SaifPunjwani commited on
Commit
ace09be
Β·
verified Β·
1 Parent(s): c322d5b

Updating README.md

Browse files
Files changed (1) hide show
  1. README.md +227 -3
README.md CHANGED
@@ -1,3 +1,227 @@
1
- ---
2
- license: cc-by-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Allo-AVA: A Large-Scale Multimodal Dataset for Allocentric Avatar Animation
2
+
3
+ ## Overview
4
+
5
+ Allo-AVA (Allocentric Audio-Visual Avatar) is a large-scale multimodal dataset designed for research and development in avatar animation. It focuses on generating natural and contextually appropriate gestures from text and audio inputs in an allocentric (third-person) perspective. The dataset addresses the scarcity of high-quality, synchronized multimodal data capturing the intricate synchronization between speech, facial expressions, and body movements, essential for creating lifelike avatar animations in virtual environments.
6
+
7
+ ---
8
+
9
+ ## Dataset Statistics
10
+
11
+ - **Total Videos:** 7,500
12
+ - **Total Duration:** 1,250 hours
13
+ - **Average Video Length:** 10 minutes
14
+ - **Unique Speakers:** ~3,500
15
+ - **Total Word Count:** 15 million
16
+ - **Average Words per Minute:** 208
17
+ - **Total Keypoints:** ~135 billion
18
+ - **Dataset Size:** 2.46 TB
19
+
20
+ ---
21
+
22
+ ## Content Distribution
23
+
24
+ - **TED Talks:** 40%
25
+ - **Interviews:** 30%
26
+ - **Panel Discussions:** 20%
27
+ - **Formal Presentations:** 10%
28
+
29
+ ---
30
+
31
+ ## Directory Structure
32
+
33
+ ```
34
+ Allo-AVA/
35
+ β”œβ”€β”€ video/
36
+ β”œβ”€β”€ audio/
37
+ β”œβ”€β”€ transcript/
38
+ β”œβ”€β”€ keypoints/
39
+ └── keypoints_video/
40
+ ```
41
+
42
+ - **`video/`**: Original MP4 video files.
43
+ - **`audio/`**: Extracted WAV audio files.
44
+ - **`transcript/`**: JSON files with word-level transcriptions and timestamps.
45
+ - **`keypoints/`**: JSON files with frame-level keypoint data.
46
+ - **`keypoints_video/`**: MP4 files visualizing the extracted keypoints overlaid on the original video.
47
+
48
+ ---
49
+
50
+ ## File Formats
51
+
52
+ - **Video:** MP4 (1080p, 30 fps)
53
+ - **Audio:** WAV (16-bit PCM, 48 kHz)
54
+ - **Transcripts:** JSON format with word-level timestamps.
55
+ - **Keypoints:** JSON format containing normalized keypoint coordinates.
56
+ - **Keypoints Video:** MP4 format with keypoints overlaid on the original video frames.
57
+
58
+ ---
59
+
60
+ ## Keypoint Data
61
+
62
+ The dataset includes detailed keypoint information extracted using a fusion of **OpenPose** and **MediaPipe** models, capturing comprehensive body pose and movement data.
63
+
64
+ ### Keypoint Extraction Models
65
+
66
+ - **OpenPose**:
67
+ - Extracts 18 keypoints corresponding to major body joints.
68
+ - Robust for full-body pose estimation.
69
+ - **MediaPipe**:
70
+ - Provides 32 additional keypoints with enhanced detail on hands and facial landmarks.
71
+ - Precise capture of subtle gestures and expressions.
72
+
73
+ ### Keypoint Structure
74
+
75
+ Each keypoint is represented by:
76
+
77
+ - **`x`**: Horizontal position, normalized to [0, 1] from left to right of the frame.
78
+ - **`y`**: Vertical position, normalized to [0, 1] from top to bottom of the frame.
79
+ - **`z`**: Depth, normalized to [-1, 1], with 0 at the camera plane.
80
+ - **`visibility`**: Confidence score in [0.0, 1.0], indicating the keypoint's presence and accuracy.
81
+
82
+ **Example Keypoint Entry:**
83
+
84
+ ```json
85
+ {
86
+ "timestamp": 0.167,
87
+ "keypoints": [
88
+ {
89
+ "x": 0.32285,
90
+ "y": 0.25760,
91
+ "z": -0.27907,
92
+ "visibility": 0.99733
93
+ },
94
+ ...
95
+ ],
96
+ "transcript": "Today you're going to..."
97
+ }
98
+ ```
99
+
100
+ ---
101
+
102
+ ## Usage
103
+
104
+ ### Downloading the Dataset
105
+
106
+ To obtain access to the Allo-AVA dataset, please [contact us](#contact) for download instructions.
