Commit
·
7511825
1
Parent(s):
0bfa5cc
N-Grams Benchmark working
Browse files- __pycache__/autoencoder.cpython-311.pyc +0 -0
- __pycache__/embeddings.cpython-311.pyc +0 -0
- __pycache__/n_grams.cpython-311.pyc +0 -0
- autoencoder.py +5 -0
- embeddings.py +4 -0
- n_grams.py +111 -0
- out/debug.txt +0 -0
- out/n_grams.json +290 -0
- requirements.txt +9 -0
__pycache__/autoencoder.cpython-311.pyc
ADDED
|
Binary file (393 Bytes). View file
|
|
|
__pycache__/embeddings.cpython-311.pyc
ADDED
|
Binary file (391 Bytes). View file
|
|
|
__pycache__/n_grams.cpython-311.pyc
ADDED
|
Binary file (4.72 kB). View file
|
|
|
autoencoder.py
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
def test():
|
| 5 |
+
logging.info("Autoencoder Not Implemented")
|
embeddings.py
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
|
| 3 |
+
def test():
|
| 4 |
+
logging.info("Embeddings Not Implemented")
|
n_grams.py
ADDED
|
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
from datasets import load_dataset
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import os
|
| 6 |
+
import pickle
|
| 7 |
+
import logging
|
| 8 |
+
import time
|
| 9 |
+
import evaluate
|
| 10 |
+
import nltk
|
| 11 |
+
|
| 12 |
+
CURRENT_PATH = Path(__file__).parent
|
| 13 |
+
|
| 14 |
+
logging.basicConfig(level=logging.INFO,
|
| 15 |
+
format='%(asctime)s %(levelname)s %(message)s', datefmt='%H:%M:%S', filename=os.path.join(CURRENT_PATH, 'out', 'debug.txt'), filemode='a')
|
| 16 |
+
|
| 17 |
+
nltk.download("stopwords")
|
| 18 |
+
nltk.download("punkt")
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def tokenizer(text):
|
| 22 |
+
return nltk.tokenize.word_tokenize(text, language="portuguese")
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def load_pipelines():
|
| 26 |
+
in_path = os.path.join(CURRENT_PATH, 'models', 'n_grams')
|
| 27 |
+
|
| 28 |
+
pipeline = []
|
| 29 |
+
|
| 30 |
+
for domain in ['politics', 'news', 'law', 'social_media', 'literature', 'web']:
|
| 31 |
+
with open(os.path.join(in_path, f'{domain}.pickle'), 'rb') as f:
|
| 32 |
+
logging.info(f"Loading {domain} pipeline...")
|
| 33 |
+
pipeline.append({
|
| 34 |
+
'pipeline': pickle.load(f),
|
| 35 |
+
'train_domain': domain,
|
| 36 |
+
})
|
| 37 |
+
|
| 38 |
+
return pipeline
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def benchmark(pipeline, debug=False):
|
| 42 |
+
|
| 43 |
+
accuracy_evaluator = evaluate.load('accuracy')
|
| 44 |
+
f1_evaluator = evaluate.load('f1')
|
| 45 |
+
precision_evaluator = evaluate.load('precision')
|
| 46 |
+
recall_evaluator = evaluate.load('recall')
|
| 47 |
+
|
| 48 |
+
df_results = pd.DataFrame(
|
| 49 |
+
columns=['train_domain', 'test_domain', 'accuracy', 'f1', 'precision', 'recall'])
|
| 50 |
+
|
| 51 |
+
train_domain = pipeline['train_domain']
|
| 52 |
+
|
| 53 |
+
pipeline = pipeline['pipeline']
|
| 54 |
+
|
| 55 |
+
for test_domain in ['politics', 'news', 'law', 'social_media', 'literature', 'web']:
|
| 56 |
+
|
| 57 |
+
logging.info(f"Test Domain {test_domain}...")
