Amanpreet Singh commited on
Commit
bd4180c
1 Parent(s): 8c42fe9

new version

Browse files
Files changed (3) hide show
  1. README.md +591 -0
  2. scirepeval.py +199 -0
  3. scirepeval_configs.py +359 -0
README.md ADDED
@@ -0,0 +1,591 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ dataset_info:
3
+ - config_name: fos
4
+ features:
5
+ - name: doc_id
6
+ dtype: string
7
+ - name: corpus_id
8
+ dtype: uint64
9
+ - name: title
10
+ dtype: string
11
+ - name: abstract
12
+ dtype: string
13
+ - name: labels
14
+ sequence: int32
15
+ - name: labels_text
16
+ sequence: string
17
+ splits:
18
+ - name: evaluation
19
+ num_bytes: 63854253
20
+ num_examples: 68147
21
+ - name: train
22
+ num_bytes: 509154623
23
+ num_examples: 541218
24
+ - name: validation
25
+ num_bytes: 63947785
26
+ num_examples: 67631
27
+ download_size: 683428084
28
+ dataset_size: 636956661
29
+ - config_name: mesh_descriptors
30
+ features:
31
+ - name: doc_id
32
+ dtype: string
33
+ - name: mag_id
34
+ dtype: uint64
35
+ - name: corpus_id
36
+ dtype: uint64
37
+ - name: title
38
+ dtype: string
39
+ - name: abstract
40
+ dtype: string
41
+ - name: descriptor
42
+ dtype: string
43
+ - name: qualifier
44
+ dtype: string
45
+ splits:
46
+ - name: evaluation
47
+ num_bytes: 390178523
48
+ num_examples: 258678
49
+ - name: train
50
+ num_bytes: 3120117992
51
+ num_examples: 2069065
52
+ - name: validation
53
+ num_bytes: 390161743
54
+ num_examples: 258678
55
+ download_size: 4132614464
56
+ dataset_size: 3900458258
57
+ - config_name: cite_count
58
+ features:
59
+ - name: doc_id
60
+ dtype: string
61
+ - name: corpus_id
62
+ dtype: uint64
63
+ - name: title
64
+ dtype: string
65
+ - name: abstract
66
+ dtype: string
67
+ - name: venue
68
+ dtype: string
69
+ - name: n_citations
70
+ dtype: int32
71
+ - name: log_citations
72
+ dtype: float32
73
+ splits:
74
+ - name: evaluation
75
+ num_bytes: 45741032
76
+ num_examples: 30058
77
+ - name: train
78
+ num_bytes: 265390284
79
+ num_examples: 175944
80
+ - name: validation
81
+ num_bytes: 40997159
82
+ num_examples: 26830
83
+ download_size: 378454118
84
+ dataset_size: 352128475
85
+ - config_name: pub_year
86
+ features:
87
+ - name: doc_id
88
+ dtype: string
89
+ - name: corpus_id
90
+ dtype: uint64
91
+ - name: title
92
+ dtype: string
93
+ - name: abstract
94
+ dtype: string
95
+ - name: year
96
+ dtype: int32
97
+ - name: venue
98
+ dtype: string
99
+ - name: norm_year
100
+ dtype: float32
101
+ - name: scaled_year
102
+ dtype: float32
103
+ - name: n_authors
104
+ dtype: int32
105
+ - name: norm_authors
106
+ dtype: float32
107
+ splits:
108
+ - name: evaluation
109
+ num_bytes: 46195045
110
+ num_examples: 30000
111
+ - name: train
112
+ num_bytes: 301313882
113
+ num_examples: 198995
114
+ - name: validation
115
+ num_bytes: 30493617
116
+ num_examples: 19869
117
+ download_size: 411086891
118
+ dataset_size: 378002544
119
+ - config_name: cite_prediction
120
+ features:
121
+ - name: query
122
+ struct:
123
+ - name: doc_id
124
+ dtype: string
125
+ - name: title
126
+ dtype: string
127
+ - name: abstract
128
+ dtype: string
129
+ - name: sha
130
+ dtype: string
131
+ - name: corpus_id
132
+ dtype: uint64
133
+ - name: pos
134
+ struct:
135
+ - name: doc_id
136
+ dtype: string
137
+ - name: title
138
+ dtype: string
139
+ - name: abstract
140
+ dtype: string
141
+ - name: sha
142
+ dtype: string
143
+ - name: corpus_id
144
+ dtype: uint64
145
+ - name: neg
146
+ struct:
147
+ - name: doc_id
148
+ dtype: string
149
+ - name: title
150
+ dtype: string
151
+ - name: abstract
152
+ dtype: string
153
+ - name: sha
154
+ dtype: string
155
+ - name: corpus_id
156
+ dtype: uint64
157
+ splits:
158
+ - name: train
159
+ num_bytes: 2582594392
160
+ num_examples: 676150
161
+ - name: validation
162
+ num_bytes: 549599739
163
+ num_examples: 143686
164
+ download_size: 3287219740
165
+ dataset_size: 3132194131
166
+ - config_name: cite_prediction_new
167
+ features:
168
+ - name: query
169
+ struct:
170
+ - name: title
171
+ dtype: string
172
+ - name: abstract
173
+ dtype: string
174
+ - name: corpus_id
175
+ dtype: uint64
176
+ - name: pos
177
+ struct:
178
+ - name: title
179
+ dtype: string
180
+ - name: abstract
181
+ dtype: string
182
+ - name: corpus_id
183
+ dtype: uint64
184
+ - name: neg
185
+ struct:
186
+ - name: title
187
+ dtype: string
188
+ - name: abstract
189
+ dtype: string
190
+ - name: corpus_id
191
+ dtype: uint64
192
+ - name: score
193
+ dtype: int8
194
+ splits:
195
+ - name: train
196
