Datasets:
final push
Browse files- README.md +42 -24
- data_vis.ipynb +0 -0
- fsi_reader.py +3 -3
README.md
CHANGED
@@ -8,53 +8,71 @@ tags:
|
|
8 |
- Fluid-Dynamics
|
9 |
---
|
10 |
|
11 |
-
## Dataset Description: Fluid-Solid Interaction Simulations
|
12 |
|
13 |
-
|
|
|
|
|
14 |
|
15 |
### **Velocity**
|
16 |
-
|
17 |
\mathbf{v}_t = \begin{bmatrix} v_{x,t} \\ v_{y,t} \end{bmatrix}
|
18 |
-
|
19 |
-
where
|
20 |
|
21 |
### **Pressure**
|
22 |
-
|
23 |
P_t
|
24 |
-
|
25 |
-
which represents the pressure field at time
|
26 |
|
27 |
-
### **Displacement**
|
28 |
-
|
29 |
\mathbf{d}_t = \begin{bmatrix} d_{x,t} \\ d_{y,t} \end{bmatrix}
|
30 |
-
|
31 |
-
where
|
32 |
|
33 |
---
|
34 |
|
35 |
## **Mesh Representation**
|
36 |
The initial mesh is given by:
|
37 |
-
|
38 |
\mathbf{M}_0 = \begin{bmatrix} x_1 & y_1 \\ x_2 & y_2 \\ \vdots & \vdots \\ x_N & y_N \end{bmatrix} \in \mathbb{R}^{N \times 2}
|
39 |
-
|
40 |
-
where each row
|
41 |
|
42 |
-
Since the mesh is time-dependent, the mesh at time
|
43 |
|
44 |
-
|
45 |
\mathbf{M}_t = \mathbf{M}_0 + \mathbf{d}_t
|
46 |
-
|
47 |
|
48 |
where
|
49 |
-
|
50 |
\mathbf{d}_t = \begin{bmatrix} d_{x,t,1} & d_{y,t,1} \\ d_{x,t,2} & d_{y,t,2} \\ \vdots & \vdots \\ d_{x,t,N} & d_{y,t,N} \end{bmatrix} \in \mathbb{R}^{N \times 2}
|
51 |
-
|
52 |
-
is the displacement field at time
|
53 |
|
54 |
-
Thus, the updated coordinates of the mesh points at time
|
55 |
|
56 |
-
|
57 |
(x_i^t, y_i^t) = (x_i^0 + d_{x,t,i}, y_i^0 + d_{y,t,i}) \quad \forall i = 1, \dots, N
|
58 |
-
|
59 |
|
60 |
This formulation describes how the mesh deforms over time due to displacement.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
- Fluid-Dynamics
|
9 |
---
|
10 |
|
11 |
+
## Dataset Description: Fluid-Solid Interaction Simulations (fsi-data)
|
12 |
|
13 |
+
Simulation of fluide dynamics (Navier-Stocks) and Elastic wave equation. Here wwe simulate the flow of water around an elastic rod.
|
14 |
+
|
15 |
+
For each time step $ t $, the simulation records the following variables:
|
16 |
|
17 |
### **Velocity**
|
18 |
+
$
|
19 |
\mathbf{v}_t = \begin{bmatrix} v_{x,t} \\ v_{y,t} \end{bmatrix}
|
20 |
+
$
|
21 |
+
where $ v_{x,t} $ and $ v_{y,t} $ are the velocity components in the $ x $ and $ y $ directions, respectively.
|
22 |
|
23 |
### **Pressure**
|
24 |
+
$
|
25 |
P_t
|
26 |
+
$
|
27 |
+
which represents the pressure field at time $ t $.
|
28 |
|
29 |
+
### **Displacement (Elastic Wave Part)**
|
30 |
+
$
|
31 |
\mathbf{d}_t = \begin{bmatrix} d_{x,t} \\ d_{y,t} \end{bmatrix}
|
32 |
+
$
|
33 |
+
where $ d_{x,t} $ and $ d_{y,t} $ denote the displacement in the $ x $ and $ y $ directions, respectively. This displacement represents the displacemen of the elastic object as well as the change on the mesh location.
|
34 |
|
35 |
---
|
36 |
|
37 |
## **Mesh Representation**
|
38 |
The initial mesh is given by:
|
39 |
+
$
|
40 |
\mathbf{M}_0 = \begin{bmatrix} x_1 & y_1 \\ x_2 & y_2 \\ \vdots & \vdots \\ x_N & y_N \end{bmatrix} \in \mathbb{R}^{N \times 2}
|
41 |
+
$
|
42 |
+
where each row $ (x_i, y_i) $ represents a mesh point in 2D space.
