andandandand commited on
Commit
7d9fc68
·
verified ·
1 Parent(s): 97546ed

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +163 -121
README.md CHANGED
@@ -1,74 +1,34 @@
1
  ---
2
- annotations_creators: []
 
3
  language: en
4
  license: mit
5
  size_categories:
6
  - n<1K
7
  task_categories:
8
  - object-detection
 
9
  task_ids: []
10
- pretty_name: food_waste_dataset
11
  tags:
12
  - fiftyone
13
  - image
14
  - object-detection
15
- dataset_summary: '
16
-
17
-
18
-
19
-
20
- This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 375 samples.
21
-
22
-
23
- ## Installation
24
-
25
-
26
- If you haven''t already, install FiftyOne:
27
-
28
-
29
- ```bash
30
-
31
- pip install -U fiftyone
32
-
33
- ```
34
-
35
-
36
- ## Usage
37
-
38
-
39
- ```python
40
-
41
- import fiftyone as fo
42
-
43
- from fiftyone.utils.huggingface import load_from_hub
44
-
45
-
46
- # Load the dataset
47
-
48
- # Note: other available arguments include ''max_samples'', etc
49
-
50
- dataset = load_from_hub("andandandand/food_waste_dataset")
51
-
52
-
53
- # Launch the App
54
-
55
- session = fo.launch_app(dataset)
56
-
57
- ```
58
-
59
- '
60
  ---
61
 
62
- # Dataset Card for food_waste_dataset
63
-
64
- <!-- Provide a quick summary of the dataset. -->
65
 
 
66
 
 
67
 
68
 
69
 
70
- This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 375 samples.
71
-
72
  ## Installation
73
 
74
  If you haven't already, install FiftyOne:
@@ -85,141 +45,223 @@ from fiftyone.utils.huggingface import load_from_hub
85
 
86
  # Load the dataset
87
  # Note: other available arguments include 'max_samples', etc
88
- dataset = load_from_hub("andandandand/food_waste_dataset")
89
 
