O +to O +be S-MATE +carried O +out O +due O +to O +the O +characteristics O +of O +the O +AM B-MANP +process E-MANP +used O +and O +those O +that O +are O +more O +aimed O +at O +enhancement O +of O +the O +AM B-MACEQ +parts E-MACEQ +. O + + +Like O +with O +the O +previous O +classification S-CONPRI +, O +there O +are O +overlaps O +or O +grey O +areas S-PARA +, O +around O +where O +exactly O +surface B-FEAT +finish E-FEAT +fits S-CONPRI +for O +example O +. O + + +This O +can O +also O +form O +part O +of O +the O +decision O +making O +in O +the O +process S-CONPRI +design S-FEAT +The O +AM B-MANP +technology E-MANP +specific O +processes S-CONPRI +mainly O +refer O +to O +the O +chosen O +build S-PARA +process O +and O +are O +aimed O +at O +providing O +a O +consistent O +quality S-CONPRI +of O +output O +suited O +to O +the O +general O +application O +. O + + +Many O +processes S-CONPRI +use O +support B-FEAT +structures E-FEAT +which O +have O +to O +be S-MATE +removed O +somehow O +, O +often O +requiring O +further O +finishing S-MANP +of O +regions O +where O +the O +supports S-APPL +connected O +with O +the O +part O +. O + + +Build B-CONPRI +strategies E-CONPRI +often O +revolve O +around O +minimising O +the O +amount O +of O +supports S-APPL +or O +avoiding O +key O +surfaces S-CONPRI +for O +aesthetic S-CONPRI +or O +accuracy S-CHAR +reasons O +. O + + +For O +many O +machines S-MACEQ +, O +flat O +and O +curved B-CONPRI +surfaces E-CONPRI +can O +appear O +different O +due O +to O +the O +stair-stepping O +phenomena O +. O + + +Abrasive S-MATE +or O +chemical O +finishing S-MANP +can O +be S-MATE +used O +to O +make O +these O +surfaces S-CONPRI +appear O +more O +uniform O +. O + + +A O +further O +post-processing S-CONPRI +task O +can O +revolve O +around O +excess O +material S-MATE +that O +may O +be S-MATE +adhering O +to O +the O +part O +surfaces S-CONPRI +. O + + +This O +may O +be S-MATE +a O +surrounding O +material S-MATE +that O +protects O +these O +surfaces S-CONPRI +or O +they O +may O +be S-MATE +residual O +material S-MATE +due O +to O +inconsistencies O +in O +the O +process S-CONPRI +, O +similar O +to O +flash S-MATE +in O +moulding S-CONPRI +operations O +. O + + +Although O +specific O +to O +powder-based O +AM B-MANP +technology E-MANP +, O +pore-filling O +and O +densification S-MANP +can O +also O +be S-MATE +application O +specific O +in O +terms O +of O +the O +material S-MATE +chosen O +to O +create O +a O +fully B-PARA +dense E-PARA +part O +. O + + +Densification S-MANP +can O +also O +be S-MATE +in O +the O +form O +of O +a O +furnace S-MACEQ +cycle O +, O +perhaps O +using O +hot B-MANP +isostatic I-MANP +pressing E-MANP +. O + + +Since O +some O +processes S-CONPRI +can O +be S-MATE +slightly O +heterogeneous S-CONPRI +in O +nature O +, O +accounting O +for O +shrinkage S-CONPRI +may O +require O +careful O +preparation O +and O +difficult O +to O +precisely O +control O +. O + + +Metal B-MANP +AM E-MANP +parts O +in O +particular O +are O +commonly O +used O +as S-MATE +fully O +functional O +parts O +. O + + +Choice O +of O +metal S-MATE +as S-MATE +a O +part O +material S-MATE +often O +relates O +to O +part O +strength S-PRO +and O +while O +precision S-CHAR +can O +represent O +a O +problem O +. O + + +Finish B-MANP +machining E-MANP +of O +key O +surfaces S-CONPRI +is O +often O +required O +, O +much O +in O +the O +same O +way O +as S-MATE +we O +would O +treat O +a O +casting S-MANP +. O + + +In O +these O +specific O +regions O +it O +may O +be S-MATE +appropriate O +to O +grow O +some O +of O +these O +surfaces S-CONPRI +in O +the O +design S-FEAT +phase O +to O +provide O +sufficient O +machining B-PARA +allowance E-PARA +to O +ensure O +high O +quality S-CONPRI +, O +accurate S-CHAR +results O +. O + + +It O +can O +be S-MATE +argued O +that O +there O +will O +be S-MATE +fewer O +of O +these O +surfaces S-CONPRI +to O +finish O +since O +it O +is O +common O +thinking O +that O +AM S-MANP +allows O +for O +part B-CONPRI +consolidation E-CONPRI +due O +to O +the O +ability O +to O +create O +internalised O +features O +. O + + +Although O +it O +is O +quite O +possible O +to O +print S-MANP +features O +like O +holes O +and O +screw-threads O +using O +AM S-MANP +, O +the O +precision S-CHAR +demands O +on O +such O +features O +can O +be S-MATE +very O +stringent O +and O +beyond O +the O +capacity S-CONPRI +of O +the O +AM B-MANP +technology E-MANP +used O +. O + + +It O +may O +be S-MATE +possible O +to O +save O +material S-MATE +by O +printing O +a O +hole O +but O +the O +time O +taken O +to O +finish O +a O +partially-made O +hole O +may O +be S-MATE +the O +same O +, O +or O +even O +longer O +, O +than O +to O +drill S-MACEQ +a O +complete O +hole O +in O +a O +blank S-MATE +space O +. O + + +This O +may O +be S-MATE +even O +more O +relevant O +if O +the O +hole O +contained O +a O +screw B-FEAT +thread E-FEAT +. O + + +Again O +, O +it O +can O +be S-MATE +argued O +that O +this O +adds O +complexity S-CONPRI +to O +the O +process S-CONPRI +decision-making O +, O +but O +it O +is O +pertinent O +when O +relating O +to O +heavily O +industrial S-APPL +applications O +. O + + +Coatings S-APPL +can O +go S-MATE +from O +simple S-MANP +paint O +jobs O +to O +improve O +aesthetics O +and O +seal O +against O +corrosive S-PRO +atmospheres O +through O +to O +providing O +significant O +functional O +properties S-CONPRI +, O +including O +bioactive B-CONPRI +features E-CONPRI +. O + + +These O +tasks O +may O +require O +significantly O +specialised O +facilities O +to O +those O +used O +in O +other O +production S-MANP +steps O +and O +as S-MATE +such O +may O +be S-MATE +outsourced O +. O + + +This O +could O +also O +be S-MATE +the O +case O +with O +other O +forms O +of O +chemical O +and O +heat B-MANP +treatment E-MANP +. O + + +Many O +AM B-MACEQ +parts E-MACEQ +can O +include O +complex O +internal O +or O +difficult O +to O +reach O +features O +. O + + +Should O +these O +features O +require O +finishing S-MANP +, O +it O +may O +be S-MATE +somewhat O +difficult O +to O +achieve O +a O +stable O +quality S-CONPRI +, O +even O +when O +using O +automated O +techniques O +. O + + +Some O +methods O +are O +under O +development O +to O +address O +these O +issues O +but O +more O +effort O +could O +be S-MATE +made O +and O +in O +fact O +most O +methods O +for O +surface B-MANP +finishing E-MANP +are O +highly O +manual O +in O +nature O +. O + + +3.7 O +AM S-MANP +quality O +, O +inspection S-CHAR +and O +certification O +Many O +AM S-MANP +applications O +can O +be S-MATE +found O +in O +highly O +regulated O +industries S-APPL +, O +like O +aerospace S-APPL +and O +medicine S-CONPRI +. O + + +This O +is O +even O +the O +case O +within O +the O +medical B-APPL +industry E-APPL +where O +one O +might O +expect O +such O +parts O +to O +be S-MATE +customised O +to O +suit O +a O +patient O +'s O +needs O +and O +anatomy O +. O + + +Quality B-CONPRI +control E-CONPRI +, O +inspection S-CHAR +and O +certification O +would O +therefore O +be S-MATE +conducted O +in O +a O +similar O +fashion S-CONPRI +to O +conventionally O +manufactured S-CONPRI +parts O +. O + + +Validation S-CONPRI +in O +these O +cases O +is O +as S-MATE +much O +about O +ensuring O +consistency S-CONPRI +in O +the O +manufacturing B-MANP +process E-MANP +and O +traceability O +of O +the O +supply B-CONPRI +chain E-CONPRI +as S-MATE +it O +is O +about O +the O +functionality O +of O +the O +part O +. O + + +The O +US O +Federal O +Food O +and O +Drug O +Administration O +is O +widely O +regarded O +as S-MATE +a O +key O +standards S-CONPRI +organisation O +around O +the O +world O +and O +many O +other O +countries O +base O +their O +own O +medical S-APPL +standards O +on O +the O +FDA S-MANS +. O + + +In O +2017 O +the O +FDA S-MANS +published O +guidelines O +related O +to O +technical O +use O +of O +AM S-MANP +in O +medical B-APPL +devices E-APPL +. O + + +These O +guidelines O +cover O +aspects O +related O +to O +AM-based O +design S-FEAT +of O +medical B-APPL +devices E-APPL +as S-MATE +well O +as S-MATE +how O +they O +are O +manufactured S-CONPRI +and O +validated O +. O + + +Certification O +of O +medical B-APPL +devices E-APPL +is O +required O +if O +there O +is O +a O +medium O +to O +high O +risk O +potential O +to O +the O +user O +. O + + +All O +implantable B-MACEQ +devices E-MACEQ +would O +be S-MATE +Class O +II O +or O +Class O +III O +, O +whilst O +AM S-MANP +produced O +foot B-MACEQ +orthotics E-MACEQ +are O +class O +I O +, O +requiring O +no O +premarket O +notification O +to O +prove O +they O +have O +been O +clinically O +tested O +certification O +) O +. O + + +The O +medical B-APPL +device E-APPL +manufacturer S-CONPRI +Stryker O +released O +their O +Spine O +Tritanium O +PL B-MATE +Cage E-MATE +around O +2016 O +. O + + +AM S-MANP +is O +used O +to O +create O +a O +complex O +porous S-PRO +geometry S-CONPRI +of O +titanium S-MATE +that O +aims O +to O +promote O +bone B-CONPRI +ingrowth E-CONPRI +in O +a O +lumbar B-CONPRI +spine I-CONPRI +fusion I-CONPRI +process E-CONPRI +. O + + +It O +is O +possible O +that O +introduction O +of O +this O +device O +may O +have O +been O +premature O +as S-MATE +it O +is O +believed O +that O +more O +experimental S-CONPRI +work O +is O +needed O +to O +establish O +the O +boundaries S-FEAT +for O +fatigue S-PRO +in O +AM S-MANP +lattice O +structures O +. O + + +It O +should O +be S-MATE +noted O +that O +similar O +porous S-PRO +and O +irregular O +lattice B-FEAT +structures E-FEAT +have O +been O +used O +in O +100,000s O +of O +successful O +acetabular O +hip B-APPL +implant E-APPL +cases O +. O + + +This O +issue O +of O +possible O +failure S-CONPRI +will O +be S-MATE +even O +more O +important O +should O +the O +device O +have O +a O +customisable O +geometry S-CONPRI +. O + + +The O +FDA S-MANS +refers O +to O +these O +as S-MATE +Customised O +or O +Humanitarian-use O +devices O +. O + + +These O +must O +also O +be S-MATE +limited O +in O +number O +and O +subject O +to O +significant O +medical S-APPL +board O +scrutiny O +. O + + +Medical S-APPL +authorities O +are O +currently O +at O +a O +significant O +cross-road O +as S-MATE +to O +how O +to O +provide O +custom B-APPL +implants E-APPL +for O +more O +widespread O +use O +. O + + +Aerospace S-APPL +certification O +, O +through O +the O +Federal O +Aviation O +Authority O +, O +also O +appears O +to O +be S-MATE +at O +a O +similar O +cross-road O +. O + + +However O +, O +it O +is O +noted O +that O +many O +parts O +already O +in O +use O +could O +be S-MATE +repaired O +when O +damaged O +using O +AM B-MANP +techniques E-MANP +, O +most O +specifically O +using O +Directed B-MANP +Energy I-MANP +Deposition E-MANP +. O + + +Many O +safety S-CONPRI +critical O +parts O +, O +like O +turbine B-APPL +blades E-APPL +, O +could O +be S-MATE +repaired O +in O +this O +way O +. O + + +Emphasis O +must O +therefore O +be S-MATE +on O +the O +AM B-MANP +process E-MANP +to O +ensure O +that O +functionality O +is O +maintained O +to O +a O +suitable O +standard S-CONPRI +. O + + +For O +example O +Air O +New O +Zealand O +are O +saving O +significant O +repair B-PARA +costs E-PARA +by O +making O +their O +own O +replacement O +seat O +tray-tables O +using O +materials S-CONPRI +like O +the O +flame-retardant O +ULTEM O +9085 O +polymer B-MATE +material E-MATE +from O +Stratasys S-APPL +. O + + +This O +is O +just O +part O +of O +a O +much O +wider O +push