Datasets:
code for dataloading and visualization
Browse files- .gitignore +65 -0
- data_vis.ipynb +486 -0
- fsi_animation.gif +3 -0
- fsi_reader.py +138 -0
.gitignore
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Virtual environment
|
10 |
+
venv/
|
11 |
+
env/
|
12 |
+
.venv/
|
13 |
+
.venv-*/
|
14 |
+
|
15 |
+
# Distribution / packaging
|
16 |
+
build/
|
17 |
+
dist/
|
18 |
+
*.egg-info/
|
19 |
+
*.egg
|
20 |
+
pip-log.txt
|
21 |
+
pip-delete-this-directory.txt
|
22 |
+
|
23 |
+
# Jupyter Notebook checkpoints
|
24 |
+
.ipynb_checkpoints/
|
25 |
+
|
26 |
+
# PyCharm project files
|
27 |
+
.idea/
|
28 |
+
|
29 |
+
# VS Code settings
|
30 |
+
.vscode/
|
31 |
+
*.code-workspace
|
32 |
+
|
33 |
+
# Test coverage and pytest cache
|
34 |
+
.coverage
|
35 |
+
htmlcov/
|
36 |
+
.tox/
|
37 |
+
.nox/
|
38 |
+
.pytest_cache/
|
39 |
+
.cache/
|
40 |
+
nosetests.xml
|
41 |
+
coverage.xml
|
42 |
+
*.cover
|
43 |
+
.hypothesis/
|
44 |
+
|
45 |
+
# Mypy, Pyre type checker
|
46 |
+
.mypy_cache/
|
47 |
+
.pyre/
|
48 |
+
|
49 |
+
# Linting tools
|
50 |
+
.pylint.d/
|
51 |
+
ruff_cache/
|
52 |
+
|
53 |
+
# Logs and debug files
|
54 |
+
logs/
|
55 |
+
*.log
|
56 |
+
debug.log
|
57 |
+
|
58 |
+
# MacOS system files
|
59 |
+
.DS_Store
|
60 |
+
|
61 |
+
# Windows system files
|
62 |
+
Thumbs.db
|
63 |
+
|
64 |
+
# Jupyter notebook metadata
|
65 |
+
*.ipynb_metadata.json
|
data_vis.ipynb
ADDED
@@ -0,0 +1,486 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"from fsi_reader import FsiDataReader\n",
|
10 |
+
"import matplotlib.pyplot as plt\n",
|
11 |
+
"import numpy as np\n",
|
12 |
+
"from matplotlib.tri import Triangulation\n",
|
13 |
+
"from matplotlib.animation import FuncAnimation\n",
|
14 |
+
"from scipy.interpolate import griddata"
|
15 |
+
]
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"cell_type": "code",
|
19 |
+
"execution_count": null,
|
20 |
+
"metadata": {},
|
21 |
+
"outputs": [],
|
22 |
+
"source": [
|
23 |
+
"data = FsiDataReader('./fsi-data/', mu=['1.0'], in_lets_x1=['0.0'])\n",
|
24 |
+
"mesh = data.input_mesh\n",
|
25 |
+
"print(mesh.shape)"
|
26 |
+
]
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"cell_type": "code",
|
30 |
+
"execution_count": null,
|
31 |
+
"metadata": {},
|
32 |
+
"outputs": [],
|
33 |
+
"source": [
|
34 |
+
"data_loader = data.get_loader(batch_size=1, shuffle=False)"
|
35 |
+
]
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"cell_type": "code",
|
39 |
+
"execution_count": null,
|
40 |
+
"metadata": {},
|
41 |
+
"outputs": [],
|
42 |
+
"source": [
|
43 |
+
"def single_plot(data, mesh_points):\n",
|
44 |
+
" data = np.squeeze(data) # Shape becomes (1317,)\n",
|
45 |
+
" print(data.shape)\n",
|
46 |
+
" print(mesh_points.shape)\n",
|
47 |
+
" x, y = mesh_points[:, 0], mesh_points[:, 1]\n",
|
48 |
+
"\n",
|
49 |
+
" # Create figure with subplots\n",
|
50 |
+
" fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 6), \n",
|
51 |
+
" gridspec_kw={'width_ratios': [1, 1.2]})\n",
|
52 |
+
"\n",
|
53 |
+
" # Approach 1: Triangulation-based contour plot\n",
|
54 |
+
" tri = Triangulation(x, y)\n",
|
55 |
+
" contour = ax1.tricontourf(tri, data, levels=40, cmap='viridis')\n",
|
56 |
+
