Update czi_drsm based on git version f5bf778
Browse files- README.md +66 -1
- __init__.py +0 -0
- bigbiohub.py +590 -0
- czi_drsm.py +410 -0
README.md
CHANGED
|
@@ -1,3 +1,68 @@
|
|
| 1 |
---
|
| 2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
bigbio_language:
|
| 5 |
+
- English
|
| 6 |
+
license: cc0-1.0
|
| 7 |
+
bigbio_license_shortname: cc0-1.0
|
| 8 |
+
multilinguality: monolingual
|
| 9 |
+
pretty_name: CZI DRSM
|
| 10 |
+
homepage: https://github.com/chanzuckerberg/DRSM-corpus
|
| 11 |
+
bigbio_pubmed: false
|
| 12 |
+
bigbio_public: true
|
| 13 |
+
bigbio_tasks:
|
| 14 |
+
- TXTCLASS
|
| 15 |
---
|
| 16 |
+
|
| 17 |
+
# Dataset Card for CZI DRSM
|
| 18 |
+
[README.md](..%2Fmed_qa%2FREADME.md)
|
| 19 |
+
## Dataset Description
|
| 20 |
+
|
| 21 |
+
- **Homepage:** https://github.com/chanzuckerberg/DRSM-corpus
|
| 22 |
+
- **Pubmed:** False
|
| 23 |
+
- **Public:** True
|
| 24 |
+
- **Tasks:** TXTCLASS
|
| 25 |
+
|
| 26 |
+
Research Article document classification dataset based on aspects of disease research. Currently, the dataset consists of three subsets:
|
| 27 |
+
|
| 28 |
+
(A) classifies title/abstracts of papers into most popular subtypes of clinical, basic, and translational papers (~20k papers);
|
| 29 |
+
- Clinical Characteristics, Disease Pathology, and Diagnosis -
|
| 30 |
+
Text that describes (A) symptoms, signs, or ‘phenotype’ of a disease;
|
| 31 |
+
(B) the effects of the disease on patient organs, tissues, or cells;
|
| 32 |
+
(C) the results of clinical tests that reveal pathology (including
|
| 33 |
+
biomarkers); (D) research that use this information to figure out
|
| 34 |
+
a diagnosis.
|
| 35 |
+
- Therapeutics in the clinic -
|
| 36 |
+
Text describing how treatments work in the clinic (but not in a clinical trial).
|
| 37 |
+
- Disease mechanism -
|
| 38 |
+
Text that describes either (A) mechanistic involvement of specific genes in disease
|
| 39 |
+
(deletions, gain of function, etc); (B) how molecular signalling or metabolism
|
| 40 |
+
binding, activating, phosphorylation, concentration increase, etc.)
|
| 41 |
+
are involved in the mechanism of a disease; or (C) the physiological
|
| 42 |
+
mechanism of disease at the level of tissues, organs, and body systems.
|
| 43 |
+
- Patient-Based Therapeutics -
|
| 44 |
+
Text describing (A) Clinical trials (studies of therapeutic measures being
|
| 45 |
+
used on patients in a clinical trial); (B) Post Marketing Drug Surveillance
|
| 46 |
+
(effects of a drug after approval in the general population or as part of
|
| 47 |
+
‘standard healthcare’); (C) Drug repurposing (how a drug that has been
|
| 48 |
+
approved for one use is being applied to a new disease).
|
| 49 |
+
|
| 50 |
+
(B) identifies whether a title/abstract of a paper describes substantive research into Quality of Life (~10k papers);
|
| 51 |
+
- -1 - the paper is not a primary experimental study in rare disease
|
| 52 |
+
- 0 - the study does not directly investigate quality of life
|
| 53 |
+
- 1 - the study investigates qol but not as its primary contribution
|
| 54 |
+
- 2 - the study's primary contribution centers on quality of life measures
|
| 55 |
+
|
| 56 |
+
(C) identifies if a paper is a natural history study (~10k papers).
|
| 57 |
+
- -1 - the paper is not a primary experimental study in rare disease
|
| 58 |
+
- 0 - the study is not directly investigating the natural history of a disease
|
| 59 |
+
- 1 - the study includes some elements a natural history but not as its primary contribution
|
| 60 |
+
- 2 - the study's primary contribution centers on observing the time course of a rare disease
|
| 61 |
+
|
| 62 |
+
These classifications are particularly relevant in rare disease research, a field that is generally understudied.
|
| 63 |
+
|
| 64 |
+
## Citation Information
|
| 65 |
+
|
| 66 |
+
```
|
| 67 |
+
# N/A
|
| 68 |
+
```
|
__init__.py
ADDED
|
File without changes
|
bigbiohub.py
ADDED
|
@@ -0,0 +1,590 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from collections import defaultdict
|
| 2 |
+
from dataclasses import dataclass
|
| 3 |
+
from enum import Enum
|
| 4 |
+
import logging
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
from types import SimpleNamespace
|
| 7 |
+
from typing import TYPE_CHECKING, Dict, Iterable, List, Tuple
|
| 8 |
+
|
| 9 |
+
import datasets
|
| 10 |
+
|
| 11 |
+
if TYPE_CHECKING:
|
| 12 |
+
import bioc
|
| 13 |
+
|
| 14 |
+
logger = logging.getLogger(__name__)
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
BigBioValues = SimpleNamespace(NULL="<BB_NULL_STR>")
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
@dataclass
|
| 21 |
+
class BigBioConfig(datasets.BuilderConfig):
|
| 22 |
+
"""BuilderConfig for BigBio."""
