Commit
·
00648f9
1
Parent(s):
4698eb2
Upload milk_dialog_dataset.ipynb
Browse files- milk_dialog_dataset.ipynb +786 -0
milk_dialog_dataset.ipynb
ADDED
@@ -0,0 +1,786 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"id": "1bcd4735-038a-4364-90ed-6e58d8fa2dac",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"import re\n",
|
11 |
+
"import pandas as pd\n",
|
12 |
+
"from datasets import Dataset\n",
|
13 |
+
"from huggingface_hub import login"
|
14 |
+
]
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"cell_type": "code",
|
18 |
+
"execution_count": null,
|
19 |
+
"id": "a23cc23d-90d6-431f-8057-67dbac509de2",
|
20 |
+
"metadata": {},
|
21 |
+
"outputs": [],
|
22 |
+
"source": [
|
23 |
+
"# add the credential helper so we can use\n",
|
24 |
+
"# the library to push data to the hub later\n",
|
25 |
+
"\n",
|
26 |
+
"!git config --global credential.helper cache\n",
|
27 |
+
"\n",
|
28 |
+
"# login to the hub\n",
|
29 |
+
"\n",
|
30 |
+
"login(\n",
|
31 |
+
" '',\n",
|
32 |
+
" add_to_git_credential=True\n",
|
33 |
+
")"
|
34 |
+
]
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"cell_type": "code",
|
38 |
+
"execution_count": null,
|
39 |
+
"id": "a28d0034-ce6b-4a76-ab52-6050c0c74bfc",
|
40 |
+
"metadata": {},
|
41 |
+
"outputs": [],
|
42 |
+
"source": [
|
43 |
+
"with open('bad.rpy', 'r') as f:\n",
|
44 |
+
" rpy_text = f.read()"
|
45 |
+
]
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"cell_type": "code",
|
49 |
+
"execution_count": null,
|
50 |
+
"id": "95397968-6caf-41b9-a27f-c806ac0a1993",
|
51 |
+
"metadata": {},
|
52 |
+
"outputs": [],
|
53 |
+
"source": [
|
54 |
+
"lines = re.findall(r\"^\\s{4}.*$\", rpy_text, re.MULTILINE) # Find all lines starting with 4 empty spaces"
|
55 |
+
]
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"cell_type": "code",
|
59 |
+
"execution_count": null,
|
60 |
+
"id": "4558c31b-1b1d-4bfb-a76a-b36a09edaab3",
|
61 |
+
"metadata": {},
|
62 |
+
"outputs": [],
|
63 |
+
"source": [
|
64 |
+
"non_latin_lines = [line for line in lines if re.search(r\"[^\\x00-\\x7F]\", line)] # Get all lines containing non-latin characters"
|
65 |
+
]
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"cell_type": "code",
|
69 |
+
"execution_count": null,
|
70 |
+
"id": "4c6d06de-aa42-4d52-bc82-8f469100769c",
|
71 |
+
"metadata": {},
|
72 |
+
"outputs": [],
|
73 |
+
"source": [
|
74 |
+
"latin_lines = [line for line in lines if line not in non_latin_lines] # Get only the lines containing latin characters"
|
75 |
+
]
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"cell_type": "code",
|
79 |
+
"execution_count": null,
|
80 |
+
"id": "ef9eb581-b849-4c5a-bbdd-ecf27445a819",
|
81 |
+
"metadata": {},
|
82 |
+
"outputs": [],
|
83 |
+
"source": [
|
84 |
+
"filtered_lines = [re.sub(r\"\\[(.*?)\\]|\\{(.*?)\\}\", \"\", line) for line in latin_lines] # Remove all text between square or curly braces including them"
|
85 |
+
]
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"cell_type": "code",
|
89 |
+
"execution_count": null,
|
90 |
+
"id": "35cc3cac-d76e-4aa3-b954-178ca8c82fdd",
|
91 |
+
"metadata": {},
|
92 |
+
"outputs": [],
|
93 |
+
"source": [
|
94 |
+
"filtered_lines = [line for line in filtered_lines if \"game/bad.rpy\" not in line] # Remove all lines containing game related information"
|
95 |
+
]
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"cell_type": "code",
|
99 |
+
"execution_count": null,
|
100 |
+
"id": "e5928733-bfb8-4ce0-afd6-fdd0a7fce2bf",
|
101 |
+
