boatbomber commited on
Commit
523a99b
·
1 Parent(s): 685fb54

Add evaluator

Browse files
.gitignore ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ cache/
2
+
3
+ # Byte-compiled / optimized / DLL files
4
+ __pycache__/
5
+ *.py[cod]
6
+ *$py.class
7
+
8
+ # C extensions
9
+ *.so
10
+
11
+ # Distribution / packaging
12
+ .Python
13
+ build/
14
+ develop-eggs/
15
+ dist/
16
+ downloads/
17
+ eggs/
18
+ .eggs/
19
+ lib/
20
+ lib64/
21
+ parts/
22
+ sdist/
23
+ var/
24
+ wheels/
25
+ share/python-wheels/
26
+ *.egg-info/
27
+ .installed.cfg
28
+ *.egg
29
+ MANIFEST
30
+
31
+ # PyInstaller
32
+ # Usually these files are written by a python script from a template
33
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
34
+ *.manifest
35
+ *.spec
36
+
37
+ # Installer logs
38
+ pip-log.txt
39
+ pip-delete-this-directory.txt
40
+
41
+ # Unit test / coverage reports
42
+ htmlcov/
43
+ .tox/
44
+ .nox/
45
+ .coverage
46
+ .coverage.*
47
+ .cache
48
+ nosetests.xml
49
+ coverage.xml
50
+ *.cover
51
+ *.py,cover
52
+ .hypothesis/
53
+ .pytest_cache/
54
+ cover/
55
+
56
+ # Translations
57
+ *.mo
58
+ *.pot
59
+
60
+ # Django stuff:
61
+ *.log
62
+ local_settings.py
63
+ db.sqlite3
64
+ db.sqlite3-journal
65
+
66
+ # Flask stuff:
67
+ instance/
68
+ .webassets-cache
69
+
70
+ # Scrapy stuff:
71
+ .scrapy
72
+
73
+ # Sphinx documentation
74
+ docs/_build/
75
+
76
+ # PyBuilder
77
+ .pybuilder/
78
+ target/
79
+
80
+ # Jupyter Notebook
81
+ .ipynb_checkpoints
82
+
83
+ # IPython
84
+ profile_default/
85
+ ipython_config.py
86
+
87
+ # pyenv
88
+ # For a library or package, you might want to ignore these files since the code is
89
+ # intended to run in multiple environments; otherwise, check them in:
90
+ # .python-version
91
+
92
+ # pipenv
93
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
94
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
95
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
96
+ # install all needed dependencies.
97
+ #Pipfile.lock
98
+
99
+ # UV
100
+ # Similar to Pipfile.lock, it is generally recommended to include uv.lock in version control.
101
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
102
+ # commonly ignored for libraries.
103
+ #uv.lock
104
+
105
+ # poetry
106
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
107
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
108
+ # commonly ignored for libraries.
109
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
110
+ #poetry.lock
111
+
112
+ # pdm
113
+ # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
114
+ #pdm.lock
115
+ # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
116
+ # in version control.
117
+ # https://pdm.fming.dev/latest/usage/project/#working-with-version-control
118
+ .pdm.toml
119
+ .pdm-python
120
+ .pdm-build/
121
+
122
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
123
+ __pypackages__/
124
+
125
+ # Celery stuff
126
+ celerybeat-schedule
127
+ celerybeat.pid
128
+
129
+ # SageMath parsed files
130
+ *.sage.py
131
+
132
+ # Environments
133
+ .env
134
+ .venv
135
+ env/
136
+ venv/
137
+ ENV/
138
+ env.bak/
139
+ venv.bak/
140
+
141
+ # Spyder project settings
142
+ .spyderproject
143
+ .spyproject
144
+
145
+ # Rope project settings
146
+ .ropeproject
147
+
148
+ # mkdocs documentation
149
+ /site
150
+
151
+ # mypy
152
+ .mypy_cache/
153
+ .dmypy.json
154
+ dmypy.json
155
+
156
+ # Pyre type checker
157
+ .pyre/
158
+
159
+ # pytype static type analyzer
160
+ .pytype/
161
+
162
+ # Cython debug symbols
163
+ cython_debug/
164
+
165
+ # PyCharm
166
+ # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
