Datasets:

Modalities:
Image
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
Dask
License:
File size: 6,477 Bytes
d9f9db5
 
 
 
 
 
 
 
 
 
 
 
f3d04b6
d9f9db5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3d04b6
d9f9db5
 
f3d04b6
d9f9db5
f3d04b6
 
67c5a1d
 
 
 
 
 
 
 
 
 
9d8779c
 
f3d04b6
 
 
 
 
 
 
d9f9db5
7c7133d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d8779c
7c7133d
9d8779c
7c7133d
 
9d8779c
 
7c7133d
 
 
 
9d8779c
7c7133d
 
9d8779c
7c7133d
 
 
9d8779c
7c7133d
 
 
9d8779c
 
 
7c7133d
 
 
9d8779c
7c7133d
 
 
 
 
9d8779c
7c7133d
 
 
9d8779c
 
 
 
 
 
 
 
 
 
 
7c7133d
 
 
9d8779c
 
7c7133d
 
 
 
 
9d8779c
7c7133d
 
 
9d8779c
 
 
7c7133d
 
 
9d8779c
 
 
 
 
7c7133d
 
 
9d8779c
7c7133d
 
 
9d8779c
7c7133d
9d8779c
 
7c7133d
 
 
9d8779c
 
 
7c7133d
9d8779c
7c7133d
9d8779c
 
7c7133d
 
 
 
 
9d8779c
 
 
7c7133d
9d8779c
7c7133d
9d8779c
7c7133d
9d8779c
7c7133d
3a03045
 
9d8779c
 
 
 
 
 
 
3a03045
9d8779c
7c7133d
 
 
9d8779c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
---
dataset_info:
  features:
  - name: image_id
    dtype: int64
  - name: image
    dtype: image
  - name: width
    dtype: int32
  - name: height
    dtype: int32
  - name: objects
    list:
    - name: bw_id
      dtype: string
    - name: category_id
      dtype:
        class_label:
          names:
            '0': Photograph
            '1': Illustration
            '2': Map
            '3': Comics/Cartoon
            '4': Editorial Cartoon
            '5': Headline
            '6': Advertisement
    - name: image_id
      dtype: string
    - name: id
      dtype: int64
    - name: area
      dtype: int64
    - name: bbox
      sequence: float32
      length: 4
    - name: iscrowd
      dtype: bool
  splits:
  - name: train
    num_bytes: 954402480.734
    num_examples: 2846
  - name: validation
    num_bytes: 238590837.0
    num_examples: 712
  download_size: 1193989711
  dataset_size: 1192993317.734
license: cc0-1.0
task_categories:
- object-detection
tags:
- lam
- newspapers
- document-layout
pretty_name: Beyond Words
size_categories:
- 1K<n<10K
language:
- en
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: validation
    path: data/validation-*
---

# Dataset Card for Beyond Words

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact](#social-impact)
  - [Discussion of Biases](#discussion-of-biases)
  - [Limitations](#limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing](#licensing)
  - [Citation](#citation)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** https://labs.loc.gov/work/experiments/beyond-words/
- **Repository:** https://github.com/LibraryOfCongress/newspaper-navigator
- **Paper:** https://arxiv.org/abs/2005.01583
- **Contact:** [email protected]

### Dataset Summary

The **Beyond Words** dataset is a crowdsourced collection of bounding box annotations on World War I-era historical newspaper pages from the Library of Congress’s Chronicling America collection. Volunteers marked seven types of visual content — photographs, illustrations, maps, comics, editorial cartoons, headlines, and advertisements — enabling the training of the visual content recognition model behind the Newspaper Navigator project. It serves as a foundational dataset for large-scale document layout analysis in historical archives.

### Supported Tasks and Leaderboards

- Object detection
- Visual content classification
- Document layout analysis

### Languages

- English (used in transcribed captions and OCR content)

## Dataset Structure

### Data Instances

Each instance is an image of a historic newspaper page, annotated with bounding boxes around regions containing visual content.

### Data Fields

- `image_id`: Unique identifier for the image.
- `image`: Full page image from Chronicling America.
- `width`, `height`: Image dimensions.
- `objects`: List of annotations, each including:
  - `bw_id`: Unique Beyond Words annotation ID.
  - `category_id`: One of 7 class labels (Photograph, Illustration, etc.).
  - `image_id`: Reference to source image.
  - `id`: Object instance ID.
  - `area`: Area of the bounding box.
  - `bbox`: Bounding box coordinates (x, y, width, height).
  - `iscrowd`: Crowd label (for COCO format compatibility).

### Data Splits

- **Train:** 2,846 examples
- **Validation:** 712 examples

## Dataset Creation

### Curation Rationale

To train models that can detect and classify visual content in historic newspapers at scale, the Library of Congress launched the Beyond Words crowdsourcing initiative in 2017. The data produced is designed to support machine learning workflows and historical content analysis.

### Source Data

- Scanned WWI-era newspapers from Chronicling America
- Public domain metadata and images
- OCR from METS/ALTO XML files

### Annotations

- Collected via the Beyond Words crowdsourcing platform
- Up to 6 volunteers per annotation; verified by consensus
- Categories include photograph, illustration, map, comic/cartoon, editorial cartoon
-
-  Additional headline and advertisement annotations added by project team

### Personal and Sensitive Information

None known. All pages are from historical public domain newspapers.

## Considerations for Using the Data

### Social Impact

- Democratizes access to historical newspaper content
- Supports digital humanities, education, and public history initiatives

### Discussion of Biases

- Limited to WWI-era newspapers
- Class distribution skewed toward some categories (e.g. headlines, ads)
- Some annotations (headlines, ads) not crowd-verified

### Limitations

- Visual content from pre-1875 newspapers may yield lower model performance
- Quality of annotations can vary due to the experimental nature of the crowdsourcing workflow

## Additional Information

### Dataset Curators

- Benjamin Charles Germain Lee
- Jaime Mears, Eileen Jakeway, Meghan Ferriter, Chris Adams, Nathan Yarasavage, Deborah Thomas, Kate Zwaard (Library of Congress)
- Daniel Weld (University of Washington)

### Licensing

- **License:** CC0 1.0 Universal (Public Domain Dedication)

### Citation

```bibtex
@inproceedings{10.1145/3340531.3412767,
  author = {Lee, Benjamin Charles Germain and Mears, Jaime and Jakeway, Eileen and Ferriter, Meghan and Adams, Chris and Yarasavage, Nathan and Thomas, Deborah and Zwaard, Kate and Weld, Daniel S.},
  title = {The Newspaper Navigator Dataset: Extracting Headlines and Visual Content from 16 Million Historic Newspaper Pages in Chronicling America},
  year = {2020},
  publisher = {Association for Computing Machinery},
  address = {New York, NY, USA},
  doi = {10.1145/3340531.3412767},
  url = {https://doi.org/10.1145/3340531.3412767}
}


### Contributions

Thanks to @davanstrien for adding this dataset to Hugging Face.