anand-s commited on
Commit
d1db45d
·
verified ·
1 Parent(s): 00733b2

Update test_repo.py

Browse files
Files changed (1) hide show
  1. test_repo.py +88 -18
test_repo.py CHANGED
@@ -3,17 +3,8 @@ import os
3
  import datasets
4
  import ast
5
 
6
- # Metadata and descriptions for the dataset
7
- _CITATION = """\
8
- @InProceedings{huggingface:dataset,
9
- title = {Test Repo Dataset},
10
- author={huggingface, Inc.},
11
- year={2020}
12
- }
13
- """
14
-
15
  _DESCRIPTION = """\
16
- The Test Repo dataset includes multiple choice questions tailored for NLP research and testing.
17
  """
18
 
19
  _HOMEPAGE = "https://huggingface.co/datasets/anand-s/test_repo"
@@ -25,6 +16,12 @@ _URLS = {
25
  "train_normal_mcqa": "https://huggingface.co/datasets/anand-s/test_repo/resolve/main/train_normal_mcqa.zip",
26
  "val_normal_mcqa": "https://huggingface.co/datasets/anand-s/test_repo/resolve/main/val_normal_mcqa.zip",
27
  "test_normal_mcqa": "https://huggingface.co/datasets/anand-s/test_repo/resolve/main/test_normal_mcqa.zip",
 
 
 
 
 
 
28
 
29
  }
30
 
@@ -37,6 +34,12 @@ class TestRepo(datasets.GeneratorBasedBuilder):
37
  datasets.BuilderConfig(name="train_normal_mcqa", version=VERSION, description="This configuration covers multiple choice questions."),
38
  datasets.BuilderConfig(name="val_normal_mcqa", version=VERSION, description="This configuration covers multiple choice questions."),
39
  datasets.BuilderConfig(name="test_normal_mcqa", version=VERSION, description="This configuration covers multiple choice questions."),
 
 
 
 
 
 
40
  ]
41
 
42
  # DEFAULT_CONFIG_NAME = "mcq_domain"
@@ -79,6 +82,46 @@ class TestRepo(datasets.GeneratorBasedBuilder):
79
  "answer": datasets.Value("string"),
80
  "options": datasets.Sequence(datasets.Value("string")),
81
  })),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82
  })
83
  }
84
 
@@ -112,23 +155,23 @@ class TestRepo(datasets.GeneratorBasedBuilder):
112
  data = json.loads(row)
113
  if split == "train_normal_mcqa":
114
  yield key_idx, {
115
- "prompt": data.get("prompt", ""),
116
  "question": data["question"],
117
  "options": data["options"],
118
- "answer": data.get("answer", ""),
119
- "num_options": data.get("num_options", ""),
120
- "question_type": data.get("question_type", ""),
121
  "dataset_name": os.path.split(filepath)[-1].replace(".jsonl","")
122
  }
123
  key_idx +=1
124
  elif split in ["val_normal_mcqa", "test_normal_mcqa"]:
125
  yield key_idx, {
126
- "prompt": data.get("prompt", ""),
127
  "question": data["question"],
128
  "options": data["options"],
129
- "answer": data.get("answer", ""),
130
- "num_options": data.get("num_options", ""),
131
- "question_type": data.get("question_type", ""),
132
  "dataset_name": os.path.split(filepath)[-1].replace(".jsonl",""),
133
  "few_shot_prompt": [{
134
  "question": item["question"],
@@ -136,5 +179,32 @@ class TestRepo(datasets.GeneratorBasedBuilder):
136
  "options": item["options"],
137
  } for item in data["few_shot_prompt"]]
138
  }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
139
 
140
  key_idx +=1
 
3
  import datasets
4
  import ast
5
 
 
 
 
 
 
 
 
 
 
6
  _DESCRIPTION = """\
7
+ The M-QALM Dataset Repository contains Multiple-Choice and Abstractive Questions for evaluating the performance of LLMs in the clinical and biomedical domain.
8
  """
9
 
10
  _HOMEPAGE = "https://huggingface.co/datasets/anand-s/test_repo"
 
16
  "train_normal_mcqa": "https://huggingface.co/datasets/anand-s/test_repo/resolve/main/train_normal_mcqa.zip",
17
  "val_normal_mcqa": "https://huggingface.co/datasets/anand-s/test_repo/resolve/main/val_normal_mcqa.zip",
18
  "test_normal_mcqa": "https://huggingface.co/datasets/anand-s/test_repo/resolve/main/test_normal_mcqa.zip",
19
+ "train_context_mcqa": "https://huggingface.co/datasets/anand-s/test_repo/resolve/main/train_context_mcqa.zip",
20
+ "val_context_mcqa": "https://huggingface.co/datasets/anand-s/test_repo/resolve/main/val_context_mcqa.zip",
21
+ "test_context_mcqa": "https://huggingface.co/datasets/anand-s/test_repo/resolve/main/test_context_mcqa.zip",
22
+ "train_aqa": "https://huggingface.co/datasets/anand-s/test_repo/resolve/main/train_aqa.zip",
23
+ "val_aqa": "https://huggingface.co/datasets/anand-s/test_repo/resolve/main/val_aqa.zip",
24
+ "test_aqa": "https://huggingface.co/datasets/anand-s/test_repo/resolve/main/test_aqa.zip",
25
 