" fig.colorbar(contour, ax=ax1, label='Value', shrink=0.3)\n",
|
57 |
+
" ax1.set_title('Contour Plot of Field Data')\n",
|
58 |
+
" ax1.set_aspect('equal')\n",
|
59 |
+
"\n",
|
60 |
+
" # Approach 2: Scatter plot with interpolated background\n",
|
61 |
+
" grid_x, grid_y = np.mgrid[x.min():x.max():100j, y.min():y.max():100j]\n",
|
62 |
+
" grid_z = griddata((x, y), data, (grid_x, grid_y), method='cubic')\n",
|
63 |
+
"\n",
|
64 |
+
" im = ax2.imshow(grid_z.T, origin='lower', extent=[x.min(), x.max(), \n",
|
65 |
+
" y.min(), y.max()], cmap='plasma')\n",
|
66 |
+
" ax2.scatter(x, y, c=data, edgecolor='k', lw=0.3, cmap='plasma', s=15)\n",
|
67 |
+
" fig.colorbar(im, ax=ax2, label='Interpolated Value', shrink=0.3)\n",
|
68 |
+
" ax2.set_title('Interpolated Surface with Sample Points')\n",
|
69 |
+
"\n",
|
70 |
+
" # Common formatting\n",
|
71 |
+
" for ax in (ax1, ax2):\n",
|
72 |
+
" ax.set_xlabel('X Coordinate')\n",
|
73 |
+
" ax.set_ylabel('Y Coordinate')\n",
|
74 |
+
" ax.grid(True, alpha=0.3)\n",
|
75 |
+
" \n",
|
76 |
+
" plt.tight_layout()\n",
|
77 |
+
" plt.show()"
|
78 |
+
]
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"cell_type": "code",
|
82 |
+
"execution_count": 17,
|
83 |
+
"metadata": {},
|
84 |
+
"outputs": [],
|
85 |
+
"source": [
|
86 |
+
"def create_field_animation(data_frames, mesh_frames, interval=100, save_path=None):\n",
|
87 |
+
" \"\"\"\n",
|
88 |
+
" Create an animation of time-varying 2D field data on a mesh.\n",
|
89 |
+
" \n",
|
90 |
+
" Parameters:\n",
|
91 |
+
" -----------\n",
|
92 |
+
" data_frames : list of arrays\n",
|
93 |
+
" List of data arrays for each time frame (each with shape [1, 1317, 1] or similar)\n",
|
94 |
+
" mesh_frames : list of arrays or single array\n",
|
95 |
+
" Either a list of mesh coordinates for each frame or a single fixed mesh\n",
|
96 |
+
" interval : int\n",
|
97 |
+
" Delay between animation frames in milliseconds\n",
|
98 |
+
" save_path : str, optional\n",
|
99 |
+
" Path to save the GIF animation\n",
|
100 |
+
" \"\"\"\n",
|
101 |
+
" # Determine if mesh is fixed or time-varying\n",
|
102 |
+
" mesh_varying = isinstance(mesh_frames, list)\n",
|
103 |
+
" \n",
|
104 |
+
" # Get initial mesh and data\n",
|
105 |
+
" mesh_initial = mesh_frames[0] if mesh_varying else mesh_frames\n",
|
106 |
+
" data_initial = np.squeeze(data_frames[0])\n",
|
107 |
+
" \n",
|
108 |
+
" # Extract coordinates\n",
|
109 |
+
" x, y = mesh_initial[:, 0], mesh_initial[:, 1]\n",
|
110 |
+
" \n",
|
111 |
+
" # Create figure\n",
|
112 |
+
" fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(50, 10), \n",
|
113 |
+
" gridspec_kw={'width_ratios': [1, 1.2]})\n",
|
114 |
+
" \n",
|
115 |
+
" # Calculate global min/max for consistent colorbars\n",
|
116 |
+
" all_data = np.concatenate([np.squeeze(frame) for frame in data_frames])\n",
|
117 |
+
" vmin, vmax = all_data.min(), all_data.max()\n",
|
118 |
+
" \n",
|
119 |
+
" # Create initial triangulation\n",
|
120 |
+
" tri_initial = Triangulation(x, y)\n",
|
121 |
+
" \n",
|
122 |
+
" # Set up first subplot - contour\n",
|
123 |
+
" contour = ax1.tricontourf(tri_initial, data_initial, levels=40, cmap='viridis', \n",
|
124 |
+