|
| 23 |
+
|
| 24 |
+
name: str = None
|
| 25 |
+
version: datasets.Version = None
|
| 26 |
+
description: str = None
|
| 27 |
+
schema: str = None
|
| 28 |
+
subset_id: str = None
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
class Tasks(Enum):
|
| 32 |
+
NAMED_ENTITY_RECOGNITION = "NER"
|
| 33 |
+
NAMED_ENTITY_DISAMBIGUATION = "NED"
|
| 34 |
+
EVENT_EXTRACTION = "EE"
|
| 35 |
+
RELATION_EXTRACTION = "RE"
|
| 36 |
+
COREFERENCE_RESOLUTION = "COREF"
|
| 37 |
+
QUESTION_ANSWERING = "QA"
|
| 38 |
+
TEXTUAL_ENTAILMENT = "TE"
|
| 39 |
+
SEMANTIC_SIMILARITY = "STS"
|
| 40 |
+
TEXT_PAIRS_CLASSIFICATION = "TXT2CLASS"
|
| 41 |
+
PARAPHRASING = "PARA"
|
| 42 |
+
TRANSLATION = "TRANSL"
|
| 43 |
+
SUMMARIZATION = "SUM"
|
| 44 |
+
TEXT_CLASSIFICATION = "TXTCLASS"
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
entailment_features = datasets.Features(
|
| 48 |
+
{
|
| 49 |
+
"id": datasets.Value("string"),
|
| 50 |
+
"premise": datasets.Value("string"),
|
| 51 |
+
"hypothesis": datasets.Value("string"),
|
| 52 |
+
"label": datasets.Value("string"),
|
| 53 |
+
}
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
pairs_features = datasets.Features(
|
| 57 |
+
{
|
| 58 |
+
"id": datasets.Value("string"),
|
| 59 |
+
"document_id": datasets.Value("string"),
|
| 60 |
+
"text_1": datasets.Value("string"),
|
| 61 |
+
"text_2": datasets.Value("string"),
|
| 62 |
+
"label": datasets.Value("string"),
|
| 63 |
+
}
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
qa_features = datasets.Features(
|
| 67 |
+
{
|
| 68 |
+
"id": datasets.Value("string"),
|
| 69 |
+
"question_id": datasets.Value("string"),
|
| 70 |
+
"document_id": datasets.Value("string"),
|
| 71 |
+
"question": datasets.Value("string"),
|
| 72 |
+
"type": datasets.Value("string"),
|
| 73 |
+
"choices": [datasets.Value("string")],
|
| 74 |
+
"context": datasets.Value("string"),
|
| 75 |
+
"answer": datasets.Sequence(datasets.Value("string")),
|
| 76 |
+
}
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
text_features = datasets.Features(
|
| 80 |
+
{
|
| 81 |
+
"id": datasets.Value("string"),
|
| 82 |
+
"document_id": datasets.Value("string"),
|
| 83 |
+
"text": datasets.Value("string"),
|
| 84 |
+
"labels": [datasets.Value("string")],
|
| 85 |
+
}
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
text2text_features = datasets.Features(
|
| 89 |
+
{
|
| 90 |
+
"id": datasets.Value("string"),
|
| 91 |
+
"document_id": datasets.Value("string"),
|
| 92 |
+
"text_1": datasets.Value("string"),
|
| 93 |
+
"text_2": datasets.Value("string"),
|
| 94 |
+
"text_1_name": datasets.Value("string"),
|
| 95 |
+
"text_2_name": datasets.Value("string"),
|
| 96 |
+
}
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
kb_features = datasets.Features(
|
| 100 |
+
{
|
| 101 |
+
"id": datasets.Value("string"),
|
| 102 |
+
"document_id": datasets.Value("string"),
|
| 103 |
+
"passages": [
|
| 104 |
+
{
|
| 105 |
+
"id": datasets.Value("string"),
|
| 106 |
+
"type": datasets.Value("string"),
|
| 107 |
+
"text": datasets.Sequence(datasets.Value("string")),
|
| 108 |
+
"offsets": datasets.Sequence([datasets.Value("int32")]),
|
| 109 |
+
}
|
| 110 |
+
],
|
| 111 |
+
"entities": [
|
| 112 |
+
{
|
| 113 |
+
"id": datasets.Value("string"),
|
| 114 |
+
"type": datasets.Value("string"),
|
| 115 |
+
"text": datasets.Sequence(datasets.Value("string")),
|
| 116 |
+
"offsets": datasets.Sequence([datasets.Value("int32")]),
|
| 117 |
+
"normalized": [
|
| 118 |
+
{
|
| 119 |
+
"db_name": datasets.Value("string"),
|
| 120 |
+
"db_id": datasets.Value("string"),
|
| 121 |
+
}
|
| 122 |
+
],
|
| 123 |
+
}
|
| 124 |
+
],
|
| 125 |
+
"events": [
|
| 126 |
+
{
|
| 127 |
+
"id": datasets.Value("string"),
|
| 128 |
+
"type": datasets.Value("string"),
|
| 129 |
+
# refers to the text_bound_annotation of the trigger
|
| 130 |
+
"trigger": {
|
| 131 |
+
"text": datasets.Sequence(datasets.Value("string")),
|
| 132 |
+
"offsets": datasets.Sequence([datasets.Value("int32")]),
|
| 133 |
+
},
|
| 134 |
+
"arguments": [
|
| 135 |
+
{
|
| 136 |
+
"role": datasets.Value("string"),
|
| 137 |
+
"ref_id": datasets.Value("string"),
|
| 138 |
+
}
|
| 139 |
+
],
|
| 140 |
+
}
|
| 141 |
+
],
|
| 142 |
+
"coreferences": [
|
| 143 |
+
{
|
| 144 |
+
"id": datasets.Value("string"),
|
| 145 |
+
"entity_ids": datasets.Sequence(datasets.Value("string")),
|
| 146 |
+
}
|
| 147 |
+
],
|
| 148 |
+
"relations": [
|
| 149 |
+
{
|
| 150 |
+
"id": datasets.Value("string"),
|
| 151 |
+
"type": datasets.Value("string"),
|
| 152 |
+
"arg1_id": datasets.Value("string"),
|
| 153 |
+
"arg2_id": datasets.Value("string"),
|
| 154 |
+
"normalized": [
|
| 155 |
+
{
|
| 156 |
+
"db_name": datasets.Value("string"),
|
| 157 |
+
"db_id": datasets.Value("string"),
|
| 158 |
+
}
|
| 159 |
+
],
|
| 160 |
+
}
|
| 161 |
+
],
|
| 162 |
+
}
|
| 163 |
+
)
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
TASK_TO_SCHEMA = {
|
| 167 |
+
Tasks.NAMED_ENTITY_RECOGNITION.name: "KB",
|
| 168 |
+
Tasks.NAMED_ENTITY_DISAMBIGUATION.name: "KB",
|
| 169 |
+
Tasks.EVENT_EXTRACTION.name: "KB",
|
| 170 |
+
Tasks.RELATION_EXTRACTION.name: "KB",
|
| 171 |
+
Tasks.COREFERENCE_RESOLUTION.name: "KB",
|
| 172 |
+
Tasks.QUESTION_ANSWERING.name: "QA",
|
| 173 |
+
Tasks.TEXTUAL_ENTAILMENT.name: "TE",
|
| 174 |
+
Tasks.SEMANTIC_SIMILARITY.name: "PAIRS",
|
| 175 |
+
Tasks.TEXT_PAIRS_CLASSIFICATION.name: "PAIRS",
|
| 176 |
+
Tasks.PARAPHRASING.name: "T2T",
|
| 177 |
+
Tasks.TRANSLATION.name: "T2T",
|
| 178 |
+
Tasks.SUMMARIZATION.name: "T2T",
|
| 179 |
+
Tasks.TEXT_CLASSIFICATION.name: "TEXT",
|
| 180 |
+
}
|
| 181 |
+
|
| 182 |
+
SCHEMA_TO_TASKS = defaultdict(set)
|
| 183 |
+
for task, schema in TASK_TO_SCHEMA.items():
|
| 184 |
+
SCHEMA_TO_TASKS[schema].add(task)
|
| 185 |
+
SCHEMA_TO_TASKS = dict(SCHEMA_TO_TASKS)
|
| 186 |
+
|
| 187 |
+
VALID_TASKS = set(TASK_TO_SCHEMA.keys())
|
| 188 |
+
VALID_SCHEMAS = set(TASK_TO_SCHEMA.values())
|
| 189 |
+
|
| 190 |
+
SCHEMA_TO_FEATURES = {
|
| 191 |
+
"KB": kb_features,
|
| 192 |
+
"QA": qa_features,
|
| 193 |
+
"TE": entailment_features,
|
| 194 |
+
"T2T": text2text_features,
|
| 195 |
+
"TEXT": text_features,
|
| 196 |
+
"PAIRS": pairs_features,
|
| 197 |
+
}
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
def get_texts_and_offsets_from_bioc_ann(ann: "bioc.BioCAnnotation") -> Tuple:
|
| 201 |
+
|
| 202 |
+
offsets = [(loc.offset, loc.offset + loc.length) for loc in ann.locations]
|
| 203 |
+
|
| 204 |
+
text = ann.text
|
| 205 |
+
|
| 206 |
+
if len(offsets) > 1:
|
| 207 |
+
i = 0
|
| 208 |
+
texts = []
|
| 209 |
+
for start, end in offsets:
|
| 210 |
+
chunk_len = end - start
|
| 211 |
+
texts.append(text[i : chunk_len + i])
|
| 212 |
+
i += chunk_len
|
| 213 |
+
while i < len(text) and text[i] == " ":
|
| 214 |
+
i += 1
|
| 215 |
+
else:
|
| 216 |
+
texts = [text]
|
| 217 |
+
|
| 218 |
+
return offsets, texts
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
def remove_prefix(a: str, prefix: str) -> str:
|
| 222 |
+
if a.startswith(prefix):
|
| 223 |
+
a = a[len(prefix) :]
|
| 224 |
+
return a
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
def parse_brat_file(
|
| 228 |
+
txt_file: Path,
|
| 229 |
+
annotation_file_suffixes: List[str] = None,
|
| 230 |
+
parse_notes: bool = False,
|
| 231 |
+
) -> Dict:
|
| 232 |
+
"""
|
| 233 |
+
Parse a brat file into the schema defined below.