+ num_bytes: 23829782726
197
+ num_examples: 6197963
198
+ - name: validation
199
+ num_bytes: 609822308
200
+ num_examples: 176430
201
+ download_size: 25842249246
202
+ dataset_size: 24439605034
203
+ - config_name: cite_prediction_aug2023refresh
204
+ features:
205
+ - name: query
206
+ struct:
207
+ - name: title
208
+ dtype: string
209
+ - name: abstract
210
+ dtype: string
211
+ - name: corpus_id
212
+ dtype: uint64
213
+ - name: pos
214
+ struct:
215
+ - name: title
216
+ dtype: string
217
+ - name: abstract
218
+ dtype: string
219
+ - name: corpus_id
220
+ dtype: uint64
221
+ - name: neg
222
+ struct:
223
+ - name: title
224
+ dtype: string
225
+ - name: abstract
226
+ dtype: string
227
+ - name: corpus_id
228
+ dtype: uint64
229
+ splits:
230
+ - name: train
231
+ num_bytes: 2069439948
232
+ num_examples: 475656
233
+ download_size: 2147428459
234
+ dataset_size: 2069439948
235
+ - config_name: high_influence_cite
236
+ features:
237
+ - name: query
238
+ struct:
239
+ - name: doc_id
240
+ dtype: string
241
+ - name: title
242
+ dtype: string
243
+ - name: abstract
244
+ dtype: string
245
+ - name: corpus_id
246
+ dtype: uint64
247
+ - name: candidates
248
+ list:
249
+ - name: doc_id
250
+ dtype: string
251
+ - name: title
252
+ dtype: string
253
+ - name: abstract
254
+ dtype: string
255
+ - name: corpus_id
256
+ dtype: uint64
257
+ - name: score
258
+ dtype: uint32
259
+ splits:
260
+ - name: evaluation
261
+ num_bytes: 85746699
262
+ num_examples: 1199
263
+ - name: train
264
+ num_bytes: 2607643584
265
+ num_examples: 58626
266
+ - name: validation
267
+ num_bytes: 329589399
268
+ num_examples: 7356
269
+ download_size: 3149789722
270
+ dataset_size: 3022979682
271
+ - config_name: same_author
272
+ features:
273
+ - name: dataset
274
+ dtype: string
275
+ - name: query
276
+ struct:
277
+ - name: doc_id
278
+ dtype: string
279
+ - name: title
280
+ dtype: string
281
+ - name: abstract
282
+ dtype: string
283
+ - name: corpus_id
284
+ dtype: uint64
285
+ - name: candidates
286
+ list:
287
+ - name: doc_id
288
+ dtype: string
289
+ - name: title
290
+ dtype: string
291
+ - name: abstract
292
+ dtype: string
293
+ - name: corpus_id
294
+ dtype: uint64
295
+ - name: score
296
+ dtype: uint32
297
+ splits:
298
+ - name: evaluation
299
+ num_bytes: 126843751
300
+ num_examples: 13585
301
+ - name: train
302
+ num_bytes: 602167355
303
+ num_examples: 67493
304
+ - name: validation
305
+ num_bytes: 84426970
306
+ num_examples: 8996
307
+ download_size: 866210529
308
+ dataset_size: 813438076
309
+ - config_name: search
310
+ features:
311
+ - name: query
312
+ dtype: string
313
+ - name: doc_id
314
+ dtype: string
315
+ - name: candidates
316
+ list:
317
+ - name: doc_id
318
+ dtype: string
319
+ - name: title
320
+ dtype: string
321
+ - name: abstract
322
+ dtype: string
323
+ - name: corpus_id
324
+ dtype: uint64
325
+ - name: venue
326
+ dtype: string
327
+ - name: year
328
+ dtype: float64
329
+ - name: author_names
330
+ sequence: string
331
+ - name: n_citations
332
+ dtype: int32
333
+ - name: n_key_citations
334
+ dtype: int32
335
+ - name: score
336
+ dtype: uint32
337
+ splits:
338
+ - name: evaluation
339
+ num_bytes: 39417912
340
+ num_examples: 2637
341
+ - name: train
342
+ num_bytes: 6889691036
343
+ num_examples: 399878
344
+ - name: validation
345
+ num_bytes: 1096150259
346
+ num_examples: 67363
347
+ download_size: 9645282078
348
+ dataset_size: 8025259207
349
+ - config_name: biomimicry
350
+ features:
351
+ - name: doc_id
352
+ dtype: string
353
+ - name: doi
354
+ dtype: string
355
+ - name: corpus_id
356
+ dtype: uint64
357
+ - name: title
358
+ dtype: string
359
+ - name: abstract
360
+ dtype: string
361
+ - name: label
362
+ dtype: uint32
363
+ - name: venue
364
+ dtype: string
365
+ splits:
366
+ - name: evaluation
367
+ num_bytes: 16651415
368
+ num_examples: 10991
369
+ download_size: 17437012
370
+ dataset_size: 16651415
371
+ - config_name: drsm
372
+ features:
373
+ - name: doc_id
374
+ dtype: string
375
+ - name: corpus_id
376
+ dtype: uint64
377
+ - name: title
378
+ dtype: string
379
+ - name: abstract
380
+ dtype: string
381
+ - name: label_type
382
+ dtype: string
383
+ - name: label
384
+ dtype: string
385
+ - name: class
386
+ dtype: uint32
387
+ splits:
388
+ - name: evaluation
389
+ num_bytes: 12756487
390
+ num_examples: 8813
391
+ download_size: 13449713
392
+ dataset_size: 12756487
393
+ - config_name: peer_review_score_hIndex
394
+ features:
395
+ - name: doc_id
396
+ dtype: string