26
  }
27
 
 
34
  datasets.BuilderConfig(name="train_normal_mcqa", version=VERSION, description="This configuration covers multiple choice questions."),
35
  datasets.BuilderConfig(name="val_normal_mcqa", version=VERSION, description="This configuration covers multiple choice questions."),
36
  datasets.BuilderConfig(name="test_normal_mcqa", version=VERSION, description="This configuration covers multiple choice questions."),
37
+ datasets.BuilderConfig(name="train_context_mcqa", version=VERSION, description="This configuration covers multiple choice questions."),
38
+ datasets.BuilderConfig(name="val_context_mcqa", version=VERSION, description="This configuration covers multiple choice questions."),
39
+ datasets.BuilderConfig(name="test_context_mcqa", version=VERSION, description="This configuration covers multiple choice questions."),
40
+ datasets.BuilderConfig(name="train_aqa", version=VERSION, description="This configuration covers multiple choice questions."),
41
+ datasets.BuilderConfig(name="val_aqa", version=VERSION, description="This configuration covers multiple choice questions."),
42
+ datasets.BuilderConfig(name="test_aqa", version=VERSION, description="This configuration covers multiple choice questions."),
43
  ]
44
 
45
  # DEFAULT_CONFIG_NAME = "mcq_domain"
 
82
  "answer": datasets.Value("string"),
83
  "options": datasets.Sequence(datasets.Value("string")),
84
  })),
85
+ }),
86
+ "train_context_mcqa": datasets.Features({
87
+ "prompt": datasets.Value("string"),
88
+ "question": datasets.Value("string"),
89
+ "options": datasets.Sequence(datasets.Value("string")),
90
+ "answer": datasets.Value("string"),
91
+ "num_options": datasets.Value("string"),
92
+ "question_type": datasets.Value("string"),
93
+ "dataset_name": datasets.Value("string"),
94
+ "context": datasets.Value("string")
95
+ }),
96
+ "val_context_mcqa": datasets.Features({
97
+ "prompt": datasets.Value("string"),
98
+ "question": datasets.Value("string"),
99
+ "options": datasets.Sequence(datasets.Value("string")),
100
+ "answer": datasets.Value("string"),
101
+ "num_options": datasets.Value("string"),
102
+ "question_type": datasets.Value("string"),
103
+ "dataset_name": datasets.Value("string"),
104
+ "context": datasets.Value("string"),
105
+ "few_shot_prompt": datasets.Sequence(datasets.Features({
106
+ "question": datasets.Value("string"),
107
+ "answer": datasets.Value("string"),
108
+ "options": datasets.Sequence(datasets.Value("string")),
109
+ })),
110
+ }),
111
+ "test_context_mcqa": datasets.Features({
112
+ "prompt": datasets.Value("string"),
113
+ "question": datasets.Value("string"),
114
+ "options": datasets.Sequence(datasets.Value("string")),
115
+ "answer": datasets.Value("string"),
116
+ "num_options": datasets.Value("string"),
117
+ "question_type": datasets.Value("string"),
118
+ "dataset_name": datasets.Value("string"),
119
+ "context": datasets.Value("string"),
120
+ "few_shot_prompt": datasets.Sequence(datasets.Features({
121
+ "question": datasets.Value("string"),
122
+ "answer": datasets.Value("string"),
123
+ "options": datasets.Sequence(datasets.Value("string")),
124
+ })),
125
  })
126
  }
127
 
 
155
  data = json.loads(row)
156
  if split == "train_normal_mcqa":
157
  yield key_idx, {
158
+ "prompt": data["prompt"],
159
  "question": data["question"],
160
  "options": data["options"],
161
+ "answer": data["answer"],
162
+ "num_options": data["num_options"],
163
+ "question_type": data["question_type"],
164
  "dataset_name": os.path.split(filepath)[-1].replace(".jsonl","")
165
  }
166
  key_idx +=1
167
  elif split in ["val_normal_mcqa", "test_normal_mcqa"]:
168
  yield key_idx, {
169
+ "prompt": data["prompt"],
170
  "question": data["question"],
171
  "options": data["options"],
172
+ "answer": data["answer"],
173
+ "num_options": data["num_options"],
174
+ "question_type": data["question_type"],
175
  "dataset_name": os.path.split(filepath)[-1].replace(".jsonl",""),
176
  "few_shot_prompt": [{
177
  "question": item["question"],
 
179
  "options": item["options"],
180
  } for item in data["few_shot_prompt"]]
181
  }
182
+ elif split == "train_context_mcqa":
183
+ yield key_idx, {
184
+ "prompt": data["prompt"],
185
+ "question": data["question"],
186
+ "options": data["options"],
187
+ "answer": data.["answer"]
188
+ "num_options": data["num_options"],
189
+ "context": data["context"],
190
+ "question_type": data["question_type"],
191
+ "dataset_name": os.path.split(filepath)[-1].replace(".jsonl","")
192
+ }
193
+ key_idx +=1
194
+ elif split in ["val_normal_mcqa", "test_normal_mcqa"]:
195
+ yield key_idx, {
196
+ "prompt": data["prompt"],
197
+ "question": data["question"],
198
+ "options": data["options"],
199
+ "answer": data["answer"],
200
+ "num_options": data["num_options"],
201
+ "question_type": data["question_type"],
202
+ "dataset_name": os.path.split(filepath)[-1].replace(".jsonl",""),
203
+ "few_shot_prompt": [{
204
+ "question": item["question"],
205
+ "answer": item["answer"],
206
+ "options": item["options"],
207
+ } for item in data["few_shot_prompt"]]
208
+ }
209
 
210
  key_idx +=1