|
| 234 |
+
`txt_file` should be the path to the brat '.txt' file you want to parse, e.g. 'data/1234.txt'
|
| 235 |
+
Assumes that the annotations are contained in one or more of the corresponding '.a1', '.a2' or '.ann' files,
|
| 236 |
+
e.g. 'data/1234.ann' or 'data/1234.a1' and 'data/1234.a2'.
|
| 237 |
+
Will include annotator notes, when `parse_notes == True`.
|
| 238 |
+
brat_features = datasets.Features(
|
| 239 |
+
{
|
| 240 |
+
"id": datasets.Value("string"),
|
| 241 |
+
"document_id": datasets.Value("string"),
|
| 242 |
+
"text": datasets.Value("string"),
|
| 243 |
+
"text_bound_annotations": [ # T line in brat, e.g. type or event trigger
|
| 244 |
+
{
|
| 245 |
+
"offsets": datasets.Sequence([datasets.Value("int32")]),
|
| 246 |
+
"text": datasets.Sequence(datasets.Value("string")),
|
| 247 |
+
"type": datasets.Value("string"),
|
| 248 |
+
"id": datasets.Value("string"),
|
| 249 |
+
}
|
| 250 |
+
],
|
| 251 |
+
"events": [ # E line in brat
|
| 252 |
+
{
|
| 253 |
+
"trigger": datasets.Value(
|
| 254 |
+
"string"
|
| 255 |
+
), # refers to the text_bound_annotation of the trigger,
|
| 256 |
+
"id": datasets.Value("string"),
|
| 257 |
+
"type": datasets.Value("string"),
|
| 258 |
+
"arguments": datasets.Sequence(
|
| 259 |
+
{
|
| 260 |
+
"role": datasets.Value("string"),
|
| 261 |
+
"ref_id": datasets.Value("string"),
|
| 262 |
+
}
|
| 263 |
+
),
|
| 264 |
+
}
|
| 265 |
+
],
|
| 266 |
+
"relations": [ # R line in brat
|
| 267 |
+
{
|
| 268 |
+
"id": datasets.Value("string"),
|
| 269 |
+
"head": {
|
| 270 |
+
"ref_id": datasets.Value("string"),
|
| 271 |
+
"role": datasets.Value("string"),
|
| 272 |
+
},
|
| 273 |
+
"tail": {
|
| 274 |
+
"ref_id": datasets.Value("string"),
|
| 275 |
+
"role": datasets.Value("string"),
|
| 276 |
+
},
|
| 277 |
+
"type": datasets.Value("string"),
|
| 278 |
+
}
|
| 279 |
+
],
|
| 280 |
+
"equivalences": [ # Equiv line in brat
|
| 281 |
+
{
|
| 282 |
+
"id": datasets.Value("string"),
|
| 283 |
+
"ref_ids": datasets.Sequence(datasets.Value("string")),
|
| 284 |
+
}
|
| 285 |
+
],
|
| 286 |
+
"attributes": [ # M or A lines in brat
|
| 287 |
+
{
|
| 288 |
+
"id": datasets.Value("string"),
|
| 289 |
+
"type": datasets.Value("string"),
|
| 290 |
+
"ref_id": datasets.Value("string"),
|
| 291 |
+
"value": datasets.Value("string"),
|
| 292 |
+
}
|
| 293 |
+
],
|
| 294 |
+
"normalizations": [ # N lines in brat
|
| 295 |
+
{
|
| 296 |
+
"id": datasets.Value("string"),
|
| 297 |
+
"type": datasets.Value("string"),
|
| 298 |
+
"ref_id": datasets.Value("string"),
|
| 299 |
+
"resource_name": datasets.Value(
|
| 300 |
+
"string"
|
| 301 |
+
), # Name of the resource, e.g. "Wikipedia"
|
| 302 |
+
"cuid": datasets.Value(
|
| 303 |
+
"string"
|
| 304 |
+
), # ID in the resource, e.g. 534366
|
| 305 |
+
"text": datasets.Value(
|
| 306 |
+
"string"
|
| 307 |
+
), # Human readable description/name of the entity, e.g. "Barack Obama"
|
| 308 |
+
}
|
| 309 |
+
],
|
| 310 |
+
### OPTIONAL: Only included when `parse_notes == True`
|
| 311 |
+
"notes": [ # # lines in brat
|
| 312 |
+
{
|
| 313 |
+
"id": datasets.Value("string"),
|
| 314 |
+
"type": datasets.Value("string"),
|
| 315 |
+
"ref_id": datasets.Value("string"),
|
| 316 |
+
"text": datasets.Value("string"),
|
| 317 |
+
}
|
| 318 |
+
],
|
| 319 |
+
},
|
| 320 |
+
)
|
| 321 |
+
"""
|
| 322 |
+
|
| 323 |
+
example = {}
|
| 324 |
+
example["document_id"] = txt_file.with_suffix("").name
|
| 325 |
+
with txt_file.open() as f:
|
| 326 |
+
example["text"] = f.read()
|
| 327 |
+
|
| 328 |
+
# If no specific suffixes of the to-be-read annotation files are given - take standard suffixes
|
| 329 |
+
# for event extraction
|
| 330 |
+
if annotation_file_suffixes is None:
|
| 331 |
+
annotation_file_suffixes = [".a1", ".a2", ".ann"]
|
| 332 |
+
|
| 333 |
+
if len(annotation_file_suffixes) == 0:
|
| 334 |
+
raise AssertionError(
|
| 335 |
+
"At least one suffix for the to-be-read annotation files should be given!"
