Update test_repo.py
Browse files- test_repo.py +88 -18
test_repo.py
CHANGED
@@ -3,17 +3,8 @@ import os
|
|
3 |
import datasets
|
4 |
import ast
|
5 |
|
6 |
-
# Metadata and descriptions for the dataset
|
7 |
-
_CITATION = """\
|
8 |
-
@InProceedings{huggingface:dataset,
|
9 |
-
title = {Test Repo Dataset},
|
10 |
-
author={huggingface, Inc.},
|
11 |
-
year={2020}
|
12 |
-
}
|
13 |
-
"""
|
14 |
-
|
15 |
_DESCRIPTION = """\
|
16 |
-
The
|
17 |
"""
|
18 |
|
19 |
_HOMEPAGE = "https://huggingface.co/datasets/anand-s/test_repo"
|
@@ -25,6 +16,12 @@ _URLS = {
|
|
25 |
"train_normal_mcqa": "https://huggingface.co/datasets/anand-s/test_repo/resolve/main/train_normal_mcqa.zip",
|
26 |
"val_normal_mcqa": "https://huggingface.co/datasets/anand-s/test_repo/resolve/main/val_normal_mcqa.zip",
|
27 |
"test_normal_mcqa": "https://huggingface.co/datasets/anand-s/test_repo/resolve/main/test_normal_mcqa.zip",
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
}
|
30 |
|
@@ -37,6 +34,12 @@ class TestRepo(datasets.GeneratorBasedBuilder):
|
|
37 |
datasets.BuilderConfig(name="train_normal_mcqa", version=VERSION, description="This configuration covers multiple choice questions."),
|
38 |
datasets.BuilderConfig(name="val_normal_mcqa", version=VERSION, description="This configuration covers multiple choice questions."),
|
39 |
datasets.BuilderConfig(name="test_normal_mcqa", version=VERSION, description="This configuration covers multiple choice questions."),
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
]
|
41 |
|
42 |
# DEFAULT_CONFIG_NAME = "mcq_domain"
|
@@ -79,6 +82,46 @@ class TestRepo(datasets.GeneratorBasedBuilder):
|
|
79 |
"answer": datasets.Value("string"),
|
80 |
"options": datasets.Sequence(datasets.Value("string")),
|
81 |
})),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
})
|
83 |
}
|
84 |
|
@@ -112,23 +155,23 @@ class TestRepo(datasets.GeneratorBasedBuilder):
|
|
112 |
data = json.loads(row)
|
113 |
if split == "train_normal_mcqa":
|
114 |
yield key_idx, {
|
115 |
-
"prompt": data
|
116 |
"question": data["question"],
|
117 |
"options": data["options"],
|
118 |
-
"answer": data
|
119 |
-
"num_options": data
|
120 |
-
"question_type": data
|
121 |
"dataset_name": os.path.split(filepath)[-1].replace(".jsonl","")
|
122 |
}
|
123 |
key_idx +=1
|
124 |
elif split in ["val_normal_mcqa", "test_normal_mcqa"]:
|
125 |
yield key_idx, {
|
126 |
-
"prompt": data
|
127 |
"question": data["question"],
|
128 |
"options": data["options"],
|
129 |
-
"answer": data
|
130 |
-
"num_options": data
|
131 |
-
"question_type": data
|
132 |
"dataset_name": os.path.split(filepath)[-1].replace(".jsonl",""),
|
133 |
"few_shot_prompt": [{
|
134 |
"question": item["question"],
|
@@ -136,5 +179,32 @@ class TestRepo(datasets.GeneratorBasedBuilder):
|
|
136 |
"options": item["options"],
|
137 |
} for item in data["few_shot_prompt"]]
|
138 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
key_idx +=1
|
|
|
3 |
import datasets
|
4 |
import ast
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
_DESCRIPTION = """\
|
7 |
+
The M-QALM Dataset Repository contains Multiple-Choice and Abstractive Questions for evaluating the performance of LLMs in the clinical and biomedical domain.
