#!/usr/bin/env python # coding=utf-8 # Copyright 2024 Bofeng Huang import os from collections import defaultdict import fire import numpy as np import pandas as pd from tqdm import tqdm from meta import SUBSET_NAMES_AND_PATHS def _print_ds_info(df, duration_column_name="duration"): print(f"#utterances: {df.shape[0]}") durations = df["duration"] print( f"Duration statistics: tot {durations.sum() / 3600:.2f} h, " f"mean {durations.mean():.2f} s, " f"min {durations.min():.2f} s, " f"max {durations.max():.2f} s" ) print() def main(output_file): dataset_dir = os.path.dirname(os.path.abspath(__file__)) lang_manifests_dict = defaultdict(list) for k, v in SUBSET_NAMES_AND_PATHS.items(): lang_manifests_dict[k.split("-")[0]].append((k, f'{dataset_dir}/{v["dir"]}/{v["text_file"]}')) # print(lang_manifests_dict) with open(output_file, "w") as f: for lang, manifest_files in lang_manifests_dict.items(): f.write("\n" + lang + "\n" + "\n") f.write("| Split | 20% | 10% | 5% | 0% |" + "\n") f.write("| :--- | :---: | :---: | :---: | :---: |" + "\n") lines = [] for split, manifest_file in tqdm(manifest_files): # load dataset df = pd.read_json(manifest_file, lines=True) # print("Raw dataset") # _print_ds_info(df) # line = f"| {split} |" # wer_cutoffs = [20, 10, 5, 0] # for wer_cutoff in wer_cutoffs: # df_ = df[df["wer"] <= wer_cutoff] # # print(f"wer_cutoff: {wer_cutoff}") # # _print_ds_info(df_) # line += f' {df_["duration"].sum() / 3600:.2f} |' # f.write(line + "\n") l = [df[df["wer"] <= wer_cutoff]["duration"].sum() / 3600 for wer_cutoff in [20, 10, 5, 0]] l.insert(0, split) lines.append(l) lines.append( [ "total", sum(l[1] for l in lines), sum(l[2] for l in lines), sum(l[3] for l in lines), sum(l[4] for l in lines), ] ) for l in lines: f.write(f"| {l[0]} | " + " | ".join([f"{l_:,.2f}" for l_ in l[1:]]) + " |" + "\n") # break if __name__ == "__main__": fire.Fire(main)