|
| 336 |
+
)
|
| 337 |
+
|
| 338 |
+
ann_lines = []
|
| 339 |
+
for suffix in annotation_file_suffixes:
|
| 340 |
+
annotation_file = txt_file.with_suffix(suffix)
|
| 341 |
+
if annotation_file.exists():
|
| 342 |
+
with annotation_file.open() as f:
|
| 343 |
+
ann_lines.extend(f.readlines())
|
| 344 |
+
|
| 345 |
+
example["text_bound_annotations"] = []
|
| 346 |
+
example["events"] = []
|
| 347 |
+
example["relations"] = []
|
| 348 |
+
example["equivalences"] = []
|
| 349 |
+
example["attributes"] = []
|
| 350 |
+
example["normalizations"] = []
|
| 351 |
+
|
| 352 |
+
if parse_notes:
|
| 353 |
+
example["notes"] = []
|
| 354 |
+
|
| 355 |
+
for line in ann_lines:
|
| 356 |
+
line = line.strip()
|
| 357 |
+
if not line:
|
| 358 |
+
continue
|
| 359 |
+
|
| 360 |
+
if line.startswith("T"): # Text bound
|
| 361 |
+
ann = {}
|
| 362 |
+
fields = line.split("\t")
|
| 363 |
+
|
| 364 |
+
ann["id"] = fields[0]
|
| 365 |
+
ann["type"] = fields[1].split()[0]
|
| 366 |
+
ann["offsets"] = []
|
| 367 |
+
span_str = remove_prefix(fields[1], (ann["type"] + " "))
|
| 368 |
+
text = fields[2]
|
| 369 |
+
for span in span_str.split(";"):
|
| 370 |
+
start, end = span.split()
|
| 371 |
+
ann["offsets"].append([int(start), int(end)])
|
| 372 |
+
|
| 373 |
+
# Heuristically split text of discontiguous entities into chunks
|
| 374 |
+
ann["text"] = []
|
| 375 |
+
if len(ann["offsets"]) > 1:
|
| 376 |
+
i = 0
|
| 377 |
+
for start, end in ann["offsets"]:
|
| 378 |
+
chunk_len = end - start
|
| 379 |
+
ann["text"].append(text[i : chunk_len + i])
|
| 380 |
+
i += chunk_len
|
| 381 |
+
while i < len(text) and text[i] == " ":
|
| 382 |
+
i += 1
|
| 383 |
+
else:
|
| 384 |
+
ann["text"] = [text]
|
| 385 |
+
|
| 386 |
+
example["text_bound_annotations"].append(ann)
|
| 387 |
+
|
| 388 |
+
elif line.startswith("E"):
|
| 389 |
+
ann = {}
|
| 390 |
+
fields = line.split("\t")
|
| 391 |
+
|
| 392 |
+
ann["id"] = fields[0]
|
| 393 |
+
|
| 394 |
+
ann["type"], ann["trigger"] = fields[1].split()[0].split(":")
|
| 395 |
+
|
| 396 |
+
ann["arguments"] = []
|
| 397 |
+
for role_ref_id in fields[1].split()[1:]:
|
| 398 |
+
argument = {
|
| 399 |
+
"role": (role_ref_id.split(":"))[0],
|
| 400 |
+
"ref_id": (role_ref_id.split(":"))[1],
|
| 401 |
+
}
|
| 402 |
+
ann["arguments"].append(argument)
|
| 403 |
+
|
| 404 |
+
example["events"].append(ann)
|
| 405 |
+
|
| 406 |
+
elif line.startswith("R"):
|
| 407 |
+
ann = {}
|
| 408 |
+
fields = line.split("\t")
|
| 409 |
+
|
| 410 |
+
ann["id"] = fields[0]
|
| 411 |
+
ann["type"] = fields[1].split()[0]
|
| 412 |
+
|
| 413 |
+
ann["head"] = {
|
| 414 |
+
"role": fields[1].split()[1].split(":")[0],
|
| 415 |
+
"ref_id": fields[1].split()[1].split(":")[1],
|
| 416 |
+
}
|
| 417 |
+
ann["tail"] = {
|
| 418 |
+
"role": fields[1].split()[2].split(":")[0],
|
| 419 |
+
"ref_id": fields[1].split()[2].split(":")[1],
|
| 420 |
+
}
|
| 421 |
+
|
| 422 |
+
example["relations"].append(ann)
|
| 423 |
+
|
| 424 |
+
# '*' seems to be the legacy way to mark equivalences,
|
| 425 |
+
# but I couldn't find any info on the current way
|
| 426 |
+
# this might have to be adapted dependent on the brat version
|
| 427 |
+
# of the annotation
|
| 428 |
+
elif line.startswith("*"):
|
| 429 |
+
ann = {}
|
| 430 |
+
fields = line.split("\t")
|
| 431 |
+
|
| 432 |
+
ann["id"] = fields[0]
|
| 433 |
+
ann["ref_ids"] = fields[1].split()[1:]
|
| 434 |
+
|
| 435 |
+
example["equivalences"].append(ann)
|
| 436 |
+
|
| 437 |
+
elif line.startswith("A") or line.startswith("M"):
|
| 438 |
+
ann = {}
|
| 439 |
+
fields = line.split("\t")
|
| 440 |
+
|
| 441 |
+
ann["id"] = fields[0]
|
| 442 |
+
|
| 443 |
+
info = fields[1].split()
|
| 444 |
+
ann["type"] = info[0]
|
| 445 |
+
ann["ref_id"] = info[1]
|
| 446 |
+
|
| 447 |
+
if len(info) > 2:
|
| 448 |
+
ann["value"] = info[2]
|
| 449 |
+
else:
|
| 450 |
+
ann["value"] = ""
|
| 451 |
+
|
| 452 |
+
example["attributes"].append(ann)
|
| 453 |
+
|
| 454 |
+
elif line.startswith("N"):
|
| 455 |
+
ann = {}
|
| 456 |
+
fields = line.split("\t")
|
| 457 |
+
|
| 458 |
+
ann["id"] = fields[0]
|
| 459 |
+
ann["text"] = fields[2]
|
| 460 |
+
|
| 461 |
+
info = fields[1].split()
|
| 462 |
+
|
| 463 |
+
ann["type"] = info[0]
|
| 464 |
+
ann["ref_id"] = info[1]
|
| 465 |
+
ann["resource_name"] = info[2].split(":")[0]
|
| 466 |
+
ann["cuid"] = info[2].split(":")[1]
|
| 467 |
+
example["normalizations"].append(ann)
|
| 468 |
+
|
| 469 |
+
elif parse_notes and line.startswith("#"):
|
| 470 |
+
ann = {}
|
| 471 |
+
fields = line.split("\t")
|
| 472 |
+
|
| 473 |
+
ann["id"] = fields[0]
|
| 474 |
+
ann["text"] = fields[2] if len(fields) == 3 else BigBioValues.NULL
|
| 475 |
+
|
| 476 |
+
info = fields[1].split()
|
| 477 |
+
|
| 478 |
+
ann["type"] = info[0]
|
| 479 |
+
ann["ref_id"] = info[1]
|
| 480 |
+
example["notes"].append(ann)
|
| 481 |
+
|
| 482 |
+
return example
|
| 483 |
+
|
| 484 |
+
|
| 485 |
+
def brat_parse_to_bigbio_kb(brat_parse: Dict) -> Dict:
|
| 486 |
+
"""
|
| 487 |
+
Transform a brat parse (conforming to the standard brat schema) obtained with
|
| 488 |
+
`parse_brat_file` into a dictionary conforming to the `bigbio-kb` schema (as defined in ../schemas/kb.py)
|
| 489 |
+
:param brat_parse:
|
| 490 |
+
"""
|
| 491 |
+
|
| 492 |
+
unified_example = {}
|
| 493 |
+
|
| 494 |
+
# Prefix all ids with document id to ensure global uniqueness,
|
| 495 |
+
# because brat ids are only unique within their document
|
| 496 |
+
id_prefix = brat_parse["document_id"] + "_"
|
| 497 |
+
|
| 498 |
+
# identical
|
| 499 |
+
unified_example["document_id"] = brat_parse["document_id"]