397
+ - name: corpus_id
398
+ dtype: uint64
399
+ - name: title
400
+ dtype: string
401
+ - name: abstract
402
+ dtype: string
403
+ - name: rating
404
+ sequence: int32
405
+ - name: confidence
406
+ dtype: string
407
+ - name: authors
408
+ sequence: string
409
+ - name: decision
410
+ dtype: string
411
+ - name: mean_rating
412
+ dtype: float32
413
+ - name: hIndex
414
+ sequence: string
415
+ splits:
416
+ - name: evaluation
417
+ num_bytes: 18233728
418
+ num_examples: 12668
419
+ download_size: 19647506
420
+ dataset_size: 18233728
421
+ - config_name: trec_covid
422
+ features:
423
+ - name: query
424
+ dtype: string
425
+ - name: doc_id
426
+ dtype: string
427
+ - name: candidates
428
+ list:
429
+ - name: title
430
+ dtype: string
431
+ - name: abstract
432
+ dtype: string
433
+ - name: corpus_id
434
+ dtype: string
435
+ - name: doc_id
436
+ dtype: string
437
+ - name: date
438
+ dtype: string
439
+ - name: doi
440
+ dtype: string
441
+ - name: iteration
442
+ dtype: string
443
+ - name: score
444
+ dtype: int32
445
+ splits:
446
+ - name: evaluation
447
+ num_bytes: 98757931
448
+ num_examples: 50
449
+ download_size: 104449690
450
+ dataset_size: 98757931
451
+ - config_name: tweet_mentions
452
+ features:
453
+ - name: doc_id
454
+ dtype: string
455
+ - name: corpus_id
456
+ dtype: uint64
457
+ - name: title
458
+ dtype: string
459
+ - name: abstract
460
+ dtype: string
461
+ - name: index
462
+ dtype: int32
463
+ - name: retweets
464
+ dtype: float32
465
+ - name: count
466
+ dtype: int32
467
+ - name: mentions
468
+ dtype: float32
469
+ splits:
470
+ - name: evaluation
471
+ num_bytes: 25895172
472
+ num_examples: 25655
473
+ download_size: 28533162
474
+ dataset_size: 25895172
475
+ - config_name: scidocs_mag_mesh
476
+ features:
477
+ - name: doc_id
478
+ dtype: string
479
+ - name: corpus_id
480
+ dtype: uint64
481
+ - name: title
482
+ dtype: string
483
+ - name: abstract
484
+ dtype: string
485
+ - name: authors
486
+ sequence: string
487
+ - name: cited_by
488
+ sequence: string
489
+ - name: references
490
+ sequence: string
491
+ - name: year
492
+ dtype: int32
493
+ splits:
494
+ - name: evaluation
495
+ num_bytes: 74027498
496
+ num_examples: 48473
497
+ download_size: 109426986
498
+ dataset_size: 74027498
499
+ - config_name: scidocs_view_cite_read
500
+ features:
501
+ - name: doc_id
502
+ dtype: string
503
+ - name: corpus_id
504
+ dtype: uint64
505
+ - name: title
506
+ dtype: string
507
+ - name: abstract
508
+ dtype: string
509
+ - name: authors
510
+ sequence: string
511
+ - name: cited_by
512
+ sequence: string
513
+ - name: references
514
+ sequence: string
515
+ - name: year
516
+ dtype: int32
517
+ splits:
518
+ - name: evaluation
519
+ num_bytes: 240557104
520
+ num_examples: 142009
521
+ download_size: 949184683
522
+ dataset_size: 240557104
523
+ - config_name: paper_reviewer_matching
524
+ features:
525
+ - name: doc_id
526
+ dtype: string
527
+ - name: title
528
+ dtype: string
529
+ - name: abstract
530
+ dtype: string
531
+ - name: corpus_id
532
+ dtype: uint64
533
+ splits:
534
+ - name: evaluation
535
+ num_bytes: 76005931
536
+ num_examples: 73364
537
+ download_size: 88124286
538
+ dataset_size: 76005931
539
+ - config_name: relish
540
+ features:
541
+ - name: query
542
+ struct:
543
+ - name: doc_id
544
+ dtype: string
545
+ - name: title
546
+ dtype: string
547
+ - name: abstract
548
+ dtype: string
549
+ - name: corpus_id
550
+ dtype: int64
551
+ - name: candidates
552
+ list:
553
+ - name: doc_id
554
+ dtype: string
555
+ - name: title
556
+ dtype: string
557
+ - name: abstract
558
+ dtype: string
559
+ - name: corpus_id
560
+ dtype: int64
561
+ - name: score
562
+ dtype: uint32
563
+ splits:
564
+ - name: evaluation
565
+ num_bytes: 338282942
566
+ num_examples: 3190
567
+ download_size: 350349387
568
+ dataset_size: 338282942
569
+ - config_name: nfcorpus
570
+ features:
571
+ - name: query
572
+ dtype: string
573
+ - name: doc_id
574
+ dtype: string
575
+ - name: candidates
576
+ list:
577
+ - name: doc_id
578
+ dtype: string
579
+ - name: title
580
+ dtype: string
581
+ - name: abstract
582
+ dtype: string
583
+ - name: score
584
+ dtype: uint32
585
+ splits:
586
+ - name: evaluation
587
+ num_bytes: 72184049
588
+ num_examples: 323
589
+ download_size: 74298528
590
+ dataset_size: 72184049
591
+ ---
scirepeval.py ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # TODO: Address all TODOs and remove all explanatory comments
15
+ """TODO: Add a description here."""
