Datasets:
				
			
			
	
			
			
	
		
		File size: 6,588 Bytes
			
			| 74c72c1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 | from fsi_reader import FsiDataReader
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.tri import Triangulation
from matplotlib.animation import FuncAnimation
from scipy.interpolate import griddata
def single_plot(data, mesh_points):
    data = np.squeeze(data)  # Shape becomes (1317,)
    print(data.shape)
    print(mesh_points.shape)
    x, y = mesh_points[:, 0], mesh_points[:, 1]
    # Create figure with subplots
    fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 6), 
                                gridspec_kw={'width_ratios': [1, 1.2]})
    # Approach 1: Triangulation-based contour plot
    tri = Triangulation(x, y)
    contour = ax1.tricontourf(tri, data, levels=40, cmap='viridis')
    fig.colorbar(contour, ax=ax1, label='Value', shrink=0.3)
    ax1.set_title('Contour Plot of Field Data')
    ax1.set_aspect('equal')
    # Approach 2: Scatter plot with interpolated background
    grid_x, grid_y = np.mgrid[x.min():x.max():100j, y.min():y.max():100j]
    grid_z = griddata((x, y), data, (grid_x, grid_y), method='cubic')
    im = ax2.imshow(grid_z.T, origin='lower', extent=[x.min(), x.max(), 
                    y.min(), y.max()], cmap='plasma')
    ax2.scatter(x, y, c=data, edgecolor='k', lw=0.3, cmap='plasma', s=15)
    fig.colorbar(im, ax=ax2, label='Interpolated Value', shrink=0.3)
    ax2.set_title('Interpolated Surface with Sample Points')
    # Common formatting
    for ax in (ax1, ax2):
        ax.set_xlabel('X Coordinate')
        ax.set_ylabel('Y Coordinate')
        ax.grid(True, alpha=0.3)
        
    plt.tight_layout()
    plt.show()
    
def create_field_animation(data_frames, mesh_frames, interval=100, save_path=None):
    """
    Create an animation of time-varying 2D field data on a mesh.
    
    Parameters:
    -----------
    data_frames : list of arrays
        List of data arrays for each time frame (each with shape [1, 1317, 1] or similar)
    mesh_frames : list of arrays or single array
        Either a list of mesh coordinates for each frame or a single fixed mesh
    interval : int
        Delay between animation frames in milliseconds
    save_path : str, optional
        Path to save the GIF animation
    """
    
    plt.rcParams.update({
        'font.size': 20,            # Base font size
        'axes.titlesize': 20,       # Title font size
        'axes.labelsize': 20,       # Axis label size
        'xtick.labelsize': 20,      # X-tick label size
        'ytick.labelsize': 18,      # Y-tick label size
        'figure.titlesize': 22      # Super title size (if used)
    })
    
    # Determine if mesh is fixed or time-varying
    mesh_varying = isinstance(mesh_frames, list)
    
    # Get initial mesh and data
    mesh_initial = mesh_frames[0] if mesh_varying else mesh_frames
    data_initial = np.squeeze(data_frames[0])
    
    # Extract coordinates
    x, y = mesh_initial[:, 0], mesh_initial[:, 1]
    
    # Create figure
    fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(50, 10), 
                                   gridspec_kw={'width_ratios': [1.5, 1.5]})
    
    # Calculate global min/max for consistent colorbars
    all_data = np.concatenate([np.squeeze(frame) for frame in data_frames])
    vmin, vmax = all_data.min(), all_data.max()
    
    # Create initial triangulation
    tri_initial = Triangulation(x, y)
    
    # Set up first subplot - contour
    contour = ax1.tricontourf(tri_initial, data_initial, levels=40, cmap='viridis', 
                             vmin=vmin, vmax=vmax)
    # Add contour lines for better visibility
    contour_lines = ax1.tricontour(tri_initial, data_initial, levels=15, 
                                  colors='black', linewidths=0.5, alpha=0.7)
    
    fig.colorbar(contour, ax=ax1, label='Value', shrink=0.3)
    ax1.set_title('Contour Plot of Field Data')
    ax1.set_aspect('equal')
    
    # Set up second subplot - interpolated surface with scatter points
    grid_x, grid_y = np.mgrid[x.min():x.max():100j, y.min():y.max():100j]
    grid_z = griddata((x, y), data_initial, (grid_x, grid_y), method='cubic')
    
    im = ax2.imshow(grid_z.T, origin='lower', extent=[x.min(), x.max(), 
                                                    y.min(), y.max()], 
                   cmap='plasma', vmin=vmin, vmax=vmax)
    scat = ax2.scatter(x, y, c=data_initial, edgecolor='k', lw=0.3, 
                      cmap='plasma', s=15, vmin=vmin, vmax=vmax)
    
    fig.colorbar(im, ax=ax2, label='Interpolated Value', shrink=0.3)
    ax2.set_title('Interpolated Surface with Sample Points')
    
    # Common formatting
    for ax in (ax1, ax2):
        ax.set_xlabel('X Coordinate')
        ax.set_ylabel('Y Coordinate')
        ax.grid(True, alpha=0.3)
    
    # Add frame counter
    time_text = ax1.text(0.02, 0.98, '', transform=ax1.transAxes, 
                        fontsize=10, va='top', ha='left')
    
    plt.tight_layout()
    
    # Update function for animation
    def update(frame):
        # Get current data
        data = np.squeeze(data_frames[frame])
        
        # Get current mesh if varying
        if mesh_varying:
            mesh = mesh_frames[frame]
            x, y = mesh[:, 0], mesh[:, 1]
            tri = Triangulation(x, y)
        else:
            mesh = mesh_frames
            x, y = mesh[:, 0], mesh[:, 1]
            tri = tri_initial
        
        # Update contour plot
        for c in ax1.collections:
            c.remove()
        new_contour = ax1.tricontourf(tri, data, levels=40, cmap='viridis', 
                                     vmin=vmin, vmax=vmax)
        new_lines = ax1.tricontour(tri, data, levels=15, colors='black', 
                                  linewidths=0.5, alpha=0.7)
        
        # Update interpolated surface
        grid_z = griddata((x, y), data, (grid_x, grid_y), method='cubic')
        im.set_array(grid_z.T)
        
        # Update scatter points
        scat.set_offsets(mesh)
        scat.set_array(data)
        
        # Update frame counter
        time_text.set_text(f'Frame: {frame+1}/{len(data_frames)}')
        
        return [new_contour, new_lines, im, scat, time_text]
    
    # Create animation
    anim = FuncAnimation(fig, update, frames=len(data_frames), 
                         interval=interval, blit=False)
    
    # Save if path provided
    if save_path:
        print(f"Saving animation to {save_path}...")
        if save_path.endswith('.gif'):
            anim.save(save_path, writer='pillow', dpi=150)
        else:
            anim.save(save_path, writer='ffmpeg', dpi=150)
    
    return anim | 
