Update test_repo.py
Browse files- test_repo.py +64 -7
test_repo.py
CHANGED
@@ -42,9 +42,8 @@ class TestRepo(datasets.GeneratorBasedBuilder):
|
|
42 |
# DEFAULT_CONFIG_NAME = "mcq_domain"
|
43 |
|
44 |
def _info(self):
|
45 |
-
|
46 |
-
|
47 |
-
features=datasets.Features({
|
48 |
"prompt": datasets.Value("string"),
|
49 |
"question": datasets.Value("string"),
|
50 |
"options": datasets.Sequence(datasets.Value("string")),
|
@@ -53,6 +52,39 @@ class TestRepo(datasets.GeneratorBasedBuilder):
|
|
53 |
"question_type": datasets.Value("string"),
|
54 |
"dataset_name": datasets.Value("string"),
|
55 |
}),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
homepage=_HOMEPAGE,
|
57 |
license=_LICENSE,
|
58 |
citation=_CITATION,
|
@@ -64,9 +96,17 @@ class TestRepo(datasets.GeneratorBasedBuilder):
|
|
64 |
print(data_dir)
|
65 |
return [
|
66 |
datasets.SplitGenerator(
|
67 |
-
name=
|
68 |
-
gen_kwargs={"directory": data_dir, "split":
|
69 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
]
|
71 |
|
72 |
def _generate_examples(self, directory, split):
|
@@ -78,7 +118,7 @@ class TestRepo(datasets.GeneratorBasedBuilder):
|
|
78 |
with open(filepath, encoding="utf-8") as f:
|
79 |
for key, row in enumerate(f):
|
80 |
data = json.loads(row)
|
81 |
-
if split
|
82 |
yield key_idx, {
|
83 |
"prompt": data.get("prompt", ""),
|
84 |
"question": data["question"],
|
@@ -88,4 +128,21 @@ class TestRepo(datasets.GeneratorBasedBuilder):
|
|
88 |
"question_type": data.get("question_type", ""),
|
89 |
"dataset_name": os.path.split(filepath)[-1].replace(".jsonl","")
|
90 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
key_idx +=1
|
|
|
42 |
# DEFAULT_CONFIG_NAME = "mcq_domain"
|
43 |
|
44 |
def _info(self):
|
45 |
+
features_dict = {
|
46 |
+
"train_normal_mcqa": datasets.Features({
|
|
|
47 |
"prompt": datasets.Value("string"),
|
48 |
"question": datasets.Value("string"),
|
49 |
"options": datasets.Sequence(datasets.Value("string")),
|
|
|
52 |
"question_type": datasets.Value("string"),
|
53 |
"dataset_name": datasets.Value("string"),
|
54 |
}),
|
55 |
+
"val_normal_mcqa": datasets.Features({
|
56 |
+
"prompt": datasets.Value("string"),
|
57 |
+
"question": datasets.Value("string"),
|
58 |
+
"options": datasets.Sequence(datasets.Value("string")),
|
59 |
+
"answer": datasets.Value("string"),
|
60 |
+
"num_options": datasets.Value("string"),
|
61 |
+
"question_type": datasets.Value("string"),
|
62 |
+
"dataset_name": datasets.Value("string"),
|
63 |
+
"few_shot_prompt": datasets.Sequence(datasets.Features({
|
64 |
+
"question": datasets.Value("string"),
|
65 |
+
"answer": datasets.Value("string"),
|
66 |
+
"options": datasets.Sequence(datasets.Value("string")),
|
67 |
+
})),
|
68 |
+
}),
|
69 |
+
"test_normal_mcqa": datasets.Features({
|
70 |
+
"prompt": datasets.Value("string"),
|
71 |
+
"question": datasets.Value("string"),
|
72 |
+
"options": datasets.Sequence(datasets.Value("string")),
|
73 |
+
"answer": datasets.Value("string"),
|
74 |
+
"num_options": datasets.Value("string"),
|
75 |
+
"question_type": datasets.Value("string"),
|
76 |
+
"dataset_name": datasets.Value("string"),
|
77 |
+
"few_shot_prompt": datasets.Sequence(datasets.Features({
|
78 |
+
"question": datasets.Value("string"),
|
79 |
+
"answer": datasets.Value("string"),
|
80 |
+
"options": datasets.Sequence(datasets.Value("string")),
|
81 |
+
})),
|
82 |
+
})
|
83 |
+
}
|
84 |
+
|
85 |
+
return datasets.DatasetInfo(
|
86 |
+
description=_DESCRIPTION,
|
87 |
+
features=features_dict[self.config.name]
|
88 |
homepage=_HOMEPAGE,
|
89 |
license=_LICENSE,
|
90 |
citation=_CITATION,
|
|
|
96 |
print(data_dir)
|
97 |
return [
|
98 |
datasets.SplitGenerator(
|
99 |
+
name="train_normal_mcqa",
|
100 |
+
gen_kwargs={"directory": data_dir, "split": "train"},
|
101 |
+
),
|
102 |
+
datasets.SplitGenerator(
|
103 |
+
name="val_normal_mcqa",
|
104 |
+
gen_kwargs={"directory": data_dir, "split": "val"},
|
105 |
+
),
|
106 |
+
datasets.SplitGenerator(
|
107 |
+
name="test_normal_mcqa",
|
108 |
+
gen_kwargs={"directory": data_dir, "split": "test"},
|
109 |
+
),
|
110 |
]
|
111 |
|
112 |
def _generate_examples(self, directory, split):
|
|
|
118 |
with open(filepath, encoding="utf-8") as f:
|
119 |
for key, row in enumerate(f):
|
120 |
data = json.loads(row)
|
121 |
+
if split == "train_normal_mcqa":
|
122 |
yield key_idx, {
|
123 |
"prompt": data.get("prompt", ""),
|
124 |
"question": data["question"],
|
|
|
128 |
"question_type": data.get("question_type", ""),
|
129 |
"dataset_name": os.path.split(filepath)[-1].replace(".jsonl","")
|
130 |
}
|
131 |
+
key_idx +=1
|
132 |
+
elif split in ["val_normal_mcqa", "test_normal_mcqa"]:
|
133 |
+
yield key_idx, {
|
134 |
+
"prompt": data.get("prompt", ""),
|
135 |
+
"question": data["question"],
|
136 |
+
"options": data["options"],
|
137 |
+
"answer": data.get("answer", ""),
|
138 |
+
"num_options": data.get("num_options", ""),
|
139 |
+
"question_type": data.get("question_type", ""),
|
140 |
+
"dataset_name": os.path.split(filepath)[-1].replace(".jsonl",""),
|
141 |
+
"few_shot_prompt": [{
|
142 |
+
"question": item["question"],
|
143 |
+
"answer": item["answer"],
|
144 |
+
"options": item["options"],
|
145 |
+
} for item in data["few_shot_prompt"]]
|
146 |
+
}
|
147 |
+
|
148 |
key_idx +=1
|