anand-s commited on
Commit
6b97273
·
verified ·
1 Parent(s): 99c64b9

Create dataset_loader.py

Browse files
Files changed (1) hide show
  1. dataset_loader.py +81 -0
dataset_loader.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ import datasets
4
+
5
+ # Metadata and descriptions for the dataset
6
+ _CITATION = """\
7
+ @InProceedings{huggingface:dataset,
8
+ title = {Test Repo Dataset},
9
+ author={huggingface, Inc.},
10
+ year={2020}
11
+ }
12
+ """
13
+
14
+ _DESCRIPTION = """\
15
+ The Test Repo dataset includes multiple choice questions tailored for NLP research and testing.
16
+ """
17
+
18
+ _HOMEPAGE = "https://huggingface.co/datasets/test_repo"
19
+
20
+ _LICENSE = "Apache License 2.0"
21
+
22
+ # Define URLs for different parts of the dataset if applicable
23
+ _URLS = {
24
+ "mcq_domain": "https://huggingface.co/datasets/anand-s/test_repo/train_mcq/",
25
+ }
26
+
27
+ class TestRepo(datasets.GeneratorBasedBuilder):
28
+ """Dataset for multiple choice questions from Test Repo."""
29
+
30
+ VERSION = datasets.Version("1.0.0")
31
+
32
+ BUILDER_CONFIGS = [
33
+ datasets.BuilderConfig(name="mcq_domain", version=VERSION, description="This configuration covers multiple choice questions."),
34
+ ]
35
+
36
+ DEFAULT_CONFIG_NAME = "mcq_domain"
37
+
38
+ def _info(self):
39
+ return datasets.DatasetInfo(
40
+ description=_DESCRIPTION,
41
+ features=datasets.Features({
42
+ "prompt": datasets.Value("string"),
43
+ "question": datasets.Value("string"),
44
+ "options": datasets.Sequence(datasets.Value("string")),
45
+ "answer": datasets.Value("string"),
46
+ "context": datasets.Value("string"), # Assuming all data includes context
47
+ "num_options": datasets.Value("string"),
48
+ "question_type": datasets.Value("string"),
49
+ }),
50
+ homepage=_HOMEPAGE,
51
+ license=_LICENSE,
52
+ citation=_CITATION,
53
+ )
54
+
55
+ def _split_generators(self, dl_manager):
56
+ # Download and extract all the files in the directory
57
+ data_dir = dl_manager.download_and_extract(_URLS[self.config.name])
58
+ return [
59
+ datasets.SplitGenerator(
60
+ name=datasets.Split.TRAIN,
61
+ gen_kwargs={"directory": data_dir, "split": "train"},
62
+ ),
63
+ ]
64
+
65
+ def _generate_examples(self, directory, split):
66
+ # Iterate over each file in the directory
67
+ for filename in os.listdir(directory):
68
+ filepath = os.path.join(directory, filename)
69
+ if filepath.endswith(".jsonl"):
70
+ with open(filepath, encoding="utf-8") as f:
71
+ for key, row in enumerate(f):
72
+ data = json.loads(row)
73
+ yield key, {
74
+ "prompt": data.get("prompt", ""),
75
+ "question": data["question"],
76
+ "options": data["options"],
77
+ "answer": data.get("answer", ""),
78
+ "context": data.get("context", ""),
79
+ "num_options": data.get("num_options", ""),
80
+ "question_type": data.get("question_type", ""),
81
+ }