" vmin=vmin, vmax=vmax)\n",
|
125 |
+
" # Add contour lines for better visibility\n",
|
126 |
+
" contour_lines = ax1.tricontour(tri_initial, data_initial, levels=15, \n",
|
127 |
+
" colors='black', linewidths=0.5, alpha=0.7)\n",
|
128 |
+
" \n",
|
129 |
+
" fig.colorbar(contour, ax=ax1, label='Value', shrink=0.3)\n",
|
130 |
+
" ax1.set_title('Contour Plot of Field Data')\n",
|
131 |
+
" ax1.set_aspect('equal')\n",
|
132 |
+
" \n",
|
133 |
+
" # Set up second subplot - interpolated surface with scatter points\n",
|
134 |
+
" grid_x, grid_y = np.mgrid[x.min():x.max():100j, y.min():y.max():100j]\n",
|
135 |
+
" grid_z = griddata((x, y), data_initial, (grid_x, grid_y), method='cubic')\n",
|
136 |
+
" \n",
|
137 |
+
" im = ax2.imshow(grid_z.T, origin='lower', extent=[x.min(), x.max(), \n",
|
138 |
+
" y.min(), y.max()], \n",
|
139 |
+
" cmap='plasma', vmin=vmin, vmax=vmax)\n",
|
140 |
+
" scat = ax2.scatter(x, y, c=data_initial, edgecolor='k', lw=0.3, \n",
|
141 |
+
" cmap='plasma', s=15, vmin=vmin, vmax=vmax)\n",
|
142 |
+
" \n",
|
143 |
+
" fig.colorbar(im, ax=ax2, label='Interpolated Value', shrink=0.3)\n",
|
144 |
+
" ax2.set_title('Interpolated Surface with Sample Points')\n",
|
145 |
+
" \n",
|
146 |
+
" # Common formatting\n",
|
147 |
+
" for ax in (ax1, ax2):\n",
|
148 |
+
" ax.set_xlabel('X Coordinate')\n",
|
149 |
+
" ax.set_ylabel('Y Coordinate')\n",
|
150 |
+
" ax.grid(True, alpha=0.3)\n",
|
151 |
+
" \n",
|
152 |
+
" # Add frame counter\n",
|
153 |
+
" time_text = ax1.text(0.02, 0.98, '', transform=ax1.transAxes, \n",
|
154 |
+
" fontsize=10, va='top', ha='left')\n",
|
155 |
+
" \n",
|
156 |
+
" plt.tight_layout()\n",
|
157 |
+
" \n",
|
158 |
+
" # Update function for animation\n",
|
159 |
+
" def update(frame):\n",
|
160 |
+
" # Get current data\n",
|
161 |
+
" data = np.squeeze(data_frames[frame])\n",
|
162 |
+
" \n",
|
163 |
+
" # Get current mesh if varying\n",
|
164 |
+
" if mesh_varying:\n",
|
165 |
+
" mesh = mesh_frames[frame]\n",
|
166 |
+
" x, y = mesh[:, 0], mesh[:, 1]\n",
|
167 |
+
" tri = Triangulation(x, y)\n",
|
168 |
+
" else:\n",
|
169 |
+
" mesh = mesh_frames\n",
|
170 |
+
" x, y = mesh[:, 0], mesh[:, 1]\n",
|
171 |
+
" tri = tri_initial\n",
|
172 |
+
" \n",
|
173 |
+
" # Update contour plot\n",
|
174 |
+
" for c in ax1.collections:\n",
|
175 |
+
" c.remove()\n",
|
176 |
+
" new_contour = ax1.tricontourf(tri, data, levels=40, cmap='viridis', \n",
|
177 |
+
" vmin=vmin, vmax=vmax)\n",
|
178 |
+
" new_lines = ax1.tricontour(tri, data, levels=15, colors='black', \n",
|
179 |
+
" linewidths=0.5, alpha=0.7)\n",
|
180 |
+
" \n",
|
181 |
+
" # Update interpolated surface\n",
|
182 |
+
" grid_z = griddata((x, y), data, (grid_x, grid_y), method='cubic')\n",
|
183 |
+
" im.set_array(grid_z.T)\n",
|
184 |
+
" \n",
|
185 |
+
" # Update scatter points\n",
|
186 |
+
" scat.set_offsets(mesh)\n",
|
187 |
+
" scat.set_array(data)\n",
|
188 |
+
" \n",
|
189 |
+
" # Update frame counter\n",
|
190 |
+
" time_text.set_text(f'Frame: {frame+1}/{len(data_frames)}')\n",
|
191 |
+
" \n",
|
192 |
+
" return [new_contour, new_lines, im, scat, time_text]\n",
|
193 |
+
" \n",
|
194 |
+
" # Create animation\n",
|
195 |
+