|
| 500 |
+
unified_example["passages"] = [
|
| 501 |
+
{
|
| 502 |
+
"id": id_prefix + "_text",
|
| 503 |
+
"type": "abstract",
|
| 504 |
+
"text": [brat_parse["text"]],
|
| 505 |
+
"offsets": [[0, len(brat_parse["text"])]],
|
| 506 |
+
}
|
| 507 |
+
]
|
| 508 |
+
|
| 509 |
+
# get normalizations
|
| 510 |
+
ref_id_to_normalizations = defaultdict(list)
|
| 511 |
+
for normalization in brat_parse["normalizations"]:
|
| 512 |
+
ref_id_to_normalizations[normalization["ref_id"]].append(
|
| 513 |
+
{
|
| 514 |
+
"db_name": normalization["resource_name"],
|
| 515 |
+
"db_id": normalization["cuid"],
|
| 516 |
+
}
|
| 517 |
+
)
|
| 518 |
+
|
| 519 |
+
# separate entities and event triggers
|
| 520 |
+
unified_example["events"] = []
|
| 521 |
+
non_event_ann = brat_parse["text_bound_annotations"].copy()
|
| 522 |
+
for event in brat_parse["events"]:
|
| 523 |
+
event = event.copy()
|
| 524 |
+
event["id"] = id_prefix + event["id"]
|
| 525 |
+
trigger = next(
|
| 526 |
+
tr
|
| 527 |
+
for tr in brat_parse["text_bound_annotations"]
|
| 528 |
+
if tr["id"] == event["trigger"]
|
| 529 |
+
)
|
| 530 |
+
if trigger in non_event_ann:
|
| 531 |
+
non_event_ann.remove(trigger)
|
| 532 |
+
event["trigger"] = {
|
| 533 |
+
"text": trigger["text"].copy(),
|
| 534 |
+
"offsets": trigger["offsets"].copy(),
|
| 535 |
+
}
|
| 536 |
+
for argument in event["arguments"]:
|
| 537 |
+
argument["ref_id"] = id_prefix + argument["ref_id"]
|
| 538 |
+
|
| 539 |
+
unified_example["events"].append(event)
|
| 540 |
+
|
| 541 |
+
unified_example["entities"] = []
|
| 542 |
+
anno_ids = [ref_id["id"] for ref_id in non_event_ann]
|
| 543 |
+
for ann in non_event_ann:
|
| 544 |
+
entity_ann = ann.copy()
|
| 545 |
+
entity_ann["id"] = id_prefix + entity_ann["id"]
|
| 546 |
+
entity_ann["normalized"] = ref_id_to_normalizations[ann["id"]]
|
| 547 |
+
unified_example["entities"].append(entity_ann)
|
| 548 |
+
|
| 549 |
+
# massage relations
|
| 550 |
+
unified_example["relations"] = []
|
| 551 |
+
skipped_relations = set()
|
| 552 |
+
for ann in brat_parse["relations"]:
|
| 553 |
+
if (
|
| 554 |
+
ann["head"]["ref_id"] not in anno_ids
|
| 555 |
+
or ann["tail"]["ref_id"] not in anno_ids
|
| 556 |
+
):
|
| 557 |
+
skipped_relations.add(ann["id"])
|
| 558 |
+
continue
|
| 559 |
+
unified_example["relations"].append(
|
| 560 |
+
{
|
| 561 |
+
"arg1_id": id_prefix + ann["head"]["ref_id"],
|
| 562 |
+
"arg2_id": id_prefix + ann["tail"]["ref_id"],
|
| 563 |
+
"id": id_prefix + ann["id"],
|
| 564 |
+
"type": ann["type"],
|
| 565 |
+
"normalized": [],
|
| 566 |
+
}
|
| 567 |
+
)
|
| 568 |
+
if len(skipped_relations) > 0:
|
| 569 |
+
example_id = brat_parse["document_id"]
|
| 570 |
+
logger.info(
|
| 571 |
+
f"Example:{example_id}: The `bigbio_kb` schema allows `relations` only between entities."
|
| 572 |
+
f" Skip (for now): "
|
| 573 |
+
f"{list(skipped_relations)}"
|
| 574 |
+
)
|
| 575 |
+
|
| 576 |
+
# get coreferences
|
| 577 |
+
unified_example["coreferences"] = []
|
| 578 |
+
for i, ann in enumerate(brat_parse["equivalences"], start=1):
|
| 579 |
+
is_entity_cluster = True
|
| 580 |
+
for ref_id in ann["ref_ids"]:
|
| 581 |
+
if not ref_id.startswith("T"): # not textbound -> no entity
|
| 582 |
+
is_entity_cluster = False
|
| 583 |
+
elif ref_id not in anno_ids: # event trigger -> no entity
|
| 584 |
+
is_entity_cluster = False
|
| 585 |
+
if is_entity_cluster:
|
| 586 |
+
entity_ids = [id_prefix + i for i in ann["ref_ids"]]
|
| 587 |
+
unified_example["coreferences"].append(
|
| 588 |
+
{"id": id_prefix + str(i), "entity_ids": entity_ids}
|
| 589 |
+
)
|
| 590 |
+
return unified_example
|
czi_drsm.py
ADDED
|
@@ -0,0 +1,410 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and Gully Burns.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
"""
|
| 17 |
+
Research Article document classification dataset based on aspects of disease research. Currently, the dataset consists of three subsets:
|
| 18 |
+
|
| 19 |
+
(A) classifies title/abstracts of papers into most popular subtypes of clinical, basic, and translational papers (~20k papers);
|
| 20 |
+
- Clinical Characteristics, Disease Pathology, and Diagnosis -
|
| 21 |
+
Text that describes (A) symptoms, signs, or ‘phenotype’ of a disease;
|
| 22 |
+
(B) the effects of the disease on patient organs, tissues, or cells;
|
| 23 |
+
(C) the results of clinical tests that reveal pathology (including
|
| 24 |
+
biomarkers); (D) research that use this information to figure out
|
| 25 |
+
a diagnosis.
|
| 26 |
+
- Therapeutics in the clinic -
|
| 27 |
+
Text describing how treatments work in the clinic (but not in a clinical trial).
|
| 28 |
+
- Disease mechanism -
|
| 29 |
+
Text that describes either (A) mechanistic involvement of specific genes in disease
|
| 30 |
+
(deletions, gain of function, etc); (B) how molecular signalling or metabolism
|
| 31 |
+
binding, activating, phosphorylation, concentration increase, etc.)
|
| 32 |
+
are involved in the mechanism of a disease; or (C) the physiological
|
| 33 |
+
mechanism of disease at the level of tissues, organs, and body systems.
|
| 34 |
+
- Patient-Based Therapeutics -
|
| 35 |
+
Text describing (A) Clinical trials (studies of therapeutic measures being
|
| 36 |
+
used on patients in a clinical trial); (B) Post Marketing Drug Surveillance
|
| 37 |
+
(effects of a drug after approval in the general population or as part of
|
| 38 |
+
‘standard healthcare’); (C) Drug repurposing (how a drug that has been
|
| 39 |
+
approved for one use is being applied to a new disease).
