Datasets:
File size: 6,477 Bytes
d9f9db5 f3d04b6 d9f9db5 f3d04b6 d9f9db5 f3d04b6 d9f9db5 f3d04b6 67c5a1d 9d8779c f3d04b6 d9f9db5 7c7133d 9d8779c 7c7133d 9d8779c 7c7133d 9d8779c 7c7133d 9d8779c 7c7133d 9d8779c 7c7133d 9d8779c 7c7133d 9d8779c 7c7133d 9d8779c 7c7133d 9d8779c 7c7133d 9d8779c 7c7133d 9d8779c 7c7133d 9d8779c 7c7133d 9d8779c 7c7133d 9d8779c 7c7133d 9d8779c 7c7133d 9d8779c 7c7133d 9d8779c 7c7133d 9d8779c 7c7133d 9d8779c 7c7133d 9d8779c 7c7133d 9d8779c 7c7133d 9d8779c 7c7133d 9d8779c 7c7133d 9d8779c 7c7133d 3a03045 9d8779c 3a03045 9d8779c 7c7133d 9d8779c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
---
dataset_info:
features:
- name: image_id
dtype: int64
- name: image
dtype: image
- name: width
dtype: int32
- name: height
dtype: int32
- name: objects
list:
- name: bw_id
dtype: string
- name: category_id
dtype:
class_label:
names:
'0': Photograph
'1': Illustration
'2': Map
'3': Comics/Cartoon
'4': Editorial Cartoon
'5': Headline
'6': Advertisement
- name: image_id
dtype: string
- name: id
dtype: int64
- name: area
dtype: int64
- name: bbox
sequence: float32
length: 4
- name: iscrowd
dtype: bool
splits:
- name: train
num_bytes: 954402480.734
num_examples: 2846
- name: validation
num_bytes: 238590837.0
num_examples: 712
download_size: 1193989711
dataset_size: 1192993317.734
license: cc0-1.0
task_categories:
- object-detection
tags:
- lam
- newspapers
- document-layout
pretty_name: Beyond Words
size_categories:
- 1K<n<10K
language:
- en
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
---
# Dataset Card for Beyond Words
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact](#social-impact)
- [Discussion of Biases](#discussion-of-biases)
- [Limitations](#limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing](#licensing)
- [Citation](#citation)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://labs.loc.gov/work/experiments/beyond-words/
- **Repository:** https://github.com/LibraryOfCongress/newspaper-navigator
- **Paper:** https://arxiv.org/abs/2005.01583
- **Contact:** [email protected]
### Dataset Summary
The **Beyond Words** dataset is a crowdsourced collection of bounding box annotations on World War I-era historical newspaper pages from the Library of Congress’s Chronicling America collection. Volunteers marked seven types of visual content — photographs, illustrations, maps, comics, editorial cartoons, headlines, and advertisements — enabling the training of the visual content recognition model behind the Newspaper Navigator project. It serves as a foundational dataset for large-scale document layout analysis in historical archives.
### Supported Tasks and Leaderboards
- Object detection
- Visual content classification
- Document layout analysis
### Languages
- English (used in transcribed captions and OCR content)
## Dataset Structure
### Data Instances
Each instance is an image of a historic newspaper page, annotated with bounding boxes around regions containing visual content.
### Data Fields
- `image_id`: Unique identifier for the image.
- `image`: Full page image from Chronicling America.
- `width`, `height`: Image dimensions.
- `objects`: List of annotations, each including:
- `bw_id`: Unique Beyond Words annotation ID.
- `category_id`: One of 7 class labels (Photograph, Illustration, etc.).
- `image_id`: Reference to source image.
- `id`: Object instance ID.
- `area`: Area of the bounding box.
- `bbox`: Bounding box coordinates (x, y, width, height).
- `iscrowd`: Crowd label (for COCO format compatibility).
### Data Splits
- **Train:** 2,846 examples
- **Validation:** 712 examples
## Dataset Creation
### Curation Rationale
To train models that can detect and classify visual content in historic newspapers at scale, the Library of Congress launched the Beyond Words crowdsourcing initiative in 2017. The data produced is designed to support machine learning workflows and historical content analysis.
### Source Data
- Scanned WWI-era newspapers from Chronicling America
- Public domain metadata and images
- OCR from METS/ALTO XML files
### Annotations
- Collected via the Beyond Words crowdsourcing platform
- Up to 6 volunteers per annotation; verified by consensus
- Categories include photograph, illustration, map, comic/cartoon, editorial cartoon
-
- Additional headline and advertisement annotations added by project team
### Personal and Sensitive Information
None known. All pages are from historical public domain newspapers.
## Considerations for Using the Data
### Social Impact
- Democratizes access to historical newspaper content
- Supports digital humanities, education, and public history initiatives
### Discussion of Biases
- Limited to WWI-era newspapers
- Class distribution skewed toward some categories (e.g. headlines, ads)
- Some annotations (headlines, ads) not crowd-verified
### Limitations
- Visual content from pre-1875 newspapers may yield lower model performance
- Quality of annotations can vary due to the experimental nature of the crowdsourcing workflow
## Additional Information
### Dataset Curators
- Benjamin Charles Germain Lee
- Jaime Mears, Eileen Jakeway, Meghan Ferriter, Chris Adams, Nathan Yarasavage, Deborah Thomas, Kate Zwaard (Library of Congress)
- Daniel Weld (University of Washington)
### Licensing
- **License:** CC0 1.0 Universal (Public Domain Dedication)
### Citation
```bibtex
@inproceedings{10.1145/3340531.3412767,
author = {Lee, Benjamin Charles Germain and Mears, Jaime and Jakeway, Eileen and Ferriter, Meghan and Adams, Chris and Yarasavage, Nathan and Thomas, Deborah and Zwaard, Kate and Weld, Daniel S.},
title = {The Newspaper Navigator Dataset: Extracting Headlines and Visual Content from 16 Million Historic Newspaper Pages in Chronicling America},
year = {2020},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
doi = {10.1145/3340531.3412767},
url = {https://doi.org/10.1145/3340531.3412767}
}
### Contributions
Thanks to @davanstrien for adding this dataset to Hugging Face. |