" anim = FuncAnimation(fig, update, frames=len(data_frames), \n",
|
196 |
+
" interval=interval, blit=False)\n",
|
197 |
+
" \n",
|
198 |
+
" # Save if path provided\n",
|
199 |
+
" if save_path:\n",
|
200 |
+
" print(f\"Saving animation to {save_path}...\")\n",
|
201 |
+
" if save_path.endswith('.gif'):\n",
|
202 |
+
" anim.save(save_path, writer='pillow', dpi=150)\n",
|
203 |
+
" else:\n",
|
204 |
+
" anim.save(save_path, writer='ffmpeg', dpi=150)\n",
|
205 |
+
" \n",
|
206 |
+
" return anim"
|
207 |
+
]
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"cell_type": "code",
|
211 |
+
"execution_count": 18,
|
212 |
+
"metadata": {},
|
213 |
+
"outputs": [
|
214 |
+
{
|
215 |
+
"name": "stdout",
|
216 |
+
"output_type": "stream",
|
217 |
+
"text": [
|
218 |
+
"torch.Size([1, 1317, 5])\n",
|
219 |
+
"torch.Size([1, 1317, 5])\n",
|
220 |
+
"torch.Size([1, 1317, 5])\n",
|
221 |
+
"torch.Size([1, 1317, 5])\n",
|
222 |
+
"torch.Size([1, 1317, 5])\n",
|
223 |
+
"torch.Size([1, 1317, 5])\n",
|
224 |
+
"torch.Size([1, 1317, 5])\n",
|
225 |
+
"torch.Size([1, 1317, 5])\n",
|
226 |
+
"torch.Size([1, 1317, 5])\n",
|
227 |
+
"torch.Size([1, 1317, 5])\n",
|
228 |
+
"torch.Size([1, 1317, 5])\n",
|
229 |
+
"torch.Size([1, 1317, 5])\n",
|
230 |
+
"torch.Size([1, 1317, 5])\n",
|
231 |
+
"torch.Size([1, 1317, 5])\n",
|
232 |
+
"torch.Size([1, 1317, 5])\n",
|
233 |
+
"torch.Size([1, 1317, 5])\n",
|
234 |
+
"torch.Size([1, 1317, 5])\n",
|
235 |
+
"torch.Size([1, 1317, 5])\n",
|
236 |
+
"torch.Size([1, 1317, 5])\n",
|
237 |
+
"torch.Size([1, 1317, 5])\n",
|
238 |
+
"torch.Size([1, 1317, 5])\n",
|
239 |
+
"torch.Size([1, 1317, 5])\n",
|
240 |
+
"torch.Size([1, 1317, 5])\n",
|
241 |
+
"torch.Size([1, 1317, 5])\n",
|
242 |
+
"torch.Size([1, 1317, 5])\n",
|
243 |
+
"torch.Size([1, 1317, 5])\n",
|
244 |
+
"torch.Size([1, 1317, 5])\n",
|
245 |
+
"torch.Size([1, 1317, 5])\n",
|
246 |
+
"torch.Size([1, 1317, 5])\n",
|
247 |
+
"torch.Size([1, 1317, 5])\n",
|
248 |
+
"torch.Size([1, 1317, 5])\n",
|
249 |
+
"torch.Size([1, 1317, 5])\n",
|
250 |
+
"torch.Size([1, 1317, 5])\n",
|
251 |
+
"torch.Size([1, 1317, 5])\n",
|
252 |
+
"torch.Size([1, 1317, 5])\n",
|
253 |
+
"torch.Size([1, 1317, 5])\n",
|
254 |
+
"torch.Size([1, 1317, 5])\n",
|
255 |
+
"torch.Size([1, 1317, 5])\n",
|
256 |
+
"torch.Size([1, 1317, 5])\n",
|
257 |
+
"torch.Size([1, 1317, 5])\n",
|
258 |
+
"torch.Size([1, 1317, 5])\n",
|
259 |
+
"torch.Size([1, 1317, 5])\n",
|
260 |
+
"torch.Size([1, 1317, 5])\n",
|
261 |
+
"torch.Size([1, 1317, 5])\n",
|
262 |
+
"torch.Size([1, 1317, 5])\n",
|
263 |
+
"torch.Size([1, 1317, 5])\n",
|
264 |
+
"torch.Size([1, 1317, 5])\n",
|
265 |
+
"torch.Size([1, 1317, 5])\n",
|
266 |
+
"torch.Size([1, 1317, 5])\n",
|
267 |
+
"torch.Size([1, 1317, 5])\n",
|
268 |
+
"torch.Size([1, 1317, 5])\n",
|
269 |
+
"torch.Size([1, 1317, 5])\n",
|
270 |
+
"torch.Size([1, 1317, 5])\n",
|
271 |
+
"torch.Size([1, 1317, 5])\n",
|
272 |
+
"torch.Size([1, 1317, 5])\n",
|
273 |
+
"torch.Size([1, 1317, 5])\n",
|
274 |
+
"torch.Size([1, 1317, 5])\n",
|
275 |
+
"torch.Size([1, 1317, 5])\n",
|
276 |
+
"torch.Size([1, 1317, 5])\n",
|
277 |
+
"torch.Size([1, 1317, 5])\n",
|
278 |
+
"torch.Size([1, 1317, 5])\n",
