Commit
·
5dfd01a
1
Parent(s):
7510be0
Delete loading script
Browse files- scitail.py +0 -298
scitail.py
DELETED
|
@@ -1,298 +0,0 @@
|
|
| 1 |
-
"""TODO(sciTail): Add a description here."""
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
import csv
|
| 5 |
-
import json
|
| 6 |
-
import os
|
| 7 |
-
import textwrap
|
| 8 |
-
|
| 9 |
-
import datasets
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
# TODO(sciTail): BibTeX citation
|
| 13 |
-
_CITATION = """\
|
| 14 |
-
inproceedings{scitail,
|
| 15 |
-
Author = {Tushar Khot and Ashish Sabharwal and Peter Clark},
|
| 16 |
-
Booktitle = {AAAI},
|
| 17 |
-
Title = {{SciTail}: A Textual Entailment Dataset from Science Question Answering},
|
| 18 |
-
Year = {2018}
|
| 19 |
-
}
|
| 20 |
-
"""
|
| 21 |
-
|
| 22 |
-
# TODO(sciTail):
|
| 23 |
-
_DESCRIPTION = """\
|
| 24 |
-
The SciTail dataset is an entailment dataset created from multiple-choice science exams and web sentences. Each question
|
| 25 |
-
and the correct answer choice are converted into an assertive statement to form the hypothesis. We use information
|
| 26 |
-
retrieval to obtain relevant text from a large text corpus of web sentences, and use these sentences as a premise P. We
|
| 27 |
-
crowdsource the annotation of such premise-hypothesis pair as supports (entails) or not (neutral), in order to create
|
| 28 |
-
the SciTail dataset. The dataset contains 27,026 examples with 10,101 examples with entails label and 16,925 examples
|
| 29 |
-
with neutral label
|
| 30 |
-
"""
|
| 31 |
-
|
| 32 |
-
_URL = "http://data.allenai.org.s3.amazonaws.com/downloads/SciTailV1.1.zip"
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
class ScitailConfig(datasets.BuilderConfig):
|
| 36 |
-
|
| 37 |
-
"""BuilderConfig for Xquad"""
|
| 38 |
-
|
| 39 |
-
def __init__(self, **kwargs):
|
| 40 |
-
"""
|
| 41 |
-
|
| 42 |
-
Args:
|
| 43 |
-
**kwargs: keyword arguments forwarded to super.
|
| 44 |
-
"""
|
| 45 |
-
super(ScitailConfig, self).__init__(version=datasets.Version("1.1.0", ""), **kwargs)
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
class Scitail(datasets.GeneratorBasedBuilder):
|
| 49 |
-
"""TODO(sciTail): Short description of my dataset."""
|
| 50 |
-
|
| 51 |
-
# TODO(sciTail): Set up version.
|
| 52 |
-
VERSION = datasets.Version("1.1.0")
|
| 53 |
-
BUILDER_CONFIGS = [
|
| 54 |
-
ScitailConfig(
|
| 55 |
-
name="snli_format",
|
| 56 |
-
description="JSONL format used by SNLI with a JSON object corresponding to each entailment example in each line.",
|
| 57 |
-
),
|
| 58 |
-
ScitailConfig(
|
| 59 |
-
name="tsv_format", description="Tab-separated format with three columns: premise hypothesis label"
|
| 60 |
-
),
|
| 61 |
-
ScitailConfig(
|
| 62 |
-
name="dgem_format",
|
| 63 |
-
description="Tab-separated format used by the DGEM model: premise hypothesis label hypothesis graph structure",
|
| 64 |
-
),
|
| 65 |
-
ScitailConfig(
|
| 66 |
-
name="predictor_format",
|
| 67 |
-
description=textwrap.dedent(
|
| 68 |
-
"""\
|
| 69 |
-
AllenNLP predictors work only with JSONL format. This folder contains the SciTail train/dev/test in JSONL format
|
| 70 |
-
so that it can be loaded into the predictors. Each line is a JSON object with the following keys:
|
| 71 |
-
gold_label : the example label from {entails, neutral}
|
| 72 |
-
sentence1: the premise
|
| 73 |
-
sentence2: the hypothesis
|
| 74 |
-
sentence2_structure: structure from the hypothesis """
|
| 75 |
-
),
|
| 76 |
-
),
|
| 77 |
-
]
|
| 78 |
-
|
| 79 |
-
def _info(self):
|
| 80 |
-
# TODO(sciTail): Specifies the datasets.DatasetInfo object
|
| 81 |
-
if self.config.name == "snli_format":