O +to O +demonstrate O +a O +sustainable S-CONPRI +industry S-APPL +for O +AM S-MANP +in O +aerospace S-APPL +. O + + +Many O +of O +the O +above O +issues O +for O +medical S-APPL +and O +aerospace S-APPL +are O +reflected O +in O +a O +more O +general O +form O +within O +the O +standards S-CONPRI +under O +development O +by O +ISO S-MANS +Technical O +Committee O +261 O +in O +conjunction O +with O +the O +ASTM O +F42 O +Group O +. O + + +Numerous O +techniques O +, O +like O +the O +printing O +of O +test O +coupons O +alongside O +critical O +components S-MACEQ +, O +machine B-PARA +calibration E-PARA +and O +material S-MATE +storage O +, O +etc O +. O + + +This O +has O +led S-APPL +to O +significant O +improvements O +in O +process B-CONPRI +monitoring E-CONPRI +within O +industrial S-APPL +scale O +AM B-MACEQ +machines E-MACEQ +. O + + +Many O +polymer-based O +systems O +have O +camera S-MACEQ +monitoring O +that O +allow O +determining O +the O +build B-PARA +status E-PARA +and O +remote O +intervention O +if O +problems O +can O +be S-MATE +seen O +. O + + +Many O +metal S-MATE +L-PBF B-MACEQ +systems E-MACEQ +also O +have O +optional O +laser B-PARA +power E-PARA +and O +melt-pool O +sensing S-APPL +to O +determine O +the O +state O +of O +part O +with O +the O +possibility O +of O +detecting O +a O +failure S-CONPRI +before O +it O +damages O +the O +machine S-MACEQ +. O + + +4 O +Tools S-MACEQ +and O +methods O +for O +designing O +lightweight S-CONPRI +parts O +Lightweight S-CONPRI +design S-FEAT +always O +has O +been O +a O +hot O +topic O +in O +structural B-CONPRI +engineering E-CONPRI +. O + + +AM B-MANP +processes E-MANP +can O +produce O +highly O +complex B-CONPRI +structures E-CONPRI +, O +constructed O +using O +both O +internally O +and O +externally O +very O +complex O +surfaces S-CONPRI +. O + + +More O +importantly O +, O +there O +is O +no O +clear O +relationship O +between O +the O +complexity S-CONPRI +of O +the O +part O +and O +the O +associated O +production B-CONPRI +cost E-CONPRI +, O +providing O +more O +freedom O +to O +explore O +the O +design B-CONPRI +space E-CONPRI +to O +its O +full O +extent O +. O + + +As S-MATE +a O +result O +, O +not O +only O +conventional O +lightweighting S-PRO +design S-FEAT +tools O +are O +used O +for O +AM S-MANP +, O +but O +also O +some O +new O +methods O +have O +emerged O +to O +fully O +grasp O +the O +benefits O +of O +AM S-MANP +. O + + +In O +relation O +to O +lightweight S-CONPRI +design S-FEAT +for O +AM S-MANP +, O +four O +groups O +of O +methods O +and O +tools S-MACEQ +can O +be S-MATE +identified O +: O +topology B-FEAT +optimization E-FEAT +, O +generative B-ENAT +design E-ENAT +, O +lattice B-FEAT +structure E-FEAT +filling O +, O +and O +bio-inspired B-FEAT +design E-FEAT +. O + + +4.1 O +Topology B-FEAT +optimization E-FEAT +Topology S-CONPRI +optimization S-CONPRI +was O +originally O +used O +for O +mechanical S-APPL +design S-FEAT +problems O +to O +answer O +a O +layout S-CONPRI +optimization O +question O +: O +how O +to O +put O +the O +right O +material S-MATE +in O +the O +right O +place O +of O +a O +pre-defined O +design B-CONPRI +space E-CONPRI +? O +The O +objective O +was O +to O +obtain O +the O +expected O +mechanical B-CONPRI +properties E-CONPRI +at O +minimum O +material S-MATE +use O +. O + + +The O +method O +uses O +numerical O +analysis O +and O +design S-FEAT +solution O +update O +steps O +in O +an O +iterative O +way O +, O +mostly O +guided O +by O +gradient O +computation S-CONPRI +or O +non-gradient B-CONPRI +discrete I-CONPRI +approaches E-CONPRI +. O + + +Traditionally O +, O +TO O +is O +driven O +by O +an O +objective O +function O +, O +minimizing O +or O +maximizing O +while O +being O +subjected O +to O +a O +set S-APPL +of O +predefined O +constraints O +, O +such O +as S-MATE +mass O +, O +deformation S-CONPRI +, O +vibration B-PARA +frequency E-PARA +, O +etc O +. O + + +Usually O +, O +continuous B-CONPRI +design I-CONPRI +variables E-CONPRI +are O +used O +to O +solve O +the O +TO O +problem O +in O +a O +discretized O +way O +. O + + +During O +this O +optimization S-CONPRI +iteration O +process S-CONPRI +, O +segments O +of O +the O +predefined O +initial O +design B-CONPRI +space E-CONPRI +are O +step S-CONPRI +by O +step S-CONPRI +removed O +so O +as S-MATE +to O +arrive O +at O +the O +minimal O +part O +volume/mass O +. O + + +Initial O +methods O +developed O +remove O +materials S-CONPRI +bit O +by O +bit O +using O +a O +strain S-PRO +energy O +distribution S-CONPRI +and O +a O +preset O +threshold O +value O +. O + + +More O +advanced O +methods O +use O +genetic B-CONPRI +algorithms E-CONPRI +that O +both O +add O +and O +remove O +materials S-CONPRI +. O + + +porous S-PRO +structures O +and O +lattice B-FEAT +structures E-FEAT +, O +but O +with O +relaxed O +mathematical S-CONPRI +constraints O +. O + + +As S-MATE +stated O +in O +, O +even O +current O +pure O +TO O +studies O +still O +face S-CONPRI +problems O +, O +such O +as S-MATE +efficiency O +, O +general O +applicability O +, O +ease O +of O +use O +, O +etc O +. O + + +Many O +of O +them O +only O +use O +relatively O +simple S-MANP +boundary B-CONPRI +conditions E-CONPRI +with O +limited O +constraints O +, O +e.g O +. O + + +When O +introducing O +extra O +AM S-MANP +related O +constraints O +such O +as S-MATE +support O +structures/overhangs O +, O +minimum O +printable O +features O +, O +anisotropic B-PRO +material I-PRO +properties E-PRO +, O +heat-transfer O +, O +thermal O +strain/stress O +into O +TO O +, O +this O +would O +result O +in O +more O +complex O +constraints O +or O +boundary B-CONPRI +conditions E-CONPRI +. O + + +This O +again O +would O +result O +in O +more O +difficulties O +for O +the O +TO O +process S-CONPRI +to O +find O +the O +solutionwith O +an O +effective O +and O +fast O +converging O +simulation S-ENAT +process S-CONPRI +. O + + +Attracted O +by O +the O +great O +potential O +of O +AM S-MANP +, O +researchers O +investigated O +TO O +with O +AM S-MANP +constraints O +, O +focussing O +on O +generating O +an O +optimal O +topologically B-CONPRI +lightweight E-CONPRI +material S-MATE +layout S-CONPRI +, O +to O +be S-MATE +printed O +without O +any O +manufacturing S-MANP +problems O +. O + + +Therefore O +, O +recent O +researches O +on O +TO O +for O +DfAM O +are O +geared O +towards O +print-ready O +designs S-FEAT +bridging S-CONPRI +challenges O +in O +design S-FEAT +and O +printing O +. O + + +One O +is O +to O +represent O +AM S-MANP +constraints O +with O +mathematical S-CONPRI +models O +and O +embed O +them O +into O +the O +TO O +iteration O +process S-CONPRI +. O + + +The O +other O +is O +to O +use O +TO O +to O +generate O +one O +or O +a O +set S-APPL +of O +finite O +reference O +design S-FEAT +solutions O +and O +apply O +design B-CONPRI +rules E-CONPRI +or O +experience O +to O +adapt O +these O +solutions O +manually O +or O +automatically O +to O +the O +AM S-MANP +constraints O +. O + + +This O +last O +category O +thus O +applies O +AM S-MANP +constraints O +in O +the O +post-processing S-CONPRI +stage O +of O +a O +given O +TO O +result O +. O + + +For O +ease O +of O +practice O +, O +most O +of O +the O +earliest O +works O +directly O +tried O +to O +use O +existing O +traditional O +TO O +, O +or O +other O +similar O +structure B-CONPRI +optimization E-CONPRI +methods O +, O +for O +lightweight S-CONPRI +design S-FEAT +in O +DfAM O +, O +without O +considering O +any O +AM S-MANP +constraints O +. O + + +The O +main O +reason O +for O +this O +was O +the O +assumption O +that O +AM S-MANP +can O +overcome O +manufacturing S-MANP +problems O +of O +TO O +generated O +structure S-CONPRI +as S-MATE +these O +structures O +would O +encounter O +in O +conventional B-MANP +manufacturing E-MANP +processes O +. O + + +Although O +the O +2D S-CONPRI +or O +3D S-CONPRI +TO O +produced O +structures O +could O +be S-MATE +printed O +by O +polymer S-MATE +AM B-MANP +processes E-MANP +, O +the O +direct O +application O +of O +the O +existing O +non-tailored O +TO O +may O +have O +difficulty O +using O +metallic B-MANP +AM E-MANP +. O + + +This O +is O +more O +complicated O +due O +to O +the O +multi-physical O +phenomena O +which O +can O +not O +be S-MATE +handled O +by O +relatively O +simple S-MANP +macro S-FEAT +mechanic O +and O +geometric O +based O +calculations O +. O + + +A O +large O +number O +of O +researchers O +began O +to O +associate O +specific O +AM S-MANP +constraints O +with O +their O +TO O +process S-CONPRI +, O +either O +as S-MATE +a O +TO O +process S-CONPRI +driver O +or O +a O +TO O +post-processor O +. O + + +However O +, O +their O +efforts O +are O +mainly O +focusing O +at O +2D S-CONPRI +problems O +with O +consideration O +of O +only O +one O +simple S-MANP +or O +limited O +subset O +of O +AM S-MANP +constraints O +, O +e.g O +. O + + +support S-APPL +volume O +or O +overhang B-PARA +area E-PARA +. O + + +For O +example O +Leary O +, O +describes O +a O +variant O +where O +traditional O +TO O +is O +conducted O +and O +a O +boundary B-CONPRI +decomposition I-CONPRI +algorithm E-CONPRI +is O +applied O +to O +detect O +and O +decompose O +the O +internal O +or O +external O +boundary S-FEAT +areas S-PARA +needing O +support B-FEAT +structures E-FEAT +. O + + +Then O +, O +the O +detected O +and O +decomposed O +relatively O +large O +cavities O +are O +filled O +with O +a O +set S-APPL +of O +smaller O +generated O +boundaries S-FEAT +so O +as S-MATE +to O +avoid O +the O +appearance O +of O +overhang S-PARA +as S-MATE +shown O +in O +7 O +. O + + +In O +that O +example O +even O +though O +a O +sophisticated O +decomposition S-PRO +algorithm S-CONPRI +was O +designed S-FEAT +and O +the O +use O +of O +support B-FEAT +structure E-FEAT +in O +printing O +was O +mostly O +avoided O +, O +the O +result O +is O +still O +far O +from O +optimal O +. O + + +2D S-CONPRI +results O +sometimes O +are O +quite O +useless O +in O +practice O +since O +the O +broadened O +design B-CONPRI +freedom E-CONPRI +exists O +in O +3D S-CONPRI +, O +not O +2D S-CONPRI +. O + + +Taking O +the O +TO O +example O +in O +7 O +, O +we O +can O +easily O +rotate O +the O +2D S-CONPRI +result O +around O +the O +X-axis O +in O +the O +3D S-CONPRI +and O +then O +we O +will O +find O +that O +there O +is O +no O +need O +of O +support B-FEAT +structures E-FEAT +. O + + +This O +means O +all O +the O +optimization S-CONPRI +steps O +are O +useless O +if O +we O +simply O +change O +the O +build B-PARA +orientation E-PARA +. O + + +The O +dilemma O +may O +be S-MATE +caused O +by O +two O +factors O +: O +the O +TO O +researcher O +has O +a O +lack O +of O +knowledge O +on O +the O +AM B-MANP +processes E-MANP +or O +the O +direct O +embedding O +of O +AM S-MANP +constraints O +with O +mathematical S-CONPRI +models O +in O +the O +2D S-CONPRI +or O +3D S-CONPRI +TO O +processes S-CONPRI +is O +quite O +tough O +. O + + +Readers O +may O +find O +more O +representative O +research S-CONPRI +on O +2D S-CONPRI +TO O +for O +AM S-MANP +lightweight O +design S-FEAT +in O +. O + + +To O +extend O +beyond O +2D S-CONPRI +, O +researchers O +adopted O +the O +decomposition S-PRO +method O +as S-MATE +proposed O +in O +and O +tried O +to O +extend O +it O +to O +3D S-CONPRI +TO O +for O +AM S-MANP +. O + + +However O +, O +like O +the O +2D S-CONPRI +cases O +presented O +above O +, O +reducing O +support B-FEAT +structures E-FEAT +is O +based O +on O +the O +compromise O +of O +adding O +more O +volume S-CONPRI +in O +the O +structure S-CONPRI +itself O +, O +which O +will O +decrease O +the O +global O +optimality O +. O + + +In O +addition O +, O +it O +is O +still O +not O +a O +real O +3D S-CONPRI +TO O +for O +AM S-MANP +design O +since O +the O +decomposition S-PRO +and O +overhang B-PARA +angle E-PARA +control O +with O +volume S-CONPRI +filling O +still O +uses O +2D B-PARA +operations E-PARA +. O + + +`For O +these O +investigations O +discussed O +above O +, O +the O +2D S-CONPRI +TO O +process S-CONPRI +is O +relatively O +easy O +to O +realize O +when O +only O +considering O +overhang S-PARA +or O +support B-FEAT +structure E-FEAT +AM S-MANP +constraint O +. O + + +However O +, O +complexity S-CONPRI +in O +AM S-MANP +is O +generally O +manifested O +in O +3D S-CONPRI +. O + + +Hence O +, O +a O +lot O +of O +recent O +research S-CONPRI +is O +directed O +towards O +the O +development O +of O +tailored O +3D S-CONPRI +TO O +methods O +for O +AM S-MANP +design O +. O + + +As S-MATE +is O +the O +case O +with O +the O +2D S-CONPRI +variants O +, O +these O +3D S-CONPRI +TO O +practices O +mainly O +focus O +on O +how O +to O +minimize O +overhang B-PARA +area E-PARA +or O +support S-APPL +volumes O +, O +as S-MATE +these O +constraints O +are O +relatively O +easy O +to O +integrate O +in O +the O +TO O +process S-CONPRI +. O + + +In O +, O +intensive O +discussions O +and O +experimental S-CONPRI +computations O +were O +conducted O +for O +the O +support S-APPL +volume O +constrained O +3D S-CONPRI +TO O +for O +AM S-MANP +design O +. O + + +Level O +set S-APPL +based O +Pareto S-CONPRI +is O +adopted O +to O +control O +and O +alter O +the O +shape O +boundary S-FEAT +where O +support B-FEAT +structure E-FEAT +may O +be S-MATE +required O +. O + + +It O +is O +hard O +to O +find O +a O +unique O +optimal O +solution S-CONPRI +, O +as S-MATE +each O +solution S-CONPRI +is O +a O +compromise O +between O +the O +constraints O +added O +. O + + +A O +set S-APPL +of O +Pareto S-CONPRI +solutions O +are O +provided O +, O +as S-MATE +seen O +in O +9 O +. O + + +As S-MATE +stated O +in O +, O +the O +elimination O +of O +support S-APPL +volume O +may O +be S-MATE +possible O +but O +will O +hardly O +work O +for O +real O +3D S-CONPRI +TO O +problems O +in O +AM S-MANP +design O +. O + + +Even O +though O +it O +is O +hard O +to O +totally O +avoid O +the O +use O +of O +support B-FEAT +structures E-FEAT +, O +researchers O +in O +still O +tried O +to O +obtain O +optimal O +3D S-CONPRI +TO O +structures O +without O +supports S-APPL +for O +several O +relative O +simple S-MANP +demonstration O +cases O +. O + + +To O +avoid O +the O +use O +of O +supports S-APPL +this O +study O +includes O +a O +simplified O +AM S-MANP +fabrication O +model S-CONPRI +, O +implemented O +as S-MATE +a O +layerwise O +filtering O +procedure O +into O +a O +topology B-FEAT +optimization E-FEAT +formulation O +. O + + +In O +this O +way O +, O +unprintable O +geometries S-CONPRI +are O +excluded O +from O +the O +design B-CONPRI +space E-CONPRI +, O +resulting O +in O +fully O +self-supporting S-FEAT +optimized O +designs S-FEAT +. O + + +Similar O +ideas O +can O +be S-MATE +found O +in O +where O +support S-APPL +constraint O +is O +applied O +. O + + +However O +, O +this O +as S-MATE +a O +compromise O +between O +the O +structural B-CHAR +performance E-CHAR +and O +global O +volume S-CONPRI +. O + + +The O +author O +of O +also O +understands O +that O +it O +would O +be S-MATE +hard O +to O +avoid O +the O +use O +of O +support B-FEAT +structure E-FEAT +, O +and O +proposed O +to O +optimize O +the O +3D B-CONPRI +structure E-CONPRI +with O +necessary O +support B-FEAT +structure E-FEAT +in O +parallel O +so O +as S-MATE +to O +obtain O +a O +better O +compromise O +. O + + +In O +this O +study O +, O +two O +separate O +density B-PRO +fields E-PRO +were O +proposed O +to O +describe O +the O +component S-MACEQ +and O +support B-FEAT +structure E-FEAT +layouts O +respectively O +. O + + +A O +simple S-MANP +critical O +overhang B-PARA +angle E-PARA +was O +imposed O +into O +the O +TO O +process S-CONPRI +as S-MATE +a O +constraint O +. O + + +The O +examples O +presented O +in O +10 O +and O +11 O +show O +that O +more O +volume S-CONPRI +used O +for O +supports S-APPL +, O +which O +can O +be S-MATE +seen O +as S-MATE +waste O +material S-MATE +, O +results O +in O +more O +material S-MATE +saved O +for O +the O +main O +structure S-CONPRI +. O + + +Actually O +, O +optimizing O +the O +functionality O +of O +supports S-APPL +for O +3D B-CONPRI +structures E-CONPRI +to O +be S-MATE +printed O +by O +metallic B-MANP +AM E-MANP +processes O +would O +be S-MATE +a O +more O +important O +goal O +than O +optimizing O +material S-MATE +savings O +, O +since O +the O +support B-FEAT +structures E-FEAT +in O +metallic B-MANP +AM E-MANP +processes O +have O +a O +profound O +impact S-CONPRI +on O +the O +final O +printing O +quality S-CONPRI +. O + + +For O +example O +, O +the O +build B-PARA +orientation E-PARA +has O +a O +direct O +impact S-CONPRI +on O +the O +TO O +process S-CONPRI +since O +it O +determines O +the O +TO O +solution S-CONPRI +space O +. O + + +In O +, O +the O +combined O +optimization S-CONPRI +of O +part O +topology S-CONPRI +, O +support B-FEAT +structure E-FEAT +and O +build B-PARA +orientation E-PARA +is O +investigated O +. O + + +The O +research S-CONPRI +into O +these O +complex O +interrelationships O +are O +limited O +to O +2D S-CONPRI +simple O +cases O +, O +where O +the O +impact S-CONPRI +of O +build B-PARA +orientation E-PARA +to O +TO O +and O +support S-APPL +optimization S-CONPRI +is O +clear O +. O + + +This O +implies O +that O +more O +work O +should O +be S-MATE +done O +in O +this O +direction O +for O +real O +3D S-CONPRI +industrial O +cases O +. O + + +If O +we O +take O +the O +slicing S-CONPRI +and O +toolpath B-PARA +planning E-PARA +as S-MATE +additional O +considerations O +into O +the O +3D S-CONPRI +TO O +process S-CONPRI +, O +the O +complexity S-CONPRI +would O +be S-MATE +increased O +even O +further O +. O + + +Finally O +, O +there O +are O +researchers O +working O +on O +level O +set S-APPL +TO O +methods O +to O +include O +AM B-MATE +material E-MATE +deposition O +path/toolpath O +as S-MATE +constraints O +to O +control O +sharp B-FEAT +angles E-FEAT +, O +deposition B-CHAR +gaps E-CHAR +, O +minimum O +inner O +hole B-FEAT +size E-FEAT +and O +minimum O +strut B-PARA +size E-PARA +in O +the O +topology S-CONPRI +formation O +process S-CONPRI +. O + + +If O +the O +manufacturability S-CONPRI +of O +an O +AM S-MANP +TO O +solution S-CONPRI +could O +not O +be S-MATE +guaranteed O +, O +any O +kind O +of O +optimal O +design S-FEAT +may O +bring O +no O +application O +value O +. O + + +In O +, O +manufacturability S-CONPRI +of O +the O +AM S-MANP +components O +and O +the O +cooling B-PARA +rate E-PARA +are O +considered O +as S-MATE +constraints O +and O +a O +shape O +based O +TO O +method O +is O +proposed O +. O + + +The O +manufacturability S-CONPRI +is O +checked O +for O +each O +layer S-PARA +. O + + +More O +recently O +, O +a O +new O +constraint O +function O +of O +the O +domain S-CONPRI +which O +controls O +the O +negative O +impact S-CONPRI +of O +porosity S-PRO +on O +elastic B-PRO +structures E-PRO +in O +the O +framework S-CONPRI +of O +shape O +and O +topology B-FEAT +optimization E-FEAT +is O +defined O +as S-MATE +a O +special O +shape O +derivative O +and O +proposed O +to O +embed O +into O +a O +level O +set S-APPL +TO O +process S-CONPRI +for O +AM S-MANP +lightweight O +design S-FEAT +. O + + +Even O +these O +methods O +can O +obtain O +a O +manufacturable S-CONPRI +TO O +layout S-CONPRI +, O +the O +boundaryproblems O +brought O +by O +a O +density S-PRO +based O +TO O +method O +still O +pose O +challenges O +for O +AM B-MANP +processes E-MANP +. O + + +Therefore O +, O +level O +set S-APPL +based O +methods O +or O +boundary B-CONPRI +decomposition E-CONPRI +with O +spline B-ENAT +interpolation E-ENAT +are O +usually O +used O +to O +do O +post-processing S-CONPRI +of O +the O +TO O +results O +. O + + +From O +the O +discussion O +of O +existing O +research S-CONPRI +presented O +above O +, O +there O +are O +still O +a O +lot O +of O +difficulties O +for O +the O +development O +of O +tailored O +TO O +methods O +and O +tools S-MACEQ +for O +AM S-MANP +lightweight O +design S-FEAT +. O + + +The O +work O +discussed O +is O +all O +based O +on O +a O +single O +material S-MATE +showing O +isotropic S-PRO +properties O +. O + + +However O +, O +with O +digital O +controlled O +deposition S-CONPRI +, O +theoretically O +AM S-MANP +can O +print S-MANP +different O +materials S-CONPRI +with O +different O +gradients O +for O +multi-functional B-CONPRI +structures E-CONPRI +. O + + +For O +example O +, O +jetting-based O +AM B-MANP +processes E-MANP +can O +print S-MANP +smart O +structures O +with O +multiple O +polymers S-MATE +. O + + +Hence O +, O +TO O +methods O +and O +tools S-MACEQ +to O +help O +designers O +to O +allocate O +different O +material S-MATE +to O +different O +regions O +with O +optimal O +quantities O +for O +an O +expected O +multi-functional B-CONPRI +structure E-CONPRI +become O +critical O +. O + + +In O +, O +a O +multivariate B-CONPRI +SIMP I-CONPRI +method E-CONPRI +is O +proposed O +to O +optimize O +an O +application O +dependent O +multi-material B-CONPRI +layout E-CONPRI +. O + + +The O +inclusion S-MATE +of O +multiple O +materials S-CONPRI +in O +the O +topology B-FEAT +optimization I-FEAT +process E-FEAT +has O +the O +potential O +to O +eliminate O +the O +narrow O +, O +weak O +, O +hinge-like O +sections O +that O +are O +often O +present O +in O +single-material O +compliant B-CONPRI +mechanisms E-CONPRI +. O + + +The O +demonstration O +example O +is O +the O +realization O +of O +a O +3-phase O +, O +multi-material B-CONPRI +2D I-CONPRI +compliant I-CONPRI +mechanism E-CONPRI +. O + + +One O +can O +foresee O +that O +if O +some O +work O +in O +the O +future O +can O +help O +realize O +multi-material S-CONPRI +topology O +optimization S-CONPRI +for O +3D B-FEAT +metal I-FEAT +structures E-FEAT +, O +then O +the O +complexity S-CONPRI +capability O +of O +AM S-MANP +can O +be S-MATE +further O +explored O +not O +only O +for O +lightweight S-CONPRI +design S-FEAT +but O +also O +for O +a O +combined O +multi-function B-FEAT +design E-FEAT +. O + + +Currently O +, O +metallic S-MATE +FDM S-MANP +process O +with O +metallurgical S-APPL +solidification O +as S-MATE +a O +post-process S-CONPRI +can O +theoretically O +realize O +the O +joining S-MANP +of O +multiple O +metals S-MATE +. O + + +There O +has O +been O +extensive O +exploration O +of O +TO O +for O +AM S-MANP +in O +diverse O +application O +examples O +either O +via O +standard S-CONPRI +TO O +tools S-MACEQ +or O +AM S-MANP +oriented O +tools S-MACEQ +. O + + +Reports O +have O +presented O +industrial S-APPL +design S-FEAT +cases O +to O +show O +the O +great O +potential O +of O +TO O +tools S-MACEQ +for O +AM S-MANP +lightweight O +design S-FEAT +. O + + +EADS O +presented O +a O +component S-MACEQ +for O +Airbus S-APPL +. O + + +However O +, O +there O +are O +no O +details O +about O +how O +to O +embed O +the O +AM S-MANP +constraints O +in O +the O +design B-CONPRI +process E-CONPRI +of O +the O +example O +. O + + +In O +the O +second O +example O +, O +a O +minimum O +AM S-MANP +feature O +size O +is O +embedded O +into O +the O +density S-PRO +based O +TO O +process S-CONPRI +and O +allows O +to O +define O +arbitrary O +objective O +functions O +for O +multi-physic O +fields O +, O +which O +is O +crucial O +for O +gradient-based O +, O +and O +thus O +all O +topology B-FEAT +optimization E-FEAT +. O + + +An O +example O +on O +the O +comparison O +study O +of O +designing O +a O +heat B-MACEQ +sink E-MACEQ +between O +traditional O +parametric B-CONPRI +optimization E-CONPRI +and O +AM S-MANP +oriented O +TO O +is O +presented O +in O +15 O +. O + + +Apart O +from O +density-based O +methods O +or O +level O +set S-APPL +methods O +, O +evolutionary O +TO O +methods O +were O +also O +investigated O +for O +AM S-MANP +design O +. O + + +In O +, O +a O +recently O +developed O +topology B-FEAT +optimization E-FEAT +method O +called O +Iso-XFEM S-CHAR +is O +used O +. O + + +This O +method O +is O +capable O +of O +generating O +high B-PARA +resolution E-PARA +topology O +optimized O +solutions O +using O +isolines/isosurfaces O +of O +a O +structural B-CHAR +performance E-CHAR +criterion O +. O + + +XFEM O +is O +similar O +to O +the O +BESO B-CONPRI +method E-CONPRI +, O +but O +removes O +or O +adds O +materials S-CONPRI +within O +elements S-MATE +. O + + +However O +, O +there O +is O +no O +description O +how O +the O +TO O +process S-CONPRI +is O +tailored O +for O +AM S-MANP +. O + + +It O +is O +not O +difficult O +to O +image S-CONPRI +that O +embedding O +AM S-MANP +constraints O +into O +an O +evolutionary O +TO O +process S-CONPRI +would O +be S-MATE +more O +difficult O +than O +that O +of O +density S-PRO +or O +level O +set S-APPL +based O +methods O +since O +the O +process S-CONPRI +uses O +discrete B-ENAT +optimization E-ENAT +. O + + +In O +addition O +, O +evolutionary O +based O +methods O +still O +have O +more O +difficulties O +in O +selection O +of O +stopping O +criteria O +or O +convergence B-CONPRI +analysis E-CONPRI +. O + + +As S-MATE +shown O +and O +discussed O +above O +, O +though O +some O +commercial O +tools S-MACEQ +are O +ready O +for O +use O +, O +very O +little O +AM S-MANP +constraints O +are O +considered O +. O + + +The O +current O +TO O +methods O +and O +commercialized O +tools S-MACEQ +still O +stay O +very O +close O +to O +the O +traditional O +TO O +tools S-MACEQ +. O + + +In O +addition O +, O +including O +both O +academic O +and O +industrial S-APPL +examples O +, O +those O +studies O +commonly O +lack O +experimental S-CONPRI +verification O +and O +there O +is O +no O +explicit O +agreement O +by O +the O +scientific O +community O +on O +their O +aspect B-FEAT +ratio E-FEAT +, O +which O +sets O +barriers O +for O +comparison O +and O +TO O +performance S-CONPRI +benchmarking O +. O + + +Therefore O +, O +there O +is O +still O +slot O +of O +work O +to O +be S-MATE +done O +for O +developing O +standard S-CONPRI +testing O +and O +experimental S-CONPRI +benchmarking O +examples O +. O + + +4.2 O +Generative B-ENAT +design E-ENAT +For O +the O +TO O +methods O +discussed O +above O +, O +people O +are O +trying O +to O +develop O +a O +fully O +automatic O +way O +to O +define O +a O +unique O +optimal O +lightweight B-MACEQ +structure E-MACEQ +design S-FEAT +. O + + +However O +, O +it O +is O +difficult O +to O +converge O +to O +the O +optimal O +solution S-CONPRI +, O +especially O +when O +multiple O +objectives O +are O +set S-APPL +. O + + +Hence O +, O +a O +compromise O +should O +be S-MATE +made O +to O +sample S-CONPRI +the O +solution S-CONPRI +space O +when O +the O +theoretical S-CONPRI +global O +optimal O +could O +not O +be S-MATE +located O +. O + + +This O +introduces O +another O +design S-FEAT +method O +for O +AM S-MANP +, O +generative B-ENAT +design E-ENAT +. O + + +GD S-MATE +is O +a O +set S-APPL +of O +methods O +that O +apply O +a O +generative O +system O +, O +rule-based O +or O +algorithm-based O +, O +to O +explore O +the O +design B-CONPRI +space E-CONPRI +and O +generate O +candidate O +solutions O +for O +designers O +. O + + +It O +is O +usually O +practiced O +for O +architectural O +design S-FEAT +. O + + +In O +structure B-FEAT +design E-FEAT +, O +we O +usually O +use O +the O +second O +method O +, O +applying O +evolutionary O +algorithms S-CONPRI +to O +sample S-CONPRI +and O +generate O +design S-FEAT +solutions O +that O +are O +close O +to O +predefined O +objectives O +and O +criteria O +. O + + +in O +, O +it O +is O +easy O +to O +adapt O +to O +evolutionary O +generative B-ENAT +design E-ENAT +for O +AM S-MANP +. O + + +Based O +on O +traditional O +TO O +methods O +, O +discretized O +version O +of O +the O +density S-PRO +based O +SIMP O +method O +, O +commercial O +software S-CONPRI +providers O +announced O +new O +functions O +of O +generative B-ENAT +design E-ENAT +for O +AM S-MANP +in O +their O +structure B-FEAT +design E-FEAT +tools O +and O +presented O +a O +couple O +of O +industrial S-APPL +design S-FEAT +cases O +with O +numerical O +results O +. O + + +For O +example O +, O +16 O +gives O +one O +design S-FEAT +example O +with O +a O +set S-APPL +of O +filtered O +candidate O +solutions O +. O + + +Similarly O +, O +as S-MATE +TO O +, O +GD S-MATE +is O +not O +new O +, O +but O +introducing O +AM S-MANP +constraints O +in O +traditional O +GD S-MATE +is O +still O +difficult O +. O + + +To O +solve O +this O +problem O +, O +recently O +, O +researchers O +developed O +a O +new O +evolutionary O +generative B-ENAT +design E-ENAT +method O +for O +AM S-MANP +lightweight O +design S-FEAT +to O +mimic S-MACEQ +termite O +behavior O +for O +volume S-CONPRI +construction S-APPL +. O + + +The O +proposed O +methodology S-CONPRI +uses O +multi-agent O +algorithms S-CONPRI +that O +simultaneously O +design S-FEAT +, O +structurally O +optimize O +and O +appraise O +the O +manufacturability S-CONPRI +of O +parts O +produced O +by O +additive B-MANP +manufacturing E-MANP +. O + + +Voxels S-CONPRI +are O +used O +to O +carry O +the O +design B-CONPRI +rules E-CONPRI +and O +manufacturing B-CONPRI +constraints E-CONPRI +for O +reasoning O +and O +combination O +during O +the O +geometry B-CONPRI +evolution E-CONPRI +process O +. O + + +However O +, O +this O +method O +considers O +support B-FEAT +structures E-FEAT +as S-MATE +the O +only O +AM S-MANP +constraint O +and O +has O +difficulty O +to O +include O +more O +. O + + +For O +generative B-ENAT +design E-ENAT +for O +AM S-MANP +, O +there O +is O +still O +a O +lot O +of O +work O +to O +do O +to O +include O +more O +AM S-MANP +constraints O +and O +develop O +more O +efficient O +decision O +making O +tools S-MACEQ +to O +help O +designers O +define O +optimization S-CONPRI +criteria O +and O +candidate O +solution S-CONPRI +ranking O +schemes O +. O + + +Some O +commercial O +tools S-MACEQ +are O +now O +available O +however O +. O + + +On O +the O +other O +hand O +, O +when O +doing O +structure B-FEAT +design E-FEAT +via O +generative B-ENAT +design E-ENAT +methods O +, O +the O +global O +optimum O +and O +computational O +cost O +should O +be S-MATE +given O +attention O +. O + + +Recently O +, O +researchers O +began O +to O +combine O +TO O +with O +generative B-ENAT +models E-ENAT +, O +e.g. O +, O +generative B-ENAT +adversarial I-ENAT +networks E-ENAT +, O +and O +proposed O +a O +new O +concept O +, O +deep B-FEAT +generative I-FEAT +design E-FEAT +, O +which O +owns O +the O +learning O +capability O +from O +the O +iteration O +process S-CONPRI +and O +existing O +design S-FEAT +data S-CONPRI +. O + + +These O +concepts O +hold O +the O +potential O +to O +better O +integrate O +existing O +AM S-MANP +processing O +knowledge O +into O +the O +generative B-ENAT +design E-ENAT +procedure O +to O +populate O +and O +explore O +more O +qualified O +AM S-MANP +design O +solutions O +. O + + +Certainly O +, O +generative B-ENAT +design E-ENAT +is O +not O +only O +used O +for O +topology B-FEAT +optimization E-FEAT +but O +also O +can O +be S-MATE +applied O +to O +form O +synthesis O +, O +lattice S-CONPRI +and O +surface B-FEAT +structure E-FEAT +optimization S-CONPRI +and O +trabecular B-FEAT +structures E-FEAT +as S-MATE +a O +way O +to O +explore O +more O +design B-CONPRI +freedom E-CONPRI +using O +AM S-MANP +. O + + +4.3 O +Lattice B-FEAT +structure E-FEAT +filling O +Directly O +removing O +or O +adding O +material S-MATE +in O +the O +design B-CONPRI +space E-CONPRI +to O +search O +for O +the O +global O +optimal O +material S-MATE +topology O +solution S-CONPRI +is O +common O +to O +TO O +and O +generative B-ENAT +design E-ENAT +methods O +and O +, O +as S-MATE +stated O +above O +, O +there O +are O +many O +difficulties O +. O + + +As S-MATE +a O +compromise O +, O +generative B-ENAT +design E-ENAT +can O +include O +human O +knowledge O +to O +interactively O +select O +the O +candidate O +solutions O +so O +as S-MATE +to O +reduce O +the O +problem O +complexity S-CONPRI +. O + + +Therefore O +, O +this O +is O +an O +indirect O +lightweight S-CONPRI +design S-FEAT +method O +for O +AM S-MANP +, O +which O +is O +also O +called O +lattice B-CONPRI +configuration E-CONPRI +, O +18 O +. O + + +To O +obtain O +lattice B-FEAT +structures E-FEAT +, O +generally O +we O +have O +two O +approaches O +: O +1 O +. O + + +Homogenization S-MANP +and O +2 O +. O + + +Density S-PRO +based O +mapping O +. O + + +The O +former O +homogenizes O +the O +lattice B-FEAT +structure E-FEAT +as S-MATE +representative O +volume S-CONPRI +elements S-MATE +, O +like O +solid O +material S-MATE +. O + + +The O +lattice B-FEAT +structures E-FEAT +are O +similar O +to O +the O +micro O +porous S-PRO +for O +the O +traditional O +solid O +structure S-CONPRI +in O +homogenized B-PRO +volumes E-PRO +. O + + +In O +this O +way O +, O +special O +properties S-CONPRI +should O +be S-MATE +assigned O +to O +the O +representative O +volumes O +and O +then O +we O +can O +apply O +traditional O +TO O +or O +other O +structure B-CONPRI +optimization E-CONPRI +methods O +to O +operate O +the O +special O +volumes O +. O + + +Representative O +researches O +that O +apply O +this O +method O +can O +be S-MATE +found O +in O +and O +19 O +illustrates O +the O +general O +workflow S-CONPRI +. O + + +The O +second O +approach O +maps O +the O +density S-PRO +values O +obtained O +from O +non-penalized O +TO O +results O +onto O +the O +explicit O +predefined O +lattice B-FEAT +structures E-FEAT +with O +optional O +adaptation O +to O +improve O +the O +approximation O +accuracy S-CHAR +of O +mechanical B-CONPRI +response E-CONPRI +. O + + +Based O +on O +this O +approach O +, O +uniform O +or O +graded O +lattice B-FEAT +structures E-FEAT +can O +be S-MATE +obtained O +. O + + +Example O +studies O +can O +be S-MATE +found O +in O +. O + + +20 O +shows O +an O +example O +where O +different O +predefined O +lattice B-FEAT +structures E-FEAT +are O +used O +to O +map O +the O +solid O +volume S-CONPRI +TO O +contours S-FEAT +. O + + +Although O +the O +two O +appraoches O +are O +not O +hard O +to O +understand O +, O +the O +operation O +and O +optimization S-CONPRI +of O +lattice B-FEAT +structures E-FEAT +is O +quite O +complicated O +, O +especially O +for O +large O +size O +structure B-FEAT +design E-FEAT +. O + + +The O +first O +problem O +is O +the O +representation/digitalization O +of O +lattice B-FEAT +structures E-FEAT +. O + + +Usually O +, O +solid O +representation O +or O +surface S-CONPRI +representation O +can O +be S-MATE +used O +for O +individual O +lattice B-FEAT +units