"metadata": {},
|
102 |
+
"outputs": [],
|
103 |
+
"source": [
|
104 |
+
"filtered_lines = [line.replace(\"'[cname]'\", \"me\") for line in filtered_lines] # Replace '[cname]' with \"me\""
|
105 |
+
]
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"cell_type": "code",
|
109 |
+
"execution_count": null,
|
110 |
+
"id": "f216353e-e74f-4ed1-9d5c-cf9715a887d5",
|
111 |
+
"metadata": {},
|
112 |
+
"outputs": [],
|
113 |
+
"source": [
|
114 |
+
"# Removes a bunch of rpy specific tags, read the line because I'm too lazy to list them all and yes it is a big ass line\n",
|
115 |
+
"filtered_lines = [line.replace(\" ei \", \"\").replace(\" n \", \"\").replace(\" gg \", \"\").replace(\" new \", \"\").replace(\"\\n # ei \", \"\").replace(\"\\\\\", \"\").replace(\"\\n # n \", \"\") for line in filtered_lines]"
|
116 |
+
]
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"cell_type": "code",
|
120 |
+
"execution_count": null,
|
121 |
+
"id": "c879273e-8c8e-4659-bae9-73d288773a24",
|
122 |
+
"metadata": {},
|
123 |
+
"outputs": [],
|
124 |
+
"source": [
|
125 |
+
"filtered_lines = [re.sub(r\"\\s+\", \" \", line) for line in filtered_lines] # Remove all extra space"
|
126 |
+
]
|
127 |
+
},
|
128 |
+
{
|
129 |
+
"cell_type": "code",
|
130 |
+
"execution_count": null,
|
131 |
+
"id": "68e07452-4afb-43ab-b033-7258aec5c341",
|
132 |
+
"metadata": {},
|
133 |
+
"outputs": [],
|
134 |
+
"source": [
|
135 |
+
"filtered_lines = [line.replace('\"', '') for line in filtered_lines] # Remove \""
|
136 |
+
]
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"cell_type": "code",
|
140 |
+
"execution_count": null,
|
141 |
+
"id": "649c6760-fe86-425f-9bd9-93c8baab9589",
|
142 |
+
"metadata": {},
|
143 |
+
"outputs": [],
|
144 |
+
"source": [
|
145 |
+
"filtered_lines = [line.lstrip() for line in filtered_lines] # Remove spaces from the start of the lines"
|
146 |
+
]
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"cell_type": "code",
|
150 |
+
"execution_count": null,
|
151 |
+
"id": "d16d37a5-3e86-4774-83b5-ade50af416a4",
|
152 |
+
"metadata": {},
|
153 |
+
"outputs": [],
|
154 |
+
"source": [
|
155 |
+
"filtered_lines = [line for line in filtered_lines if line != \"...\"] # remove non textual lines"
|
156 |
+
]
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"cell_type": "code",
|
160 |
+
"execution_count": null,
|
161 |
+
"id": "a9b3f0ee-a6f7-412b-b68b-7c117c516b9f",
|
162 |
+
"metadata": {},
|
163 |
+
"outputs": [],
|
164 |
+
"source": [
|
165 |
+
"filtered_lines = [line for line in filtered_lines if filtered_lines.count(line) == 1] # Remove repeated lines"
|
166 |
+
]
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"cell_type": "code",
|
170 |
+
"execution_count": null,
|
171 |
+
"id": "5665cb09-241a-4a2c-8b9c-892aedd8536d",
|
172 |
+
"metadata": {},
|
173 |
+
"outputs": [],
|
174 |
+
"source": [
|
175 |
+
"filtered_lines = [line.lstrip('(').rstrip(')') for line in filtered_lines] # Remove parenthesis from the begining or end of a line"
|
176 |
+
]
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"cell_type": "code",
|
180 |
+
"execution_count": null,
|
181 |
+
"id": "841d3d7c-736b-4d47-911f-25018c84abb3",
|
182 |
+
"metadata": {},
|
183 |
+
"outputs": [],
|
184 |
+
"source": [
|
185 |
+
"print(f'Number of lines: {len(filtered_lines)}\\n')"
|
186 |
+
]
|
187 |
+
},
|
188 |
+
{
|
189 |
+
"cell_type": "code",
|
190 |
+
"execution_count": null,
|
191 |
+
"id": "86fde09a-698c-4cd8-ac41-4b688f80d729",
|
192 |
+
"metadata": {},