|
| 82 |
-
return datasets.DatasetInfo(
|
| 83 |
-
# This is the description that will appear on the datasets page.
|
| 84 |
-
description=_DESCRIPTION,
|
| 85 |
-
# datasets.features.FeatureConnectors
|
| 86 |
-
features=datasets.Features(
|
| 87 |
-
{
|
| 88 |
-
"sentence1_binary_parse": datasets.Value("string"),
|
| 89 |
-
"sentence1_parse": datasets.Value("string"),
|
| 90 |
-
"sentence1": datasets.Value("string"),
|
| 91 |
-
"sentence2_parse": datasets.Value("string"),
|
| 92 |
-
"sentence2": datasets.Value("string"),
|
| 93 |
-
"annotator_labels": datasets.features.Sequence(datasets.Value("string")),
|
| 94 |
-
"gold_label": datasets.Value("string")
|
| 95 |
-
# These are the features of your dataset like images, labels ...
|
| 96 |
-
}
|
| 97 |
-
),
|
| 98 |
-
# If there's a common (input, target) tuple from the features,
|
| 99 |
-
# specify them here. They'll be used if as_supervised=True in
|
| 100 |
-
# builder.as_dataset.
|
| 101 |
-
supervised_keys=None,
|
| 102 |
-
# Homepage of the dataset for documentation
|
| 103 |
-
homepage="https://allenai.org/data/scitail",
|
| 104 |
-
citation=_CITATION,
|
| 105 |
-
)
|
| 106 |
-
elif self.config.name == "tsv_format":
|
| 107 |
-
return datasets.DatasetInfo(
|
| 108 |
-
# This is the description that will appear on the datasets page.
|
| 109 |
-
description=_DESCRIPTION,
|
| 110 |
-
# datasets.features.FeatureConnectors
|
| 111 |
-
features=datasets.Features(
|
| 112 |
-
{
|
| 113 |
-
"premise": datasets.Value("string"),
|
| 114 |
-
"hypothesis": datasets.Value("string"),
|
| 115 |
-
"label": datasets.Value("string")
|
| 116 |
-
# These are the features of your dataset like images, labels ...
|
| 117 |
-
}
|
| 118 |
-
),
|
| 119 |
-
# If there's a common (input, target) tuple from the features,
|
| 120 |
-
# specify them here. They'll be used if as_supervised=True in
|
| 121 |
-
# builder.as_dataset.
|
| 122 |
-
supervised_keys=None,
|
| 123 |
-
# Homepage of the dataset for documentation
|
| 124 |
-
homepage="https://allenai.org/data/scitail",
|
| 125 |
-
citation=_CITATION,
|
| 126 |
-
)
|
| 127 |
-
elif self.config.name == "predictor_format":
|
| 128 |
-
return datasets.DatasetInfo(
|
| 129 |
-
# This is the description that will appear on the datasets page.
|
| 130 |
-
description=_DESCRIPTION,
|
| 131 |
-
# datasets.features.FeatureConnectors
|
| 132 |
-
features=datasets.Features(
|
| 133 |
-
{
|
| 134 |
-
"answer": datasets.Value("string"),
|
| 135 |
-
"sentence2_structure": datasets.Value("string"),
|
| 136 |
-
"sentence1": datasets.Value("string"),
|
| 137 |
-
"sentence2": datasets.Value("string"),
|
| 138 |
-
"gold_label": datasets.Value("string"),
|
| 139 |
-
"question": datasets.Value("string")
|
| 140 |
-
# These are the features of your dataset like images, labels ...
|
| 141 |
-
}
|
| 142 |
-
),
|
| 143 |
-
# If there's a common (input, target) tuple from the features,
|
| 144 |
-
# specify them here. They'll be used if as_supervised=True in
|
| 145 |
-
# builder.as_dataset.
|
| 146 |
-
supervised_keys=None,
|
| 147 |
-
# Homepage of the dataset for documentation
|
| 148 |
-
homepage="https://allenai.org/data/scitail",
|
| 149 |
-
citation=_CITATION,
|
| 150 |
-
)
|
| 151 |
-
elif self.config.name == "dgem_format":