|
279 |
+
"torch.Size([1, 1317, 5])\n",
|
280 |
+
"torch.Size([1, 1317, 5])\n",
|
281 |
+
"torch.Size([1, 1317, 5])\n",
|
282 |
+
"torch.Size([1, 1317, 5])\n",
|
283 |
+
"torch.Size([1, 1317, 5])\n",
|
284 |
+
"torch.Size([1, 1317, 5])\n",
|
285 |
+
"torch.Size([1, 1317, 5])\n",
|
286 |
+
"torch.Size([1, 1317, 5])\n",
|
287 |
+
"torch.Size([1, 1317, 5])\n",
|
288 |
+
"torch.Size([1, 1317, 5])\n",
|
289 |
+
"torch.Size([1, 1317, 5])\n",
|
290 |
+
"torch.Size([1, 1317, 5])\n",
|
291 |
+
"torch.Size([1, 1317, 5])\n",
|
292 |
+
"torch.Size([1, 1317, 5])\n",
|
293 |
+
"torch.Size([1, 1317, 5])\n",
|
294 |
+
"torch.Size([1, 1317, 5])\n",
|
295 |
+
"torch.Size([1, 1317, 5])\n",
|
296 |
+
"torch.Size([1, 1317, 5])\n",
|
297 |
+
"torch.Size([1, 1317, 5])\n",
|
298 |
+
"torch.Size([1, 1317, 5])\n",
|
299 |
+
"torch.Size([1, 1317, 5])\n",
|
300 |
+
"torch.Size([1, 1317, 5])\n",
|
301 |
+
"torch.Size([1, 1317, 5])\n",
|
302 |
+
"torch.Size([1, 1317, 5])\n",
|
303 |
+
"torch.Size([1, 1317, 5])\n",
|
304 |
+
"torch.Size([1, 1317, 5])\n",
|
305 |
+
"torch.Size([1, 1317, 5])\n",
|
306 |
+
"torch.Size([1, 1317, 5])\n",
|
307 |
+
"torch.Size([1, 1317, 5])\n",
|
308 |
+
"torch.Size([1, 1317, 5])\n",
|
309 |
+
"torch.Size([1, 1317, 5])\n",
|
310 |
+
"torch.Size([1, 1317, 5])\n",
|
311 |
+
"torch.Size([1, 1317, 5])\n",
|
312 |
+
"torch.Size([1, 1317, 5])\n",
|
313 |
+
"torch.Size([1, 1317, 5])\n",
|
314 |
+
"torch.Size([1, 1317, 5])\n",
|
315 |
+
"torch.Size([1, 1317, 5])\n",
|
316 |
+
"torch.Size([1, 1317, 5])\n",
|
317 |
+
"torch.Size([1, 1317, 5])\n",
|
318 |
+
"torch.Size([1, 1317, 5])\n",
|
319 |
+
"torch.Size([1, 1317, 5])\n",
|
320 |
+
"torch.Size([1, 1317, 5])\n",
|
321 |
+
"torch.Size([1, 1317, 5])\n",
|
322 |
+
"torch.Size([1, 1317, 5])\n",
|
323 |
+
"torch.Size([1, 1317, 5])\n",
|
324 |
+
"torch.Size([1, 1317, 5])\n",
|
325 |
+
"torch.Size([1, 1317, 5])\n",
|
326 |
+
"torch.Size([1, 1317, 5])\n",
|
327 |
+
"torch.Size([1, 1317, 5])\n",
|
328 |
+
"torch.Size([1, 1317, 5])\n",
|
329 |
+
"torch.Size([1, 1317, 5])\n",
|
330 |
+
"torch.Size([1, 1317, 5])\n",
|
331 |
+
"torch.Size([1, 1317, 5])\n",
|
332 |
+
"torch.Size([1, 1317, 5])\n",
|
333 |
+
"torch.Size([1, 1317, 5])\n",
|
334 |
+
"torch.Size([1, 1317, 5])\n",
|
335 |
+
"torch.Size([1, 1317, 5])\n",
|
336 |
+
"torch.Size([1, 1317, 5])\n",
|
337 |
+
"torch.Size([1, 1317, 5])\n",
|
338 |
+
"torch.Size([1, 1317, 5])\n",
|
339 |
+
"torch.Size([1, 1317, 5])\n",
|
340 |
+
"torch.Size([1, 1317, 5])\n",
|
341 |
+
"torch.Size([1, 1317, 5])\n",
|
342 |
+
"torch.Size([1, 1317, 5])\n",
|
343 |
+
"torch.Size([1, 1317, 5])\n",
|
344 |
+
"torch.Size([1, 1317, 5])\n",
|
345 |
+
"torch.Size([1, 1317, 5])\n",
|
346 |
+
"torch.Size([1, 1317, 5])\n",
|
347 |
+
"torch.Size([1, 1317, 5])\n",
|
348 |
+
"torch.Size([1, 1317, 5])\n",
|
349 |
+
"torch.Size([1, 1317, 5])\n",
|
350 |
+
"torch.Size([1, 1317, 5])\n",
|
351 |
+
"torch.Size([1, 1317, 5])\n",
|
352 |
+
"torch.Size([1, 1317, 5])\n",
|
353 |
+
"torch.Size([1, 1317, 5])\n",
|
354 |
+
"torch.Size([1, 1317, 5])\n",
|
355 |
+
"torch.Size([1, 1317, 5])\n",
|
356 |
+
"torch.Size([1, 1317, 5])\n",
|
357 |
+
"torch.Size([1, 1317, 5])\n",
|
358 |
+