16
+
17
+
18
+ import csv
19
+ import json
20
+ import os
21
+ import glob
22
+
23
+ import datasets
24
+ from datasets.data_files import DataFilesDict
25
+ from .scirepeval_configs import SCIREPEVAL_CONFIGS
26
+ #from datasets.packaged_modules.json import json
27
+ from datasets.utils.logging import get_logger
28
+
29
+
30
+ logger = get_logger(__name__)
31
+ # TODO: Add BibTeX citation
32
+ # Find for instance the citation on arxiv or on the dataset repo/website
33
+ _CITATION = """\
34
+ @InProceedings{huggingface:dataset,
35
+ title = {A great new dataset},
36
+ author={huggingface, Inc.
37
+ },
38
+ year={2021}
39
+ }
40
+ """
41
+
42
+ # TODO: Add description of the dataset here
43
+ # You can copy an official description
44
+ _DESCRIPTION = """\
45
+ This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
46
+ """
47
+
48
+ # TODO: Add a link to an official homepage for the dataset here
49
+ _HOMEPAGE = ""
50
+
51
+ # TODO: Add the licence for the dataset here if you can find it
52
+ _LICENSE = ""
53
+
54
+ # TODO: Add link to the official dataset URLs here
55
+ # The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
56
+ # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
57
+ _URLS = {
58
+ "first_domain": "https://huggingface.co/great-new-dataset-first_domain.zip",
59
+ "second_domain": "https://huggingface.co/great-new-dataset-second_domain.zip",
60
+ }
61
+
62
+
63
+
64
+ # TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
65
+ class Scirepeval(datasets.GeneratorBasedBuilder):
66
+ """TODO: Short description of my dataset."""
67
+
68
+ VERSION = datasets.Version("1.1.0")
69
+
70
+ # This is an example of a dataset with multiple configurations.
71
+ # If you don't want/need to define several sub-sets in your dataset,
72
+ # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
73
+
74
+ # If you need to make complex sub-parts in the datasets with configurable options
75
+ # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
76
+ # BUILDER_CONFIG_CLASS = MyBuilderConfig
77
+
78
+ # You will be able to load one or the other configurations in the following list with
79
+ # data = datasets.load_dataset('my_dataset', 'first_domain')
80
+ # data = datasets.load_dataset('my_dataset', 'second_domain')
81
+ BUILDER_CONFIGS = SCIREPEVAL_CONFIGS
82
+
83
+ def _info(self):
84
+ return datasets.DatasetInfo(
85
+ # This is the description that will appear on the datasets page.
86
+ description=self.config.description,
87
+ # This defines the different columns of the dataset and their types
88
+ features=datasets.Features(self.config.features), # Here we define them above because they are different between the two configurations
89
+ # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
90
+ # specify them. They'll be used if as_supervised=True in builder.as_dataset.
91
+ # supervised_keys=("sentence", "label"),
92
+ # Homepage of the dataset for documentation
93
+ homepage="",
94
+ # License for the dataset if available
95
+ license=self.config.license,
96
+ # Citation for the dataset
97
+ citation=self.config.citation,
98
+ )
99
+
100
+ def _split_generators(self, dl_manager):
101
+ # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
102
+ # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
103
+ base_url = "https://ai2-s2-research-public.s3.us-west-2.amazonaws.com/scirepeval"
104
+ data_urls = dict()
105
+ data_dir = self.config.url if self.config.url else self.config.name
106
+ if self.config.is_training:
107
+ data_urls = {"train": f"{base_url}/train/{data_dir}/train.jsonl"}
108
+
109
+ if "refresh" not in self.config.name:
110
+ data_urls.update({"val": f"{base_url}/train/{data_dir}/val.jsonl"})
111
+
112
+ if "cite_prediction" not in self.config.name:
113
+ data_urls.update({"test": f"{base_url}/test/{data_dir}/meta.jsonl"})
114
+ # print(data_urls)
115
+ downloaded_files = dl_manager.download_and_extract(data_urls)
116
+ # print(downloaded_files)
117
+ splits = []
118
+ if "test" in downloaded_files:
119
+ splits = [datasets.SplitGenerator(
120
+ name=datasets.Split("evaluation"),
121
+ # These kwargs will be passed to _generate_examples
122
+ gen_kwargs={
123
+ "filepath": downloaded_files["test"],
124
+ "split": "evaluation"
125
+ },
126
+ ),
127
+ ]
128
+
129
+ if "train" in downloaded_files:
130
+ splits.append(
131
+ datasets.SplitGenerator(
132
+ name=datasets.Split.TRAIN,
133
+ # These kwargs will be passed to _generate_examples
134
+ gen_kwargs={
135
+ "filepath": downloaded_files["train"],
136
+ "split": "train",
137
+ },
138
+ ))
139
+ if "val" in downloaded_files:
140
+ splits.append(datasets.SplitGenerator(
141
+ name=datasets.Split.VALIDATION,
142
+ # These kwargs will be passed to _generate_examples
143
+ gen_kwargs={
144
+ "filepath": downloaded_files["val"],
145
+ "split": "validation",
146
+ }))
147
+ return splits
148
+
149
+
150
+ # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
151
