Update test_repo.py
Browse files- test_repo.py +64 -7
test_repo.py
CHANGED
|
@@ -42,9 +42,8 @@ class TestRepo(datasets.GeneratorBasedBuilder):
|
|
| 42 |
# DEFAULT_CONFIG_NAME = "mcq_domain"
|
| 43 |
|
| 44 |
def _info(self):
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
features=datasets.Features({
|
| 48 |
"prompt": datasets.Value("string"),
|
| 49 |
"question": datasets.Value("string"),
|
| 50 |
"options": datasets.Sequence(datasets.Value("string")),
|
|
@@ -53,6 +52,39 @@ class TestRepo(datasets.GeneratorBasedBuilder):
|
|
| 53 |
"question_type": datasets.Value("string"),
|
| 54 |
"dataset_name": datasets.Value("string"),
|
| 55 |
}),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
homepage=_HOMEPAGE,
|
| 57 |
license=_LICENSE,
|
| 58 |
citation=_CITATION,
|
|
@@ -64,9 +96,17 @@ class TestRepo(datasets.GeneratorBasedBuilder):
|
|
| 64 |
print(data_dir)
|
| 65 |
return [
|
| 66 |
datasets.SplitGenerator(
|
| 67 |
-
name=
|
| 68 |
-
gen_kwargs={"directory": data_dir, "split":
|
| 69 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
]
|
| 71 |
|
| 72 |
def _generate_examples(self, directory, split):
|
|
@@ -78,7 +118,7 @@ class TestRepo(datasets.GeneratorBasedBuilder):
|
|
| 78 |
with open(filepath, encoding="utf-8") as f:
|
| 79 |
for key, row in enumerate(f):
|
| 80 |
data = json.loads(row)
|
| 81 |
-
if split
|
| 82 |
yield key_idx, {
|
| 83 |
"prompt": data.get("prompt", ""),
|
| 84 |
"question": data["question"],
|
|
@@ -88,4 +128,21 @@ class TestRepo(datasets.GeneratorBasedBuilder):
|
|
| 88 |
"question_type": data.get("question_type", ""),
|
| 89 |
"dataset_name": os.path.split(filepath)[-1].replace(".jsonl","")
|
| 90 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
key_idx +=1
|
|
|
|
| 42 |
# DEFAULT_CONFIG_NAME = "mcq_domain"
|
| 43 |
|
| 44 |
def _info(self):
|
| 45 |
+
features_dict = {
|
| 46 |
+
"train_normal_mcqa": datasets.Features({
|
|
|
|
| 47 |
"prompt": datasets.Value("string"),
|
| 48 |
"question": datasets.Value("string"),
|
| 49 |
"options": datasets.Sequence(datasets.Value("string")),
|
|
|
|
| 52 |
"question_type": datasets.Value("string"),
|
| 53 |
"dataset_name": datasets.Value("string"),
|
| 54 |
}),
|
| 55 |
+
"val_normal_mcqa": datasets.Features({
|
| 56 |
+
"prompt": datasets.Value("string"),
|
| 57 |
+
"question": datasets.Value("string"),
|
| 58 |
+
"options": datasets.Sequence(datasets.Value("string")),
|
| 59 |
+
"answer": datasets.Value("string"),
|
| 60 |
+
"num_options": datasets.Value("string"),
|
| 61 |
+
"question_type": datasets.Value("string"),
|
| 62 |
+
"dataset_name": datasets.Value("string"),
|
| 63 |
+
"few_shot_prompt": datasets.Sequence(datasets.Features({
|
| 64 |
+
"question": datasets.Value("string"),
|
| 65 |
+
"answer": datasets.Value("string"),
|
| 66 |
+
"options": datasets.Sequence(datasets.Value("string")),
|
| 67 |
+
})),
|
| 68 |
+
}),
|
| 69 |
+
"test_normal_mcqa": datasets.Features({
|
| 70 |
+
"prompt": datasets.Value("string"),
|
| 71 |
+
"question": datasets.Value("string"),
|
| 72 |
+
"options": datasets.Sequence(datasets.Value("string")),
|
| 73 |
+
"answer": datasets.Value("string"),
|
| 74 |
+
"num_options": datasets.Value("string"),
|
| 75 |
+
"question_type": datasets.Value("string"),
|
| 76 |
+
"dataset_name": datasets.Value("string"),
|
| 77 |
+
"few_shot_prompt": datasets.Sequence(datasets.Features({
|
| 78 |
+
"question": datasets.Value("string"),
|
| 79 |
+
"answer": datasets.Value("string"),
|
| 80 |
+
"options": datasets.Sequence(datasets.Value("string")),
|
| 81 |
+
})),
|
| 82 |
+
})
|
| 83 |
+
}
|
| 84 |
+
|
| 85 |
+
return datasets.DatasetInfo(
|
| 86 |
+
description=_DESCRIPTION,
|
| 87 |
+
features=features_dict[self.config.name]
|
| 88 |
homepage=_HOMEPAGE,
|
| 89 |
license=_LICENSE,
|
| 90 |
citation=_CITATION,
|
|
|
|
| 96 |
print(data_dir)
|
| 97 |
return [
|
| 98 |
datasets.SplitGenerator(
|
| 99 |
+
name="train_normal_mcqa",
|
| 100 |
+
gen_kwargs={"directory": data_dir, "split": "train"},
|
| 101 |
+
),
|
| 102 |
+
datasets.SplitGenerator(
|
| 103 |
+
name="val_normal_mcqa",
|
| 104 |
+
gen_kwargs={"directory": data_dir, "split": "val"},
|
| 105 |
+
),
|
| 106 |
+
datasets.SplitGenerator(
|
| 107 |
+
name="test_normal_mcqa",
|
| 108 |
+
gen_kwargs={"directory": data_dir, "split": "test"},
|
| 109 |
+
),
|
| 110 |
]
|
| 111 |
|
| 112 |
def _generate_examples(self, directory, split):
|
|
|
|
| 118 |
with open(filepath, encoding="utf-8") as f:
|
| 119 |
for key, row in enumerate(f):
|
| 120 |
data = json.loads(row)
|
| 121 |
+
if split == "train_normal_mcqa":
|
| 122 |
yield key_idx, {
|
| 123 |
"prompt": data.get("prompt", ""),
|
| 124 |
"question": data["question"],
|
|
|
|
| 128 |
"question_type": data.get("question_type", ""),
|
| 129 |
"dataset_name": os.path.split(filepath)[-1].replace(".jsonl","")
|
| 130 |
}
|
| 131 |
+
key_idx +=1
|
| 132 |
+
elif split in ["val_normal_mcqa", "test_normal_mcqa"]:
|
| 133 |
+
yield key_idx, {
|
| 134 |
+
"prompt": data.get("prompt", ""),
|
| 135 |
+
"question": data["question"],
|
| 136 |
+
"options": data["options"],
|
| 137 |
+
"answer": data.get("answer", ""),
|
| 138 |
+
"num_options": data.get("num_options", ""),
|
| 139 |
+
"question_type": data.get("question_type", ""),
|
| 140 |
+
"dataset_name": os.path.split(filepath)[-1].replace(".jsonl",""),
|
| 141 |
+
"few_shot_prompt": [{
|
| 142 |
+
"question": item["question"],
|
| 143 |
+
"answer": item["answer"],
|
| 144 |
+
"options": item["options"],
|
| 145 |
+
} for item in data["few_shot_prompt"]]
|
| 146 |
+
}
|
| 147 |
+
|
| 148 |
key_idx +=1
|