167
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
168
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
169
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
170
+ #.idea/
171
+
172
+ # PyPI configuration file
173
+ .pypirc
evaluator/Evaluator.ipynb ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "import pandas as pd\n",
10
+ "import psutil\n",
11
+ "from pathlib import Path\n",
12
+ "from dotenv import load_dotenv\n",
13
+ "from IPython.display import display\n",
14
+ "from pandarallel import pandarallel\n",
15
+ "from rich import print\n",
16
+ "from tqdm.auto import tqdm\n",
17
+ "from constants import RESULTS_DIR\n",
18
+ "import re\n",
19
+ "import json\n",
20
+ "\n",
21
+ "load_dotenv()\n",
22
+ "\n",
23
+ "pandarallel.initialize(\n",
24
+ " progress_bar=True,\n",
25
+ " verbose=0,\n",
26
+ " nb_workers=max(1, psutil.cpu_count(logical=False) - 5),\n",
27
+ ")\n",
28
+ "\n",
29
+ "tqdm.pandas()\n",
30
+ "pd.set_option(\"display.max_rows\", 80)\n",
31
+ "pd.set_option(\"display.min_rows\", 60)\n"
32
+ ]
33
+ },
34
+ {
35
+ "cell_type": "markdown",
36
+ "metadata": {},
37
+ "source": [
38
+ "## Step 1: Pick a model to evaluate\n",
39
+ "\n"
40
+ ]
41
+ },
42
+ {
43
+ "cell_type": "code",
44
+ "execution_count": null,
45
+ "metadata": {},
46
+ "outputs": [],
47
+ "source": [
48
+ "MODEL_ID = \"deepseek-r1-distill-qwen-1.5b\"\n",
49
+ "MODEL_NAME = \"deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B\"\n",
50
+ "MODEL_TEMP = 0.6\n"
51
+ ]
52
+ },
53
+ {
54
+ "cell_type": "markdown",
55
+ "metadata": {},
56
+ "source": [
57
+ "## Step 2: Run evaluations"
58
+ ]
59
+ },
60
+ {
61
+ "cell_type": "code",
62
+ "execution_count": null,
63
+ "metadata": {},
64
+ "outputs": [],
65
+ "source": [
66
+ "from benchmarks import RobloxQAEvaluator\n",
67
+ "\n",
68
+ "\n",
69
+ "print(f\"Evaluating [green]{MODEL_NAME}[/green]\")\n",
70
+ "\n",
71
+ "evaluation = {\n",
72
+ " \"Model\": MODEL_NAME,\n",
73
+ " \"Results\": {\n",
74
+ " \"RobloxQA\": RobloxQAEvaluator(\n",
75
+ " MODEL_ID,\n",
76
+ " temperature=MODEL_TEMP,\n",
77
+ " ).run_evaluations(),\n",
78
+ " },\n",
79
+ "}\n",
80
+ "\n",
81
+ "print(f\"Evaluation Result\\n[white]{json.dumps(evaluation, indent=2)}[/white]\")\n"
82
+ ]
83
+ },
84
+ {
85
+ "cell_type": "markdown",
86
+ "metadata": {},
87
+ "source": [
88
+ "## Step 3: Save evaluation results\n",
89
+ "\n"
90
+ ]
91
+ },
92
+ {
93
+ "cell_type": "code",
94
+ "execution_count": null,
95
+ "metadata": {},
96
+ "outputs": [],
97
+ "source": [
98
+ "RESULT_PATH = RESULTS_DIR / (re.sub(r\"\\W+\", \"_\", MODEL_NAME) + \".json\")\n",
99
+ "Path(RESULT_PATH).parent.mkdir(parents=True, exist_ok=True)\n",
100
+ "\n",
101
+ "with open(RESULT_PATH, \"w\") as f:\n",
102
+ " json.dump(evaluation, f, indent=2)\n"
103
+ ]
104
+ }
105
+ ],
106
+ "metadata": {
107
+ "kernelspec": {
108
+ "display_name": "roblox-llm-leaderboard-results-O7xMa1b9-py3.11",
109
+ "language": "python",
110
+ "name": "python3"
111
+ },
112
+ "language_info": {
113
+ "codemirror_mode": {
114
+ "name": "ipython",
115
+ "version": 3
116
+ },
117
+ "file_extension": ".py",
118
+ "mimetype": "text/x-python",
119
+ "name": "python",
120
+ "nbconvert_exporter": "python",
121
+ "pygments_lexer": "ipython3",
122
+ "version": "3.11.9"
123
+ }
124
+ },
125
+ "nbformat": 4,
126
+ "nbformat_minor": 2
127
+ }
evaluator/benchmarks/__init__.py ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ from .robloxqa import RobloxQAEvaluator
2
+
3
+ __all__ = ["RobloxQAEvaluator"]
evaluator/benchmarks/base.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ from llm_utils import Message