+ def _generate_examples(self, filepath, split):
152
+ def read_data(data_path):
153
+ task_data = []
154
+ try:
155
+ task_data = json.load(open(data_path, "r", encoding="utf-8"))
156
+ except:
157
+ with open(data_path) as f:
158
+ task_data = [json.loads(line) for line in f]
159
+ if type(task_data) == dict:
160
+ task_data = list(task_data.values())
161
+ return task_data
162
+ # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
163
+ # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
164
+ # data = read_data(filepath)
165
+ seen_keys = set()
166
+ IGNORE=set(["n_key_citations", "session_id", "user_id", "user"])
167
+ logger.warning(filepath)
168
+ with open(filepath, encoding="utf-8") as f:
169
+ for line in f:
170
+ d = json.loads(line)
171
+ d = {k:v for k,v in d.items() if k not in IGNORE}
172
+ key="doc_id" if "cite_prediction_" not in self.config.name else "corpus_id"
173
+ if self.config.task_type == "proximity":
174
+ if "cite_prediction" in self.config.name:
175
+ if "arxiv_id" in d["query"]:
176
+ for item in ["query", "pos", "neg"]:
177
+ del d[item]["arxiv_id"]
178
+ del d[item]["doi"]
179
+ if "fos" in d["query"]:
180
+ del d["query"]["fos"]
181
+ if "score" in d["pos"]:
182
+ del d["pos"]["score"]
183
+ yield str(d["query"][key]) + str(d["pos"][key]) + str(d["neg"][key]), d
184
+ else:
185
+ if d["query"][key] not in seen_keys:
186
+ seen_keys.add(d["query"][key])
187
+ yield str(d["query"][key]), d
188
+ else:
189
+ if d[key] not in seen_keys:
190
+ seen_keys.add(d[key])
191
+ if self.config.task_type != "search":
192
+ if "corpus_id" not in d:
193
+ d["corpus_id"] = None
194
+ if "scidocs" in self.config.name:
195
+ if "cited by" not in d:
196
+ d["cited_by"] = []
197
+ if type(d["corpus_id"]) == str:
198
+ d["corpus_id"] = None
199
+ yield d[key], d
scirepeval_configs.py ADDED
@@ -0,0 +1,359 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict, Any, List
2
+
3
+ import datasets
4
+
5
+
6
+ class ScirepevalConfig(datasets.BuilderConfig):
7
+ """BuilderConfig for SuperGLUE."""
8
+
9
+ def __init__(self, features: Dict[str, Any], task_type: str, citation: str = "",
10
+ licenses: str = "", is_training: bool = False, homepage: str = "", url="", **kwargs):
11
+ """BuilderConfig for SuperGLUE.
12
+
13
+ Args:
14
+ features: *list[string]*, list of the features that will appear in the
15
+ feature dict. Should not include "label".
16
+ data_url: *string*, url to download the zip file from.
17
+ citation: *string*, citation for the data set.
18
+ url: *string*, url for information about the data set.
19
+ label_classes: *list[string]*, the list of classes for the label if the
20
+ label is present as a string. Non-string labels will be cast to either
21
+ 'False' or 'True'.
22
+ **kwargs: keyword arguments forwarded to super.
23
+ """
24
+ super().__init__(version=datasets.Version("1.1.0"), **kwargs)
25
+ self.features = features
26
+ self.task_type = task_type
27
+ self.citation = citation
28
+ self.license = licenses
29
+ self.is_training = is_training
30
+ self.homepage = homepage
31
+ self.url = url
32
+
33
+ @classmethod
34
+ def get_features(self, feature_names: List[str], type_mapping: Dict[str, Any] = None) -> Dict[str, Any]:
35
+ features = {name: type_mapping[name] if name in type_mapping else datasets.Value("string") for name in
36
+ feature_names}
37
+
38
+ if "corpus_id" in features:
39
+ features["corpus_id"] = datasets.Value("uint64")
40
+ return features
41
+
42
+
43
+ SCIREPEVAL_CONFIGS = [
44
+ ScirepevalConfig(name="fos", features=ScirepevalConfig.get_features(
45
+ ["doc_id", "corpus_id", "title", "abstract", "labels", "labels_text"],
46
+ {"labels": datasets.Sequence(datasets.Value("int32")),
47
+ "labels_text": datasets.Sequence(datasets.Value("string"))}),
48
+ task_type="classification (multi-label)", is_training=True, description=""),
49
+
50
+ ScirepevalConfig(name="mesh_descriptors", features=ScirepevalConfig.get_features(
51
+ ["doc_id", "mag_id", "corpus_id", "title", "abstract", "descriptor", "qualifier"], {"mag_id": datasets.Value("uint64")}),
52
+ task_type="classification", is_training=True,
53
+ citation="@article{Lipscomb2000MedicalSH, \
54
+ title={Medical Subject Headings (MeSH).}, \
55
+ author={Carolyn E. Lipscomb}, \
56
+ journal={Bulletin of the Medical Library Association},\
57
+ year={2000}, \
58
+ volume={88 3}, \
59
+ pages={ \
60
+ 265-6 \
61
+ } \
62
+ }",
63
+ description="", homepage="https://www.nlm.nih.gov/databases/download/mesh.html"
64
+ ),
65
+
66
+ ScirepevalConfig(name="cite_count", features=ScirepevalConfig.get_features(
67
+ ["doc_id", "corpus_id", "title", "abstract", "venue", "n_citations", "log_citations"],
68
+ {"n_citations": datasets.Value("int32"),
69
+ "log_citations": datasets.Value("float32")}),
70
+ task_type="regression", is_training=True, description=""
71
+ ),
72
+
73
+ ScirepevalConfig(name="pub_year", features=ScirepevalConfig.get_features(
74