|
| 40 |
+
|
| 41 |
+
(B) identifies whether a title/abstract of a paper describes substantive research into Quality of Life (~10k papers);
|
| 42 |
+
- -1 - the paper is not a primary experimental study in rare disease
|
| 43 |
+
- 0 - the study does not directly investigate quality of life
|
| 44 |
+
- 1 - the study investigates qol but not as its primary contribution
|
| 45 |
+
- 2 - the study's primary contribution centers on quality of life measures
|
| 46 |
+
|
| 47 |
+
(C) identifies if a paper is a natural history study (~10k papers).
|
| 48 |
+
` - -1 - the paper is not a primary experimental study in rare disease
|
| 49 |
+
- 0 - the study is not directly investigating the natural history of a disease
|
| 50 |
+
- 1 - the study includes some elements a natural history but not as its primary contribution
|
| 51 |
+
- 2 - the study's primary contribution centers on observing the time course of a rare disease
|
| 52 |
+
|
| 53 |
+
These classifications are particularly relevant in rare disease research, a field that is generally understudied.
|
| 54 |
+
"""
|
| 55 |
+
|
| 56 |
+
import os
|
| 57 |
+
from typing import List, Tuple, Dict
|
| 58 |
+
|
| 59 |
+
import datasets
|
| 60 |
+
import pandas as pd
|
| 61 |
+
from pathlib import Path
|
| 62 |
+
|
| 63 |
+
import bigbio.utils.parsing as parse
|
| 64 |
+
from bigbio.utils import schemas
|
| 65 |
+
from bigbio.utils.configs import BigBioConfig
|
| 66 |
+
from bigbio.utils.constants import Lang, Tasks
|
| 67 |
+
from bigbio.utils.license import Licenses
|
| 68 |
+
|
| 69 |
+
#from .bigbiohub import BigBioConfig
|
| 70 |
+
#from .bigbiohub import Tasks
|
| 71 |
+
|
| 72 |
+
#from .bigbiohub import
|
| 73 |
+
|
| 74 |
+
_LOCAL = False
|
| 75 |
+
|
| 76 |
+
_CITATION = """\
|
| 77 |
+
@article{,
|
| 78 |
+
author = {},
|
| 79 |
+
title = {},
|
| 80 |
+
journal = {},
|
| 81 |
+
volume = {},
|
| 82 |
+
year = {},
|
| 83 |
+
url = {},
|
| 84 |
+
doi = {},
|
| 85 |
+
biburl = {},
|
| 86 |
+
bibsource = {}
|
| 87 |
+
}
|
| 88 |
+
"""
|
| 89 |
+
|
| 90 |
+
_DATASETNAME = "czi_drsm"
|
| 91 |
+
|
| 92 |
+
_DESCRIPTION = """\
|
| 93 |
+
Research Article document classification dataset based on aspects of disease research. Currently, the dataset consists of three subsets:
|
| 94 |
+
|
| 95 |
+
(A) classifies title/abstracts of papers into most popular subtypes of clinical, basic, and translational papers (~20k papers);
|
| 96 |
+
- Clinical Characteristics, Disease Pathology, and Diagnosis -
|
| 97 |
+
Text that describes (A) symptoms, signs, or ‘phenotype’ of a disease;
|
| 98 |
+
(B) the effects of the disease on patient organs, tissues, or cells;
|
| 99 |
+
(C) the results of clinical tests that reveal pathology (including
|
| 100 |
+
biomarkers); (D) research that use this information to figure out
|
| 101 |
+
a diagnosis.
|
| 102 |
+
- Therapeutics in the clinic -
|
| 103 |
+
Text describing how treatments work in the clinic (but not in a clinical trial).
|
| 104 |
+
- Disease mechanism -
|
| 105 |
+
Text that describes either (A) mechanistic involvement of specific genes in disease
|
| 106 |
+
(deletions, gain of function, etc); (B) how molecular signalling or metabolism
|
| 107 |
+
binding, activating, phosphorylation, concentration increase, etc.)
|
| 108 |
+
are involved in the mechanism of a disease; or (C) the physiological
|
| 109 |
+
mechanism of disease at the level of tissues, organs, and body systems.
|
| 110 |
+
- Patient-Based Therapeutics -
|
| 111 |
+
Text describing (A) Clinical trials (studies of therapeutic measures being
|
| 112 |
+
used on patients in a clinical trial); (B) Post Marketing Drug Surveillance
|
| 113 |
+
(effects of a drug after approval in the general population or as part of
|
| 114 |
+
‘standard healthcare’); (C) Drug repurposing (how a drug that has been
|
| 115 |
+
approved for one use is being applied to a new disease).
|
| 116 |
+
|
| 117 |
+
(B) identifies whether a title/abstract of a paper describes substantive research into Quality of Life (~10k papers);
|
| 118 |
+
- -1 - the paper is not a primary experimental study in rare disease
|
| 119 |
+
- 0 - the study does not directly investigate quality of life
|
| 120 |
+
- 1 - the study investigates qol but not as its primary contribution
|
| 121 |
+
- 2 - the study's primary contribution centers on quality of life measures
|
| 122 |
+
|
| 123 |
+
(C) identifies if a paper is a natural history study (~10k papers).
|
| 124 |
+
` - -1 - the paper is not a primary experimental study in rare disease
|
| 125 |
+
- 0 - the study is not directly investigating the natural history of a disease
|
| 126 |
+
- 1 - the study includes some elements a natural history but not as its primary contribution
|
| 127 |
+
- 2 - the study's primary contribution centers on observing the time course of a rare disease
|
| 128 |
+
|
| 129 |
+
These classifications are particularly relevant in rare disease research, a field that is generally understudied.
|
| 130 |
+
"""
|
| 131 |
+
|
| 132 |
+
_HOMEPAGE = "https://github.com/chanzuckerberg/DRSM-corpus/"
|
| 133 |
+
_LICENSE = "CC0_1p0"
|
| 134 |
+
|
| 135 |
+
_LANGUAGES = ['English']
|
| 136 |
+
_PUBMED = False
|
| 137 |
+
_LOCAL = False
|
| 138 |
+
_DISPLAYNAME = "DRSM Corpus"