|
193 |
+
"outputs": [],
|
194 |
+
"source": [
|
195 |
+
"# Create a dataframe from the input and output columns\n",
|
196 |
+
"df = pd.DataFrame({'response': filtered_lines})"
|
197 |
+
]
|
198 |
+
},
|
199 |
+
{
|
200 |
+
"cell_type": "code",
|
201 |
+
"execution_count": null,
|
202 |
+
"id": "9b0dff6a-afe5-412f-aaf0-c6fc467d4675",
|
203 |
+
"metadata": {},
|
204 |
+
"outputs": [],
|
205 |
+
"source": [
|
206 |
+
"dataset = Dataset.from_pandas(df)"
|
207 |
+
]
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"cell_type": "code",
|
211 |
+
"execution_count": null,
|
212 |
+
"id": "12d35230-4859-4185-a03b-0b68b561d01f",
|
213 |
+
"metadata": {},
|
214 |
+
"outputs": [],
|
215 |
+
"source": [
|
216 |
+
"print(dataset)"
|
217 |
+
]
|
218 |
+
},
|
219 |
+
{
|
220 |
+
"cell_type": "code",
|
221 |
+
"execution_count": null,
|
222 |
+
"id": "df7282e2-67a5-462b-a870-2824fd575a2c",
|
223 |
+
"metadata": {},
|
224 |
+
"outputs": [],
|
225 |
+
"source": [
|
226 |
+
"split = dataset.train_test_split(test_size=0.1)\n",
|
227 |
+
"train = split['train']\n",
|
228 |
+
"test = split['test']"
|
229 |
+
]
|
230 |
+
},
|
231 |
+
{
|
232 |
+
"cell_type": "code",
|
233 |
+
"execution_count": null,
|
234 |
+
"id": "765fd5be-39e2-4206-8bd1-5a210ecf2f4a",
|
235 |
+
"metadata": {},
|
236 |
+
"outputs": [],
|
237 |
+
"source": [
|
238 |
+
"print(split)\n",
|
239 |
+
"print(train)\n",
|
240 |
+
"print(test)"
|
241 |
+
]
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"cell_type": "code",
|
245 |
+
"execution_count": null,
|
246 |
+
"id": "154673b0-bc62-4873-814d-ac1af88514cc",
|
247 |
+
"metadata": {},
|
248 |
+
"outputs": [],
|
249 |
+
"source": [
|
250 |
+
"repository = \"alexandreteles/milk\"\n",
|
251 |
+
"\n",
|
252 |
+
"train.push_to_hub(\n",
|
253 |
+
" repo_id=repository,\n",
|
254 |
+
" split=\"train\"\n",
|
255 |
+
")"
|
256 |
+
]
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"cell_type": "code",
|
260 |
+
"execution_count": null,
|
261 |
+
"id": "4b719b32-836d-4014-832c-75ecd4cd4d72",
|
262 |
+
"metadata": {},
|
263 |
+
"outputs": [],
|
264 |
+
"source": [
|
265 |
+
"test.push_to_hub(\n",
|
266 |
+
" repo_id=repository,\n",
|
267 |
+
" split=\"test\"\n",
|
268 |
+
")"
|
269 |
+
]
|
270 |
+
}
|
271 |
+
],
|
272 |
+
"metadata": {
|
273 |
+
"kernelspec": {
|
274 |
+
"display_name": "Python 3 (ipykernel)",
|
275 |
+
"language": "python",
|
276 |
+
"name": "python3"
|
277 |
+
},
|
278 |
+
"language_info": {
|
279 |
+
"codemirror_mode": {
|
280 |
+
"name": "ipython",
|
281 |
+
"version": 3
|
282 |
+
},
|
283 |
+
"file_extension": ".py",
|
284 |
+
"mimetype": "text/x-python",
|
285 |
+
"name": "python",
|
286 |
+
"nbconvert_exporter": "python",
|
287 |
+
"pygments_lexer": "ipython3",
|
288 |
+
"version": "3.10.6"
|
289 |
+
},
|
290 |
+
"widgets": {
|
291 |
+
"application/vnd.jupyter.widget-state+json": {
|
292 |
+
"state": {
|
293 |
+
"04b510e0301148aea205d5dbfa965636": {
|
294 |
+
"model_module": "@jupyter-widgets/controls",
|
295 |
+
"model_module_version": "2.0.0",
|
296 |
+
"model_name": "FloatProgressModel",
|
297 |
+
"state": {
|
298 |
+
"bar_style": "success",
|
299 |
+
"layout": "IPY_MODEL_1b08af242c7d4f5388280cf07752babb",
|
300 |
+
"max": 1,
|
301 |
+
"style": "IPY_MODEL_c756ba03bc834ca58c8c08dc8f1d3821",
|
302 |
+
"value": 1
|
303 |
+
}
|
304 |
+
},
|
305 |
+
"08292fd90e224f228b5eaa6a96820af5": {
|
306 |
+
"model_module": "@jupyter-widgets/controls",
|
307 |
+
"model_module_version": "2.0.0",
|
308 |
+