+ ["doc_id", "corpus_id", "title", "abstract", "year", "venue", "norm_year", "scaled_year", "n_authors", "norm_authors"],
75
+ {"year": datasets.Value("int32"), "norm_year": datasets.Value("float32"),
76
+ "scaled_year": datasets.Value("float32"), "n_authors": datasets.Value("int32"),
77
+ "norm_authors": datasets.Value("float32"), }),
78
+ task_type="regression", is_training=True, description=""),
79
+
80
+ ScirepevalConfig(name="cite_prediction",
81
+ features=ScirepevalConfig.get_features(["query", "pos", "neg"],
82
+ {"query": {
83
+ "doc_id": datasets.Value("string"),
84
+ "title": datasets.Value("string"),
85
+ "abstract": datasets.Value(
86
+ "string"),
87
+ "sha": datasets.Value("string"),
88
+ "corpus_id": datasets.Value("uint64")},
89
+ "pos": {
90
+ "doc_id": datasets.Value("string"),
91
+ "title": datasets.Value("string"),
92
+ "abstract": datasets.Value(
93
+ "string"),
94
+ "sha": datasets.Value("string"),
95
+ "corpus_id": datasets.Value("uint64")}
96
+ , "neg": {
97
+ "doc_id": datasets.Value("string"),
98
+ "title": datasets.Value("string"),
99
+ "abstract": datasets.Value(
100
+ "string"),
101
+ "sha": datasets.Value("string"),
102
+ "corpus_id": datasets.Value("uint64")}}),
103
+ task_type="proximity", is_training=True, citation="@inproceedings{specter2020cohan, \
104
+ title={{SPECTER: Document-level Representation Learning using Citation-informed Transformers}}, \
105
+ author={Arman Cohan and Sergey Feldman and Iz Beltagy and Doug Downey and Daniel S. Weld}, \
106
+ booktitle={ACL}, \
107
+ year={2020} \
108
+ }", description="", homepage="https://github.com/allenai/specter"),
109
+ ScirepevalConfig(name="cite_prediction_new",
110
+ features=ScirepevalConfig.get_features(["query", "pos", "neg"],
111
+ {"query": {
112
+ "title": datasets.Value("string"),
113
+ "abstract": datasets.Value(
114
+ "string"),
115
+ "corpus_id": datasets.Value("uint64")},
116
+ "pos": {
117
+ "title": datasets.Value("string"),
118
+ "abstract": datasets.Value(
119
+ "string"),
120
+ "corpus_id": datasets.Value("uint64"),
121
+ }
122
+ , "neg": {
123
+ "title": datasets.Value("string"),
124
+ "abstract": datasets.Value(
125
+ "string"),
126
+ "corpus_id": datasets.Value("uint64"),
127
+ "score": datasets.Value("int8")}}),
128
+ task_type="proximity", is_training=True, citation="@inproceedings{specter2020cohan, \
129
+ title={{SPECTER: Document-level Representation Learning using Citation-informed Transformers}}, \
130
+ author={Arman Cohan and Sergey Feldman and Iz Beltagy and Doug Downey and Daniel S. Weld}, \
131
+ booktitle={ACL}, \
132
+ year={2020} \
133
+ }", description="", homepage="https://github.com/allenai/specter"),
134
+ ScirepevalConfig(name="cite_prediction_aug2023refresh",
135
+ features=ScirepevalConfig.get_features(["query", "pos", "neg"],
136
+ {"query": {
137
+ "title": datasets.Value("string"),
138
+ "abstract": datasets.Value(
139
+ "string"),
140
+ "corpus_id": datasets.Value("uint64")},
141
+ "pos": {
142
+ "title": datasets.Value("string"),
143
+ "abstract": datasets.Value(
144
+ "string"),
145
+ "corpus_id": datasets.Value("uint64"),
146
+ }
147
+ , "neg": {
148
+ "title": datasets.Value("string"),
149
+ "abstract": datasets.Value(
150
+ "string"),
151
+ "corpus_id": datasets.Value("uint64")}}),
152
+ task_type="proximity", is_training=True, citation="@inproceedings{specter2020cohan, \
153
+ title={{SPECTER: Document-level Representation Learning using Citation-informed Transformers}}, \
154
+ author={Arman Cohan and Sergey Feldman and Iz Beltagy and Doug Downey and Daniel S. Weld}, \
155
+ booktitle={ACL}, \
156
+ year={2020} \
157
+ }", description="", homepage="https://github.com/allenai/specter"),
158
+
159
+ ScirepevalConfig(name="high_influence_cite",
160
+ features=ScirepevalConfig.get_features(["query", "candidates"],
161
+ {"query": {
162
+ "doc_id": datasets.Value("string"),
163
+ "title": datasets.Value("string"),
164
+ "abstract": datasets.Value(
165
+ "string"),
166
+ "corpus_id": datasets.Value("uint64")},
167
+ "candidates":
168
+ [{"doc_id": datasets.Value("string"),
169
+ "title": datasets.Value("string"),
170
+ "abstract": datasets.Value(
171
+ "string"),
172
+ "corpus_id": datasets.Value("uint64"),
173
+ "score": datasets.Value("uint32")}]}),
174
+ task_type="proximity", is_training=True, description=""),
175
+
176
+ ScirepevalConfig(name="same_author",
177
+ features=ScirepevalConfig.get_features(["dataset", "query", "candidates"],
178
+ {"query": {
179
+ "doc_id": datasets.Value("string"),
180
+ "title": datasets.Value("string"),
181
+ "abstract": datasets.Value(
182
+ "string"),
183
+ "corpus_id": datasets.Value("uint64")},
184
+ "candidates":
185
+ [{
186
+ "doc_id": datasets.Value("string"),
187
+ "title": datasets.Value("string"),
188
+ "abstract": datasets.Value(
189
+ "string"),
190
+ "corpus_id": datasets.Value("uint64"),
191
+ "score": datasets.Value("uint32")}]}),
192
+ task_type="proximity", is_training=True, description=""),