|
| 58 |
+
|
| 59 |
+
dataset = load_dataset(
|
| 60 |
+
'arubenruben/Portuguese_Language_Identification', test_domain, split='test')
|
| 61 |
+
|
| 62 |
+
if debug:
|
| 63 |
+
logging.info("Debug mode: using only 100 samples")
|
| 64 |
+
dataset = dataset.shuffle().select(range(100))
|
| 65 |
+
else:
|
| 66 |
+
dataset = dataset.shuffle().select(range(min(50_000, len(dataset))))
|
| 67 |
+
|
| 68 |
+
y = pipeline.predict(dataset['text'])
|
| 69 |
+
|
| 70 |
+
accuracy = accuracy_evaluator.compute(
|
| 71 |
+
predictions=y, references=dataset['label'])['accuracy']
|
| 72 |
+
f1 = f1_evaluator.compute(
|
| 73 |
+
predictions=y, references=dataset['label'])['f1']
|
| 74 |
+
precision = precision_evaluator.compute(
|
| 75 |
+
predictions=y, references=dataset['label'])['precision']
|
| 76 |
+
recall = recall_evaluator.compute(
|
| 77 |
+
predictions=y, references=dataset['label'])['recall']
|
| 78 |
+
|
| 79 |
+
logging.info(
|
| 80 |
+
f"Accuracy: {accuracy} | F1: {f1} | Precision: {precision} | Recall: {recall}")
|
| 81 |
+
|
| 82 |
+
df_results = pd.concat([df_results, pd.DataFrame(
|
| 83 |
+
[[train_domain, test_domain, accuracy, f1, precision, recall]], columns=df_results.columns)], ignore_index=True)
|
| 84 |
+
|
| 85 |
+
return df_results
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
def test():
|
| 89 |
+
|
| 90 |
+
DEBUG = True
|
| 91 |
+
|
| 92 |
+
logging.info(f"Debug mode: {DEBUG}")
|
| 93 |
+
|
| 94 |
+
pipelines = load_pipelines()
|
| 95 |
+
df_results = pd.DataFrame(
|
| 96 |
+
columns=['train_domain', 'test_domain', 'accuracy', 'f1', 'precision', 'recall'])
|
| 97 |
+
|
| 98 |
+
for pipeline in pipelines:
|
| 99 |
+
logging.info(f"Train Domain {pipeline['train_domain']}...")
|
| 100 |
+
|
| 101 |
+
df_results = pd.concat(
|
| 102 |
+
[df_results, benchmark(pipeline, debug=True)], ignore_index=True)
|
| 103 |
+
|
| 104 |
+
logging.info("Saving results...")
|
| 105 |
+
|
| 106 |
+
df_results.to_json(os.path.join(CURRENT_PATH, 'out', 'n_grams.json'),
|
| 107 |
+
orient='records', indent=4, force_ascii=False)
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
if __name__ == "__main__":
|
| 111 |
+
test()
|
out/debug.txt
ADDED
|
File without changes
|
out/n_grams.json
ADDED
|
@@ -0,0 +1,290 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"train_domain":"politics",
|
| 4 |
+
"test_domain":"politics",
|
| 5 |
+
"accuracy":0.99,
|
| 6 |
+
"f1":0.9887640449,
|
| 7 |
+
"precision":0.9777777778,
|
| 8 |
+
"recall":1.0
|
| 9 |
+
},
|
| 10 |
+
{
|
| 11 |
+
"train_domain":"politics",
|
| 12 |
+
"test_domain":"news",
|
| 13 |
+
"accuracy":0.34,
|
| 14 |
+
"f1":0.3653846154,
|
| 15 |
+
"precision":0.2261904762,