"torch.Size([1, 1317, 5])\n",
|
359 |
+
"torch.Size([1, 1317, 5])\n",
|
360 |
+
"torch.Size([1, 1317, 5])\n",
|
361 |
+
"torch.Size([1, 1317, 5])\n",
|
362 |
+
"torch.Size([1, 1317, 5])\n",
|
363 |
+
"torch.Size([1, 1317, 5])\n",
|
364 |
+
"torch.Size([1, 1317, 5])\n",
|
365 |
+
"torch.Size([1, 1317, 5])\n",
|
366 |
+
"torch.Size([1, 1317, 5])\n",
|
367 |
+
"torch.Size([1, 1317, 5])\n",
|
368 |
+
"torch.Size([1, 1317, 5])\n",
|
369 |
+
"torch.Size([1, 1317, 5])\n",
|
370 |
+
"torch.Size([1, 1317, 5])\n",
|
371 |
+
"torch.Size([1, 1317, 5])\n",
|
372 |
+
"torch.Size([1, 1317, 5])\n",
|
373 |
+
"torch.Size([1, 1317, 5])\n",
|
374 |
+
"torch.Size([1, 1317, 5])\n",
|
375 |
+
"torch.Size([1, 1317, 5])\n",
|
376 |
+
"torch.Size([1, 1317, 5])\n",
|
377 |
+
"torch.Size([1, 1317, 5])\n",
|
378 |
+
"torch.Size([1, 1317, 5])\n",
|
379 |
+
"torch.Size([1, 1317, 5])\n",
|
380 |
+
"torch.Size([1, 1317, 5])\n",
|
381 |
+
"torch.Size([1, 1317, 5])\n",
|
382 |
+
"torch.Size([1, 1317, 5])\n",
|
383 |
+
"torch.Size([1, 1317, 5])\n",
|
384 |
+
"torch.Size([1, 1317, 5])\n",
|
385 |
+
"torch.Size([1, 1317, 5])\n",
|
386 |
+
"torch.Size([1, 1317, 5])\n",
|
387 |
+
"torch.Size([1, 1317, 5])\n",
|
388 |
+
"torch.Size([1, 1317, 5])\n",
|
389 |
+
"torch.Size([1, 1317, 5])\n",
|
390 |
+
"torch.Size([1, 1317, 5])\n",
|
391 |
+
"torch.Size([1, 1317, 5])\n",
|
392 |
+
"torch.Size([1, 1317, 5])\n",
|
393 |
+
"torch.Size([1, 1317, 5])\n",
|
394 |
+
"torch.Size([1, 1317, 5])\n",
|
395 |
+
"torch.Size([1, 1317, 5])\n",
|
396 |
+
"torch.Size([1, 1317, 5])\n",
|
397 |
+
"torch.Size([1, 1317, 5])\n",
|
398 |
+
"torch.Size([1, 1317, 5])\n",
|
399 |
+
"torch.Size([1, 1317, 5])\n",
|
400 |
+
"torch.Size([1, 1317, 5])\n",
|
401 |
+
"torch.Size([1, 1317, 5])\n",
|
402 |
+
"torch.Size([1, 1317, 5])\n",
|
403 |
+
"torch.Size([1, 1317, 5])\n",
|
404 |
+
"torch.Size([1, 1317, 5])\n",
|
405 |
+
"torch.Size([1, 1317, 5])\n",
|
406 |
+
"torch.Size([1, 1317, 5])\n",
|
407 |
+
"torch.Size([1, 1317, 5])\n",
|
408 |
+
"torch.Size([1, 1317, 5])\n",
|
409 |
+
"torch.Size([1, 1317, 5])\n",
|
410 |
+
"torch.Size([1, 1317, 5])\n",
|
411 |
+
"torch.Size([1, 1317, 5])\n",
|
412 |
+
"torch.Size([1, 1317, 5])\n",
|
413 |
+
"torch.Size([1, 1317, 5])\n",
|
414 |
+
"torch.Size([1, 1317, 5])\n",
|
415 |
+
"torch.Size([1, 1317, 5])\n",
|
416 |
+
"torch.Size([1, 1317, 5])\n",
|
417 |
+
"torch.Size([1, 1317, 5])\n"
|
418 |
+
]
|
419 |
+
}
|
420 |
+
],
|
421 |
+
"source": [
|
422 |
+
"frames = 200\n",
|
423 |
+
"data_list = []\n",
|
424 |
+
"mesh_list = []\n",
|
425 |
+
"for idx, i in enumerate(data_loader):\n",
|
426 |
+
" if idx%10 !=0:\n",
|
427 |
+
" continue\n",
|
428 |
+
" print(i.shape)\n",
|
429 |
+
" # single_plot(i[:,:,0].numpy(), mesh.numpy())\n",
|
430 |
+
" updated_mesh = mesh + i[0,:,-2:]\n",
|
431 |
+
" data_list.append(i[:,:,3].numpy())\n",
|
432 |
+
" mesh_list.append(updated_mesh.numpy())\n",
|
433 |
+
" frames -= 1\n",
|
434 |
+
" if frames == 0:\n",
|
435 |
+
" break"
|
436 |
+
]
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"cell_type": "code",
|
440 |
+
"execution_count": null,
|
441 |
+
"metadata": {},
|
442 |
+
"outputs": [
|
443 |
+
{
|
444 |
+
"name": "stdout",
|
445 |
+