3
+
4
+
5
+ class Evaluator:
6
+ model_id: str
7
+ temperature: float
8
+ max_tokens: int
9
+ stop: list[str] | None = None
10
+
11
+ def __init__(
12
+ self,
13
+ model_id: str,
14
+ temperature: float = 0.8,
15
+ max_tokens: int = 3000,
16
+ stop: list[str] | None = None,
17
+ ):
18
+ self.model_id = model_id
19
+ self.temperature = temperature
20
+ self.max_tokens = max_tokens
21
+ self.stop = stop
22
+
23
+ def _fetch_dataset(self) -> pd.DataFrame:
24
+ raise NotImplementedError()
25
+
26
+ def _build_messages(self, row: pd.Series) -> list[Message]:
27
+ raise NotImplementedError()
28
+
29
+ def _score_response(self, row: pd.Series, response: str) -> float:
30
+ raise NotImplementedError()
31
+
32
+ def _process_response(self, response: str) -> str:
33
+ return response.strip()
34
+
35
+ def _evaluate(self, row: pd.Series) -> float:
36
+ """
37
+ Run the evaluation for the given row.
38
+ This function should be called by the parallelized version of df apply.
39
+ """
40
+ # To parallelize safely on Windows, the function must be self contained.
41
+ # This means we need to import the necessary modules inside the function.
42
+ from llm_utils import LLM
43
+
44
+ llm = LLM(self.model_id)
45
+ response = llm.generate(
46
+ temperature=self.temperature,
47
+ max_tokens=self.max_tokens,
48
+ stop=self.stop,
49
+ messages=self._build_messages(row),
50
+ )
51
+ response = self._process_response(response)
52
+ score = self._score_response(row, response)
53
+ return score
54
+
55
+ def run_evaluations(self) -> float:
56
+ """
57
+ Run the evaluations for the entire dataset.
58
+ """
59
+ dataset = self._fetch_dataset()
60
+
61
+ print(f"Running {self.__class__.__name__}")
62
+
63
+ scores = dataset.parallel_apply(self._evaluate, axis=1)
64
+ # scores = dataset.apply(self._evaluate, axis=1)
65
+ print("Score Counts:\n", scores.value_counts())
66
+
67
+ return float(scores.mean())
evaluator/benchmarks/robloxqa.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+
3
+ import pandas as pd
4
+ from llm_utils import Message
5
+ from load_dataset import load_dataset
6
+
7
+ from .base import Evaluator
8
+
9
+ USER_MESSAGE_TEMPLATE = """\
10
+ Question:
11
+ {prompt}
12
+
13
+ Choices:
14
+ {choices}
15
+
16
+
17
+ Please choose the correct answer choice for the above question.
18
+ Write the letter of your selected choice in this exact format:
19
+ "Answer: letter_goes_here"
20
+ """
21
+
22
+ DATASET_ID = "boatbomber/RobloxQA-v1.0"
23
+ DATASET_SPLIT = "test"
24
+
25
+
26
+ class RobloxQAEvaluator(Evaluator):
27
+ _answer_choices = ["a", "b", "c", "d", "e"]
28
+ _answer_pattern = re.compile(r"answer: ([a-e])")
29
+
30
+ def _fetch_dataset(self) -> pd.DataFrame:
31
+ dataset = load_dataset(
32
+ dataset_id=DATASET_ID,
33
+ split=DATASET_SPLIT,
34
+ )
35
+ return dataset
36
+
37
+ def _build_messages(self, row: pd.Series) -> list[Message]:
38
+ return [
39
+ {
40
+ "role": "user",
41
+ "content": USER_MESSAGE_TEMPLATE.format(
42
+ prompt=row["prompt"],
43
+ choices="\n".join(
44
+ f"{choice.upper()}: {row['choices'][index]}"
45
+ for index, choice in enumerate(self._answer_choices)
46
+ ),
47
+ ),
48
+ },
49
+ ]
50
+
51
+ def _process_response(self, response: str) -> str:
52
+ return response.strip().lower()
53
+
54
+ def _score_response(self, row: pd.Series, response: str) -> float:
55
+ # Find the last occurrence of _answer_pattern in response
56
+ matches = self._answer_pattern.findall(response)
57
+ if not matches:
58
+ return 0.0
59
+
60
+ chosen_answer = matches[-1]
61
