import json, os from PIL import Image import datasets from datasets.utils.file_utils import xopen # <─ key helper from datasets.utils.logging import get_logger, tqdm logger = get_logger(__name__) logger.setLevel("INFO") NUM_PARTS = 14 _TAR_URLS = [ f"https://huggingface.co/datasets/artpods56/EcclesialSchematisms/" f"resolve/main/images/images_part{i}.tar" for i in range(1, NUM_PARTS + 1) ] _LABEL_URL = "https://huggingface.co/datasets/artpods56/EcclesialSchematisms/" \ "resolve/main/labels/train.jsonl" class EcclesiaeSchematisms(datasets.GeneratorBasedBuilder): def _info(self): return datasets.DatasetInfo( features=datasets.Features({ "image_pil": datasets.Image(decode="pil"), # keep memory low "image": datasets.Value("string"), "width": datasets.Value("int32"), "height": datasets.Value("int32"), "words": datasets.Sequence(datasets.Value("string")), "bboxes": datasets.Sequence(datasets.Sequence(datasets.Value("int32"))), "labels": datasets.Sequence(datasets.Value("string")), "conf": datasets.Sequence(datasets.Value("float32")), }) ) def _split_generators(self, dl_manager): images_tars = dl_manager.download(_TAR_URLS) labels_file = dl_manager.download(_LABEL_URL) # local, small return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "images_tars": images_tars, "labels": labels_file, "dl_manager": dl_manager, # pass it forward }, ) ] # NOTE the extra parameter def _generate_examples(self, images_tars, labels, dl_manager): logger.info("Loading label annotations…") annotations = {} with xopen(labels, "r") as f: # works in streaming for line in f: ann = json.loads(line) annotations[os.path.basename(ann["image_path"])] = ann logger.info("Loaded %d annotations.", len(annotations)) example_id = 0 for tar_path in images_tars: logger.info("Iterating %s", tar_path) # iter_archive streams members one-by-one for member_name, fobj in dl_manager.iter_archive(tar_path): if not member_name.endswith(".jpg"): continue img_name = os.path.basename(member_name) ann = annotations.get(img_name) if ann is None: continue with Image.open(fobj).convert("RGB") as image: yield example_id, { "image_pil": image, "image": ann["image_path"], "width": ann["width"], "height": ann["height"], "words": ann["words"], "bboxes": ann["bboxes"], "labels": ann["labels"], "conf": ann.get("conf", []), } example_id += 1