|
8 |
"""
|
9 |
|
10 |
_HOMEPAGE = "https://huggingface.co/datasets/anand-s/test_repo"
|
|
|
16 |
"train_normal_mcqa": "https://huggingface.co/datasets/anand-s/test_repo/resolve/main/train_normal_mcqa.zip",
|
17 |
"val_normal_mcqa": "https://huggingface.co/datasets/anand-s/test_repo/resolve/main/val_normal_mcqa.zip",
|
18 |
"test_normal_mcqa": "https://huggingface.co/datasets/anand-s/test_repo/resolve/main/test_normal_mcqa.zip",
|
19 |
+
"train_context_mcqa": "https://huggingface.co/datasets/anand-s/test_repo/resolve/main/train_context_mcqa.zip",
|
20 |
+
"val_context_mcqa": "https://huggingface.co/datasets/anand-s/test_repo/resolve/main/val_context_mcqa.zip",
|
21 |
+
"test_context_mcqa": "https://huggingface.co/datasets/anand-s/test_repo/resolve/main/test_context_mcqa.zip",
|
22 |
+
"train_aqa": "https://huggingface.co/datasets/anand-s/test_repo/resolve/main/train_aqa.zip",
|
23 |
+
"val_aqa": "https://huggingface.co/datasets/anand-s/test_repo/resolve/main/val_aqa.zip",
|
24 |
+
"test_aqa": "https://huggingface.co/datasets/anand-s/test_repo/resolve/main/test_aqa.zip",
|
25 |
|
26 |
}
|
27 |
|
|
|
34 |
datasets.BuilderConfig(name="train_normal_mcqa", version=VERSION, description="This configuration covers multiple choice questions."),
|
35 |
datasets.BuilderConfig(name="val_normal_mcqa", version=VERSION, description="This configuration covers multiple choice questions."),
|
36 |
datasets.BuilderConfig(name="test_normal_mcqa", version=VERSION, description="This configuration covers multiple choice questions."),
|
37 |
+
datasets.BuilderConfig(name="train_context_mcqa", version=VERSION, description="This configuration covers multiple choice questions."),
|
38 |
+
datasets.BuilderConfig(name="val_context_mcqa", version=VERSION, description="This configuration covers multiple choice questions."),
|
39 |
+
datasets.BuilderConfig(name="test_context_mcqa", version=VERSION, description="This configuration covers multiple choice questions."),
|
40 |
+
datasets.BuilderConfig(name="train_aqa", version=VERSION, description="This configuration covers multiple choice questions."),
|
41 |
+
datasets.BuilderConfig(name="val_aqa", version=VERSION, description="This configuration covers multiple choice questions."),
|
42 |
+
datasets.BuilderConfig(name="test_aqa", version=VERSION, description="This configuration covers multiple choice questions."),
|
43 |
]
|
44 |
|
45 |
# DEFAULT_CONFIG_NAME = "mcq_domain"
|
|
|
82 |
"answer": datasets.Value("string"),
|
83 |
"options": datasets.Sequence(datasets.Value("string")),
|
84 |
})),
|
85 |
+
}),
|
86 |
+
"train_context_mcqa": datasets.Features({
|
87 |
+
"prompt": datasets.Value("string"),
|
88 |
+
"question": datasets.Value("string"),
|
89 |
+
"options": datasets.Sequence(datasets.Value("string")),
|
90 |
+
"answer": datasets.Value("string"),
|
91 |
+
"num_options": datasets.Value("string"),
|
92 |
+
"question_type": datasets.Value("string"),
|
93 |
+
"dataset_name": datasets.Value("string"),
|
94 |
+
"context": datasets.Value("string")
|
95 |
+
}),
|
96 |
+
"val_context_mcqa": datasets.Features({
|
97 |
+
"prompt": datasets.Value("string"),
|
98 |
+
"question": datasets.Value("string"),
|
99 |
+
"options": datasets.Sequence(datasets.Value("string")),
|
100 |
+
"answer": datasets.Value("string"),
|
101 |
+