90
  # Launch the App
91
  session = fo.launch_app(dataset)
92
  ```
93
 
94
-
95
  ## Dataset Details
96
 
97
  ### Dataset Description
98
 
99
- <!-- Provide a longer summary of what this dataset is. -->
100
 
 
 
 
 
 
101
 
 
 
 
 
102
 
103
- - **Curated by:** [More Information Needed]
104
- - **Funded by [optional]:** [More Information Needed]
105
- - **Shared by [optional]:** [More Information Needed]
106
- - **Language(s) (NLP):** en
107
- - **License:** mit
108
 
109
- ### Dataset Sources [optional]
110
-
111
- <!-- Provide the basic links for the dataset. -->
112
-
113
- - **Repository:** [More Information Needed]
114
- - **Paper [optional]:** [More Information Needed]
115
- - **Demo [optional]:** [More Information Needed]
116
 
117
  ## Uses
118
 
119
- <!-- Address questions around how the dataset is intended to be used. -->
120
-
121
  ### Direct Use
122
 
123
- <!-- This section describes suitable use cases for the dataset. -->
124
-
125
- [More Information Needed]
 
 
 
 
126
 
127
  ### Out-of-Scope Use
128
 
129
- <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
130
-
131
- [More Information Needed]
 
 
132
 
133
  ## Dataset Structure
134
 
135
- <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
136
-
137
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
138
 
139
  ## Dataset Creation
140
 
141
- ### Curation Rationale
 
 
142
 
143
- <!-- Motivation for the creation of this dataset. -->
144
 
145
- [More Information Needed]
 
 
 
 
146
 
147
  ### Source Data
148
 
149
- <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
150
 
151
  #### Data Collection and Processing
152
 
153
- <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
 
 
 
154
 
155
- [More Information Needed]
 
 
 
 
 
156
 
157
  #### Who are the source data producers?
158
 
159
- <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
160
 
161
- [More Information Needed]
162
-
163
- ### Annotations [optional]
164
-
165
- <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
166
 
167
  #### Annotation process
168
 
169
- <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
170
-
171
- [More Information Needed]
 
172
 
173
  #### Who are the annotators?
174
 
175
- <!-- This section describes the people or systems who created the annotations. -->
 
 
176
 
177
- [More Information Needed]
178
 
179
- #### Personal and Sensitive Information
180
 
181
- <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
 
 
 
 
 
182
 
183
- [More Information Needed]
184
 
185
- ## Bias, Risks, and Limitations
 
 
 
186
 
187
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
188
-
189
- [More Information Needed]
190
-
191
- ### Recommendations
192
-
193
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
194
 
195
- Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
196
 
197
- ## Citation [optional]
 
 
 
 
198
 
199
- <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
200
 
201
- **BibTeX:**
 
 
202
 
203
- [More Information Needed]
204
 
205
- **APA:**
 
 
 
 
206
 
207
- [More Information Needed]
208
 
209
- ## Glossary [optional]
210
 
211
- <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
 
 
 
 
 
 
 
 
212
 
213
- [More Information Needed]
 
 
 
 
 
 
 
 
214
 
215
- ## More Information [optional]
216
 
217
- [More Information Needed]
218
 
219
- ## Dataset Card Authors [optional]
220
 
221
- [More Information Needed]
 
 
 
222
 
223
  ## Dataset Card Contact
224
 
225
- [More Information Needed]
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - machine-generated
4
  language: en
5
  license: mit
6
  size_categories:
7
  - n<1K
8
  task_categories:
9
  - object-detection
10
+ - image-segmentation
11
  task_ids: []
12
+ pretty_name: Food Waste Dataset with FiftyOne
13
  tags:
14
  - fiftyone
15
  - image
16
  - object-detection
17
+ - food-waste
18
+ - segmentation
19
+ - nutrition
20
+ - sustainability
21
+ dataset_summary: 'A computer vision dataset containing 375 images of meals with detailed nutritional information, ingredient segmentation, and food waste measurements. The dataset includes before/after consumption data to study food waste patterns and nutritional content analysis.'
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
  ---
23
 
24
+ # Dataset Card for Food Waste Dataset
 
 
25
 
26
+ This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 375 samples focused on food waste analysis and nutritional content detection.
27
 
28
+ ![image/png](food_waste_navigation.webp)
29
 
30
 
31
 
 
 
32
  ## Installation
33
 
34
  If you haven't already, install FiftyOne:
 
45
 
46
  # Load the dataset
47
  # Note: other available arguments include 'max_samples', etc
48
+ dataset = load_from_hub("andandandand/food-waste-dataset")
49
 
50
  # Launch the App
51
  session = fo.launch_app(dataset)
52
  ```
53
 
 
54
  ## Dataset Details
55
 
56
  ### Dataset Description
57
 
58
+ This dataset contains detailed information about food waste, combining visual data with comprehensive nutritional measurements. Each sample includes an image of a meal along with ingredient-level nutritional information measured both before and after consumption, enabling food waste analysis and nutritional content detection.
59
 
60
+ The dataset has been enhanced with:
61
+ - **YOLO-E segmentation** for ingredient detection and segmentation
62
+ - **DINOv2 embeddings** for visual similarity analysis
63
+ - **Translated ingredient names** from German to English
64
+ - **Nutritional metadata** including calories, fats, proteins, carbohydrates, and salt content
65
 
66
+ - **Curated by:** L. Stroetmann, a la QUARTO, AI Service Center at HPI (Hasso Plattner Institute), Voxel51
67
+ - **Enhanced by:** FiftyOne computer vision pipeline
68
+ - **Language(s):** English (translated from German)
69
+ - **License:** MIT
70
 
71
+ ### Dataset Sources
 
 
 
 
72
 
73
+ - **Original Repository:** [AI-ServicesBB/food-waste-dataset](https://huggingface.co/datasets/AI-ServicesBB/food-waste-dataset)
74
+ - **Processing Code:** Available in the accompanying Jupyter notebook
75
+ - **Enhanced Version:** Includes segmentation masks and embeddings
 
 
 
 
76
 
77
  ## Uses
78
 
 
 
79
  ### Direct Use
80
 
81
+ This dataset is suitable for:
82
+ - **Food waste analysis** and sustainability research
83
+ - **Nutritional content detection** from images
84
+ - **Ingredient segmentation** and recognition
85
+ - **Computer vision model training** for food-related tasks
86
+ - **Multi-modal learning** combining visual and nutritional data
87
+ - **Food portion estimation** and consumption analysis
88
 