"output_type": "stream",
|
446 |
+
"text": [
|
447 |
+
"Saving animation to fsi_animation.gif...\n"
|
448 |
+
]
|
449 |
+
}
|
450 |
+
],
|
451 |
+
"source": [
|
452 |
+
"create_field_animation(data_list, mesh_list, interval=100, save_path='fsi_animation.gif')"
|
453 |
+
]
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"cell_type": "code",
|
457 |
+
"execution_count": null,
|
458 |
+
"metadata": {},
|
459 |
+
"outputs": [],
|
460 |
+
"source": [
|
461 |
+
"len(data_list)"
|
462 |
+
]
|
463 |
+
}
|
464 |
+
],
|
465 |
+
"metadata": {
|
466 |
+
"kernelspec": {
|
467 |
+
"display_name": "neuralop",
|
468 |
+
"language": "python",
|
469 |
+
"name": "python3"
|
470 |
+
},
|
471 |
+
"language_info": {
|
472 |
+
"codemirror_mode": {
|
473 |
+
"name": "ipython",
|
474 |
+
"version": 3
|
475 |
+
},
|
476 |
+
"file_extension": ".py",
|
477 |
+
"mimetype": "text/x-python",
|
478 |
+
"name": "python",
|
479 |
+
"nbconvert_exporter": "python",
|
480 |
+
"pygments_lexer": "ipython3",
|
481 |
+
"version": "3.11.9"
|
482 |
+
}
|
483 |
+
},
|
484 |
+
"nbformat": 4,
|
485 |
+
"nbformat_minor": 2
|
486 |
+
}
|
fsi_animation.gif
ADDED
![]() |
Git LFS Details
|
fsi_reader.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import h5py
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import h5py
|
6 |
+
|
7 |
+
|
8 |
+
class FsiDataReader():
|
9 |
+
def __init__(self,
|
10 |
+
location,
|
11 |
+
mu=None,
|
12 |
+
in_lets_x1=None,
|
13 |
+
in_lets_x2=None,):
|
14 |
+
self.location = location
|
15 |
+
self._x1 = ['-4.0', '-2.0', '0.0', '2.0', '4.0', '6.0']
|
16 |
+
self._x2 = ['-4.0', '-2.0', '0', '2.0', '4.0', '6.0']
|
17 |
+
self._mu = ['0.1', '0.01', '0.5', '5', '1.0', '10.0']
|
18 |
+
# keeping vx,xy, P, dx,dy
|
19 |
+
self.varable_idices = [0, 1, 3, 4, 5]
|
20 |
+
|
21 |
+
if mu is not None:
|
22 |
+
# check if mu is _mu else raise error
|
23 |
+
assert set(mu).issubset(set(self._mu))
|
24 |
+
self._mu = mu
|
25 |
+
if in_lets_x1 is not None:
|
26 |
+
# check if in_lets_x1 is _x1 else raise error
|
27 |
+
assert set(in_lets_x1).issubset(set(self._x1))
|
28 |
+
self._x1 = in_lets_x1
|
29 |
+
if in_lets_x2 is not None:
|
30 |
+
# check if in_lets_x2 is _x2 else raise error
|
31 |
+
assert set(in_lets_x2).issubset(set(self._x2))
|
32 |
+
self._x2 = in_lets_x2
|
33 |
+
|
34 |
+
mesh_h = h5py.File(os.path.join(location, 'mesh.h5'), 'r')
|
35 |
+
mesh = mesh_h['mesh/coordinates'][:]
|
36 |
+
self.input_mesh = torch.from_numpy(mesh).type(torch.float)
|
37 |
+
|
38 |
+
def _readh5(self, h5f, dtype=torch.float32):
|
39 |
+
a_dset_keys = list(h5f['VisualisationVector'].keys())
|
40 |
+
size = len(a_dset_keys)
|
41 |
+
readings = [None for i in range(size)]
|
42 |
+
for dset in a_dset_keys:
|
43 |
+
ds_data = (h5f['VisualisationVector'][dset])
|
44 |
+
if ds_data.dtype == 'float64':
|
45 |
+
csvfmt = '%.18e'
|
46 |
+
elif ds_data.dtype == 'int64':
|
47 |
+
csvfmt = '%.10d'
|
48 |
+
else:
|
49 |
+
csvfmt = '%s'
|
50 |
+
readings[int(dset)] = torch.tensor(np.array(ds_data), dtype=dtype)
|
51 |
+
|
52 |
+
readings_tensor = torch.stack(readings, dim=0)
|
53 |
+
print(f"Loaded tensor Size: {readings_tensor.shape}")
|
54 |
+
return readings_tensor
|
55 |
+
|