"num_options": datasets.Value("string"),
|
102 |
+
"question_type": datasets.Value("string"),
|
103 |
+
"dataset_name": datasets.Value("string"),
|
104 |
+
"context": datasets.Value("string"),
|
105 |
+
"few_shot_prompt": datasets.Sequence(datasets.Features({
|
106 |
+
"question": datasets.Value("string"),
|
107 |
+
"answer": datasets.Value("string"),
|
108 |
+
"options": datasets.Sequence(datasets.Value("string")),
|
109 |
+
})),
|
110 |
+
}),
|
111 |
+
"test_context_mcqa": datasets.Features({
|
112 |
+
"prompt": datasets.Value("string"),
|
113 |
+
"question": datasets.Value("string"),
|
114 |
+
"options": datasets.Sequence(datasets.Value("string")),
|
115 |
+
"answer": datasets.Value("string"),
|
116 |
+
"num_options": datasets.Value("string"),
|
117 |
+
"question_type": datasets.Value("string"),
|
118 |
+
"dataset_name": datasets.Value("string"),
|
119 |
+
"context": datasets.Value("string"),
|
120 |
+
"few_shot_prompt": datasets.Sequence(datasets.Features({
|
121 |
+
"question": datasets.Value("string"),
|
122 |
+
"answer": datasets.Value("string"),
|
123 |
+
"options": datasets.Sequence(datasets.Value("string")),
|
124 |
+
})),
|
125 |
})
|
126 |
}
|
127 |
|
|
|
155 |
data = json.loads(row)
|
156 |
if split == "train_normal_mcqa":
|
157 |
yield key_idx, {
|
158 |
+
"prompt": data["prompt"],
|
159 |
"question": data["question"],
|
160 |
"options": data["options"],
|
161 |
+
"answer": data["answer"],
|
162 |
+
"num_options": data["num_options"],
|
163 |
+
"question_type": data["question_type"],
|
164 |
"dataset_name": os.path.split(filepath)[-1].replace(".jsonl","")
|
165 |
}
|
166 |
key_idx +=1
|
167 |
elif split in ["val_normal_mcqa", "test_normal_mcqa"]:
|
168 |
yield key_idx, {
|
169 |
+
"prompt": data["prompt"],
|
170 |
"question": data["question"],
|
171 |
"options": data["options"],
|
172 |
+
"answer": data["answer"],
|
173 |
+
"num_options": data["num_options"],
|
174 |
+
"question_type": data["question_type"],
|
175 |
"dataset_name": os.path.split(filepath)[-1].replace(".jsonl",""),
|
176 |
"few_shot_prompt": [{
|
177 |
"question": item["question"],
|
|
|
179 |
"options": item["options"],
|
180 |
} for item in data["few_shot_prompt"]]
|
181 |
}
|
182 |
+
elif split == "train_context_mcqa":
|
183 |
+
yield key_idx, {
|
184 |
+
"prompt": data["prompt"],
|
185 |
+
"question": data["question"],
|
186 |
+
"options": data["options"],
|
187 |
+
"answer": data.["answer"]
|
188 |
+
"num_options": data["num_options"],
|
189 |
+
"context": data["context"],
|
190 |
+
"question_type": data["question_type"],
|
191 |
+
"dataset_name": os.path.split(filepath)[-1].replace(".jsonl","")
|
192 |
+
}
|
193 |
+
key_idx +=1
|
194 |
+
elif split in ["val_normal_mcqa", "test_normal_mcqa"]:
|
195 |
+
yield key_idx, {
|
196 |
+
"prompt": data["prompt"],
|
197 |
+
"question": data["question"],
|
198 |
+
"options": data["options"],
|
199 |
+
"answer": data["answer"],
|
200 |
+
"num_options": data["num_options"],
|
201 |
+
"question_type": data["question_type"],
|
202 |
+
"dataset_name": os.path.split(filepath)[-1].replace(".jsonl",""),
|
203 |
+
"few_shot_prompt": [{
|
204 |
+
"question": item["question"],
|
205 |
+
"answer": item["answer"],
|
206 |
+
"options": item["options"],
|
207 |
+
} for item in data["few_shot_prompt"]]
|
208 |
+
}
|
209 |
|
210 |
key_idx +=1
|