"model_name": "HTMLModel",
|
309 |
+
"state": {
|
310 |
+
"layout": "IPY_MODEL_da8632075bf84990a16bd8684ea3ca79",
|
311 |
+
"style": "IPY_MODEL_dc6ba10643e84f91bf1ae9621d26edb0",
|
312 |
+
"value": "Deleting unused files from dataset repository: 100%"
|
313 |
+
}
|
314 |
+
},
|
315 |
+
"0b7114b6a7224910b15d7333f1ec904a": {
|
316 |
+
"model_module": "@jupyter-widgets/base",
|
317 |
+
"model_module_version": "2.0.0",
|
318 |
+
"model_name": "LayoutModel",
|
319 |
+
"state": {}
|
320 |
+
},
|
321 |
+
"0e7b8c57f5304f26b659e321c14d4faf": {
|
322 |
+
"model_module": "@jupyter-widgets/controls",
|
323 |
+
"model_module_version": "2.0.0",
|
324 |
+
"model_name": "HTMLModel",
|
325 |
+
"state": {
|
326 |
+
"layout": "IPY_MODEL_f32478ac5e0d450882b36dfd8d67478c",
|
327 |
+
"style": "IPY_MODEL_c50fd41529834eeb9ce2a111f1bb5237",
|
328 |
+
"value": " 1/1 [00:01<00:00, 1.11s/it]"
|
329 |
+
}
|
330 |
+
},
|
331 |
+
"1046db0412b94f4c858f474c980a973b": {
|
332 |
+
"model_module": "@jupyter-widgets/base",
|
333 |
+
"model_module_version": "2.0.0",
|
334 |
+
"model_name": "LayoutModel",
|
335 |
+
"state": {}
|
336 |
+
},
|
337 |
+
"1b08af242c7d4f5388280cf07752babb": {
|
338 |
+
"model_module": "@jupyter-widgets/base",
|
339 |
+
"model_module_version": "2.0.0",
|
340 |
+
"model_name": "LayoutModel",
|
341 |
+
"state": {}
|
342 |
+
},
|
343 |
+
"26253a1251b64f04a1a23aa360569b7b": {
|
344 |
+
"model_module": "@jupyter-widgets/base",
|
345 |
+
"model_module_version": "2.0.0",
|
346 |
+
"model_name": "LayoutModel",
|
347 |
+
"state": {}
|
348 |
+
},
|
349 |
+
"2df2c78663cf4dd89cf97a22019795b1": {
|
350 |
+
"model_module": "@jupyter-widgets/controls",
|
351 |
+
"model_module_version": "2.0.0",
|
352 |
+
"model_name": "HTMLStyleModel",
|
353 |
+
"state": {
|
354 |
+
"description_width": "",
|
355 |
+
"font_size": null,
|
356 |
+
"text_color": null
|
357 |
+
}
|
358 |
+
},
|
359 |
+
"2fba3ad1fdcf4f12a45eb91f254949af": {
|
360 |
+
"model_module": "@jupyter-widgets/controls",
|
361 |
+
"model_module_version": "2.0.0",
|
362 |
+
"model_name": "HTMLModel",
|
363 |
+
"state": {
|
364 |
+
"layout": "IPY_MODEL_26253a1251b64f04a1a23aa360569b7b",
|
365 |
+
"style": "IPY_MODEL_552e7c45353b49008f58d8eb30cb9d99",
|
366 |
+
"value": " 158/158 [00:00<00:00, 13.3kB/s]"
|
367 |
+
}
|
368 |
+
},
|
369 |
+
"462c6286133d454d9d47ca02c94d7bc9": {
|
370 |
+
"model_module": "@jupyter-widgets/base",
|
371 |
+
"model_module_version": "2.0.0",
|
372 |
+
"model_name": "LayoutModel",
|
373 |
+
"state": {}
|
374 |
+
},
|
375 |
+
"4d946c9501ca4d6dbf500ff8b680d114": {
|
376 |
+
"model_module": "@jupyter-widgets/controls",
|
377 |
+
"model_module_version": "2.0.0",
|
378 |
+
"model_name": "FloatProgressModel",
|
379 |
+
"state": {
|
380 |
+
"bar_style": "success",
|
381 |
+
"layout": "IPY_MODEL_a433d506b6c64b8f9157ffa14aa799c0",
|
382 |
+
"max": 1,
|
383 |
+
"style": "IPY_MODEL_c9e00472dd1049dd8157667de157955f",
|
384 |
+
"value": 1
|
385 |
+
}
|
386 |
+
},
|
387 |
+
"52b275afe975414d8092858a4433ecf6": {
|
388 |
+
"model_module": "@jupyter-widgets/controls",
|
389 |
+
"model_module_version": "2.0.0",
|
390 |
+
"model_name": "ProgressStyleModel",
|
391 |
+
"state": {
|
392 |
+
"description_width": ""
|
393 |
+
}
|
394 |
+
},
|
395 |
+
"552e7c45353b49008f58d8eb30cb9d99": {
|
396 |
+
"model_module": "@jupyter-widgets/controls",
|
397 |
+
"model_module_version": "2.0.0",
|
398 |
+
"model_name": "HTMLStyleModel",
|
399 |
+
"state": {
|
400 |
+
"description_width": "",
|
401 |
+
"font_size": null,