|
43 |
|
44 |
+
Since the mesh is time-dependent, the mesh at time $ t $ is updated based on displacement:
|
45 |
|
46 |
+
$
|
47 |
\mathbf{M}_t = \mathbf{M}_0 + \mathbf{d}_t
|
48 |
+
$
|
49 |
|
50 |
where
|
51 |
+
$
|
52 |
\mathbf{d}_t = \begin{bmatrix} d_{x,t,1} & d_{y,t,1} \\ d_{x,t,2} & d_{y,t,2} \\ \vdots & \vdots \\ d_{x,t,N} & d_{y,t,N} \end{bmatrix} \in \mathbb{R}^{N \times 2}
|
53 |
+
$
|
54 |
+
is the displacement field at time $ t $.
|
55 |
|
56 |
+
Thus, the updated coordinates of the mesh points at time $ t $ are:
|
57 |
|
58 |
+
$
|
59 |
(x_i^t, y_i^t) = (x_i^0 + d_{x,t,i}, y_i^0 + d_{y,t,i}) \quad \forall i = 1, \dots, N
|
60 |
+
$
|
61 |
|
62 |
This formulation describes how the mesh deforms over time due to displacement.
|
63 |
+
|
64 |
+
## Dataset Description: Computational Fluid Dynamics (cfd-data)
|
65 |
+
|
66 |
+
This dataset has the same structure as above but here we simulate the movemnet of the water around an rigid object. So we are only simulating Navier-stocks equation.
|
67 |
+
|
68 |
+
The displacement field will be all zero as there is no movement of the rigid body.
|
69 |
+
|
70 |
+
|
71 |
+
## Loading Dataset
|
72 |
+
|
73 |
+
```python
|
74 |
+
data = FsiDataReader('./fsi-data/', mu=['1.0'], in_lets_x1=['0.0'])
|
75 |
+
mesh = data.input_mesh
|
76 |
+
print(mesh.shape)
|
77 |
+
data_loader = data.get_loader(batch_size=1, shuffle=False)
|
78 |
+
```
|
data_vis.ipynb
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
fsi_reader.py
CHANGED
@@ -38,7 +38,7 @@ class FsiDataReader():
|
|
38 |
self.location = location
|
39 |
self._x1 = ['-4.0', '-2.0', '0.0', '2.0', '4.0', '6.0']
|
40 |
self._x2 = ['-4.0', '-2.0', '0', '2.0', '4.0', '6.0']
|
41 |
-
self._mu = ['0.
|
42 |
# keeping vx, xy, P, dx,dy
|
43 |
self.varable_idices = [0, 1, 3, 4, 5]
|
44 |
|
@@ -132,7 +132,7 @@ class FsiDataReader():
|
|
132 |
raise ValueError(
|
133 |
f"Value of is must be one of {self._ivals3} and {self._ivals12} ")
|
134 |
path = os.path.join(
|
135 |
-
self.
|
136 |
'mu='+str(mu),
|
137 |
'x1='+str(x1),
|
138 |
'x2='+str(x2),
|
@@ -162,7 +162,7 @@ class FsiDataReader():
|
|
162 |
for x1 in self._x1:
|
163 |
for x2 in self._x2:
|
164 |
try:
|
165 |
-
if mu == 0.5:
|
166 |
mu_data = self.get_data_txt(mu, x1, x2)
|
167 |
else:
|
168 |
mu_data = self.get_data(mu, x1, x2)
|
|
|
38 |
self.location = location
|
39 |
self._x1 = ['-4.0', '-2.0', '0.0', '2.0', '4.0', '6.0']
|
40 |
self._x2 = ['-4.0', '-2.0', '0', '2.0', '4.0', '6.0']
|
41 |
+
self._mu = ['0.5', '5', '1.0', '10.0']
|
42 |
# keeping vx, xy, P, dx,dy
|
43 |
self.varable_idices = [0, 1, 3, 4, 5]
|
44 |
|
|
|
132 |
raise ValueError(
|
133 |
f"Value of is must be one of {self._ivals3} and {self._ivals12} ")
|
134 |
path = os.path.join(
|
135 |
+
self.location,
|
136 |
'mu='+str(mu),
|
137 |
'x1='+str(x1),
|
138 |
'x2='+str(x2),
|
|
|
162 |
for x1 in self._x1:
|
163 |
for x2 in self._x2:
|
164 |
try:
|
165 |
+
if mu == '0.5':
|
166 |
mu_data = self.get_data_txt(mu, x1, x2)
|
167 |
else:
|
168 |
mu_data = self.get_data(mu, x1, x2)
|