56 |
+
def get_data(self, mu, x1, x2):
|
57 |
+
if mu not in self._mu:
|
58 |
+
raise ValueError(f"Value of mu must be one of {self._mu}")
|
59 |
+
if x1 not in self._x1 or x2 not in self._x2:
|
60 |
+
raise ValueError(
|
61 |
+
f"Value of is must be one of {self._ivals3} and {self._ivals12} ")
|
62 |
+
path = os.path.join(
|
63 |
+
self.location,
|
64 |
+
'mu='+str(mu),
|
65 |
+
'x1='+str(x1),
|
66 |
+
'x2='+str(x2),
|
67 |
+
'Visualization')
|
68 |
+
|
69 |
+
filename = os.path.join(path, 'displacement.h5')
|
70 |
+
h5f = h5py.File(filename, 'r')
|
71 |
+
displacements_tensor = self._readh5(h5f)
|
72 |
+
|
73 |
+
|
74 |
+
filename = os.path.join(path, 'pressure.h5')
|
75 |
+
h5f = h5py.File(filename, 'r')
|
76 |
+
pressure_tensor = self._readh5(h5f)
|
77 |
+
|
78 |
+
filename = os.path.join(path, 'velocity.h5')
|
79 |
+
h5f = h5py.File(filename, 'r')
|
80 |
+
velocity_tensor = self._readh5(h5f)
|
81 |
+
|
82 |
+
combined = torch.cat([velocity_tensor, pressure_tensor, displacements_tensor], dim=-1)[..., self.varable_idices]
|
83 |
+
|
84 |
+
# return velocity_tensor, pressure_tensor, displacements_tensor
|
85 |
+
return combined
|
86 |
+
|
87 |
+
def get_data_txt(self, mu, x1, x2):
|
88 |
+
if mu not in self._mu:
|
89 |
+
raise ValueError(f"Value of mu must be one of {self._mu}")
|
90 |
+
if x1 not in self._x1 or x2 not in self._x2:
|
91 |
+
raise ValueError(
|
92 |
+
f"Value of is must be one of {self._ivals3} and {self._ivals12} ")
|
93 |
+
path = os.path.join(
|
94 |
+
self.params.super_res_data_location,
|
95 |
+
'mu='+str(mu),
|
96 |
+
'x1='+str(x1),
|
97 |
+
'x2='+str(x2),
|
98 |
+
'1')
|
99 |
+
#try:
|
100 |
+
dis_x = torch.tensor(np.loadtxt(os.path.join(path, 'dis_x.txt')))
|
101 |
+
dis_y = torch.tensor(np.loadtxt(os.path.join(path, 'dis_y.txt')))
|
102 |
+
pressure = torch.tensor(np.loadtxt(os.path.join(path, 'pres.txt')))
|
103 |
+
velocity_x = torch.tensor(np.loadtxt(os.path.join(path, 'vel_x.txt')))
|
104 |
+
velocity_y = torch.tensor(np.loadtxt(os.path.join(path, 'vel_y.txt')))
|
105 |
+
|
106 |
+
# reshape each tensor into 2d by keeping 876 entries in each row
|
107 |
+
dis_x = dis_x.view(-1, 876,1)
|
108 |
+
dis_y = dis_y.view(-1, 876,1)
|
109 |
+
pressure = pressure.view(-1, 876,1)
|
110 |
+
velocity_x = velocity_x.view(-1, 876,1)
|
111 |
+
velocity_y = velocity_y.view(-1, 876,1)
|
112 |
+
|
113 |
+
|
114 |
+
combined = torch.cat([velocity_x, velocity_y, pressure, dis_x, dis_y], dim=-1)[..., ]
|
115 |
+
return combined
|
116 |
+
|
117 |
+
def get_loader(self, batch_size, shuffle=True):
|
118 |
+
data = []
|
119 |
+
for mu in self._mu:
|
120 |
+
for x1 in self._x1:
|
121 |
+
for x2 in self._x2:
|
122 |
+
try:
|
123 |
+
if mu == 0.5:
|
124 |
+
data.append(self.get_data_txt(mu, x1, x2))
|
125 |
+
else:
|
126 |
+
data.append(self.get_data(mu, x1, x2))
|
127 |
+
except FileNotFoundError as e:
|
128 |
+
print(
|
129 |
+
f"file not found for mu={mu}, x1={x1}, x2={x2}")
|
130 |
+
continue
|
131 |
+
data = torch.cat(data, dim=0)
|
132 |
+
print(f"Data shape: {data.shape}")
|
133 |
+
|
134 |
+
data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=shuffle)
|
135 |
+
|
136 |
+
return data_loader
|
137 |
+
|
138 |
+
|