|
402 |
+
"text_color": null
|
403 |
+
}
|
404 |
+
},
|
405 |
+
"57d4f26a8bac47628147ec807ebd5d21": {
|
406 |
+
"model_module": "@jupyter-widgets/controls",
|
407 |
+
"model_module_version": "2.0.0",
|
408 |
+
"model_name": "HTMLStyleModel",
|
409 |
+
"state": {
|
410 |
+
"description_width": "",
|
411 |
+
"font_size": null,
|
412 |
+
"text_color": null
|
413 |
+
}
|
414 |
+
},
|
415 |
+
"6498d2bb5e3445089ca950fd5af63a7c": {
|
416 |
+
"model_module": "@jupyter-widgets/controls",
|
417 |
+
"model_module_version": "2.0.0",
|
418 |
+
"model_name": "HTMLStyleModel",
|
419 |
+
"state": {
|
420 |
+
"description_width": "",
|
421 |
+
"font_size": null,
|
422 |
+
"text_color": null
|
423 |
+
}
|
424 |
+
},
|
425 |
+
"68a0ec4e561b46f796416f277f4a2c0c": {
|
426 |
+
"model_module": "@jupyter-widgets/base",
|
427 |
+
"model_module_version": "2.0.0",
|
428 |
+
"model_name": "LayoutModel",
|
429 |
+
"state": {}
|
430 |
+
},
|
431 |
+
"6abea390b33b4d67a8211e805024f7fb": {
|
432 |
+
"model_module": "@jupyter-widgets/controls",
|
433 |
+
"model_module_version": "2.0.0",
|
434 |
+
"model_name": "ProgressStyleModel",
|
435 |
+
"state": {
|
436 |
+
"description_width": ""
|
437 |
+
}
|
438 |
+
},
|
439 |
+
"6ae66dcfbd914699879041c3ba7850ce": {
|
440 |
+
"model_module": "@jupyter-widgets/controls",
|
441 |
+
"model_module_version": "2.0.0",
|
442 |
+
"model_name": "HTMLModel",
|
443 |
+
"state": {
|
444 |
+
"layout": "IPY_MODEL_462c6286133d454d9d47ca02c94d7bc9",
|
445 |
+
"style": "IPY_MODEL_6498d2bb5e3445089ca950fd5af63a7c",
|
446 |
+
"value": "Pushing dataset shards to the dataset hub: 100%"
|
447 |
+
}
|
448 |
+
},
|
449 |
+
"701001c446c2450997e3dc2d184ed078": {
|
450 |
+
"model_module": "@jupyter-widgets/controls",
|
451 |
+
"model_module_version": "2.0.0",
|
452 |
+
"model_name": "HBoxModel",
|
453 |
+
"state": {
|
454 |
+
"children": [
|
455 |
+
"IPY_MODEL_7e68fdd8aec249c78f39b24e32a18f54",
|
456 |
+
"IPY_MODEL_4d946c9501ca4d6dbf500ff8b680d114",
|
457 |
+
"IPY_MODEL_784b51f40a5d465fa4c4f99ca6e7b147"
|
458 |
+
],
|
459 |
+
"layout": "IPY_MODEL_ed070860314b406f92993db9c431cd39"
|
460 |
+
}
|
461 |
+
},
|
462 |
+
"711eda91bb5e466998a6e8b2d7d24fee": {
|
463 |
+
"model_module": "@jupyter-widgets/controls",
|
464 |
+
"model_module_version": "2.0.0",
|
465 |
+
"model_name": "HTMLModel",
|
466 |
+
"state": {
|
467 |
+
"layout": "IPY_MODEL_f11038611e0c438bab4784c5e719fbe7",
|
468 |
+
"style": "IPY_MODEL_57d4f26a8bac47628147ec807ebd5d21",
|
469 |
+
"value": " 1/1 [00:05<00:00, 5.22s/it]"
|
470 |
+
}
|
471 |
+
},
|
472 |
+
"75f6c83591434c988e8544bcebac205e": {
|
473 |
+
"model_module": "@jupyter-widgets/base",
|
474 |
+
"model_module_version": "2.0.0",
|
475 |
+
"model_name": "LayoutModel",
|
476 |
+
"state": {}
|
477 |
+
},
|
478 |
+
"77e7d6c384fb47ec952598b2428cc7b4": {
|
479 |
+
"model_module": "@jupyter-widgets/controls",
|
480 |
+
"model_module_version": "2.0.0",
|
481 |
+
"model_name": "ProgressStyleModel",
|
482 |
+
"state": {
|
483 |
+
"description_width": ""
|
484 |
+
}
|
485 |
+
},
|
486 |
+
"784b51f40a5d465fa4c4f99ca6e7b147": {
|
487 |
+
"model_module": "@jupyter-widgets/controls",
|
488 |
+
"model_module_version": "2.0.0",
|
489 |
+
"model_name": "HTMLModel",
|
490 |
+
"state": {
|
491 |
+
"layout": "IPY_MODEL_1046db0412b94f4c858f474c980a973b",
|
492 |
+
"style": "IPY_MODEL_794897104f7e491ca1e7d6dd9dc3ebf7",
|
493 |
+
"value": " 1/1 [00:05<00:00, 5.22s/it]"
|
494 |
+
}
|
495 |
+
},
|
496 |
+
"794897104f7e491ca1e7d6dd9dc3ebf7": {
