|
import os |
|
|
|
import datasets |
|
from datasets.tasks import ImageClassification |
|
|
|
from .classes_rod import ROD_CLASSES |
|
|
|
|
|
_CITATION = """\ |
|
@misc{lee2023hardwiring, |
|
title={Hardwiring ViT Patch Selectivity into CNNs using Patch Mixing}, |
|
author={Ariel N. Lee and Sarah Adel Bargal and Janavi Kasera and Stan Sclaroff and Kate Saenko and Nataniel Ruiz}, |
|
year={2023}, |
|
eprint={2306.17848}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV} |
|
} |
|
""" |
|
|
|
_HOMEPAGE = "https://arielnlee.github.io/PatchMixing/" |
|
|
|
_DESCRIPTION = """\ |
|
ROD is meant to serve as a metric for evaluating models' robustness to occlusion. It is the product of a meticulous object collection protocol aimed at collecting and capturing 40+ distinct, real-world objects from 16 classes. |
|
""" |
|
|
|
_DATA_URL = { |
|
"rod": [ |
|
f"https://huggingface.co/datasets/ariellee/Realistic-Occlusion-Dataset/resolve/main/rod_{i}.tar.gz" |
|
for i in range(2) |
|
] |
|
} |
|
|
|
|
|
class ROD(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.0.0") |
|
|
|
DEFAULT_WRITER_BATCH_SIZE = 16 |
|
|
|
def _info(self): |
|
assert len(ROD_CLASSES) == 16 |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"label": datasets.ClassLabel(names=list(ROD_CLASSES.values())), |
|
} |
|
), |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
task_templates=[ImageClassification(image_column="image", label_column="label")], |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
archives = dl_manager.download(_DATA_URL) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name="ROD", |
|
gen_kwargs={ |
|
"archives": [dl_manager.iter_archive(archive) for archive in archives["rod"]], |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, archives): |
|
"""Yields examples.""" |
|
idx = 0 |
|
for archive in archives: |
|
for path, file in archive: |
|
if path.endswith(".jpg"): |
|
synset_id = os.path.basename(os.path.dirname(path)) |
|
ex = {"image": {"path": path, "bytes": file.read()}, "label": synset_id} |
|
yield idx, ex |
|
idx += 1 |
|
|