89
  ### Out-of-Scope Use
90
 
91
+ This dataset should not be used for:
92
+ - Medical diagnosis or personalized dietary recommendations
93
+ - Commercial food recognition without proper validation
94
+ - Applications requiring real-time nutritional analysis without expert oversight
95
+ - Any use that could promote harmful eating behaviors
96
 
97
  ## Dataset Structure
98
 
99
+ The dataset contains 375 samples split into train and test sets, with each sample containing:
100
+
101
+ ### Image Data
102
+ - **filepath**: Path to the meal image
103
+ - **metadata**: Image dimensions, format, and technical details
104
+
105
+ ### Nutritional Information (Per Ingredient)
106
+ - **ingredient_name**: Name of each ingredient (translated to English)
107
+ - **article_number**: Unique identifier for ingredients
108
+ - **number_of_portions**: Portion count
109
+ - **weight_per_portion**: Weight per individual portion
110
+ - **weight_per_plate**: Total weight on plate
111
+ - **kcal_per_plate**, **kj_per_plate**: Caloric content
112
+ - **fat_per_plate**, **saturated_fat_per_plate**: Fat content
113
+ - **carbohydrates_per_plate**, **sugar_per_plate**: Carbohydrate content
114
+ - **protein_per_plate**: Protein content
115
+ - **salt_per_plate**: Salt content
116
+
117
+ ### Before/After Consumption Measurements
118
+ - **weight_before/after**: Total meal weight
119
+ - **kcal_before/after**: Total calories
120
+ - **fat_before/after**: Total fat content
121
+ - **carbohydrates_before/after**: Total carbohydrates
122
+ - **protein_before/after**: Total protein
123
+ - **salt_before/after**: Total salt
124
+
125
+ ### Food Waste Metrics
126
+ - **return_quantity**: Amount of food returned/wasted
127
+ - **return_percentage**: Percentage of food wasted
128
+
129
+ ### Computer Vision Annotations
130
+ - **yoloe_segmentation**: Ingredient segmentation masks from YOLO-E
131
+ - **segment_embeddings**: DINOv2 embeddings for segmented regions
132
+ - **dinov2-image-embeddings**: Full image embeddings
133
+ - **similarity indices**: For content-based search and analysis
134
 
135
  ## Dataset Creation
136
 
137
+ The Google Colab notebook used to curate and produce the dataset is available here:
138
+
139
+ [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/andandandand/practical-computer-vision-with-pytorch-mooc/blob/main/Food_Dataset_Curation_with_Fiftyone.ipynb)
140
 
141
+ ### Curation Rationale
142
 
143
+ This dataset was created to support research in food waste reduction and nutritional analysis. By combining visual data with detailed nutritional measurements, it enables the development of computer vision systems that can:
144
+ - Automatically detect and quantify food waste
145
+ - Estimate nutritional content from images
146
+ - Analyze consumption patterns
147
+ - Support sustainability initiatives in food service
148
 
149
  ### Source Data
150
 
151
+ https://huggingface.co/datasets/AI-ServicesBB/food-waste-dataset
152
 
153
  #### Data Collection and Processing
154
 
155
+ The original dataset was collected by the L. Stroetmann, a la QUARTO, and the AI Service Center at HPI and contained:
156
+ - Images of meals in German food service settings
157
+ - Detailed nutritional information in German
158
+ - Before and after consumption measurements
159
 
160
+ Processing steps included:
161
+ 3. **Embeddings**: DINOv2 model used for visual feature extraction
162
+ 4. **Similarity indexing**: Computed for both full images and segmented regions
163
+ 1. **Translation**: German ingredient names and field names translated to English
164
+ 2. **Segmentation**: YOLO-E model applied for ingredient detection
165
+ 5. **Metadata computation**: Image technical details extracted
166
 
167
  #### Who are the source data producers?
168
 
169
+ The original data was produced by the AI Service Center at the Hasso Plattner Institute (HPI) as part of food waste research initiatives.
170
 
171
+ ### Annotations
 
 
 