|
497 |
+
"model_module": "@jupyter-widgets/controls",
|
498 |
+
"model_module_version": "2.0.0",
|
499 |
+
"model_name": "HTMLStyleModel",
|
500 |
+
"state": {
|
501 |
+
"description_width": "",
|
502 |
+
"font_size": null,
|
503 |
+
"text_color": null
|
504 |
+
}
|
505 |
+
},
|
506 |
+
"7d4474ffdb3a47cdbcb4a95bbc87c775": {
|
507 |
+
"model_module": "@jupyter-widgets/base",
|
508 |
+
"model_module_version": "2.0.0",
|
509 |
+
"model_name": "LayoutModel",
|
510 |
+
"state": {}
|
511 |
+
},
|
512 |
+
"7e68fdd8aec249c78f39b24e32a18f54": {
|
513 |
+
"model_module": "@jupyter-widgets/controls",
|
514 |
+
"model_module_version": "2.0.0",
|
515 |
+
"model_name": "HTMLModel",
|
516 |
+
"state": {
|
517 |
+
"layout": "IPY_MODEL_68a0ec4e561b46f796416f277f4a2c0c",
|
518 |
+
"style": "IPY_MODEL_84811cd6754a4ae2b1d43c4da09cefa5",
|
519 |
+
"value": "Pushing dataset shards to the dataset hub: 100%"
|
520 |
+
}
|
521 |
+
},
|
522 |
+
"7fc709d174ce49b7a3776c0ea7210863": {
|
523 |
+
"model_module": "@jupyter-widgets/controls",
|
524 |
+
"model_module_version": "2.0.0",
|
525 |
+
"model_name": "HTMLModel",
|
526 |
+
"state": {
|
527 |
+
"layout": "IPY_MODEL_d71df74e7eb64ecabe7b6dca477b6678",
|
528 |
+
"style": "IPY_MODEL_af3703d43ee14949886e6be1b7abbec7",
|
529 |
+
"value": "Deleting unused files from dataset repository: 100%"
|
530 |
+
}
|
531 |
+
},
|
532 |
+
"84811cd6754a4ae2b1d43c4da09cefa5": {
|
533 |
+
"model_module": "@jupyter-widgets/controls",
|
534 |
+
"model_module_version": "2.0.0",
|
535 |
+
"model_name": "HTMLStyleModel",
|
536 |
+
"state": {
|
537 |
+
"description_width": "",
|
538 |
+
"font_size": null,
|
539 |
+
"text_color": null
|
540 |
+
}
|
541 |
+
},
|
542 |
+
"85517b861fcf417cb66a183b00bc47f6": {
|
543 |
+
"model_module": "@jupyter-widgets/controls",
|
544 |
+
"model_module_version": "2.0.0",
|
545 |
+
"model_name": "FloatProgressModel",
|
546 |
+
"state": {
|
547 |
+
"bar_style": "success",
|
548 |
+
"layout": "IPY_MODEL_bf39670de87c4f93874b34e07e875f4a",
|
549 |
+
"max": 158,
|
550 |
+
"style": "IPY_MODEL_77e7d6c384fb47ec952598b2428cc7b4",
|
551 |
+
"value": 158
|
552 |
+
}
|
553 |
+
},
|
554 |
+
"8db7b89011474c18bead65ba86892522": {
|
555 |
+
"model_module": "@jupyter-widgets/controls",
|
556 |
+
"model_module_version": "2.0.0",
|
557 |
+
"model_name": "FloatProgressModel",
|
558 |
+
"state": {
|
559 |
+
"bar_style": "success",
|
560 |
+
"layout": "IPY_MODEL_e01dd8351d68489096d37bcdd421b3e1",
|
561 |
+
"max": 1,
|
562 |
+
"style": "IPY_MODEL_52b275afe975414d8092858a4433ecf6",
|
563 |
+
"value": 1
|
564 |
+
}
|
565 |
+
},
|
566 |
+
"8faa49a8820949f9a02786c5f0ead0c9": {
|
567 |
+
"model_module": "@jupyter-widgets/controls",
|
568 |
+
"model_module_version": "2.0.0",
|
569 |
+
"model_name": "HTMLStyleModel",
|
570 |
+
"state": {
|
571 |
+
"description_width": "",
|
572 |
+
"font_size": null,
|
573 |
+
"text_color": null
|
574 |
+
}
|
575 |
+
},
|
576 |
+
"a433d506b6c64b8f9157ffa14aa799c0": {
|
577 |
+
"model_module": "@jupyter-widgets/base",
|
578 |
+
"model_module_version": "2.0.0",
|
579 |
+
"model_name": "LayoutModel",
|
580 |
+
"state": {}
|
581 |
+
},
|
582 |
+
"aadb564b03f84e5ba192349a600b5b04": {
|
583 |
+
"model_module": "@jupyter-widgets/controls",
|
584 |
+
"model_module_version": "2.0.0",
|
585 |
+
"model_name": "HBoxModel",
|
586 |
+
"state": {
|
587 |
+
"children": [
|
588 |
+
"IPY_MODEL_08292fd90e224f228b5eaa6a96820af5",
|
589 |
+
"IPY_MODEL_c79e8100ebce4116a33864e5fb6afa82",
|
590 |
+
