File size: 4,961 Bytes
687a086 9b8dc3b 687a086 9fb18f2 687a086 433ab80 ce8ac4d 666b47f 433ab80 ab307c1 7b74c1d ab307c1 447b2a5 ab307c1 447b2a5 7b74c1d 447b2a5 687a086 ce8ac4d 687a086 ce8ac4d 687a086 867616a 687a086 7b74c1d 687a086 7b74c1d 687a086 7b74c1d 687a086 7b74c1d 867616a 433ab80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
---
annotations_creators:
- no-annotation
language_creators:
- found
language:
- ar
multilinguality:
- monolingual
size_categories:
- 1M<n<10M
source_datasets:
- original
task_categories:
- other
task_ids: []
paperswithcode_id: arcov-19
pretty_name: ArCOV19
tags:
- data-mining
dataset_info:
config_name: ar_cov19
features:
- name: tweetID
dtype: string
splits:
- name: train
num_bytes: 72223634
num_examples: 3140158
download_size: 23678407
dataset_size: 72223634
---
# Dataset Card for ArCOV19
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:**
- **Repository:** https://gitlab.com/bigirqu/ArCOV-19
- **Paper:** [ArCOV-19: The First Arabic COVID-19 Twitter Dataset with Propagation Networks](https://arxiv.org/abs/2004.05861)
- **Leaderboard:** [More Information Needed]
- **Point of Contact:** [Fatima Haouari](mailto:[email protected])
### Dataset Summary
ArCOV-19 is an Arabic COVID-19 Twitter dataset that covers the period from 27th of January till 5th of May 2021.
ArCOV-19 is the first publicly-available Arabic Twitter dataset covering COVID-19 pandemic that includes about 3.2M
tweets alongside the propagation networks of the most-popular subset of them (i.e., most-retweeted and-liked).
The propagation networks include both retweets and conversational threads (i.e., threads of replies).
ArCOV-19 is designed to enable research under several domains including natural language processing, information
retrieval, and social computing, among others. Preliminary analysis shows that ArCOV-19 captures rising discussions
associated with the first reported cases of the disease as they appeared in the Arab world. In addition to the source
tweets and the propagation networks, we also release the search queries and the language-independent crawler used to
collect the tweets to encourage the curation of similar datasets.
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
Arabic
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
tweet_id: the Twitter assigned ID for the tweet object.
### Data Splits
[More Information Needed]
## Dataset Creation
The dataset collection approach is presented in the following paper: [ArCOV-19: The First Arabic COVID-19 Twitter Dataset with Propagation Networks](https://arxiv.org/abs/2004.05861)
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
No annotation was provided with the dataset.
#### Annotation process
No annotation was provided with the dataset.
#### Who are the annotators?
No annotation was provided with the dataset.
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
**Team:** [bigIR](https://sites.google.com/view/bigir) from Qatar University ([@bigIR_group](https://twitter.com/bigIR_group))
- [Fatima Haouari](mailto:[email protected])
- [Maram Hasanain](mailto:[email protected])
- [Reem Suwaileh](mailto:[email protected])
- [Dr. Tamer Elsayed](mailto:[email protected])
### Licensing Information
[More Information Needed]
### Citation Information
```
@article{haouari2020arcov19,
title={ArCOV-19: The First Arabic COVID-19 Twitter Dataset with Propagation Networks},
author={Fatima Haouari and Maram Hasanain and Reem Suwaileh and Tamer Elsayed},
year={2021},
eprint={2004.05861},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
### Contributions
Thanks to [@Fatima-Haouari](https://github.com/Fatima-Haouari) for adding this dataset. |