|
| 16 |
+
"recall":0.95
|
| 17 |
+
},
|
| 18 |
+
{
|
| 19 |
+
"train_domain":"politics",
|
| 20 |
+
"test_domain":"law",
|
| 21 |
+
"accuracy":0.56,
|
| 22 |
+
"f1":0.6206896552,
|
| 23 |
+
"precision":0.5454545455,
|
| 24 |
+
"recall":0.72
|
| 25 |
+
},
|
| 26 |
+
{
|
| 27 |
+
"train_domain":"politics",
|
| 28 |
+
"test_domain":"social_media",
|
| 29 |
+
"accuracy":0.49,
|
| 30 |
+
"f1":0.6222222222,
|
| 31 |
+
"precision":0.4516129032,
|
| 32 |
+
"recall":1.0
|
| 33 |
+
},
|
| 34 |
+
{
|
| 35 |
+
"train_domain":"politics",
|
| 36 |
+
"test_domain":"literature",
|
| 37 |
+
"accuracy":0.19,
|
| 38 |
+
"f1":0.2568807339,
|
| 39 |
+
"precision":0.1473684211,
|
| 40 |
+
"recall":1.0
|
| 41 |
+
},
|
| 42 |
+
{
|
| 43 |
+
"train_domain":"politics",
|
| 44 |
+
"test_domain":"web",
|
| 45 |
+
"accuracy":0.65,
|
| 46 |
+
"f1":0.7619047619,
|
| 47 |
+
"precision":0.7088607595,
|
| 48 |
+
"recall":0.8235294118
|
| 49 |
+
},
|
| 50 |
+
{
|
| 51 |
+
"train_domain":"news",
|
| 52 |
+
"test_domain":"politics",
|
| 53 |
+
"accuracy":0.87,
|
| 54 |
+
"f1":0.8828828829,
|
| 55 |
+
"precision":0.7903225806,
|
| 56 |
+
"recall":1.0
|
| 57 |
+
},
|
| 58 |
+
{
|
| 59 |
+
"train_domain":"news",
|
| 60 |
+
"test_domain":"news",
|
| 61 |
+
"accuracy":0.97,
|
| 62 |
+
"f1":0.88,
|
| 63 |
+
"precision":0.7857142857,
|
| 64 |
+
"recall":1.0
|
| 65 |
+
},
|
| 66 |
+
{
|
| 67 |
+
"train_domain":"news",
|
| 68 |
+
"test_domain":"law",
|
| 69 |
+
"accuracy":0.33,
|
| 70 |
+
"f1":0.2298850575,
|
| 71 |
+
"precision":0.2272727273,
|
| 72 |
+
"recall":0.2325581395
|
| 73 |
+
},
|
| 74 |
+
{
|
| 75 |
+
"train_domain":"news",
|
| 76 |
+
"test_domain":"social_media",
|
| 77 |
+
"accuracy":0.62,
|
| 78 |
+
"f1":0.7121212121,
|
| 79 |
+
"precision":0.5949367089,
|
| 80 |
+
"recall":0.8867924528
|
| 81 |
+
},
|
| 82 |
+
{
|
| 83 |
+
"train_domain":"news",
|
| 84 |
+
"test_domain":"literature",
|
| 85 |
+
"accuracy":0.38,
|
| 86 |
+
"f1":0.2790697674,
|
| 87 |
+
"precision":0.1666666667,
|
| 88 |
+
"recall":0.8571428571
|
| 89 |
+
},
|
| 90 |
+
{
|
| 91 |
+
"train_domain":"news",
|
| 92 |
+
"test_domain":"web",
|
| 93 |
+
"accuracy":0.74,
|
| 94 |
+
"f1":0.835443038,
|
| 95 |
+
"precision":0.7333333333,
|
| 96 |
+
"recall":0.9705882353
|
| 97 |
+
},
|
| 98 |
+
{
|
| 99 |
+
"train_domain":"law",
|
| 100 |
+
"test_domain":"politics",
|
| 101 |
+
"accuracy":0.43,
|
| 102 |
+
"f1":0.0952380952,
|
| 103 |
+
"precision":0.2142857143,
|
| 104 |
+
"recall":0.0612244898
|
| 105 |
+
},
|
| 106 |
+
{
|
| 107 |
+
"train_domain":"law",
|
| 108 |
+
"test_domain":"news",
|
| 109 |
+
"accuracy":0.6,
|
| 110 |
+
"f1":0.2,
|
| 111 |
+
"precision":0.2631578947,