"IPY_MODEL_da5e0140c1c347f4974df0a8a7ae4bfe"
|
591 |
+
],
|
592 |
+
"layout": "IPY_MODEL_fb03a15c31e64214956e4701160163db"
|
593 |
+
}
|
594 |
+
},
|
595 |
+
"af3703d43ee14949886e6be1b7abbec7": {
|
596 |
+
"model_module": "@jupyter-widgets/controls",
|
597 |
+
"model_module_version": "2.0.0",
|
598 |
+
"model_name": "HTMLStyleModel",
|
599 |
+
"state": {
|
600 |
+
"description_width": "",
|
601 |
+
"font_size": null,
|
602 |
+
"text_color": null
|
603 |
+
}
|
604 |
+
},
|
605 |
+
"b721b71d7c674f8196b9fdca87945f9a": {
|
606 |
+
"model_module": "@jupyter-widgets/controls",
|
607 |
+
"model_module_version": "2.0.0",
|
608 |
+
"model_name": "HBoxModel",
|
609 |
+
"state": {
|
610 |
+
"children": [
|
611 |
+
"IPY_MODEL_6ae66dcfbd914699879041c3ba7850ce",
|
612 |
+
"IPY_MODEL_8db7b89011474c18bead65ba86892522",
|
613 |
+
"IPY_MODEL_711eda91bb5e466998a6e8b2d7d24fee"
|
614 |
+
],
|
615 |
+
"layout": "IPY_MODEL_c191a31c68bb46c4a441dddeda7bc4f7"
|
616 |
+
}
|
617 |
+
},
|
618 |
+
"bf39670de87c4f93874b34e07e875f4a": {
|
619 |
+
"model_module": "@jupyter-widgets/base",
|
620 |
+
"model_module_version": "2.0.0",
|
621 |
+
"model_name": "LayoutModel",
|
622 |
+
"state": {}
|
623 |
+
},
|
624 |
+
"c191a31c68bb46c4a441dddeda7bc4f7": {
|
625 |
+
"model_module": "@jupyter-widgets/base",
|
626 |
+
"model_module_version": "2.0.0",
|
627 |
+
"model_name": "LayoutModel",
|
628 |
+
"state": {}
|
629 |
+
},
|
630 |
+
"c50fd41529834eeb9ce2a111f1bb5237": {
|
631 |
+
"model_module": "@jupyter-widgets/controls",
|
632 |
+
"model_module_version": "2.0.0",
|
633 |
+
"model_name": "HTMLStyleModel",
|
634 |
+
"state": {
|
635 |
+
"description_width": "",
|
636 |
+
"font_size": null,
|
637 |
+
"text_color": null
|
638 |
+
}
|
639 |
+
},
|
640 |
+
"c756ba03bc834ca58c8c08dc8f1d3821": {
|
641 |
+
"model_module": "@jupyter-widgets/controls",
|
642 |
+
"model_module_version": "2.0.0",
|
643 |
+
"model_name": "ProgressStyleModel",
|
644 |
+
"state": {
|
645 |
+
"description_width": ""
|
646 |
+
}
|
647 |
+
},
|
648 |
+
"c79e8100ebce4116a33864e5fb6afa82": {
|
649 |
+
"model_module": "@jupyter-widgets/controls",
|
650 |
+
"model_module_version": "2.0.0",
|
651 |
+
"model_name": "FloatProgressModel",
|
652 |
+
"state": {
|
653 |
+
"bar_style": "success",
|
654 |
+
"layout": "IPY_MODEL_7d4474ffdb3a47cdbcb4a95bbc87c775",
|
655 |
+
"max": 1,
|
656 |
+
"style": "IPY_MODEL_6abea390b33b4d67a8211e805024f7fb",
|
657 |
+
"value": 1
|
658 |
+
}
|
659 |
+
},
|
660 |
+
"c7b96581e9664270990c67fb07ac0905": {
|
661 |
+
"model_module": "@jupyter-widgets/controls",
|
662 |
+
"model_module_version": "2.0.0",
|
663 |
+
"model_name": "HBoxModel",
|
664 |
+
"state": {
|
665 |
+
"children": [
|
666 |
+
"IPY_MODEL_7fc709d174ce49b7a3776c0ea7210863",
|
667 |
+
"IPY_MODEL_04b510e0301148aea205d5dbfa965636",
|
668 |
+
"IPY_MODEL_0e7b8c57f5304f26b659e321c14d4faf"
|
669 |
+
],
|
670 |
+
"layout": "IPY_MODEL_0b7114b6a7224910b15d7333f1ec904a"
|
671 |
+
}
|
672 |
+
},
|
673 |
+
"c9e00472dd1049dd8157667de157955f": {
|
674 |
+
"model_module": "@jupyter-widgets/controls",
|
675 |
+
"model_module_version": "2.0.0",
|
676 |
+
"model_name": "ProgressStyleModel",
|
677 |
+
"state": {
|
678 |
+
"description_width": ""
|
679 |
+
}
|
680 |
+
},
|
681 |
+
"d14f64298a87417bba614439684adb35": {
|
682 |
+
"model_module": "@jupyter-widgets/base",
|
683 |
+
"model_module_version": "2.0.0",
|
684 |
+
"model_name": "LayoutModel",
|
685 |
+
"state": {}
|
686 |
+
},
|
687 |
+
"d71df74e7eb64ecabe7b6dca477b6678": {
|
688 |
+