|
| 139 |
+
|
| 140 |
+
# For publicly available datasets you will most likely end up passing these URLs to dl_manager in _split_generators.
|
| 141 |
+
# In most cases the URLs will be the same for the source and bigbio config.
|
| 142 |
+
# However, if you need to access different files for each config you can have multiple entries in this dict.
|
| 143 |
+
# This can be an arbitrarily nested dict/list of URLs (see below in `_split_generators` method)
|
| 144 |
+
_URLS = {
|
| 145 |
+
'base': "https://raw.githubusercontent.com/chanzuckerberg/DRSM-corpus/main/v1/drsm_corpus_v1.tsv",
|
| 146 |
+
'qol': "https://raw.githubusercontent.com/chanzuckerberg/DRSM-corpus/main/v2/qol_all_2022_12_15.tsv",
|
| 147 |
+
'nhs': "https://raw.githubusercontent.com/chanzuckerberg/DRSM-corpus/main/v2/nhs_all_2023_03_31.tsv"
|
| 148 |
+
}
|
| 149 |
+
|
| 150 |
+
_SUPPORTED_TASKS = [Tasks.TEXT_CLASSIFICATION]
|
| 151 |
+
|
| 152 |
+
_SOURCE_VERSION = "1.0.0"
|
| 153 |
+
_BIGBIO_VERSION = "1.0.0"
|
| 154 |
+
|
| 155 |
+
_CLASS_NAMES_BASE = [
|
| 156 |
+
"clinical characteristics or disease pathology",
|
| 157 |
+
"therapeutics in the clinic",
|
| 158 |
+
"disease mechanism",
|
| 159 |
+
"patient-based therapeutics",
|
| 160 |
+
"other",
|
| 161 |
+
"irrelevant"
|
| 162 |
+
]
|
| 163 |
+
|
| 164 |
+
_CLASS_NAMES_QOL = [
|
| 165 |
+
"-1 - the paper is not a primary experimental study in rare disease",
|
| 166 |
+
"0 - the study does not directly investigate quality of life",
|
| 167 |
+
"1 - the study investigates qol but not as its primary contribution",
|
| 168 |
+
"2 - the study's primary contribution centers on quality of life measures"
|
| 169 |
+
]
|
| 170 |
+
|
| 171 |
+
_CLASS_NAMES_NHS = [
|
| 172 |
+
"-1 - the paper is not a primary experimental study in rare disease",
|
| 173 |
+
"0 - the study is not directly investigating the natural history of a disease",
|
| 174 |
+
"1 - the study includes some elements a natural history but not as its primary contribution",
|
| 175 |
+
"2 - the study's primary contribution centers on observing the time course of a rare disease"
|
| 176 |
+
]
|
| 177 |
+
|
| 178 |
+
class DRSMBaseDataset(datasets.GeneratorBasedBuilder):
|
| 179 |
+
"""DRSM Document Classification Datasets."""
|
| 180 |
+
|
| 181 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
| 182 |
+
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
|
| 183 |
+
|
| 184 |
+
# You will be able to load the "source" or "bigbio" configurations with
|
| 185 |
+
#ds_source = datasets.load_dataset('drsm_source_dataset', name='source')
|
| 186 |
+
#ds_bigbio = datasets.load_dataset('drsm_bigbio_dataset', name='bigbio')
|
| 187 |
+
|
| 188 |
+
# For local datasets you can make use of the `data_dir` and `data_files` kwargs
|
| 189 |
+
# https://huggingface.co/docs/datasets/add_dataset.html#downloading-data-files-and-organizing-splits
|
| 190 |
+
# ds_source = datasets.load_dataset('my_dataset', name='source', data_dir="/path/to/data/files")
|
| 191 |
+
# ds_bigbio = datasets.load_dataset('my_dataset', name='bigbio', data_dir="/path/to/data/files")
|
| 192 |
+
|
| 193 |
+
# TODO: For each dataset, implement Config for Source and BigBio;
|
| 194 |
+
# If dataset contains more than one subset (see examples/bioasq.py) implement for EACH of them.
|
| 195 |
+
# Each of them should contain:
|
| 196 |
+
# - name: should be unique for each dataset config eg. bioasq10b_(source|bigbio)_[bigbio_schema_name]
|
| 197 |
+
# - version: option = (SOURCE_VERSION|BIGBIO_VERSION)
|
| 198 |
+
# - description: one line description for the dataset
|
| 199 |
+
# - schema: options = (source|bigbio_[bigbio_schema_name])
|
| 200 |
+
# - subset_id: subset id is the canonical name for the dataset (eg. bioasq10b)
|
| 201 |
+
# where [bigbio_schema_name] = ()
|
| 202 |
+
|
| 203 |
+
BUILDER_CONFIGS = [
|
| 204 |
+
BigBioConfig(
|
| 205 |
+
name="czi_drsm_base_source",
|
| 206 |
+
version=SOURCE_VERSION,
|
| 207 |
+
description="czi_drsm base source schema",
|
| 208 |
+
schema="base_source",
|
| 209 |
+
subset_id="czi_drsm_base",
|
| 210 |
+
),
|
| 211 |
+
BigBioConfig(
|
| 212 |
+
name="czi_drsm_bigbio_base_text",
|
| 213 |
+
version=BIGBIO_VERSION,
|
| 214 |
+
description="czi_drsm base BigBio schema",
|
| 215 |
+
schema="bigbio_text",
|
| 216 |
+
subset_id="czi_drsm_base",
|
| 217 |
+
),
|
| 218 |
+
BigBioConfig(
|
| 219 |
+
name="czi_drsm_qol_source",
|
| 220 |
+
version=SOURCE_VERSION,
|
| 221 |
+
description="czi_drsm source schema for Quality of Life studies",
|
| 222 |
+
schema="qol_source",
|
| 223 |
+
subset_id="czi_drsm_qol",
|
| 224 |
+
),
|
| 225 |
+
BigBioConfig(
|
| 226 |
+
name="czi_drsm_bigbio_qol_text",
|
| 227 |
+
version=BIGBIO_VERSION,
|
| 228 |
+
description="czi_drsm BigBio schema for Quality of Life studies",
|
| 229 |
+
schema="bigbio_text",
|
| 230 |
+
subset_id="czi_drsm_qol",
|
| 231 |
+
),
|
| 232 |
+
BigBioConfig(
|
| 233 |
+
name="czi_drsm_nhs_source",
|
| 234 |
+
version=SOURCE_VERSION,
|
| 235 |
+
description="czi_drsm source schema for Natural History Studies",
|
| 236 |
+
schema="nhs_source",
|
| 237 |
+
subset_id="czi_drsm_nhs",
|
| 238 |
+
),
|
| 239 |
+
BigBioConfig(
|
| 240 |
+
name="czi_drsm_bigbio_nhs_text",
|
| 241 |
+
version=BIGBIO_VERSION,
|
| 242 |
+
description="czi_drsm BigBio schema for Natural History Studies",
|
| 243 |
+
schema="bigbio_text",
|
| 244 |
+
subset_id="czi_drsm_nhs",
|
| 245 |
+
),
|
| 246 |
+
]
|
| 247 |
+
|
| 248 |
+
DEFAULT_CONFIG_NAME = "czi_drsm_bigbio_base_text"
|
| 249 |
+
|
| 250 |
+
def _info(self) -> datasets.DatasetInfo:
|
| 251 |
+
|
| 252 |
+
# Create the source schema; this schema will keep all keys/information/labels as close to the original dataset as possible.