|
| 152 |
-
return datasets.DatasetInfo(
|
| 153 |
-
# This is the description that will appear on the datasets page.
|
| 154 |
-
description=_DESCRIPTION,
|
| 155 |
-
# datasets.features.FeatureConnectors
|
| 156 |
-
features=datasets.Features(
|
| 157 |
-
{
|
| 158 |
-
"premise": datasets.Value("string"),
|
| 159 |
-
"hypothesis": datasets.Value("string"),
|
| 160 |
-
"label": datasets.Value("string"),
|
| 161 |
-
"hypothesis_graph_structure": datasets.Value("string")
|
| 162 |
-
# These are the features of your dataset like images, labels ...
|
| 163 |
-
}
|
| 164 |
-
),
|
| 165 |
-
# If there's a common (input, target) tuple from the features,
|
| 166 |
-
# specify them here. They'll be used if as_supervised=True in
|
| 167 |
-
# builder.as_dataset.
|
| 168 |
-
supervised_keys=None,
|
| 169 |
-
# Homepage of the dataset for documentation
|
| 170 |
-
homepage="https://allenai.org/data/scitail",
|
| 171 |
-
citation=_CITATION,
|
| 172 |
-
)
|
| 173 |
-
|
| 174 |
-
def _split_generators(self, dl_manager):
|
| 175 |
-
"""Returns SplitGenerators."""
|
| 176 |
-
# TODO(sciTail): Downloads the data and defines the splits
|
| 177 |
-
# dl_manager is a datasets.download.DownloadManager that can be used to
|
| 178 |
-
# download and extract URLs
|
| 179 |
-
dl_dir = dl_manager.download_and_extract(_URL)
|
| 180 |
-
data_dir = os.path.join(dl_dir, "SciTailV1.1")
|
| 181 |
-
snli = os.path.join(data_dir, "snli_format")
|
| 182 |
-
dgem = os.path.join(data_dir, "dgem_format")
|
| 183 |
-
tsv = os.path.join(data_dir, "tsv_format")
|
| 184 |
-
predictor = os.path.join(data_dir, "predictor_format")
|
| 185 |
-
if self.config.name == "snli_format":
|
| 186 |
-
return [
|
| 187 |
-
datasets.SplitGenerator(
|
| 188 |
-
name=datasets.Split.TRAIN,
|
| 189 |
-
# These kwargs will be passed to _generate_examples
|
| 190 |
-
gen_kwargs={"filepath": os.path.join(snli, "scitail_1.0_train.txt")},
|
| 191 |
-
),
|
| 192 |
-
datasets.SplitGenerator(
|
| 193 |
-
name=datasets.Split.TEST,
|
| 194 |
-
# These kwargs will be passed to _generate_examples
|
| 195 |
-
gen_kwargs={"filepath": os.path.join(snli, "scitail_1.0_test.txt")},
|
| 196 |
-
),
|
| 197 |
-
datasets.SplitGenerator(
|
| 198 |
-
name=datasets.Split.VALIDATION,
|
| 199 |
-
# These kwargs will be passed to _generate_examples
|
| 200 |
-
gen_kwargs={"filepath": os.path.join(snli, "scitail_1.0_dev.txt")},
|
| 201 |
-
),
|
| 202 |
-
]
|
| 203 |
-
elif self.config.name == "tsv_format":
|
| 204 |
-
return [
|
| 205 |
-
datasets.SplitGenerator(
|
| 206 |
-
name=datasets.Split.TRAIN,
|
| 207 |
-
# These kwargs will be passed to _generate_examples
|
| 208 |
-
gen_kwargs={"filepath": os.path.join(tsv, "scitail_1.0_train.tsv")},
|
| 209 |
-
),
|
| 210 |
-
datasets.SplitGenerator(
|
| 211 |
-
name=datasets.Split.TEST,
|
| 212 |
-
# These kwargs will be passed to _generate_examples
|
| 213 |
-
gen_kwargs={"filepath": os.path.join(tsv, "scitail_1.0_test.tsv")},
|
| 214 |
-
),
|
| 215 |
-
datasets.SplitGenerator(
|
| 216 |
-
name=datasets.Split.VALIDATION,
|
| 217 |
-
# These kwargs will be passed to _generate_examples
|
| 218 |
-
gen_kwargs={"filepath": os.path.join(tsv, "scitail_1.0_dev.tsv")},
|
| 219 |
-
),
|
| 220 |
-
]
|
| 221 |
-
elif self.config.name == "predictor_format":
|
| 222 |
-
return [
|
| 223 |
-
datasets.SplitGenerator(
|
| 224 |
-
name=datasets.Split.TRAIN,
|