+ if chosen_answer not in self._answer_choices:
62
+ return 0.0
63
+
64
+ chosen_answer_index = self._answer_choices.index(chosen_answer)
65
+ correct_answer_index = row["answer"]
66
+ if chosen_answer_index == correct_answer_index:
67
+ return 100.0
68
+
69
+ return 0.0
evaluator/constants.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pathlib import Path
2
+
3
+ INFERENCE_PROVIDER_URL = "http://localhost:8020/v1" # "https://api.together.xyz/v1" #
4
+
5
+ ROOT_DIR = Path(__file__).resolve().parent.parent
6
+
7
+ RESULTS_DIR = ROOT_DIR / "results"
8
+ RESULTS_DIR.mkdir(parents=True, exist_ok=True)
9
+
10
+ CACHE_DIR = ROOT_DIR / "cache"
11
+ CACHE_DIR.mkdir(parents=True, exist_ok=True)
12
+
13
+ DATASET_CACHE_DIR = CACHE_DIR / "datasets"
14
+ DATASET_CACHE_DIR.mkdir(parents=True, exist_ok=True)
15
+
16
+ RESPONSE_CACHE_DIR = CACHE_DIR / "llm_responses"
17
+ RESPONSE_CACHE_DIR.mkdir(parents=True, exist_ok=True)
evaluator/llm_utils/__init__.py ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ from .llm import LLM
2
+ from .message import Message
3
+
4
+ __all__ = ["LLM", "Message"]
evaluator/llm_utils/llm.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import re
3
+ import time
4
+ import traceback
5
+ from hashlib import md5
6
+
7
+ from constants import INFERENCE_PROVIDER_URL, RESPONSE_CACHE_DIR
8
+ from openai import OpenAI
9
+
10
+ client = OpenAI(
11
+ base_url=INFERENCE_PROVIDER_URL,
12
+ api_key=os.getenv("API_KEY", ""),
13
+ )
14
+
15
+
16
+ class LLM:
17
+ model_id: str
18
+ model_id_sanitized: str
19
+
20
+ def __repr__(self) -> str:
21
+ return f"LLM(model_id='{self.model_id})"
22
+
23
+ def __str__(self) -> str:
24
+ return self.__repr__()
25
+
26
+ def __init__(self, model_id: str):
27
+ self.model_id = model_id
28
+ self.model_id_sanitized = re.sub(r"[^a-zA-Z0-9_-]", "_", self.model_id)
29
+
30
+ def _get_cache_key(self, *args, **kwargs) -> str:
31
+ return md5(
32
+ str(args).encode() + str(kwargs).encode(), usedforsecurity=False
33
+ ).hexdigest()
34
+
35
+ def _read_cache(self, cache_key: str) -> str | None:
36
+ path = RESPONSE_CACHE_DIR / self.model_id_sanitized / f"{cache_key}.txt"
37
+ if path.exists():
38
+ content = path.read_text(encoding="utf-8")
39
+ return content
40
+ return None
41
+
42
+ def _write_cache(self, cache_key: str, response: str) -> None:
43
+ path = RESPONSE_CACHE_DIR / self.model_id_sanitized / f"{cache_key}.txt"
44
+ path.parent.mkdir(parents=True, exist_ok=True)
45
+ path.write_text(response, encoding="utf-8")
46
+
47
+ def _run_stream(self, cache_key: str, **kwargs) -> str:
48
+ stream = client.chat.completions.create(
49
+ model=self.model_id,
50
+ stream=True,
51
+ **kwargs,
52
+ )
53
+
54
+ response_builder = []
55
+ for chunk in stream:
56
+ content = chunk.choices[0].delta.content
57
+ if content is not None:
58
+ response_builder.append(content)
59
+
60
+ response = "".join(response_builder)
61
+ self._write_cache(cache_key, response)
62
+ return response
63
+
64
+ def generate(self, **kwargs) -> str:
65
+ cache_key = self._get_cache_key(
66
+ model=self.model_id,
67
+ **kwargs,
68
+ )
69
+
70
+ cached_response = self._read_cache(cache_key)
71
+ if cached_response is not None:
72
+ return cached_response
73
+
74
+ attempts = 0
75
+ max_attempts = 3
76
+ while attempts < max_attempts:
77
+ try:
78
+ return self._run_stream(cache_key, **kwargs)
79
+ except Exception as e:
80
+ print(f"\nError running stream for {self.model_id}:")
81
+ traceback.print_exc()
82
+ attempts += 1
83
+ if attempts >= max_attempts:
84
+ raise e
85
+
86
+ print(f"\nRetrying after {2**attempts} seconds...")