|
| 253 |
+
|
| 254 |
+
# You can arbitrarily nest lists and dictionaries.
|
| 255 |
+
# For iterables, use lists over tuples or `datasets.Sequence`
|
| 256 |
+
|
| 257 |
+
if self.config.schema == "base_source":
|
| 258 |
+
features = datasets.Features(
|
| 259 |
+
{
|
| 260 |
+
"document_id": datasets.Value("string"),
|
| 261 |
+
"labeling_state": datasets.Value("string"),
|
| 262 |
+
"explanation": datasets.Value("string"),
|
| 263 |
+
"correct_label": [datasets.ClassLabel(names=_CLASS_NAMES_BASE)],
|
| 264 |
+
"agreement": [datasets.Value("string")],
|
| 265 |
+
"title": [datasets.Value("string")],
|
| 266 |
+
"abstract": [datasets.Value("string")],
|
| 267 |
+
}
|
| 268 |
+
)
|
| 269 |
+
|
| 270 |
+
elif self.config.schema == "qol_source":
|
| 271 |
+
features = datasets.Features(
|
| 272 |
+
{
|
| 273 |
+
"document_id": datasets.Value("string"),
|
| 274 |
+
"labeling_state": datasets.Value("string"),
|
| 275 |
+
"correct_label": [datasets.ClassLabel(names=_CLASS_NAMES_QOL)],
|
| 276 |
+
"explanation": datasets.Value("string"),
|
| 277 |
+
"agreement": [datasets.Value("string")],
|
| 278 |
+
"title": [datasets.Value("string")],
|
| 279 |
+
"abstract": [datasets.Value("string")]
|
| 280 |
+
}
|
| 281 |
+
)
|
| 282 |
+
|
| 283 |
+
elif self.config.schema == "nhs_source":
|
| 284 |
+
features = datasets.Features(
|
| 285 |
+
{
|
| 286 |
+
"document_id": datasets.Value("string"),
|
| 287 |
+
"labeling_state": datasets.Value("string"),
|
| 288 |
+
"correct_label": [datasets.ClassLabel(names=_CLASS_NAMES_NHS)],
|
| 289 |
+
"explanation": datasets.Value("string"),
|
| 290 |
+
"agreement": [datasets.Value("string")],
|
| 291 |
+
"title": [datasets.Value("string")],
|
| 292 |
+
"abstract": [datasets.Value("string")],
|
| 293 |
+
}
|
| 294 |
+
)
|
| 295 |
+
|
| 296 |
+
# For example bigbio_kb, bigbio_t2t
|
| 297 |
+
elif self.config.schema == "bigbio_text":
|
| 298 |
+
features = schemas.text_features
|
| 299 |
+
|
| 300 |
+
return datasets.DatasetInfo(
|
| 301 |
+
description=_DESCRIPTION,
|
| 302 |
+
features=features,
|
| 303 |
+
homepage=_HOMEPAGE,
|
| 304 |
+
license=_LICENSE,
|
| 305 |
+
citation=_CITATION,
|
| 306 |
+
)
|
| 307 |
+
|
| 308 |
+
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
|
| 309 |
+
"""Returns SplitGenerators."""
|
| 310 |
+
|
| 311 |
+
if 'base' in self.config.name:
|
| 312 |
+
url = _URLS['base']
|
| 313 |
+
elif 'qol' in self.config.name:
|
| 314 |
+
url = _URLS['qol']
|
| 315 |
+
elif 'nhs' in self.config.name:
|
| 316 |
+
url = _URLS['nhs']
|
| 317 |
+
else:
|
| 318 |
+
raise ValueError("Invalid config name: {}".format(self.config.name))
|
| 319 |
+
|
| 320 |
+
data_file = dl_manager.download_and_extract(url)
|
| 321 |
+
df = pd.read_csv(data_file, sep="\t", encoding="utf-8").fillna('')
|
| 322 |
+
|
| 323 |
+
# load tsv file into huggingface dataset
|
| 324 |
+
ds = datasets.Dataset.from_pandas(df)
|
| 325 |
+
|
| 326 |
+
# generate train_test split
|
| 327 |
+
ds_dict = ds.train_test_split(test_size=0.2, seed=42)
|
| 328 |
+
ds_dict2 = ds_dict['test'].train_test_split(test_size=0.5, seed=42)
|
| 329 |
+
|
| 330 |
+
# dump train, val, test to disk
|
| 331 |
+
data_dir = Path(data_file).parent
|
| 332 |
+
ds_dict['train'].to_csv(data_dir / "train.tsv", sep="\t", index=False)
|
| 333 |
+
ds_dict2['train'].to_csv(data_dir / "validation.tsv", sep="\t", index=False)
|
| 334 |
+
ds_dict2['test'].to_csv(data_dir / "test.tsv", sep="\t", index=False)
|
| 335 |
+
|
| 336 |
+
return [
|
| 337 |
+
datasets.SplitGenerator(
|
| 338 |
+
name=datasets.Split.TRAIN,
|
| 339 |
+
gen_kwargs={
|
| 340 |
+
"filepath": data_dir / "train.tsv",
|
| 341 |
+
"split": "train",
|
| 342 |
+
},
|
| 343 |
+
),
|
| 344 |
+
datasets.SplitGenerator(
|
| 345 |
+
name=datasets.Split.VALIDATION,
|
| 346 |
+
gen_kwargs={
|
| 347 |
+
"filepath": data_dir / "validation.tsv",
|
| 348 |
+
"split": "validation",
|
| 349 |
+
},
|
| 350 |
+
),
|
| 351 |
+
datasets.SplitGenerator(
|
| 352 |
+
name=datasets.Split.TEST,
|
| 353 |
+
gen_kwargs={
|
| 354 |
+
"filepath": data_dir / "test.tsv",
|
| 355 |
+
"split": "test",
|
| 356 |
+
},
|
| 357 |
+
)
|
| 358 |
+
]
|
| 359 |
+
|
| 360 |
+
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
| 361 |
+
def _generate_examples(self, filepath, split) -> Tuple[int, Dict]:
|
| 362 |
+
"""Yields examples as (key, example) tuples."""
|
| 363 |
+
df = pd.read_csv(filepath, sep="\t", encoding="utf-8").fillna('')
|
| 364 |
+
print(len(df))
|
| 365 |
+
for id_, l in df.iterrows():
|
| 366 |
+
if self.config.subset_id == "czi_drsm_base":
|
| 367 |
+
doc_id = l[0]
|
| 368 |
+
labeling_state = l[1]
|
| 369 |
+
correct_label = l[2]
|
| 370 |
+
agreement = l[3]
|
| 371 |
+
explanation = l[4]
|
| 372 |
+
title = l[5]
|
| 373 |
+
abstract = l[6]
|
| 374 |
+
elif self.config.subset_id == "czi_drsm_qol":
|
| 375 |
+
doc_id = l[0]
|
| 376 |
+
labeling_state = l[1]
|
| 377 |
+
correct_label = l[2][1:-1]
|
| 378 |
+
explanation = l[3]
|
| 379 |
+
agreement = l[4]
|
| 380 |
+
title = l[5]
|
| 381 |
+
abstract = l[6]
|
| 382 |
+
elif self.config.subset_id == "czi_drsm_nhs":
|
| 383 |
+
doc_id = l[0]
|
| 384 |
+
labeling_state = l[1]
|
| 385 |
+
correct_label = l[2][1:-1]
|
| 386 |
+
explanation = ''
|
| 387 |
+
agreement = l[3]
|
| 388 |
+
title = l[4]
|
| 389 |
+
abstract = l[5]
|
| 390 |
+
|
| 391 |
+
if "_source" in self.config.schema:
|
| 392 |
+
yield id_, {
|
| 393 |
+
"document_id": doc_id,
|
| 394 |
+
"labeling_state": labeling_state,
|
| 395 |
+
"explanation": explanation,
|
| 396 |
+
"correct_label": [correct_label],
|
| 397 |
+
"agreement": str(agreement),
|
| 398 |
+
"title": title,
|
| 399 |
+
"abstract": abstract
|
| 400 |
+
}
|
| 401 |
+
elif self.config.schema == "bigbio_text":
|
| 402 |
+
yield id_, {
|
| 403 |
+
"id": id_,
|
| 404 |
+
"document_id": doc_id,
|
| 405 |
+
"text": title + " " + abstract,
|
| 406 |
+
"labels": [correct_label]
|
| 407 |
+
}
|
| 408 |
+
|
| 409 |
+
# This template is based on the following template from the datasets package:
|
| 410 |
+
# https://github.com/huggingface/datasets/blob/master/templates/new_dataset_script.py
|