|
| 112 |
+
"recall":0.1612903226
|
| 113 |
+
},
|
| 114 |
+
{
|
| 115 |
+
"train_domain":"law",
|
| 116 |
+
"test_domain":"law",
|
| 117 |
+
"accuracy":0.96,
|
| 118 |
+
"f1":0.9607843137,
|
| 119 |
+
"precision":1.0,
|
| 120 |
+
"recall":0.9245283019
|
| 121 |
+
},
|
| 122 |
+
{
|
| 123 |
+
"train_domain":"law",
|
| 124 |
+
"test_domain":"social_media",
|
| 125 |
+
"accuracy":0.57,
|
| 126 |
+
"f1":0.3384615385,
|
| 127 |
+
"precision":0.6875,
|
| 128 |
+
"recall":0.2244897959
|
| 129 |
+
},
|
| 130 |
+
{
|
| 131 |
+
"train_domain":"law",
|
| 132 |
+
"test_domain":"literature",
|
| 133 |
+
"accuracy":0.79,
|
| 134 |
+
"f1":0.275862069,
|
| 135 |
+
"precision":0.3333333333,
|
| 136 |
+
"recall":0.2352941176
|
| 137 |
+
},
|
| 138 |
+
{
|
| 139 |
+
"train_domain":"law",
|
| 140 |
+
"test_domain":"web",
|
| 141 |
+
"accuracy":0.4,
|
| 142 |
+
"f1":0.4545454545,
|
| 143 |
+
"precision":0.8928571429,
|
| 144 |
+
"recall":0.3048780488
|
| 145 |
+
},
|
| 146 |
+
{
|
| 147 |
+
"train_domain":"social_media",
|
| 148 |
+
"test_domain":"politics",
|
| 149 |
+
"accuracy":0.86,
|
| 150 |
+
"f1":0.8157894737,
|
| 151 |
+
"precision":0.8857142857,
|
| 152 |
+
"recall":0.756097561
|
| 153 |
+
},
|
| 154 |
+
{
|
| 155 |
+
"train_domain":"social_media",
|
| 156 |
+
"test_domain":"news",
|
| 157 |
+
"accuracy":0.83,
|
| 158 |
+
"f1":0.3703703704,
|
| 159 |
+
"precision":0.5,
|
| 160 |
+
"recall":0.2941176471
|
| 161 |
+
},
|
| 162 |
+
{
|
| 163 |
+
"train_domain":"social_media",
|
| 164 |
+
"test_domain":"law",
|
| 165 |
+
"accuracy":0.69,
|
| 166 |
+
"f1":0.6265060241,
|
| 167 |
+
"precision":0.8387096774,
|
| 168 |
+
"recall":0.5
|
| 169 |
+
},
|
| 170 |
+
{
|
| 171 |
+
"train_domain":"social_media",
|
| 172 |
+
"test_domain":"social_media",
|
| 173 |
+
"accuracy":0.94,
|
| 174 |
+
"f1":0.9333333333,
|
| 175 |
+
"precision":0.9130434783,
|
| 176 |
+
"recall":0.9545454545
|
| 177 |
+
},
|
| 178 |
+
{
|
| 179 |
+
"train_domain":"social_media",
|
| 180 |
+
"test_domain":"literature",
|
| 181 |
+
"accuracy":0.7,
|
| 182 |
+
"f1":0.3181818182,
|
| 183 |
+
"precision":0.2333333333,
|
| 184 |
+
"recall":0.5
|
| 185 |
+
},
|
| 186 |
+
{
|
| 187 |
+
"train_domain":"social_media",
|
| 188 |
+
"test_domain":"web",
|
| 189 |
+
"accuracy":0.33,
|
| 190 |
+
"f1":0.2298850575,
|
| 191 |
+
"precision":0.9090909091,
|
| 192 |
+
"recall":0.1315789474
|
| 193 |
+
},
|
| 194 |
+
{
|
| 195 |
+
"train_domain":"literature",
|
| 196 |
+
"test_domain":"politics",
|
| 197 |
+
"accuracy":0.6,
|
| 198 |
+
"f1":0.0,
|
| 199 |
+
"precision":0.0,
|
| 200 |
+
"recall":0.0
|
| 201 |
+
},
|
| 202 |
+
{
|
| 203 |
+
"train_domain":"literature",
|
| 204 |
+