 
172
 
173
  #### Annotation process
174
 
175
+ - **Ingredient Translation**: Manual mapping of 40+ German ingredient names to English equivalents
176
+ - **Segmentation**: Automated using YOLO-E model trained on food ingredients
177
+ - **Embedding Generation**: Automated using DINOv2 vision transformer
178
+ - **Quality Control**: Visual inspection of segmentation results
179
 
180
  #### Who are the annotators?
181
 
182
+ - **Translation**: Manual annotation by dataset curator
183
+ - **Segmentation**: YOLO-E model (yoloe-11s-seg.pt)
184
+ - **Embeddings**: DINOv2-ViT-L14 model
185
 
186
+ ## Technical Details
187
 
188
+ ### Ingredients Covered
189
 
190
+ The dataset includes 40+ food ingredients including:
191
+ - Proteins: meatballs, fish fillet, chicken, beef, pork, sausages
192
+ - Carbohydrates: rice, potatoes, bread dumplings, spaetzle
193
+ - Vegetables: green beans, carrots, cabbage, cauliflower, peas
194
+ - Sauces and condiments: various gravies, mustard sauce, dressings
195
+ - Dairy: cream, vegetable-based cream alternatives
196
 
197
+ ### Model Performance
198
 
199
+ The dataset includes pre-computed:
200
+ - **Segmentation masks** with ingredient-level precision
201
+ - **Visual embeddings** enabling similarity search
202
+ - **UMAP visualization** for dataset exploration
203
 
204
+ ## Bias, Risks, and Limitations
 
 
 
 
 
 
205
 
206
+ ### Limitations
207
 
208
+ - **Cultural bias**: Dataset reflects German food service context
209
+ - **Ingredient coverage**: Limited to ~40 common ingredients
210
+ - **Portion size**: Focused on institutional serving sizes
211
+ - **Image quality**: Consistent lighting/background conditions
212
+ - **Temporal scope**: Snapshot data, not longitudinal study
213
 
214
+ ### Risks
215
 
216
+ - **Nutritional accuracy**: Automated estimates should not replace professional dietary advice
217
+ - **Generalization**: Model performance may vary on different food cultures/preparations
218
+ - **Privacy**: While anonymized, institutional food service data patterns might be identifiable
219
 
220
+ ### Recommendations
221
 
222
+ Users should:
223
+ - Validate nutritional estimates with professional dietary knowledge
224
+ - Consider cultural context, this dataset was collected in Germany
225
+ - Use appropriate evaluation metrics for food waste applications
226
+ - Acknowledge dataset limitations in publications and applications
227
 
228
+ ## Citation
229
 
230
+ If you use this dataset, please cite both the original source and the enhanced version:
231
 
232
+ **Original Dataset:**
233
+ ```bibtex
234
+ @dataset{hpi_food_waste_2024,
235
+ title={Food Waste Dataset},
236
+ author={Felix Boelter and Felix Venner},
237
+ year={2024},
238
+ url={https://huggingface.co/datasets/AI-ServicesBB/food-waste-dataset}
239
+ }
240
+ ```
241
 
242
+ **Enhanced Version:**
243
+ ```bibtex
244
+ @dataset{food_waste_fiftyone_2024,
245
+ title={Food Waste Dataset with FiftyOne Enhancements},
246
+ author={Felix Boelter and Felix Venner and Antonio Rueda-Toicen},
247
+ year={2024},
248
+ url={https://huggingface.co/datasets/andandandand/food-waste-dataset}
249
+ }
250
+ ```
251
 
252
+ ## More Information
253
 
254
+ For technical details about the processing pipeline, see the accompanying Google Colab notebook. The dataset supports various computer vision tasks and can be explored interactively using the FiftyOne application.
255
 
256
+ ### Related Work
257
 
258
+ - FiftyOne: Open-source tool for dataset curation and model analysis
259
+ - YOLO-E: State-of-the-art object detection and segmentation
260
+ - DINOv2: Self-supervised vision transformer for embeddings
261
+ - Food waste reduction and sustainability research
262
 
263
  ## Dataset Card Contact
264
 
265
+ Antonio Rueda-Toicen
266
+
267
+ For questions about the original dataset, please refer to the AI Service Center, HPI.