Update README.md
Browse files
README.md
CHANGED
@@ -25,7 +25,22 @@ The **Twirling Mizo News Dataset** is a collection of 6,731 news articles writte
|
|
25 |
- *hmarchhak*
|
26 |
|
27 |
- **Largest Category:** *tualchhung* (1,686 articles)
|
|
|
|
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
## How to use
|
31 |
|
@@ -35,17 +50,16 @@ The `datasets` library allows you to load and pre-process your dataset in pure P
|
|
35 |
from datasets import load_dataset
|
36 |
|
37 |
twirling_mizo_news_train = load_dataset("andrewbawitlung/twirling_mizo_news", split="train")
|
|
|
38 |
|
39 |
```
|
40 |
display 3 random indices
|
41 |
```python
|
42 |
import random
|
43 |
-
|
44 |
-
|
45 |
-
for idx in
|
46 |
-
|
47 |
-
print(f"Category: {random_article['Category']}")
|
48 |
-
print(f"Article: {random_article['Article']}\n")
|
49 |
|
50 |
```
|
51 |
|
|
|
25 |
- *hmarchhak*
|
26 |
|
27 |
- **Largest Category:** *tualchhung* (1,686 articles)
|
28 |
+
- **Training Set (80%)**: This set contains 80% of the data for each category and will be used for training machine learning models.
|
29 |
+
- **Testing Set (20%)**: This set contains the remaining 20% of the data for each category and can be used for evaluating the performance of the models.
|
30 |
|
31 |
+
### Example Split
|
32 |
+
|
33 |
+
For each category, the dataset is split as follows:
|
34 |
+
|
35 |
+
1. **Category**: "tualchhung"
|
36 |
+
- **Training Set**: 80% of articles in this category.
|
37 |
+
- **Testing Set**: 20% of articles in this category.
|
38 |
+
|
39 |
+
2. **Category**: "khawvel"
|
40 |
+
- **Training Set**: 80% of articles in this category.
|
41 |
+
- **Testing Set**: 20% of articles in this category.
|
42 |
+
|
43 |
+
This pattern is applied to all categories in the dataset, ensuring that the splits are balanced and representative of each category.
|
44 |
|
45 |
## How to use
|
46 |
|
|
|
50 |
from datasets import load_dataset
|
51 |
|
52 |
twirling_mizo_news_train = load_dataset("andrewbawitlung/twirling_mizo_news", split="train")
|
53 |
+
twirling_mizo_news_test = load_dataset("andrewbawitlung/twirling_mizo_news", split="test")
|
54 |
|
55 |
```
|
56 |
display 3 random indices
|
57 |
```python
|
58 |
import random
|
59 |
+
for split, dataset in [("train", twirling_mizo_news_train), ("test", twirling_mizo_news_test)]:
|
60 |
+
print(f"Random samples from the {split} dataset:")
|
61 |
+
for idx in random.sample(range(len(dataset)), 5):
|
62 |
+
print(f"Index: {idx}\n{dataset[idx]}\n{'-' * 50}")
|
|
|
|
|
63 |
|
64 |
```
|
65 |
|