E-FEAT +. O + + +But O +when O +filled O +into O +solid B-MACEQ +hulls E-MACEQ +, O +the O +number O +of O +lattice B-FEAT +units E-FEAT +is O +very O +big O +, O +which O +makes O +the O +CAD B-MANS +file E-MANS +difficult O +to O +operate O +, O +including O +sweeping O +, O +meshing/mapping O +and O +tessellation S-FEAT +. O + + +Secondly O +, O +when O +doing O +numerical B-ENAT +simulation E-ENAT +, O +the O +computation S-CONPRI +cost O +is O +much O +higher O +since O +many O +more O +finite B-CONPRI +element E-CONPRI +units O +are O +required O +. O + + +Thirdly O +, O +when O +filling O +lattice B-FEAT +structures E-FEAT +into O +solid B-MACEQ +hulls E-MACEQ +, O +one O +needs O +to O +use O +uniform O +lattice S-CONPRI +in O +trimming S-MANP +or O +non-uniform O +lattice S-CONPRI +with O +conformal O +interface S-CONPRI +, O +which O +depends O +on O +specific O +design S-FEAT +cases O +. O + + +Some O +researchers O +stated O +that O +conformal B-FEAT +lattice I-FEAT +structures E-FEAT +have O +better O +structural B-CHAR +performance E-CHAR +than O +that O +of O +uniformed O +. O + + +However O +, O +the O +operation O +of O +conformal B-FEAT +lattice E-FEAT +is O +more O +complicated O +and O +more O +difficult O +to O +control O +the O +manufacturability S-CONPRI +since O +they O +are O +not O +, O +like O +uniform O +lattices S-CONPRI +usually O +are O +, O +derived O +from O +benchmarking O +results O +. O + + +After O +that O +, O +the O +computation S-CONPRI +cost O +is O +a O +big O +issue O +, O +not O +only O +for O +the O +representation O +, O +but O +also O +for O +simulation S-ENAT +and O +manufacturing S-MANP +. O + + +That O +is O +why O +some O +researchers O +proposed O +to O +use O +kernel O +or O +symbolic O +representations O +for O +lattice B-FEAT +units E-FEAT +. O + + +Finally O +, O +the O +most O +important O +challenge O +is O +how O +to O +obtain O +the O +global O +optimum O +when O +using O +lattice B-FEAT +structures E-FEAT +. O + + +The O +approximation O +process S-CONPRI +further O +reduces O +the O +original O +design B-CONPRI +space E-CONPRI +and O +introduces O +more O +errors S-CONPRI +. O + + +Predefined O +and O +benchmarked O +limited O +lattice B-FEAT +structures E-FEAT +with O +fixed O +parameters S-CONPRI +are O +just O +a O +subset O +of O +the O +design S-FEAT +variants O +. O + + +Actually O +, O +even O +for O +predefined O +lattice B-FEAT +units E-FEAT +, O +there O +are O +more O +parameters S-CONPRI +that O +can O +be S-MATE +modified O +and O +adjusted O +to O +specific O +design S-FEAT +cases O +. O + + +Currently O +, O +many O +optimization S-CONPRI +studies O +for O +lattice B-FEAT +structures E-FEAT +are O +only O +limited O +to O +density S-PRO +, O +represented O +by O +strut B-PARA +diameter E-PARA +, O +and O +very O +little O +work O +focuses O +on O +parameter S-CONPRI +optimization S-CONPRI +and O +computation S-CONPRI +benchmarking O +for O +large O +lattice B-FEAT +structure I-FEAT +design E-FEAT +cases O +. O + + +Therefore O +, O +to O +be S-MATE +practical O +, O +current O +methods O +and O +tools S-MACEQ +from O +academic O +codes O +or O +commercial O +software S-CONPRI +tools O +all O +adopt O +knowledge O +based O +methods O +with O +TO O +methods O +for O +lattice B-FEAT +filling E-FEAT +. O + + +Usually O +, O +a O +lattice S-CONPRI +library O +is O +built O +to O +store O +predefined O +lattice B-FEAT +units E-FEAT +, O +benchmarked O +with O +numerical B-ENAT +simulation E-ENAT +or O +manufacturability S-CONPRI +analysis O +, O +and O +then O +a O +limited O +set S-APPL +of O +control O +options O +, O +concerning O +the O +lattice B-FEAT +unit I-FEAT +size E-FEAT +, O +strut B-PARA +diameter E-PARA +, O +layout S-CONPRI +orientation O +, O +etc. O +, O +are O +available O +for O +the O +filling O +operation O +. O + + +This O +is O +the O +main O +workflow S-CONPRI +of O +current O +tools S-MACEQ +. O + + +As S-MATE +said O +before O +, O +although O +relatively O +small O +or O +medium O +sized O +lattice B-FEAT +structures E-FEAT +can O +be S-MATE +obtained O +, O +one O +not O +only O +sacrifices O +the O +stiffness S-PRO +but O +also O +it O +may O +be S-MATE +more O +difficult O +to O +search O +for O +the O +original O +global O +optimal O +lightweight S-CONPRI +design S-FEAT +solution O +. O + + +If O +one O +only O +considers O +the O +lightweight S-CONPRI +effect O +in O +the O +design S-FEAT +, O +lattice B-FEAT +filling E-FEAT +may O +not O +be S-MATE +the O +optimal O +choice O +. O + + +However O +, O +lattice B-FEAT +structures E-FEAT +can O +bring O +other O +benefits O +, O +e.g O +. O + + +energy B-CHAR +absorption E-CHAR +and O +heat B-CONPRI +conduction E-CONPRI +that O +solid O +structures O +may O +not O +have O +. O + + +This O +would O +be S-MATE +an O +important O +factor O +to O +encourage O +research S-CONPRI +and O +practice O +in O +the O +lattice B-CONPRI +domain E-CONPRI +. O + + +5 O +Tools S-MACEQ +and O +methods O +for O +optimizing O +surface B-FEAT +structure E-FEAT +As S-MATE +discussed O +above O +, O +the O +global O +optimal O +for O +structure B-FEAT +design E-FEAT +is O +usually O +hard O +to O +obtain O +. O + + +Similar O +to O +lattice B-FEAT +structures E-FEAT +, O +which O +are O +made O +artificially O +, O +natural O +porous S-PRO +structures O +become O +a O +set S-APPL +of O +special O +elements S-MATE +to O +deal O +with O +specific O +design S-FEAT +requirements O +. O + + +Examples O +include O +among O +others O +lightweight S-CONPRI +infill S-PARA +, O +porous B-FEAT +scaffolds E-FEAT +, O +energy O +absorbers O +, O +micro-reactors S-MACEQ +, O +heat B-MACEQ +conductors E-MACEQ +, O +or O +self-adaptating O +structures O +. O + + +These O +structures/functionalities O +have O +been O +known O +for O +some O +time O +, O +but O +due O +to O +the O +ability O +of O +AM S-MANP +to O +produce O +these O +complex B-CONPRI +structures E-CONPRI +, O +they O +now O +become O +part O +of O +the O +solution S-CONPRI +principles O +that O +can O +be S-MATE +applied O +by O +the O +product O +designer O +. O + + +Hence O +, O +the O +mimicking O +and O +post-processing S-CONPRI +of O +natural O +inspired O +or O +randomly O +generated O +complex O +topologies S-CONPRI +become O +a O +new O +design S-FEAT +practice O +, O +which O +is O +called O +bio-inspired S-CONPRI +or O +biomimetic B-FEAT +design E-FEAT +. O + + +Its O +goal O +is O +to O +generate O +either O +lightweight B-MACEQ +structures E-MACEQ +with O +unexpected O +mechanical B-CONPRI +properties E-CONPRI +, O +similar O +to O +the O +lightweight S-CONPRI +design S-FEAT +methods O +mentioned O +in O +the O +last O +section O +, O +or O +multi-functional O +surface B-FEAT +structures E-FEAT +as S-MATE +addressed O +here O +. O + + +This O +type O +of O +design S-FEAT +is O +more O +difficult O +than O +that O +of O +relatively O +regular O +or O +conformal O +periodic O +lattice B-FEAT +structures E-FEAT +. O + + +Hence O +, O +the O +design S-FEAT +and O +simulation S-ENAT +focuses O +more O +on O +the O +form O +and O +shape O +of O +the O +surfaces S-CONPRI +while O +the O +mechanical B-CONPRI +properties E-CONPRI +and O +AM S-MANP +constraints O +are O +hard O +to O +consider O +due O +to O +their O +extreme O +complexity S-CONPRI +. O + + +Generally O +, O +two O +design S-FEAT +approaches O +, O +direct/indirect O +reproduction O +of O +natural O +topologies S-CONPRI +via O +reverse B-CONPRI +engineering E-CONPRI +and O +generic O +bio-inspiration S-CONPRI +using O +design B-CONPRI +rules E-CONPRI +or O +guidelines O +, O +are O +conducted O +in O +this O +domain S-CONPRI +. O + + +Driven O +by O +the O +wide O +application O +in O +the O +medical S-APPL +domain S-CONPRI +, O +scaffolds S-FEAT +and O +implants S-APPL +usually O +require O +similar O +internal O +surface B-FEAT +topologies E-FEAT +to O +the O +natural O +structures O +they O +are O +mimicing O +. O + + +cell S-APPL +spreading O +, O +strength S-PRO +distribution S-CONPRI +. O + + +The O +main O +methods O +to O +generate O +irregular O +porous S-PRO +structures O +with O +complex O +internal O +surface B-FEAT +topologies E-FEAT +are O +either O +filling O +or O +hollowing O +materials S-CONPRI +from O +an O +initial O +design S-FEAT +via O +specific O +algorithms S-CONPRI +. O + + +A O +representative O +filling O +method O +is O +Triply B-CONPRI +Periodic I-CONPRI +Minimal I-CONPRI +Surface E-CONPRI +, O +which O +is O +an O +implicit B-FEAT +surface E-FEAT +with O +intricate O +structures O +. O + + +Researchers O +add O +different O +operation B-ENAT +algorithms E-ENAT +to O +do O +the O +filling O +with O +these O +surface S-CONPRI +units O +so O +as S-MATE +to O +approximate O +the O +original O +CAD B-ENAT +model E-ENAT +'s O +skin O +. O + + +For O +the O +hollowing O +process S-CONPRI +, O +sub-volumes O +are O +generated O +via O +a O +set S-APPL +of O +specific O +algorithms S-CONPRI +within O +the O +original O +3D S-CONPRI +CAD O +model S-CONPRI +and O +used O +to O +do O +Boolean B-ENAT +operations E-ENAT +. O + + +A O +shape O +function O +is O +applied O +in O +to O +design S-FEAT +a O +pore S-PRO +model S-CONPRI +and O +then O +a O +subtractive S-MANP +Boolean B-ENAT +operation E-ENAT +is O +conducted O +between O +the O +pore S-PRO +and O +the O +original O +solid O +CAD B-ENAT +models E-ENAT +to O +obtain O +the O +final O +scaffold B-CONPRI +model E-CONPRI +. O + + +The O +process S-CONPRI +is O +illustrated O +in O +23 O +. O + + +Similarly O +, O +a O +Voronoi B-FEAT +tessellation E-FEAT +method O +is O +adopted O +in O +to O +do O +the O +material B-CONPRI +hollowing E-CONPRI +. O + + +Apart O +from O +the O +internal O +surface B-FEAT +structure E-FEAT +generation O +, O +external O +surface B-FEAT +structure E-FEAT +design S-FEAT +also O +attracts O +attention O +since O +using O +AM S-MANP +to O +print S-MANP +complex B-PRO +shapes E-PRO +for O +art S-APPL +or O +customized O +shapes O +has O +become O +popular O +. O + + +In O +artistic O +design S-FEAT +, O +T-splines S-FEAT +and O +Voronoi B-FEAT +tessellation E-FEAT +or O +predefined O +pattern S-CONPRI +bases O +are O +commonly O +used O +for O +defining O +complex O +surface B-FEAT +topologies E-FEAT +. O + + +In O +, O +a O +generative B-ENAT +design E-ENAT +method O +is O +applied O +to O +populate O +complex O +surface B-FEAT +topologies E-FEAT +via O +the O +use O +of O +predefined O +patterns O +. O + + +A O +recursive O +grammar O +is O +set S-APPL +for O +the O +generation O +of O +solid O +boundary S-FEAT +surface O +models O +, O +suitable O +for O +a O +variety O +of O +design S-FEAT +domains O +. O + + +Freeform B-CONPRI +3D E-CONPRI +surface O +topologies S-CONPRI +can O +be S-MATE +formed O +by O +a O +set S-APPL +of O +2-manifold O +polygonal O +sub O +meshes O +as S-MATE +shown O +in O +24 O +. O + + +However O +, O +the O +optimization S-CONPRI +for O +artistic O +design S-FEAT +is O +not O +so O +obvious O +. O + + +To O +develop O +special O +surface B-FEAT +structures E-FEAT +for O +personalized O +casts/braces O +, O +a O +new O +topology B-FEAT +optimization E-FEAT +method O +is O +proposed O +in O +. O + + +The O +novel O +TO O +method O +is O +based O +on O +thin O +plate O +elements S-MATE +on O +the O +two-dimensional S-CONPRI +manifold B-FEAT +surfaces E-FEAT +instead O +of O +3D B-FEAT +solid I-FEAT +elements E-FEAT +so O +as S-MATE +to O +reduce O +the O +computation S-CONPRI +cost O +for O +shape O +optimization S-CONPRI +. O + + +To O +decrease O +the O +threshold O +of O +customization O +of O +surface B-FEAT +structure E-FEAT +for O +the O +public O +when O +using O +AM S-MANP +, O +in O +, O +an O +interactive O +CAD S-ENAT +design O +tool S-MACEQ +is O +proposed O +. O + + +This O +tool S-MACEQ +uses O +predefined O +reference O +unit O +models O +with O +the O +inputs O +of O +user O +'s O +stylings O +to O +automatically O +generate O +customized O +hollowed O +surface B-FEAT +topologies E-FEAT +for O +fashion S-CONPRI +. O + + +Similar O +to O +other O +existing O +3D S-CONPRI +porous O +structure B-FEAT +design E-FEAT +methods O +, O +this O +tool S-MACEQ +is O +mainly O +based O +on O +Voronoi B-FEAT +tessellation E-FEAT +and O +curve O +fitting O +methods O +. O + + +26 O +shows O +the O +surface B-FEAT +topology E-FEAT +generation O +process S-CONPRI +. O + + +The O +main O +advantage O +of O +this O +tool S-MACEQ +is O +that O +its O +predefined O +reference O +models O +can O +be S-MATE +benchmarked O +and O +tested O +to O +ensure O +manufacturability S-CONPRI +, O +which O +will O +avoid O +problems O +during O +AM S-MANP +. O + + +Similar O +to O +structure S-CONPRI +topology O +optimization S-CONPRI +, O +surface B-FEAT +structure E-FEAT +design S-FEAT +and O +optimization B-CONPRI +face E-CONPRI +more O +difficulties O +in O +the O +modelling S-ENAT +, O +simulation S-ENAT +and O +embracing O +of O +AM S-MANP +constraints O +. O + + +This O +requires O +more O +work O +on O +the O +data S-CONPRI +structure O +, O +simulation S-ENAT +driven O +analysis O +and O +optimization S-CONPRI +. O + + +A O +lightweight S-CONPRI +and O +convenient O +analysis O +platform S-MACEQ +should O +be S-MATE +developed O +to O +efficiently O +acquire O +the O +calculation O +results O +for O +valid O +surface B-FEAT +structure E-FEAT +design S-FEAT +and O +optimization S-CONPRI +. O + + +Currently O +, O +there O +is O +very O +little O +research S-CONPRI +invesigating O +the O +design S-FEAT +guidelines O +of O +surface B-FEAT +structure E-FEAT +in O +AM S-MANP +. O + + +Most O +of O +the O +design S-FEAT +pratices O +are O +limited O +at O +non-metallic O +AM B-MANP +processes E-MANP +. O + + +However O +, O +there O +is O +an O +ugent O +need O +in O +the O +medical B-APPL +application E-APPL +domain S-CONPRI +where O +special O +functional O +surface B-FEAT +structures E-FEAT +are O +critical O +. O + + +27 O +presents O +a O +dental S-APPL +component S-MACEQ +where O +a O +bio-insipred B-FEAT +surface I-FEAT +structure E-FEAT +with O +a O +special O +treatment O +function O +is O +printed O +using O +L-PBF S-MANP +. O + + +Reverse B-CONPRI +engineering E-CONPRI +is O +used O +to O +generate O +the O +surface B-FEAT +structure E-FEAT +. O + + +However O +, O +the O +modelling S-ENAT +and O +function O +validation S-CONPRI +of O +such O +surface B-FEAT +structure E-FEAT +has O +not O +yet O +been O +studied O +. O + + +Hence O +, O +design S-FEAT +methods O +and O +modelling S-ENAT +tools O +should O +be S-MATE +developed O +to O +support S-APPL +the O +medical S-APPL +fabrication S-MANP +application O +for O +metal B-MANP +AM E-MANP +processes O +. O + + +6 O +Manual O +optimization S-CONPRI +of O +internal B-FEAT +part I-FEAT +topology E-FEAT +One O +of O +the O +enablers O +within O +AM S-MANP +is O +the O +ability O +to O +optimize O +the O +internal B-FEAT +part I-FEAT +topology E-FEAT +. O + + +In O +the O +previous O +sections O +automated O +topology B-FEAT +optimization E-FEAT +procedures O +for O +internal O +and O +surface S-CONPRI +part O +geometry S-CONPRI +were O +discussed O +. O + + +In O +many O +cases O +these O +automated O +methods O +are O +not O +required O +or O +applicable O +and O +other O +ways O +of O +defining O +the O +internal B-FEAT +part I-FEAT +topology E-FEAT +are O +used O +. O + + +With O +subtractive S-MANP +methods O +, O +structuring O +the O +product O +internal O +surfaces S-CONPRI +is O +hard O +or O +limited O +to O +very O +basic O +geometric O +features O +and O +production S-MANP +steps O +. O + + +Many O +of O +the O +commercially O +successful O +AM S-MANP +applications O +relate O +to O +internal O +transport S-CHAR +of O +media O +through O +the O +AM S-MANP +product O +. O + + +In O +relation O +to O +the O +additive B-MANP +manufacturing E-MANP +challenges O +, O +three O +subsets O +of O +AM S-MANP +features O +for O +internal O +transport S-CHAR +of O +media O +can O +be S-MATE +identified O +; O +macro B-FEAT +channel I-FEAT +geometry E-FEAT +, O +mini/micro B-CONPRI +channels E-CONPRI +and O +printed O +permeability S-PRO +. O + + +For O +macro B-FEAT +channel I-FEAT +geometry E-FEAT +, O +down-facing O +surfaces S-CONPRI +of O +the O +channel S-APPL +may O +experience O +stability S-PRO +problems O +during O +printing O +. O + + +For O +mini/micro B-CONPRI +channels E-CONPRI +, O +the O +feature B-PARA +size E-PARA +may O +be S-MATE +close O +to O +the O +limitations O +of O +the O +printing O +device O +which O +may O +result O +in O +walls O +failing O +to O +print S-MANP +, O +channels O +being O +blocked O +and O +cumbersome O +removal O +of O +excess O +print S-MANP +material S-MATE +. O + + +Finally O +, O +AM B-FEAT +permeable I-FEAT +structures E-FEAT +are O +created O +by O +ensuring O +process-induced O +porosity S-PRO +. O + + +Here O +the O +main O +challenge O +is O +finding O +stable O +process B-PARA +settings E-PARA +that O +allow O +for O +both O +the O +production S-MANP +of O +permeable B-FEAT +and I-FEAT +solid I-FEAT +structures E-FEAT +. O + + +6.1 O +Internal B-FEAT +geometry E-FEAT +at O +macro B-FEAT +level E-FEAT +In O +classical B-MANP +part I-MANP +production E-MANP +, O +channels O +for O +the O +transportation O +of O +viscous O +media O +are O +manufactured S-CONPRI +using O +conventional B-MANP +subtractive I-MANP +production I-MANP +methods E-MANP +like O +drilling S-MANP +, O +thus O +resulting O +in O +straight B-FEAT +channels E-FEAT +with O +round B-FEAT +cross I-FEAT +section E-FEAT +and O +sharp O +corners O +. O + + +With O +the O +use O +of O +AM S-MANP +the O +location O +and O +shape O +of O +these O +channels O +can O +be S-MATE +optimized O +. O + + +In O +L-PBF S-MANP +and O +at O +macro B-FEAT +level E-FEAT +, O +the O +top O +surfaces S-CONPRI +of O +the O +round O +holes O +have O +the O +tendency O +to O +sag O +or O +collapse O +, O +and O +the O +cross B-CONPRI +section E-CONPRI +of O +the O +channel S-APPL +has O +to O +be S-MATE +optimized O +. O + + +Thomas O +investigated O +the O +quality S-CONPRI +of O +produced O +channels O +and O +found O +that O +round O +holes O +up O +to O +a O +diameter S-CONPRI +of O +7mm O +could O +be S-MATE +printed O +with O +minimal O +problems O +. O + + +Above O +that O +, O +sagging O +of O +the O +overhanging O +surface S-CONPRI +is O +noticed O +, O +as S-MATE +well O +as S-MATE +possible O +curl O +, O +leading O +to O +recoater O +collisions O +. O + + +Other O +channel S-APPL +designs O +have O +been O +proposed O +. O + + +With O +the O +use O +of O +AM S-MANP +, O +cooling B-MACEQ +channels E-MACEQ +in O +injection B-MANP +molding E-MANP +inserts O +can O +be S-MATE +made O +conformal O +to O +the O +mold S-MACEQ +'s O +product O +surface S-CONPRI +and O +located O +in O +areas S-PARA +critical O +to O +the O +quality S-CONPRI +of O +the O +die S-MACEQ +'s O +function O +. O + + +Conformal B-MACEQ +cooling I-MACEQ +channels E-MACEQ +have O +been O +used O +to O +reduce O +cycle O +time O +and O +product B-CHAR +warpage E-CHAR +. O + + +Kitayama O +compared O +the O +effect O +of O +conformal B-MACEQ +cooling I-MACEQ +channels E-MACEQ +and O +conventional B-MACEQ +cooling I-MACEQ +channels E-MACEQ +for O +injection B-MANP +molding E-MANP +. O + + +Results O +showed O +an O +improvement O +of O +the O +cycle O +time O +of O +53 O +% O +and O +a O +reduction S-CONPRI +of O +product B-CHAR +warpage E-CHAR +by O +46 O +% O +compared O +to O +conventional B-MACEQ +cooling I-MACEQ +channels E-MACEQ +. O + + +Although O +conformal B-CONPRI +cooling E-CONPRI +for O +IM O +is O +widely O +researched O +and O +benefits O +have O +been O +proven O +, O +actual O +application O +in O +industry S-APPL +lags O +behind O +. O + + +It O +is O +considered O +beneficial O +only O +for O +complex O +plastic S-MATE +geometries S-CONPRI +, O +that O +are O +difficult O +to O +cool O +quickly O +and O +uniformly O +and O +for O +very O +high O +production S-MANP +volumes O +. O + + +H O +researched O +using O +conformal B-MACEQ +cooling I-MACEQ +channels E-MACEQ +in O +hot B-MANP +metal I-MANP +extrusion E-MANP +and O +also O +found O +significant O +production S-MANP +efficiency O +improvements O +. O + + +Current O +research S-CONPRI +into O +manifold O +design S-FEAT +has O +two O +main O +themes O +; O +mass O +reduction S-CONPRI +and O +flow O +optimization S-CONPRI +. O + + +Conventional O +methods O +create O +straight O +cooling B-MACEQ +channels E-MACEQ +, O +where O +connections O +result O +in O +pressure S-CONPRI +loss O +, O +increase O +the O +temperature S-PARA +and O +noise O +, O +which O +influences O +the O +reliability S-CHAR +and O +lifetime O +of O +the O +system O +. O + + +Ma O +investigated O +multiple O +geometry S-CONPRI +adjustments O +which O +can O +be S-MATE +made O +when O +using O +AM S-MANP +. O + + +AM S-MANP +enables O +the O +design S-FEAT +of O +fluent B-FEAT +corners E-FEAT +, O +smooth O +transitions O +between O +cooling B-MACEQ +channel E-MACEQ +diameters O +and O +the O +removal O +of O +unwanted O +drilling S-MANP +cavities O +, O +resulting O +in O +decrease O +in O +pressure S-CONPRI +loss O +by O +up O +to O +a O +factor O +of O +3 O +. O + + +6.2 O +Mini O +and O +Micro O +internal B-FEAT +geometry E-FEAT +in O +AM S-MANP +For O +mini O +and O +micro B-CONPRI +levels E-CONPRI +of O +geometry S-CONPRI +, O +used O +for O +transport S-CHAR +of O +fluidic O +media O +, O +the O +minimal O +feature B-PARA +size E-PARA +of O +the O +AM B-MANP +technology E-MANP +chosen O +is O +often O +the O +limiting O +factor O +. O + + +Thomas O +investigated O +some O +of O +these O +limits S-CONPRI +, O +for O +example O +as S-MATE +shown O +in O +31 O +. O + + +Printing O +of O +free O +standing O +walls O +and O +pilars O +is O +also O +a O +limiting O +factor O +as S-MATE +both O +the O +achievable O +minimal O +cross O +sectional O +area S-PARA +and O +maximal O +aspect B-FEAT +ratio E-FEAT +are O +limited O +. O + + +In O +sectors O +like O +heating S-MANP +, O +ventilation O +, O +and O +air O +conditioning O +, O +automotive S-APPL +, O +aero O +and O +electro-cooling S-CHAR +, O +heat B-MACEQ +exchangers E-MACEQ +play O +a O +vital O +role O +in O +the O +energy O +efficiency O +. O + + +The O +heat B-CONPRI +transfer E-CONPRI +performance O +is O +dependent O +on O +the O +surface B-PARA +area E-PARA +to O +volume S-CONPRI +ratio O +. O + + +Using O +mini O +and O +micro O +channels O +, O +this O +ratio O +can O +be S-MATE +increased O +, O +thus O +increasing O +the O +performance/mass O +ratio O +of O +the O +heat B-MACEQ +exchanger E-MACEQ +. O + + +Arie O +investigated O +the O +performance S-CONPRI +of O +Ti64 S-MATE +air-water O +manifold-microchannel O +heat B-MACEQ +exchangers E-MACEQ +. O + + +Key O +to O +the O +intended O +efficiency O +increase O +was O +the O +production S-MANP +of O +thin O +fins O +with O +high B-FEAT +aspect I-FEAT +ratio E-FEAT +'s O +. O + + +Non O +AM-based O +production S-MANP +alternatives O +were O +considered O +slow O +, O +costly O +, O +not O +able O +to O +meet O +the O +aspect B-FEAT +ratios E-FEAT +or O +not O +possible O +to O +produce O +in O +the O +desired O +material S-MATE +. O + + +Compared O +to O +classical O +designs S-FEAT +the O +manifold O +micro-channel O +show O +respectively O +30performance O +increase O +in O +gravimetric O +heat B-PARA +transfer I-PARA +density E-PARA +. O + + +It O +was O +argued O +that O +inaccuracy O +of O +the O +production S-MANP +process S-CONPRI +reduced O +the O +manifold O +performance S-CONPRI +as S-MATE +some O +of O +the O +channels O +were O +blocked O +and O +the O +ideal O +fin O +thickness O +of O +150 O +could O +not O +be S-MATE +realized O +. O + + +Mei O +put O +the O +use O +of O +AM S-MANP +to O +a O +case B-CONPRI +study E-CONPRI +where O +they O +produced O +a O +highly O +integrated O +catalytic B-MACEQ +burner E-MACEQ +for O +auxiliary B-MACEQ +power I-MACEQ +units E-MACEQ +based O +on O +PEM-fuel B-MACEQ +cells E-MACEQ +. O + + +This O +resulted O +in O +a O +volume B-CONPRI +reduction E-CONPRI +of O +70 O +% O +from O +41L O +to O +11L O +and O +a O +weight S-PARA +reduction S-CONPRI +of O +60 O +% O +from O +30 O +kg O +to O +12 O +kg O +. O + + +6.3 O +Printed O +permeability S-PRO +Calignano O +investigated O +the O +relation O +between O +material S-MATE +and O +process S-CONPRI +properties O +to O +fabricate S-MANP +both O +stochastic S-CONPRI +and O +non-stochastic B-FEAT +porous I-FEAT +structures E-FEAT +. O + + +Parts O +were O +created O +using O +three O +different O +scanning B-CONPRI +strategies E-CONPRI +scanning S-CONPRI +lines O +, O +and O +rotating O +scanning B-PARA +patterns E-PARA +for O +each O +new O +layer S-PARA +) O +and O +by O +modifying O +the O +hatch B-PARA +distance E-PARA +hd O +. O + + +It O +was O +found O +that O +hatch B-PARA +distances E-PARA +in O +excess O +of O +0.20 O +mm S-MANP +were O +needed O +to O +be S-MATE +able O +to O +create O +distinct O +walls O +. O + + +Below O +that O +, O +wall O +formation O +was O +hampered O +by O +agglomeration O +of O +powder B-MATE +particles E-MATE +. O + + +The O +rotating O +scanning B-CONPRI +strategy E-CONPRI +using O +hd O +of O +0.5 O +mm S-MANP +resulted O +in O +stochastic S-CONPRI +, O +foam-like B-CONPRI +structures E-CONPRI +, O +both O +with O +open O +and O +closed O +pores S-PRO +and O +porosity S-PRO +values O +of O +43Collins O +investigated O +the O +use O +and O +production S-MANP +of O +a O +permeable B-BIOP +membrane E-BIOP +heatsink O +produced O +by O +AM S-MANP +. O + + +In O +order O +to O +find O +the O +process B-PARA +settings E-PARA +that O +will O +result O +in O +permeable O +walls O +, O +test O +cubes O +were O +printed O +with O +fins O +on O +top O +with O +a O +height O +of O +1 O +mm S-MANP +and O +wall B-FEAT +thicknesses E-FEAT +varying O +from O +150 O +to O +500 O +The O +core S-MACEQ +of O +the O +cubes O +was O +used O +to O +determine O +bulk B-PRO +porosity E-PRO +. O + + +All O +fins O +below O +300 O +failed O +to O +print S-MANP +while O +300 O +fins O +were O +successfully O +printed O +only O +for O +process B-PARA +settings E-PARA +resulting O +in O +low O +bulk B-PRO +porosity E-PRO +. O + + +The O +400 O +and O +500 O +fins O +printed O +successfully O +for O +all O +process B-PARA +settings E-PARA +used O +. O + + +7 O +Functional B-CONPRI +material I-CONPRI +complexity E-CONPRI +The O +design B-CONPRI +process E-CONPRI +can O +also O +consider O +that O +to O +solve O +some O +technological O +problems O +or O +to O +optimise O +some O +local O +properties S-CONPRI +, O +some O +processes S-CONPRI +allow O +building O +up O +multi-material S-CONPRI +objects O +or O +objects O +with O +material B-CONPRI +gradients E-CONPRI +. O + + +In O +some O +cases O +there O +has O +been O +significant O +progress O +although O +it O +increases O +the O +complexity S-CONPRI +of O +simulation S-ENAT +and O +of O +process B-CONPRI +planning E-CONPRI +of O +AM-based O +value O +chains O +. O + + +In O +addition O +, O +there O +are O +no O +standard S-CONPRI +functionalities O +in O +the O +commercial O +software S-CONPRI +that O +could O +support S-APPL +such O +definitions O +, O +which O +must O +be S-MATE +managed O +manually O +or O +directly O +defined O +on O +the O +legacy O +software S-CONPRI +associated O +to O +specific O +processes S-CONPRI +. O + + +One O +basic O +functionality O +relates O +to O +material B-CONPRI +gradient E-CONPRI +of O +polymers S-MATE +and O +elastomer S-MATE +parts O +manufactured S-CONPRI +with O +voxel-based O +technologies S-CONPRI +. O + + +The O +design B-CONPRI +process E-CONPRI +criticaly O +addresses O +the O +local O +characteristics O +of O +the O +material S-MATE +for O +each O +voxel S-CONPRI +of O +the O +object O +. O + + +Another O +feature S-FEAT +that O +is O +mostly O +used O +for O +metallic B-MACEQ +parts E-MACEQ +is O +lattice B-FEAT +structure E-FEAT +that O +could O +help O +in O +designing O +internal B-PRO +structures E-PRO +used O +to O +support S-APPL +the O +parts O +but O +also O +to O +minimize O +weight S-PARA +with O +respect O +to O +given O +functionalities O +. O + + +In O +highly O +developed O +sectors O +for O +metal S-MATE +fabrication S-MANP +, O +in O +particular O +aeronautic O +and O +medical B-APPL +applications E-APPL +, O +AM B-MANP +processes E-MANP +use O +many O +metals S-MATE +like O +stainless B-MATE +steel E-MATE +, O +titanium S-MATE +, O +aluminum S-MATE +, O +cobalt B-MATE +chrome E-MATE +and O +nickel B-MATE +alloys E-MATE +. O + + +An O +important O +feature S-FEAT +of O +metal S-MATE +is O +its O +microstructure S-CONPRI +. O + + +For O +a O +given O +metal S-MATE +, O +there O +can O +be S-MATE +a O +variety O +of O +microstructural S-CONPRI +features O +that O +affect O +its O +mechanical B-CONPRI +properties E-CONPRI +. O + + +The O +size O +of O +grains S-CONPRI +, O +micro-segregation S-CONPRI +of O +alloying B-MATE +elements E-MATE +, O +phases O +within O +the O +metal S-MATE +and O +size O +of O +dendrites S-BIOP +relates O +to O +the O +tensile B-PRO +strength E-PRO +and O +ductility S-PRO +. O + + +During O +the O +AM B-MANP +process E-MANP +, O +the O +microstructure S-CONPRI +is O +formed O +in-situ S-CONPRI +and O +would O +depend O +obviously O +on O +the O +process B-CONPRI +parameters E-CONPRI +and O +material S-MATE +used O +. O + + +The O +microstructure S-CONPRI +of O +metals S-MATE +determines O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +part O +such O +as S-MATE +yield O +strength S-PRO +, O +ductility S-PRO +and O +hardness S-PRO +. O + + +Varying O +the O +process B-CONPRI +parameters E-CONPRI +like O +the O +energy O +sources O +and O +fill O +patterns O +can O +lead S-MATE +to O +differences O +in O +grain B-CONPRI +structure E-CONPRI +. O + + +Such O +issues O +are O +both O +a O +very O +important O +potential O +advantage O +but O +also O +an O +additional O +complexity S-CONPRI +when O +considering O +the O +AM S-MANP +design O +process S-CONPRI +. O + + +Functionally B-MATE +Graded I-MATE +Materials E-MATE +are O +defined O +as S-MATE +a O +class B-MATE +of I-MATE +advanced I-MATE +materials E-MATE +characterised O +by O +spatial B-FEAT +variation E-FEAT +in O +material S-MATE +composition S-CONPRI +across O +the O +volume S-CONPRI +, O +contributing O +to O +corresponding O +changes O +in O +material B-CONPRI +properties E-CONPRI +in O +line O +with O +the O +functional O +requirements O +. O + + +The O +multi-functional O +status O +of O +a O +component S-MACEQ +is O +tailored O +through O +the O +material S-MATE +allocation O +at O +microstructure S-CONPRI +to O +meet O +an O +intended O +performance S-CONPRI +requirement O +. O + + +Microstructural S-CONPRI +gradation O +contributes O +to O +a O +smooth O +transition S-CONPRI +between O +properties S-CONPRI +of O +the O +material S-MATE +. O + + +Another O +approach O +is O +based O +on O +Young O +'s O +modulus O +variation S-CONPRI +for O +the O +determination O +of O +the O +mechanical S-APPL +propertiesgradients O +, O +and O +consequently O +material S-MATE +microstructure O +or O +composition S-CONPRI +variations O +. O + + +Another O +interesting O +proposition O +comes O +from O +who O +proposes O +an O +interpretation O +of O +the O +material S-MATE +with O +intermediary B-MACEQ +density E-MACEQ +as S-MATE +a O +lattice B-FEAT +cellular I-FEAT +structure E-FEAT +that O +could O +be S-MATE +composed O +by O +several O +materials S-CONPRI +. O + + +Homogeneous B-PRO +FGM I-PRO +composition E-PRO +creates O +porosity S-PRO +or O +density B-PRO +gradients E-PRO +by O +modulating O +the O +spatial B-FEAT +microstructure E-FEAT +or O +morphology S-CONPRI +of O +lattice B-FEAT +structures E-FEAT +across O +the O +volume S-CONPRI +of O +material S-MATE +through O +a O +voxel S-CONPRI +approach O +. O + + +This O +method O +can O +be S-MATE +called O +densification S-MANP +FGMThe O +directionality O +, O +magnitude S-PARA +and O +density B-ENAT +concentration E-ENAT +of O +the O +material S-MATE +substance O +in O +a O +monolithic S-PRO +anisotropic B-MATE +composite E-MATE +structure O +contributes O +to O +functional O +deviations O +such O +as S-MATE +stiffness O +and O +elasticity S-PRO +. O + + +The O +gradual O +transition S-CONPRI +from O +a O +solid O +exterior O +to O +a O +porous S-PRO +core S-MACEQ +leads O +to O +an O +excellent O +strength-to-weight O +ratio O +. O + + +Even O +if O +new O +standards S-CONPRI +are O +partly O +addressing O +such O +models O +, O +the O +development O +of O +mathematical S-CONPRI +representations O +useful O +for O +both O +design S-FEAT +and O +simulation S-ENAT +is O +still O +in O +progress O +. O + + +FGM S-MANP +can O +also O +address O +the O +aspect O +of O +multi-materiality O +through O +an O +approach O +of O +dynamically O +composed O +gradients O +or O +complex B-CONPRI +morphology E-CONPRI +. O + + +The O +geometric O +and O +material S-MATE +arrangement O +of O +the O +phases O +controls O +the O +overall O +functions O +and O +properties S-CONPRI +of O +the O +FGM S-MANP +component S-MACEQ +. O + + +Multi-material S-CONPRI +FGM S-MANP +seeks O +to O +improve O +the O +interfacial B-MATE +bond E-MATE +between O +dissimilar O +or O +incompatible O +materials S-CONPRI +. O + + +Distinct O +boundaries S-FEAT +can O +be S-MATE +removed O +through O +a O +heterogeneous S-CONPRI +compositional O +transition S-CONPRI +from O +a O +dispersed O +to O +an O +interconnected O +second O +phase S-CONPRI +structure O +, O +graded O +layers O +with O +discrete O +compositional O +parameters S-CONPRI +or O +smooth O +concentration O +gradients O +. O + + +Once O +again O +, O +material S-MATE +models O +are O +too O +complicated O +to O +be S-MATE +used O +for O +simulation S-ENAT +. O + + +Demonstration O +and O +validation S-CONPRI +during O +the O +design S-FEAT +phase O +of O +expected O +characteristics O +is O +still O +to O +be S-MATE +expected O +in O +a O +general O +manner O +. O + + +But O +this O +is O +an O +interesting O +issue O +to O +be S-MATE +expected O +because O +, O +by O +fusing S-CONPRI +one O +material S-MATE +to O +another O +three-dimensionally S-CONPRI +using O +a O +dynamic S-CONPRI +gradient O +, O +the O +printed O +component S-MACEQ +can O +have O +the O +optimum O +properties S-CONPRI +of O +both O +materials S-CONPRI +. O + + +It O +can O +be S-MATE +transitional O +in O +weight S-PARA +, O +yet O +retaining O +its O +toughness S-PRO +, O +wear B-PRO +resistance E-PRO +, O +impact S-CONPRI +resistance O +or O +its O +physical O +, O +chemical O +, O +biochemical O +or O +mechanical B-CONPRI +properties E-CONPRI +. O + + +Multi-material S-CONPRI +FGM S-MANP +can O +also O +provide O +location-specific O +properties S-CONPRI +tailored O +at O +small O +sections O +or O +strategic O +locations O +around O +pre-determined O +parts O +. O + + +Some O +AM B-MANP +technologies E-MANP +are O +providing O +such O +opportunities O +. O + + +Construction S-APPL +of O +such O +parts O +could O +be S-MATE +of O +interest O +to O +solve O +design S-FEAT +issues O +in O +order O +to O +avoid O +multi-part O +assemblies O +or O +complex O +joints O +for O +example O +. O + + +Simulation S-ENAT +models O +are O +still O +to O +be S-MATE +implemented O +and O +validated O +mostly O +because O +the O +design S-FEAT +of O +heterogeneous S-CONPRI +compositional O +gradients O +are O +very O +complex O +. O + + +They O +can O +be S-MATE +divided O +into O +four O +types O +: O +a O +transition S-CONPRI +between O +two O +materials S-CONPRI +, O +three O +materials S-CONPRI +or O +above O +, O +switched O +composition S-CONPRI +between O +different O +locations O +or O +a O +combination O +of O +density S-PRO +and O +compositional O +gradation O +. O + + +The O +key O +design S-FEAT +parameters O +of O +FGM S-MANP +include O +the O +dimension S-FEAT +of O +the O +gradient O +vector O +, O +the O +geometric B-FEAT +shape E-FEAT +and O +the O +repartition O +of O +the O +equipotential B-CONPRI +surfaces E-CONPRI +. O + + +The O +features O +and O +functionality O +of O +the O +component S-MACEQ +are O +further O +determined O +by O +the O +direction O +of O +the O +gradient O +within O +the O +material S-MATE +composition S-CONPRI +. O + + +The O +design S-FEAT +and O +types O +of O +the O +volumetric O +gradient O +can O +be S-MATE +classified O +according O +to O +1D O +, O +2D S-CONPRI +and O +3D S-CONPRI +, O +and O +distribution S-CONPRI +of O +materials S-CONPRI +uniformly O +or O +through O +special O +patterns O +. O + + +Defining O +the O +optimum O +material S-MATE +distribution S-CONPRI +function O +requires O +extensive O +knowledge O +of O +material S-MATE +data S-CONPRI +that O +includes O +the O +chemical B-CONPRI +composition E-CONPRI +, O +its O +characteristics O +and O +the O +manufacturing B-CONPRI +constraints E-CONPRI +. O + + +At O +present O +, O +there O +are O +no O +design S-FEAT +guidelines O +on O +material S-MATE +compatibility O +, O +mixing S-CONPRI +range O +for O +materials S-CONPRI +with O +variable O +and O +non-uniform O +properties S-CONPRI +and O +a O +framework S-CONPRI +for O +optimal O +property S-CONPRI +distribution S-CONPRI +such O +as S-MATE +choice O +of O +spatial O +, O +gradient O +distribution S-CONPRI +and O +the O +arrangement O +of O +transition B-CONPRI +phases E-CONPRI +is O +also O +lacking O +. O + + +When O +generating O +graded O +components S-MACEQ +of O +high O +to O +low O +strength S-PRO +, O +the O +changing O +material B-CONPRI +properties E-CONPRI +brought O +about O +by O +modifications O +to O +the O +microstructure S-CONPRI +have O +to O +be S-MATE +carefully O +measured O +and O +quantified O +. O + + +Tamas-Williams O +suggested O +two O +useful O +approaches O +to O +model S-CONPRI +the O +response O +of O +functionally B-FEAT +graded I-FEAT +components E-FEAT +using O +the O +exponential O +law O +idealisation O +and O +material B-MATE +elements E-MATE +Finite B-CONPRI +Element I-CONPRI +Method I-CONPRI +analysis E-CONPRI +can O +also O +be S-MATE +used O +to O +show O +and O +suggest O +an O +optimised O +set S-APPL +of O +elements S-MATE +under O +pre-determined O +circumstances O +to O +provide O +a O +better O +understanding O +of O +how O +the O +material B-CONPRI +properties E-CONPRI +will O +behave O +. O + + +In O +order O +to O +generalise O +the O +use O +of O +FGM S-MANP +, O +it O +is O +crucial O +to O +understand O +the O +resulting O +differences O +between O +the O +predicted S-CONPRI +and O +real O +components S-MACEQ +. O + + +By O +knowing O +the O +required O +mix O +of O +properties S-CONPRI +, O +the O +required O +arrangement O +of O +phases O +, O +and O +compatibility O +of O +materials S-CONPRI +design B-CONPRI +rules E-CONPRI +and O +methods O +have O +to O +be S-MATE +established O +to O +avoid O +undesirable O +results O +. O + + +Knowledge O +of O +the O +relationship O +can O +be S-MATE +gained O +through O +shared O +databases S-ENAT +as S-MATE +a O +catalogue O +of O +material S-MATE +performance O +information O +. O + + +Richards O +first O +proposed O +a O +computational O +approach O +of O +using O +CPPN O +encodings O +and O +a O +scalable O +algorithm S-CONPRI +using O +NEAT O +to O +embed O +functional O +morphologies S-CONPRI +and O +macro-properties S-PRO +of O +physical O +features O +using O +multi-material S-CONPRI +FGM S-MANP +through O +voxel-based O +descriptions O +by O +a O +function O +of O +its O +Cartesian O +coordinates S-PARA +. O + + +Some O +progresses O +are O +still O +expected O +but O +FGM S-MANP +or O +multi-material S-CONPRI +parts O +in O +general O +are O +being O +seriously O +considered O +as S-MATE +solutions O +for O +design S-FEAT +evolution O +of O +products O +in O +the O +future O +. O + + +This O +is O +already O +used O +for O +polymers S-MATE +and O +elastomers S-MATE +and O +this O +is O +in O +progress O +for O +metallic S-MATE +products O +. O + + +8 O +Assembly S-MANP +and O +part O +integration O +considerations O +It O +is O +well O +recognized O +that O +it O +is O +possible O +to O +exploit O +the O +potential O +of O +additive B-MANP +manufacturing E-MANP +at O +product O +level O +. O + + +As S-MATE +one O +may O +infer O +by O +the O +existing O +standards S-CONPRI +, O +AM B-MANP +technologies E-MANP +already O +play O +a O +significant O +role O +not O +only O +for O +single O +parts O +but O +also O +at O +product O +level O +. O + + +Therefore O +, O +the O +classical O +Design B-FEAT +for I-FEAT +Assembly E-FEAT +approaches O +have O +to O +be S-MATE +reconsidered O +in O +order O +to O +take O +advantage O +of O +these O +AM S-MANP +opportunities O +. O + + +An O +n-part O +product O +may O +be S-MATE +classified O +as S-MATE +static O +, O +movable O +, O +or O +compliant O +assembly S-MANP +and O +it O +may O +have O +components S-MACEQ +of O +the O +same O +or O +different O +materials S-CONPRI +. O + + +AM B-MANP +technologies E-MANP +enable O +the O +possibility O +to O +produce O +not O +only O +a O +single O +part O +of O +an O +assembly S-MANP +, O +but O +directly O +the O +assembled O +product O +. O + + +This O +review O +shows O +many O +possible O +joints O +directly O +fabricated S-CONPRI +either O +using O +polymers S-MATE +or O +metals S-MATE +. O + + +Furthermore O +a O +deep O +discussion O +of O +polymer-based O +non-assembly O +mechanisms O +may O +be S-MATE +found O +in O +, O +proving O +that O +the O +polymer-based O +AM B-MANP +technologies E-MANP +are O +close O +to O +maturity O +for O +this O +kind O +of O +application O +. O + + +35 O +shows O +a O +metallic B-FEAT +compliant I-FEAT +joint E-FEAT +for O +a O +snake-like O +surgical O +robot S-MACEQ +, O +produced O +by O +PBF S-MANP +. O + + +In O +36 O +, O +the O +detail O +design S-FEAT +of O +a O +rotational O +joint S-CONPRI +and O +a O +snap-fit B-FEAT +feature E-FEAT +are O +shown O +for O +a O +nanosatellite O +metallic S-MATE +cubic B-FEAT +structure E-FEAT +fabricated O +by O +L-PBF S-MANP +. O + + +But O +what O +about O +the O +design B-CONPRI +rules E-CONPRI +to O +fully O +exploit O +the O +AM B-MANP +technologies E-MANP +in O +assembly S-MANP +manufacturing O +? O +In O +the O +following O +, O +a O +brief O +analysis O +of O +the O +design B-CONPRI +rules E-CONPRI +and O +in O +particular O +of O +the O +part B-CONPRI +consolidation E-CONPRI +steps O +in O +designing O +a O +product O +will O +be S-MATE +considered O +. O + + +8.1 O +Assembly S-MANP +design O +rules O +As S-MATE +deeply O +discussed O +in O +, O +when O +dealing O +with O +assemblies O +and O +AM B-MANP +technologies E-MANP +, O +one O +main O +issue O +still O +to O +be S-MATE +adequately O +addressed O +is O +the O +geometrical O +product O +specification S-PARA +. O + + +In O +fact O +, O +no O +specific O +ISO-GPS O +or O +ASME-GD O +& O +T O +standard S-CONPRI +dedicated O +to O +AM B-MANP +processes E-MANP +exists O +, O +leaving O +design S-FEAT +as S-MATE +a O +cumbersome O +process S-CONPRI +of O +defining O +geometrical O +requirements O +of O +assembly S-MANP +features O +or O +of O +single O +parts O +using O +a O +language O +dedicated O +to O +conventionally O +manufactured B-CONPRI +products E-CONPRI +. O + + +Referring O +to O +an O +assembly S-MANP +with O +fixed O +connection O +type O +, O +general O +rules O +to O +design S-FEAT +fasteners/connectors O +, O +in O +particular O +snap-fit B-FEAT +features E-FEAT +, O +are O +presented O +with O +respect O +to O +polymer-based O +AM B-MANP +processes E-MANP +in O +, O +and O +to O +metal-based O +ones O +in O +. O + + +These O +general O +rules O +address O +issues O +on O +fastener/connector O +shape O +, O +wall B-FEAT +thickness E-FEAT +, O +gap O +width O +, O +staircase O +effect O +on O +sloped O +surfaces S-CONPRI +, O +and O +on O +the O +influence O +of O +anisotropy S-PRO +on O +the O +assembly S-MANP +product O +mechanical S-APPL +behavior O +. O + + +Dealing O +with O +non-assembly O +mechanisms O +, O +design B-CONPRI +rules E-CONPRI +are O +discussed O +mainly O +referring O +to O +polymer-based O +AM B-MANP +processes E-MANP +like O +extrusion-based O +, O +material B-MANP +jetting E-MANP +, O +and O +vat B-MANP +photopolymerization E-MANP +processes S-CONPRI +. O + + +The O +design B-CONPRI +rules E-CONPRI +refer O +to O +the O +minimization O +and O +the O +removal O +of O +the O +supports S-APPL +used O +during O +the O +non-assembly O +product O +fabrication S-MANP +, O +the O +effect O +of O +build B-PARA +orientation E-PARA +on O +the O +smoothness S-CONPRI +of O +the O +mechanism S-CONPRI +, O +and O +the O +selection O +of O +the O +clearance S-CONPRI +between O +assembled O +parts O +. O + + +Considering O +the O +latter O +issue O +, O +in O +a O +benchmark S-MANS +is O +proposed O +to O +assess O +the O +lowest O +clearance B-PRO +limits E-PRO +for O +non-assembly O +mechanisms O +. O + + +8.2 O +Part B-CONPRI +consolidation E-CONPRI +Part O +consolidation S-CONPRI +is O +the O +first O +and O +most O +relevant O +step S-CONPRI +in O +design B-FEAT +for I-FEAT +assembly E-FEAT +. O + + +But O +this O +is O +not O +the O +case O +when O +exploiting O +AM B-MANP +processes E-MANP +since O +they O +enable O +non-assembly O +mechanisms O +, O +multi-material B-MANP +printing E-MANP +, O +and O +easier O +functional O +integration O +. O + + +A O +significant O +example O +of O +AM B-MACEQ +part E-MACEQ +consolidation O +is O +the O +one O +reported O +in O +. O + + +The O +original O +portable O +hydraulic O +manifold O +was O +used O +for O +in-situ S-CONPRI +testing O +of O +aircraft B-APPL +components E-APPL +, O +a O +17-part O +assembly S-MANP +, O +and O +was O +completely O +redesigned O +as S-MATE +a O +single-part O +product O +, O +with O +60 O +% O +less O +weight S-PARA +, O +the O +same O +footprint O +, O +a O +53 O +% O +shorter O +height O +, O +and O +with O +a O +more O +reliable O +and O +robust O +design S-FEAT +with O +respect O +to O +the O +original O +one O +, O +deeply O +exploiting O +a O +metal B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +technology O +. O