amir-kazemi commited on
Commit
57bcd94
·
verified ·
1 Parent(s): 5c03af4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +12 -8
README.md CHANGED
@@ -10,31 +10,35 @@ size_categories:
10
  - 10K<n<100K
11
  viewer: false
12
  ---
13
- # Dataset Card for Dataset Name
14
 
15
  <!-- Provide a quick summary of the dataset. -->
16
 
17
- This dataset card aims to be a base template for new datasets. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md?plain=1).
18
 
19
  ## Dataset Details
20
 
 
 
21
  ### Dataset Description
22
 
23
  <!-- Provide a longer summary of what this dataset is. -->
24
 
 
25
 
26
 
27
- - **Curated by:** [More Information Needed]
28
- - **Funded by [optional]:** [More Information Needed]
29
- - **Shared by [optional]:** [More Information Needed]
30
- - **Language(s) (NLP):** [More Information Needed]
31
- - **License:** [More Information Needed]
 
32
 
33
  ### Dataset Sources [optional]
34
 
35
  <!-- Provide the basic links for the dataset. -->
36
 
37
- - **Repository:** [More Information Needed]
38
  - **Paper [optional]:** [More Information Needed]
39
  - **Demo [optional]:** [More Information Needed]
40
 
 
10
  - 10K<n<100K
11
  viewer: false
12
  ---
13
+ # Dataset Card for AIDOVECL
14
 
15
  <!-- Provide a quick summary of the dataset. -->
16
 
17
+ We introduce an annotated AI-generated dataset of eye-level vehicle images using outpainting, offering versatile generation of diverse vehicle classes in varied contexts with pretrained models.
18
 
19
  ## Dataset Details
20
 
21
+
22
+
23
  ### Dataset Description
24
 
25
  <!-- Provide a longer summary of what this dataset is. -->
26
 
27
+ Our dataset comprises AI-generated, eye-level vehicle images obtained by detecting and cropping vehicles from manually selected seed images, which are then outpainted onto larger canvases to simulate varied real-world conditions. The outpainted images include detailed annotations, providing high-quality ground truth data. By utilizing advanced outpainting techniques alongside rigorous image quality assessments, we ensure both high visual fidelity and contextual relevance.
28
 
29
 
30
+ - **Curated by:** Amir Kazemi, Qurat ul ain Fatima, Volodymyr Kindratenko, Christopher W Tessum.
31
+ - **Funded by [optional]:** The authors acknowledge support from the University of Illinois National Center for Supercomputing Applications (NCSA) Faculty Fellowship Program, the Zhejiang University and University of Illinois Dynamic Research Enterprise for Multidisciplinary Engineering Sciences (DREMES), and the University of Illinois Discovery Partners Institute (DPI).
32
+ This work utilizes resources supported by the National Science Foundation’s (NSF) Major Research Instrumentation program, grant #1725729, as well as the University of Illinois at Urbana-Champaign.
33
+ - **Shared by [optional]:** NA
34
+ - **Language(s) (NLP):** NA
35
+ - **License:** Creative Commons Attribution 4.0 International
36
 
37
  ### Dataset Sources [optional]
38
 
39
  <!-- Provide the basic links for the dataset. -->
40
 
41
+ - **Repository:** https://huggingface.co/datasets/amir-kazemi/aidovecl/tree/main
42
  - **Paper [optional]:** [More Information Needed]
43
  - **Demo [optional]:** [More Information Needed]
44