| 225 |
-
# These kwargs will be passed to _generate_examples
|
| 226 |
-
gen_kwargs={"filepath": os.path.join(predictor, "scitail_1.0_structure_train.jsonl")},
|
| 227 |
-
),
|
| 228 |
-
datasets.SplitGenerator(
|
| 229 |
-
name=datasets.Split.TEST,
|
| 230 |
-
# These kwargs will be passed to _generate_examples
|
| 231 |
-
gen_kwargs={"filepath": os.path.join(predictor, "scitail_1.0_structure_test.jsonl")},
|
| 232 |
-
),
|
| 233 |
-
datasets.SplitGenerator(
|
| 234 |
-
name=datasets.Split.VALIDATION,
|
| 235 |
-
# These kwargs will be passed to _generate_examples
|
| 236 |
-
gen_kwargs={"filepath": os.path.join(predictor, "scitail_1.0_structure_dev.jsonl")},
|
| 237 |
-
),
|
| 238 |
-
]
|
| 239 |
-
elif self.config.name == "dgem_format":
|
| 240 |
-
return [
|
| 241 |
-
datasets.SplitGenerator(
|
| 242 |
-
name=datasets.Split.TRAIN,
|
| 243 |
-
# These kwargs will be passed to _generate_examples
|
| 244 |
-
gen_kwargs={"filepath": os.path.join(dgem, "scitail_1.0_structure_train.tsv")},
|
| 245 |
-
),
|
| 246 |
-
datasets.SplitGenerator(
|
| 247 |
-
name=datasets.Split.TEST,
|
| 248 |
-
# These kwargs will be passed to _generate_examples
|
| 249 |
-
gen_kwargs={"filepath": os.path.join(dgem, "scitail_1.0_structure_test.tsv")},
|
| 250 |
-
),
|
| 251 |
-
datasets.SplitGenerator(
|
| 252 |
-
name=datasets.Split.VALIDATION,
|
| 253 |
-
# These kwargs will be passed to _generate_examples
|
| 254 |
-
gen_kwargs={"filepath": os.path.join(dgem, "scitail_1.0_structure_dev.tsv")},
|
| 255 |
-
),
|
| 256 |
-
]
|
| 257 |
-
|
| 258 |
-
def _generate_examples(self, filepath):
|
| 259 |
-
"""Yields examples."""
|
| 260 |
-
# TODO(sciTail): Yields (key, example) tuples from the dataset
|
| 261 |
-
with open(filepath, encoding="utf-8") as f:
|
| 262 |
-
if self.config.name == "snli_format":
|
| 263 |
-
for id_, row in enumerate(f):
|
| 264 |
-
data = json.loads(row)
|
| 265 |
-
|
| 266 |
-
yield id_, {
|
| 267 |
-
"sentence1_binary_parse": data["sentence1_binary_parse"],
|
| 268 |
-
"sentence1_parse": data["sentence1_parse"],
|
| 269 |
-
"sentence1": data["sentence1"],
|
| 270 |
-
"sentence2_parse": data["sentence2_parse"],
|
| 271 |
-
"sentence2": data["sentence2"],
|
| 272 |
-
"annotator_labels": data["annotator_labels"],
|
| 273 |
-
"gold_label": data["gold_label"],
|
| 274 |
-
}
|
| 275 |
-
elif self.config.name == "tsv_format":
|
| 276 |
-
data = csv.reader(f, delimiter="\t")
|
| 277 |
-
for id_, row in enumerate(data):
|
| 278 |
-
yield id_, {"premise": row[0], "hypothesis": row[1], "label": row[2]}
|
| 279 |
-
elif self.config.name == "dgem_format":
|
| 280 |
-
data = csv.reader(f, delimiter="\t")
|
| 281 |
-
for id_, row in enumerate(data):
|
| 282 |
-
yield id_, {
|
| 283 |
-
"premise": row[0],
|
| 284 |
-
"hypothesis": row[1],
|
| 285 |
-
"label": row[2],
|
| 286 |
-
"hypothesis_graph_structure": row[3],
|
| 287 |
-
}
|
| 288 |
-
elif self.config.name == "predictor_format":
|
| 289 |
-
for id_, row in enumerate(f):
|
| 290 |
-
data = json.loads(row)
|
| 291 |
-
yield id_, {
|
| 292 |
-
"answer": data["answer"],
|
| 293 |
-
"sentence2_structure": data["sentence2_structure"],
|
| 294 |
-
"sentence1": data["sentence1"],
|
| 295 |
-
"sentence2": data["sentence2"],
|
| 296 |
-
"gold_label": data["gold_label"],
|
| 297 |
-
"question": data["question"],
|
| 298 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|