"test_domain":"news",
|
| 205 |
+
"accuracy":0.79,
|
| 206 |
+
"f1":0.16,
|
| 207 |
+
"precision":0.6666666667,
|
| 208 |
+
"recall":0.0909090909
|
| 209 |
+
},
|
| 210 |
+
{
|
| 211 |
+
"train_domain":"literature",
|
| 212 |
+
"test_domain":"law",
|
| 213 |
+
"accuracy":0.61,
|
| 214 |
+
"f1":0.2909090909,
|
| 215 |
+
"precision":1.0,
|
| 216 |
+
"recall":0.170212766
|
| 217 |
+
},
|
| 218 |
+
{
|
| 219 |
+
"train_domain":"literature",
|
| 220 |
+
"test_domain":"social_media",
|
| 221 |
+
"accuracy":0.44,
|
| 222 |
+
"f1":0.4166666667,
|
| 223 |
+
"precision":0.4347826087,
|
| 224 |
+
"recall":0.4
|
| 225 |
+
},
|
| 226 |
+
{
|
| 227 |
+
"train_domain":"literature",
|
| 228 |
+
"test_domain":"literature",
|
| 229 |
+
"accuracy":0.96,
|
| 230 |
+
"f1":0.8333333333,
|
| 231 |
+
"precision":0.7142857143,
|
| 232 |
+
"recall":1.0
|
| 233 |
+
},
|
| 234 |
+
{
|
| 235 |
+
"train_domain":"literature",
|
| 236 |
+
"test_domain":"web",
|
| 237 |
+
"accuracy":0.27,
|
| 238 |
+
"f1":0.0266666667,
|
| 239 |
+
"precision":0.25,
|
| 240 |
+
"recall":0.014084507
|
| 241 |
+
},
|
| 242 |
+
{
|
| 243 |
+
"train_domain":"web",
|
| 244 |
+
"test_domain":"politics",
|
| 245 |
+
"accuracy":0.6,
|
| 246 |
+
"f1":0.4594594595,
|
| 247 |
+
"precision":0.7083333333,
|
| 248 |
+
"recall":0.34
|
| 249 |
+
},
|
| 250 |
+
{
|
| 251 |
+
"train_domain":"web",
|
| 252 |
+
"test_domain":"news",
|
| 253 |
+
"accuracy":0.89,
|
| 254 |
+
"f1":0.6666666667,
|
| 255 |
+
"precision":0.9166666667,
|
| 256 |
+
"recall":0.5238095238
|
| 257 |
+
},
|
| 258 |
+
{
|
| 259 |
+
"train_domain":"web",
|
| 260 |
+
"test_domain":"law",
|
| 261 |
+
"accuracy":0.71,
|
| 262 |
+
"f1":0.6947368421,
|
| 263 |
+
"precision":0.8048780488,
|
| 264 |
+
"recall":0.6111111111
|
| 265 |
+
},
|
| 266 |
+
{
|
| 267 |
+
"train_domain":"web",
|
| 268 |
+
"test_domain":"social_media",
|
| 269 |
+
"accuracy":0.46,
|
| 270 |
+
"f1":0.2894736842,
|
| 271 |
+
"precision":0.6111111111,
|
| 272 |
+
"recall":0.1896551724
|
| 273 |
+
},
|
| 274 |
+
{
|
| 275 |
+
"train_domain":"web",
|
| 276 |
+
"test_domain":"literature",
|
| 277 |
+
"accuracy":0.89,
|
| 278 |
+
"f1":0.0,
|
| 279 |
+
"precision":0.0,
|
| 280 |
+
"recall":0.0
|
| 281 |
+
},
|
| 282 |
+
{
|
| 283 |
+
"train_domain":"web",
|
| 284 |
+
"test_domain":"web",
|
| 285 |
+
"accuracy":0.9,
|
| 286 |
+
"f1":0.9285714286,
|
| 287 |
+
"precision":0.9848484848,
|
| 288 |
+
"recall":0.8783783784
|
| 289 |
+
}
|
| 290 |
+
]
|
requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
evaluate
|
| 2 |
+
datasets
|
| 3 |
+
transformers
|
| 4 |
+
torch
|
| 5 |
+
sklearn
|
| 6 |
+
python-dotenv
|
| 7 |
+
pandas
|
| 8 |
+
nltk
|
| 9 |
+
numpy
|