107
+
108
+ ### Extracting the Dataset
109
+
110
+ Once downloaded, extract the dataset to your desired directory:
111
+
112
+ ```bash
113
+ unzip allo-ava-dataset.zip -d /path/to/destination
114
+ ```
115
+
116
+ ### Accessing the Data
117
+
118
+ You can use various programming languages or tools to process the dataset. Below is an example using Python.
119
+
120
+ #### Example Usage in Python
121
+
122
+ ```python
123
+ import json
124
+ import cv2
125
+ import librosa
126
+
127
+ # Paths to data
128
+ video_id = "example_video_id"
129
+ video_path = f"Allo-AVA/video/{video_id}.mp4"
130
+ audio_path = f"Allo-AVA/audio/{video_id}.wav"
131
+ transcript_path = f"Allo-AVA/transcript/{video_id}.json"
132
+ keypoints_path = f"Allo-AVA/keypoints/{video_id}.json"
133
+
134
+ # Load video
135
+ cap = cv2.VideoCapture(video_path)
136
+
137
+ # Load audio
138
+ audio, sr = librosa.load(audio_path, sr=48000)
139
+
140
+ # Load transcript
141
+ with open(transcript_path, 'r') as f:
142
+ transcript = json.load(f)
143
+
144
+ # Load keypoints
145
+ with open(keypoints_path, 'r') as f:
146
+ keypoints = json.load(f)
147
+
148
+ # Your processing code here
149
+ # For example, iterate over keypoints and synchronize with video frames
150
+ ```
151
+
152
+ ---
153
+
154
+ ## Ethical Considerations
155
+
156
+ - **Data Source**: All videos were collected from publicly available sources such as YouTube, adhering to their terms of service.
157
+ - **Privacy**:
158
+ - **Face Blurring**: Faces in keypoint visualization videos have been blurred to protect individual identities.
159
+ - **Voice Anonymization**: Voice pitch modification has been applied to audio files to anonymize speakers.
160
+ - **Transcript Sanitization**: Personal identifiers (e.g., names, locations) in transcripts have been replaced with placeholders.
161
+
162
+ - **Usage Guidelines**:
163
+ - The dataset is intended for **research and educational purposes** only.
164
+ - Users must comply with all applicable laws and regulations regarding data privacy and intellectual property.
165
+ - Any use of the dataset must respect the rights and privacy of individuals represented in the data.
166
+
167
+ ---
168
+
169
+ ## License
170
+
171
+ The Allo-AVA dataset is released under the **Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)**.
172
+
173
+ Please refer to the [LICENSE](LICENSE) file for more details.
174
+
175
+ ---
176
+
177
+ ## Future Work
178
+
179
+ Planned enhancements for the Allo-AVA dataset include:
180
+
181
+ - **Expanding Linguistic and Cultural Diversity**: Incorporating more languages and cultural contexts to enable cross-cultural studies.
182
+ - **Enhanced Annotations**: Adding fine-grained labels for gestures, emotions, and semantic meanings.
183
+ - **Multiview Recordings**: Including multiview videos to support 3D reconstruction and the study of interactive behaviors.
184
+ - **Improved Synchronization**: Refining multimodal synchronization to capture subtle expressions and micro-movements.
185
+ - **Domain-Specific Subsets**: Creating subsets tailored to specific research domains or applications.
186
+
187
+ ---
188
+
189
+ ## Citing Allo-AVA
190
+
191
+ If you use the Allo-AVA dataset in your research, please cite our paper:
192
+
193
+ ```bibtex
194
+ @inproceedings{punjwani2024alloava,
195
+ title={Allo-AVA: A Large-Scale Multimodal Dataset for Allocentric Avatar Animation},
196
+ author={Punjwani, Saif and Heck, Larry},
197
+ booktitle={Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing},
198
+ year={2024}
199
+ }
200
+ ```
201
+
202
+ ---
203
+
204
+ ## Contact
205
+
206
+ For any questions or issues regarding the Allo-AVA dataset, please contact:
207
+
208
+ - **Saif Punjwani**
209
+ - Email: [[email protected]](mailto:[email protected])
210
+ - **Larry Heck**
211
+ - Email: [[email protected]](mailto:[email protected])
212
+
213
+ ---
214
+
215
+ ## Acknowledgments
216
+
217
+ We thank all the content creators whose public videos contributed to this dataset. This work was supported by [list any funding sources or supporting organizations].
218
+
219
+ ---
220
+
221
+ ## Disclaimer
222
+
223
+ The authors are not responsible for any misuse of the dataset. Users are expected to comply with all relevant ethical guidelines and legal regulations when using the dataset.
224
+
225
+ ---
226
+
227
+ Thank you for your interest in the Allo-AVA dataset! We hope it serves as a valuable resource for advancing research in avatar animation and human-computer interaction.