Update README.md
Browse files
README.md
CHANGED
|
@@ -27,3 +27,52 @@ configs:
|
|
| 27 |
- split: train
|
| 28 |
path: data/train-*
|
| 29 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
- split: train
|
| 28 |
path: data/train-*
|
| 29 |
---
|
| 30 |
+
# Dataset Card for VocSim - Mouse Identity Classification
|
| 31 |
+
|
| 32 |
+
## Dataset Description
|
| 33 |
+
|
| 34 |
+
This dataset is used in the **VocSim benchmark** paper for evaluating the ability of neural audio embeddings to identify individual mice based on their ultrasonic vocalization (USV) syllables. It contains pre-segmented USV syllables from multiple individual mice, derived from recordings used in **Goffinet et al. (2021)~\cite{goffinet2021low}**.
|
| 35 |
+
|
| 36 |
+
The primary task associated with this dataset is supervised classification: training a model to predict the correct mouse identity (`speaker` field) given an audio input (a single syllable) or its derived features.
|
| 37 |
+
|
| 38 |
+
**Included Files:**
|
| 39 |
+
* Hugging Face `Dataset` object containing audio file paths (individual syllables) and metadata (mouse identity).
|
| 40 |
+
|
| 41 |
+
## Dataset Structure
|
| 42 |
+
|
| 43 |
+
### Data Instances
|
| 44 |
+
|
| 45 |
+
A typical example in the dataset looks like this:
|
| 46 |
+
|
| 47 |
+
```python
|
| 48 |
+
{
|
| 49 |
+
'audio': {'path': '/path/to/datasets/mouse_identity/BM003/BM003_syllable_1.wav', 'array': array([...], dtype=float32), 'sampling_rate': 250000},
|
| 50 |
+
'subset': 'mouse_identity',
|
| 51 |
+
'index': 50,
|
| 52 |
+
'speaker': 'BM003', # The crucial individual mouse ID (target label)
|
| 53 |
+
'label': 'BM003_syllable_1', # Syllable-specific identifier
|
| 54 |
+
'original_name': 'BM003/BM003_syllable_1.wav' # Example original relative path
|
| 55 |
+
}
|
| 56 |
+
```
|
| 57 |
+
### Citation Information
|
| 58 |
+
|
| 59 |
+
If you use this dataset, please cite the VocSim benchmark paper, and the MUPET software if relying on the provided segmentation:
|
| 60 |
+
```
|
| 61 |
+
@unpublished{vocsim2025,
|
| 62 |
+
title={VocSim: Zero-Shot Audio Similarity Benchmark for Neural Embeddings},
|
| 63 |
+
author={Anonymous},
|
| 64 |
+
year={2025},
|
| 65 |
+
note={Submitted manuscript}
|
| 66 |
+
}
|
| 67 |
+
|
| 68 |
+
@article{VanSegbroeck2017,
|
| 69 |
+
author = {Van Segbroeck, Maarten and Knoll, Aaron T. and Levitt, Patricia and Narayanan, Shrikanth},
|
| 70 |
+
title = "{MUPET}-Mouse Ultrasonic Profile ExTraction: A Signal Processing Tool for Rapid and Unsupervised Analysis of Ultrasonic Vocalizations",
|
| 71 |
+
journal = {Neuron},
|
| 72 |
+
volume = {94},
|
| 73 |
+
number = {3},
|
| 74 |
+
pages = {465--485.e5},
|
| 75 |
+
year = {2017},
|
| 76 |
+
doi = {10.1016/j.neuron.2017.04.018}
|
| 77 |
+
}
|
| 78 |
+
```
|