dummy / autoencoder.py
arubenruben's picture
Autoencoder not tested
31f1c86
import torch
import logging
from transformers import BertModel, BertTokenizerFast
import os
from pathlib import Path
import pandas as pd
from datasets import load_dataset
from torch.utils.data import DataLoader
from tqdm import tqdm
CURRENT_PATH = Path(__file__).parent
def tokenize(dataset):
BERT_MAX_LEN = 512
tokenizer = BertTokenizerFast.from_pretrained(
"neuralmind/bert-base-portuguese-cased", max_length=BERT_MAX_LEN)
dataset = dataset.map(lambda example: tokenizer(
example["text"], truncation=True, padding="max_length", max_length=BERT_MAX_LEN))
return dataset
def create_dataloader(dataset, shuffle=True):
return DataLoader(dataset, batch_size=8, shuffle=shuffle, num_workers=8, drop_last=True)
class AutoEncoder(torch.nn.Module):
def __init__(self):
super().__init__()
self.device = torch.device(
'cuda' if torch.cuda.is_available() else 'cpu')
self.bert = BertModel.from_pretrained(
'neuralmind/bert-base-portuguese-cased').to(self.device)
# Freeze BERT
for param in self.bert.parameters():
param.requires_grad = False
self.encoder = torch.nn.Sequential(
torch.nn.Linear(self.bert.config.hidden_size,
self.bert.config.hidden_size // 5),
torch.nn.ReLU(),
torch.nn.Linear(self.bert.config.hidden_size // 5,
self.bert.config.hidden_size // 10),
torch.nn.ReLU(),
torch.nn.Linear(self.bert.config.hidden_size // 10,
self.bert.config.hidden_size // 30),
torch.nn.ReLU(),
).to(self.device)
self.decoder = torch.nn.Sequential(
torch.nn.Linear(self.bert.config.hidden_size // 30,
self.bert.config.hidden_size // 10),
torch.nn.ReLU(),
torch.nn.Linear(self.bert.config.hidden_size // 10,
self.bert.config.hidden_size // 5),
torch.nn.ReLU(),
torch.nn.Linear(self.bert.config.hidden_size //
5, self.bert.config.hidden_size),
torch.nn.Sigmoid()
).to(self.device)
def forward(self, input_ids, attention_mask):
bert_output = self.bert(input_ids=input_ids,
attention_mask=attention_mask).last_hidden_state[:, 0, :]
encoded = self.encoder(bert_output)
decoded = self.decoder(encoded)
return bert_output, decoded
def load_models():
models = []
for domain in ['politics', 'news', 'law', 'social_media', 'literature', 'web']:
logging.info(f"Loading {domain} model...")
accumulator = []
for lang in ['brazilian', 'european']:
model = AutoEncoder()
model.load_state_dict(torch.load(os.path.join(
CURRENT_PATH, 'models', 'autoencoder', f'{domain}_{lang}_model.pt')))
accumulator.append(model)
models.append({
'models': accumulator,
'train_domain': domain,
})
return models
def benchmark(model, debug=False):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
df_results = pd.DataFrame(
columns=['train_domain', 'test_domain', 'accuracy', 'f1', 'precision', 'recall'])
train_domain = model['train_domain']
brazilian_model = model['models'][0]
european_model = model['models'][1]
brazilian_model.eval()
european_model.eval()
brazilian_model.to(device)
european_model.to(device)
for test_domain in ['politics', 'news', 'law', 'social_media', 'literature', 'web']:
dataset = load_dataset(
'arubenruben/Portuguese_Language_Identification', test_domain, split='test')
if debug:
logging.info(f"Debugging {test_domain} dataset...")
dataset = dataset.select(range(100))
else:
dataset = dataset.shuffle().select(range(min(50_000, len(dataset))))
dataset = tokenize(dataset)
dataset.set_format(type='torch', columns=[
'input_ids', 'attention_mask', 'label'])
dataset = create_dataloader(dataset)
predictions = []
labels = []
reconstruction_loss = torch.nn.MSELoss(reduction='none')
with torch.no_grad():
for batch in tqdm(dataset):
input_ids = batch['input_ids'].to(device)
attention_mask = batch['attention_mask'].to(device)
label = batch['label'].to(device)
bert_european, reconstruction_european = european_model(
input_ids=input_ids, attention_mask=attention_mask)
bert_brazilian, reconstruction_brazilian = brazilian_model(
input_ids=input_ids, attention_mask=attention_mask)
test_loss_european = reconstruction_loss(
reconstruction_european, bert_european)
test_loss_brazilian = reconstruction_loss(
reconstruction_brazilian, bert_brazilian)
for loss_european, loss_brazilian in zip(test_loss_european, test_loss_brazilian):
if loss_european.mean().item() < loss_brazilian.mean().item():
predictions.append(0)
total_loss += loss_european.mean().item() / len(test_loss_european)
else:
predictions.append(1)
total_loss += loss_brazilian.mean().item() / len(test_loss_brazilian)
labels.extend(label.tolist())
accuracy = accuracy.compute(
predictions=predictions, references=labels)['accuracy']
f1 = f1.compute(predictions=predictions, references=labels)['f1']
precision = precision.compute(
predictions=predictions, references=labels)['precision']
recall = recall.compute(predictions=predictions,
references=labels)['recall']
df_results = pd.concat([df_results, pd.DataFrame(
[[train_domain, test_domain, accuracy, f1, precision, recall]], columns=df_results.columns)], ignore_index=True)
return df_results
def test():
DEBUG = True
models = load_models()
df_results = pd.DataFrame(
columns=['train_domain', 'test_domain', 'accuracy', 'f1', 'precision', 'recall'])
for model in models:
logging.info(f"Train Domain {model['train_domain']}...")
df_results = pd.concat([df_results, benchmark(
model, debug=DEBUG)], ignore_index=True)
logging.info(f"Saving results...")
df_results.to_json(os.path.join(CURRENT_PATH, 'results',
'autoencoder.json'), orient='records', indent=4, force_ascii=False)
if __name__ == '__main__':
test()