193
+
194
+ ScirepevalConfig(name="search",
195
+ features=ScirepevalConfig.get_features(["query", "doc_id", "candidates"],
196
+ {"candidates":
197
+ [{
198
+ "doc_id": datasets.Value("string"),
199
+ "title": datasets.Value("string"),
200
+ "abstract": datasets.Value(
201
+ "string"),
202
+ "corpus_id": datasets.Value("uint64"),
203
+ "venue": datasets.Value("string"),
204
+ "year": datasets.Value("float64"),
205
+ "author_names": datasets.Sequence(datasets.Value("string")),
206
+ "n_citations": datasets.Value("int32"),
207
+ "n_key_citations": datasets.Value("int32"),
208
+ "score": datasets.Value("uint32")}]}),
209
+ task_type="search", is_training=True, description=""),
210
+
211
+ ScirepevalConfig(name="biomimicry", features=ScirepevalConfig.get_features(
212
+ ["doc_id", "doi", "corpus_id", "title", "abstract", "label", "venue"], {"label": datasets.Value("uint32")}),
213
+ task_type="classification",
214
+ citation="@Article{vikram2019petal,\
215
+ AUTHOR = {Shyam, Vikram and Friend, Lauren and Whiteaker, Brian and Bense, Nicholas and Dowdall, Jonathan and Boktor, Bishoy and Johny, Manju and Reyes, Isaias and Naser, Angeera and Sakhamuri, Nikhitha and Kravets, Victoria and Calvin, Alexandra and Gabus, Kaylee and Goodman, Delonte and Schilling, Herbert and Robinson, Calvin and Reid II, Robert Omar and Unsworth, Colleen},\
216
+ TITLE = {PeTaL (Periodic Table of Life) and Physiomimetics},\
217
+ JOURNAL = {Designs},\
218
+ VOLUME = {3},\
219
+ YEAR = {2019},\
220
+ NUMBER = {3},\
221
+ ARTICLE-NUMBER = {43},\
222
+ URL = {https://www.mdpi.com/2411-9660/3/3/43},\
223
+ ISSN = {2411-9660},\
224
+ ABSTRACT = {The Periodic Table of Life (PeTaL) is a system design tool and open source framework that uses artificial intelligence (AI) to aid in the systematic inquiry of nature for its application to human systems. This paper defines PeTaL’s architecture and workflow. Biomimicry, biophysics, biomimetics, bionics and numerous other terms refer to the use of biology and biological principles to inform practices in other disciplines. For the most part, the domain of inquiry in these fields has been confined to extant biological models with the proponents of biomimicry often citing the evolutionary success of extant organisms relative to extinct ones. An objective of this paper is to expand the domain of inquiry for human processes that seek to model those that are, were or could be found in nature with examples that relate to the field of aerospace and to spur development of tools that can work together to accelerate the use of artificial intelligence, topology optimization and conventional modeling in problem solving. Specifically, specialized fields such as paleomimesis, anthropomimesis and physioteleology are proposed in conjunction with artificial evolution. The overarching philosophy outlined here can be thought of as physiomimetics, a holistic and systematic way of learning from natural history. The backbone of PeTaL integrates an unstructured database with an ontological model consisting of function, morphology, environment, state of matter and ecosystem. Tools that support PeTaL include machine learning, natural language processing and computer vision. Applications of PeTaL include guiding human space exploration, understanding human and geological history, and discovering new or extinct life. Also discussed is the formation of V.I.N.E. (Virtual Interchange for Nature-inspired Exploration), a virtual collaborative aimed at generating data, research and applications centered on nature. Details of implementation will be presented in subsequent publications. Recommendations for future work are also presented.},\
225
+ DOI = {10.3390/designs3030043}\
226
+ }",
227
+ description="",
228
+ homepage="https://github.com/nasa-petal/PeTaL-db"
229
+ ),
230
+
231
+ ScirepevalConfig(name="drsm", features=ScirepevalConfig.get_features(
232
+ ["doc_id", "corpus_id", "title", "abstract", "label_type", "label", "class"],
233
+ {"class": datasets.Value("uint32")}),
234
+ task_type="classification", description="",
235
+ homepage="https://github.com/chanzuckerberg/DRSM-corpus"
236
+ ),
237
+
238
+ ScirepevalConfig(name="relish",
239
+ features=ScirepevalConfig.get_features(["query", "candidates"],
240
+ {"query": {
241
+ "doc_id": datasets.Value("string"),
242
+ "title": datasets.Value("string"),
243
+ "abstract": datasets.Value(
244
+ "string"),
245
+ "corpus_id": datasets.Value("int64")},
246
+ "candidates":
247
+ [{
248
+ "doc_id": datasets.Value("string"),
249
+ "title": datasets.Value("string"),
250
+ "abstract": datasets.Value(
251
+ "string"),
252
+ "corpus_id": datasets.Value("int64"),
253
+ "score": datasets.Value("uint32")}]}),
254
+ task_type="proximity", description=""),
255
+
256
+ ScirepevalConfig(name="nfcorpus",
257
+ features=ScirepevalConfig.get_features(["query", "doc_id", "candidates"],
258
+ {"candidates":
259
+ [{
260
+ "doc_id": datasets.Value("string"),