"model_module": "@jupyter-widgets/base",
|
689 |
+
"model_module_version": "2.0.0",
|
690 |
+
"model_name": "LayoutModel",
|
691 |
+
"state": {}
|
692 |
+
},
|
693 |
+
"d8ce4937df6f4342b2c23d6b98a07ea8": {
|
694 |
+
"model_module": "@jupyter-widgets/base",
|
695 |
+
"model_module_version": "2.0.0",
|
696 |
+
"model_name": "LayoutModel",
|
697 |
+
"state": {}
|
698 |
+
},
|
699 |
+
"da5e0140c1c347f4974df0a8a7ae4bfe": {
|
700 |
+
"model_module": "@jupyter-widgets/controls",
|
701 |
+
"model_module_version": "2.0.0",
|
702 |
+
"model_name": "HTMLModel",
|
703 |
+
"state": {
|
704 |
+
"layout": "IPY_MODEL_d8ce4937df6f4342b2c23d6b98a07ea8",
|
705 |
+
"style": "IPY_MODEL_2df2c78663cf4dd89cf97a22019795b1",
|
706 |
+
"value": " 1/1 [00:01<00:00, 1.13s/it]"
|
707 |
+
}
|
708 |
+
},
|
709 |
+
"da8632075bf84990a16bd8684ea3ca79": {
|
710 |
+
"model_module": "@jupyter-widgets/base",
|
711 |
+
"model_module_version": "2.0.0",
|
712 |
+
"model_name": "LayoutModel",
|
713 |
+
"state": {}
|
714 |
+
},
|
715 |
+
"dc6ba10643e84f91bf1ae9621d26edb0": {
|
716 |
+
"model_module": "@jupyter-widgets/controls",
|
717 |
+
"model_module_version": "2.0.0",
|
718 |
+
"model_name": "HTMLStyleModel",
|
719 |
+
"state": {
|
720 |
+
"description_width": "",
|
721 |
+
"font_size": null,
|
722 |
+
"text_color": null
|
723 |
+
}
|
724 |
+
},
|
725 |
+
"dcacde4741d04c8aadf976214fc7ca3f": {
|
726 |
+
"model_module": "@jupyter-widgets/controls",
|
727 |
+
"model_module_version": "2.0.0",
|
728 |
+
"model_name": "HTMLModel",
|
729 |
+
"state": {
|
730 |
+
"layout": "IPY_MODEL_75f6c83591434c988e8544bcebac205e",
|
731 |
+
"style": "IPY_MODEL_8faa49a8820949f9a02786c5f0ead0c9",
|
732 |
+
"value": "Downloading metadata: 100%"
|
733 |
+
}
|
734 |
+
},
|
735 |
+
"e01dd8351d68489096d37bcdd421b3e1": {
|
736 |
+
"model_module": "@jupyter-widgets/base",
|
737 |
+
"model_module_version": "2.0.0",
|
738 |
+
"model_name": "LayoutModel",
|
739 |
+
"state": {}
|
740 |
+
},
|
741 |
+
"ed070860314b406f92993db9c431cd39": {
|
742 |
+
"model_module": "@jupyter-widgets/base",
|
743 |
+
"model_module_version": "2.0.0",
|
744 |
+
"model_name": "LayoutModel",
|
745 |
+
"state": {}
|
746 |
+
},
|
747 |
+
"f11038611e0c438bab4784c5e719fbe7": {
|
748 |
+
"model_module": "@jupyter-widgets/base",
|
749 |
+
"model_module_version": "2.0.0",
|
750 |
+
"model_name": "LayoutModel",
|
751 |
+
"state": {}
|
752 |
+
},
|
753 |
+
"f32478ac5e0d450882b36dfd8d67478c": {
|
754 |
+
"model_module": "@jupyter-widgets/base",
|
755 |
+
"model_module_version": "2.0.0",
|
756 |
+
"model_name": "LayoutModel",
|
757 |
+
"state": {}
|
758 |
+
},
|
759 |
+
"f65e605c8cfc45c68c06647a766b04f8": {
|
760 |
+
"model_module": "@jupyter-widgets/controls",
|
761 |
+
"model_module_version": "2.0.0",
|
762 |
+
"model_name": "HBoxModel",
|
763 |
+
"state": {
|
764 |
+
"children": [
|
765 |
+
"IPY_MODEL_dcacde4741d04c8aadf976214fc7ca3f",
|
766 |
+
"IPY_MODEL_85517b861fcf417cb66a183b00bc47f6",
|
767 |
+
"IPY_MODEL_2fba3ad1fdcf4f12a45eb91f254949af"
|
768 |
+
],
|
769 |
+
"layout": "IPY_MODEL_d14f64298a87417bba614439684adb35"
|
770 |
+
}
|
771 |
+
},
|
772 |
+
"fb03a15c31e64214956e4701160163db": {
|
773 |
+
"model_module": "@jupyter-widgets/base",
|
774 |
+
"model_module_version": "2.0.0",
|
775 |
+
"model_name": "LayoutModel",
|
776 |
+
"state": {}
|
777 |
+
}
|
778 |
+
},
|
779 |
+
"version_major": 2,
|
780 |
+
"version_minor": 0
|
781 |
+
}
|
782 |
+
}
|
783 |
+
},
|
784 |
+
"nbformat": 4,
|
785 |
+
"nbformat_minor": 5
|
786 |
+
}
|