87
+ time.sleep(2**attempts) # Exponential backoff
88
+
89
+ print(
90
+ f"\nFailed to generate response from {self.model_id} after {max_attempts} attempts."
91
+ )
92
+ return None
evaluator/llm_utils/message.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ from typing import TypedDict
2
+
3
+
4
+ class Message(TypedDict):
5
+ role: str
6
+ content: str
evaluator/load_dataset.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import datasets
2
+ import pandas as pd
3
+ from constants import DATASET_CACHE_DIR
4
+ from rich import print
5
+
6
+ PD_CACHE_DIR = DATASET_CACHE_DIR / "pandas"
7
+
8
+
9
+ def load_from_pd_cache(dataset_id: str, split: str) -> pd.DataFrame | None:
10
+ """
11
+ Load the dataset from the pandas cache if it exists.
12
+ """
13
+ cached_path = PD_CACHE_DIR / dataset_id / f"{split}.parquet"
14
+ if cached_path.exists() and cached_path.is_file():
15
+ print(
16
+ f"[bold white]Loading [red]{dataset_id}:{split}[/red] from cache[/bold white]"
17
+ )
18
+ return pd.read_parquet(cached_path)
19
+ return None
20
+
21
+
22
+ def load_from_hf_dataset(dataset_id: str, split: str) -> pd.DataFrame:
23
+ """
24
+ Load the dataset from the Hugging Face dataset hub.
25
+ """
26
+ print(
27
+ f"[bold white]Loading [red]{dataset_id}:{split}[/red] from HuggingFace[/bold white]"
28
+ )
29
+
30
+ dataset = datasets.load_dataset(
31
+ dataset_id,
32
+ split=split,
33
+ cache_dir=DATASET_CACHE_DIR,
34
+ verification_mode=datasets.VerificationMode.NO_CHECKS,
35
+ ).to_pandas()
36
+
37
+ # Save the dataset to the pandas cache
38
+ print(f"[bold white]Writing [red]{dataset_id}:{split}[/red] to cache[/bold white]")
39
+ cached_path = PD_CACHE_DIR / dataset_id / f"{split}.parquet"
40
+ cached_path.parent.mkdir(parents=True, exist_ok=True)
41
+ dataset.to_parquet(cached_path)
42
+
43
+ return dataset
44
+
45
+
46
+ def load_dataset(dataset_id: str, split: str) -> pd.DataFrame:
47
+ cached = load_from_pd_cache(dataset_id, split)
48
+ if cached is not None:
49
+ return cached
50
+
51
+ return load_from_hf_dataset(dataset_id, split)
poetry.lock ADDED
The diff for this file is too large to render. See raw diff
 
pyproject.toml ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [project]
2
+ name = "Roblox-LLM-Leaderboard-results"
3
+ version = "1.0.0"
4
+ description = "Dataset containing LLM leaderboard results"
5
+ authors = [{ name = "boatbomber", email = "[email protected]" }]
6
+ readme = "README.md"
7
+ requires-python = "3.11.*"
8
+ dependencies = [
9
+ "huggingface-hub (>=0.29.1,<0.30.0)",
10
+ "openai (>=1.63.2,<2.0.0)",
11
+ "datasets (>=3.3.2,<4.0.0)",
12
+ "pandas (>=2.2.3,<3.0.0)",
13
+ "tqdm (>=4.67.1,<5.0.0)",
14
+ "rich (>=13.9.4,<14.0.0)",
15
+ "pandarallel (>=1.6.5,<2.0.0)",
16
+ "python-dotenv (>=1.0.1,<2.0.0)",
17
+ "ipywidgets (>=8.1.5,<9.0.0)",
18
+ "ipykernel (>=6.29.5,<7.0.0)",
19
+ "scikit-learn (>=1.6.1,<2.0.0)",
20
+ "pyyaml (>=6.0.2,<7.0.0)",
21
+ ]
22
+
23
+ [tool.poetry]
24
+ package-mode = false
25
+
26
+ [build-system]
27
+ requires = ["poetry-core>=2.0.0,<3.0.0"]
28
+ build-backend = "poetry.core.masonry.api"