| """LR-Sum summarization dataset""" | |
| import json | |
| import os | |
| import datasets | |
| _CITATION = """\ | |
| @inproceedings{palen-michel-lignos-2023-lr, | |
| title = "{LR}-Sum: Summarization for Less-Resourced Languages", | |
| author = "Palen-Michel, Chester and | |
| Lignos, Constantine", | |
| booktitle = "Findings of the Association for Computational Linguistics: ACL 2023", | |
| month = jul, | |
| year = "2023", | |
| address = "Toronto, Canada", | |
| publisher = "Association for Computational Linguistics", | |
| url = "https://aclanthology.org/2023.findings-acl.427", | |
| doi = "10.18653/v1/2023.findings-acl.427", | |
| pages = "6829--6844", | |
| abstract = "We introduce LR-Sum, a new permissively-licensed dataset created with the goal of enabling further research in automatic summarization for less-resourced languages.LR-Sum contains human-written summaries for 40 languages, many of which are less-resourced. We describe our process for extracting and filtering the dataset from the Multilingual Open Text corpus (Palen-Michel et al., 2022).The source data is public domain newswire collected from from Voice of America websites, and LR-Sum is released under a Creative Commons license (CC BY 4.0), making it one of the most openly-licensed multilingual summarization datasets. We describe abstractive and extractive summarization experiments to establish baselines and discuss the limitations of this dataset.", | |
| } | |
| """ | |
| _DESCRIPTION = """\ | |
| We introduce LR-Sum, a new permissively-licensed dataset created with the goal of enabling further research in automatic summarization for less-resourced languages. | |
| LR-Sum contains human-written summaries for 40 languages, many of which are less-resourced. | |
| We describe our process for extracting and filtering the dataset from the Multilingual Open Text corpus (Palen-Michel et al., 2022). | |
| The source data is public domain newswire collected from from Voice of America websites, and LR-Sum is released under a Creative Commons license (CC BY 4.0), making it one of the most openly-licensed multilingual summarization datasets. | |
| We describe abstractive and extractive summarization experiments to establish baselines and discuss the limitations of this dataset. | |
| """ | |
| _HOMEPAGE = "https://github.com/bltlab" | |
| _LICENSE = "Creative Commons Attribution 4.0 International (CC-BY 4.0)" | |
| _URL = "https://huggingface.co/datasets/bltlab/lr-sum/resolve/main/data/{}.tar.bz2" | |
| _LANGUAGES = [ | |
| "amh", | |
| "aze", | |
| "ben", | |
| "bod", | |
| "bos", | |
| "ckb", | |
| "cmn_t", | |
| "cmn_s", | |
| "ell", | |
| "eng", | |
| "fas", | |
| "fra", | |
| "hat", | |
| "hau", | |
| "hye", | |
| "ind", | |
| "kat", | |
| "khm", | |
| "kin", | |
| "kor", | |
| "kmr", | |
| "lao", | |
| "mkd", | |
| "mya", | |
| "nde", | |
| "por", | |
| "prs", | |
| "pus", | |
| "rus", | |
| "sna", | |
| "som", | |
| "spa", | |
| "sqi", | |
| "srp", | |
| "swh", | |
| "tha", | |
| "tir", | |
| "tur", | |
| "ukr", | |
| "urd", | |
| "uzb", | |
| "vie", | |
| ] | |
| class Lrsum(datasets.GeneratorBasedBuilder): | |
| VERSION = datasets.Version("1.0.0") | |
| BUILDER_CONFIGS = [ | |
| datasets.BuilderConfig( | |
| name="{}".format(lang), | |
| version=datasets.Version("1.0.0") | |
| ) | |
| for lang in _LANGUAGES | |
| ] | |
| def _info(self): | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=datasets.Features( | |
| { | |
| "id": datasets.Value("string"), | |
| "url": datasets.Value("string"), | |
| "title": datasets.Value("string"), | |
| "summary": datasets.Value("string"), | |
| "text": datasets.Value("string"), | |
| } | |
| ), | |
| supervised_keys=None, | |
| homepage=_HOMEPAGE, | |
| citation=_CITATION, | |
| license=_LICENSE, | |
| version=self.VERSION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| """Returns SplitGenerators.""" | |
| lang = str(self.config.name) | |
| url = _URL.format(lang) | |
| data_dir = dl_manager.download_and_extract(url) | |
| ret = [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TEST, | |
| gen_kwargs={ | |
| "filepath": os.path.join(data_dir, lang, lang + "_test.jsonl"), | |
| }, | |
| ) | |
| ] | |
| if os.path.exists(os.path.join(data_dir, lang, lang + "_train.jsonl")): | |
| ret.append(datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| gen_kwargs={ | |
| "filepath": os.path.join(data_dir, lang, lang + "_train.jsonl"), | |
| }, | |
| ) | |
| ) | |
| if os.path.exists(os.path.join(data_dir, lang, lang + "_val.jsonl")): | |
| ret.append( | |
| datasets.SplitGenerator( | |
| name=datasets.Split.VALIDATION, | |
| gen_kwargs={ | |
| "filepath": os.path.join(data_dir, lang, lang + "_val.jsonl"), | |
| }, | |
| ) | |
| ) | |
| return ret | |
| def _generate_examples(self, filepath): | |
| """Yields examples as (key, example) tuples.""" | |
| with open(filepath, encoding="utf-8") as f: | |
| for idx_, row in enumerate(f): | |
| data = json.loads(row) | |
| yield idx_, { | |
| "id": data["id_"], | |
| "url": data["url"], | |
| "title": data["title"], | |
| "summary": data["summary"], | |
| "text": data["text"], | |
| } |