261
+ "title": datasets.Value("string"),
262
+ "abstract": datasets.Value(
263
+ "string"),
264
+ "score": datasets.Value("uint32")}]}),
265
+ task_type="search", description=""),
266
+
267
+ ScirepevalConfig(name="peer_review_score_hIndex", features=ScirepevalConfig.get_features(
268
+ ["doc_id", "corpus_id", "title", "abstract", "rating", "confidence", "authors", "decision", "mean_rating", "hIndex"],
269
+ {"mean_rating": datasets.Value("float32"),
270
+ "rating": datasets.Sequence(datasets.Value("int32")),
271
+ "authors": datasets.Sequence(datasets.Value("string")),
272
+ "hIndex": datasets.Sequence(datasets.Value("string"))
273
+ }),
274
+ task_type="regression", description=""
275
+ ),
276
+
277
+ ScirepevalConfig(name="trec_covid",
278
+ features=ScirepevalConfig.get_features(["query", "doc_id", "candidates"],
279
+ {"candidates":
280
+ [{
281
+ "title": datasets.Value("string"),
282
+ "abstract": datasets.Value(
283
+ "string"),
284
+ "corpus_id": datasets.Value("string"),
285
+ "doc_id": datasets.Value("string"),
286
+ "date": datasets.Value("string"),
287
+ "doi": datasets.Value("string"),
288
+ "iteration": datasets.Value("string"),
289
+ "score": datasets.Value("int32")}]}),
290
+ task_type="search", description="", homepage="https://ir.nist.gov/trec-covid/", citation="@article{Voorhees2020TRECCOVIDCA,\
291
+ title={TREC-COVID: Constructing a Pandemic Information Retrieval Test Collection},\
292
+ author={Ellen M. Voorhees and Tasmeer Alam and Steven Bedrick and Dina Demner-Fushman and William R. Hersh and Kyle Lo and Kirk Roberts and Ian Soboroff and Lucy Lu Wang},\
293
+ journal={ArXiv},\
294
+ year={2020},\
295
+ volume={abs/2005.04474}\
296
+ }"),
297
+
298
+ ScirepevalConfig(name="tweet_mentions", features=ScirepevalConfig.get_features(
299
+ ["doc_id", "corpus_id", "title", "abstract", "index", "retweets", "count", "mentions"],
300
+ {"index": datasets.Value("int32"), "count": datasets.Value("int32"),
301
+ "retweets": datasets.Value("float32"), "mentions": datasets.Value("float32")}),
302
+ task_type="regression", description="",
303
+ citation="@article{Jain2021TweetPapAD,\
304
+ title={TweetPap: A Dataset to Study the Social Media Discourse of Scientific Papers},\
305
+ author={Naman Jain and Mayank Kumar Singh},\
306
+ journal={2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL)},\
307
+ year={2021},\
308
+ pages={328-329}\
309
+ }"),
310
+
311
+ ScirepevalConfig(name="scidocs_mag_mesh", features=ScirepevalConfig.get_features(
312
+ ["doc_id", "corpus_id", "title", "abstract", "authors", "cited_by", "references", "year"],
313
+ {"year": datasets.Value("int32"),
314
+ "authors": datasets.Sequence(datasets.Value("string")),
315
+ "cited_by": datasets.Sequence(datasets.Value("string")),
316
+ "references": datasets.Sequence(datasets.Value("string"))
317
+ }),
318
+ task_type="classification ", description="", url="scidocs/mag_mesh",
319
+ homepage="https://github.com/allenai/scidocs", citation="@inproceedings{specter2020cohan,\
320
+ title={SPECTER: Document-level Representation Learning using Citation-informed Transformers},\
321
+ author={Arman Cohan and Sergey Feldman and Iz Beltagy and Doug Downey and Daniel S. Weld},\
322
+ booktitle={ACL},\
323
+ year={2020}\
324
+ }"),
325
+
326
+ ScirepevalConfig(name="scidocs_view_cite_read", features=ScirepevalConfig.get_features(
327
+ ["doc_id", "corpus_id", "title", "abstract", "authors", "cited_by", "references", "year"],
328
+ {"year": datasets.Value("int32"),
329
+ "authors": datasets.Sequence(datasets.Value("string")),
330
+ "cited_by": datasets.Sequence(datasets.Value("string")),
331
+ "references": datasets.Sequence(datasets.Value("string"))
332
+ }),
333
+ task_type="metadata", description="", url="scidocs/view_cite_read",
334
+ homepage="https://github.com/allenai/scidocs", citation="@inproceedings{specter2020cohan,\
335
+ title={SPECTER: Document-level Representation Learning using Citation-informed Transformers},\
336
+ author={Arman Cohan and Sergey Feldman and Iz Beltagy and Doug Downey and Daniel S. Weld},\
337
+ booktitle={ACL},\
338
+ year={2020}\
339
+ }"),
340
+
341
+ ScirepevalConfig(name="paper_reviewer_matching", features=ScirepevalConfig.get_features(
342
+ ["doc_id", "title", "abstract", "corpus_id"],
343
+ {}),
344
+ task_type="metadata", description="", citation="@inproceedings{Mimno2007ExpertiseMF,\
345
+ title={Expertise modeling for matching papers with reviewers},\
346
+ author={David Mimno and Andrew McCallum},\
347
+ booktitle={KDD '07},\
348
+ year={2007}\
349
+ }, @ARTICLE{9714338,\
350
+ author={Zhao, Yue and Anand, Ajay and Sharma, Gaurav},\
351
+ journal={IEEE Access}, \
352
+ title={Reviewer Recommendations Using Document Vector Embeddings and a Publisher Database: Implementation and Evaluation}, \
353
+ year={2022},\
354
+ volume={10},\
355
+ number={},\
356
+ pages={21798-21811},\
357
+ doi={10.1109/ACCESS.2022.3151640}}")
358
+
359
+ ]