Datasets:
Tasks:
Token Classification
Modalities:
Text
Formats:
parquet
Languages:
English
Size:
100K - 1M
Tags:
named-entity-recognition
ner
token-classification
nlp
natural-language-processing
entity-extraction
License:
Update README.md
Browse files
README.md
CHANGED
@@ -42,13 +42,14 @@ tags:
|
|
42 |
- knowledge-graph
|
43 |
pretty_name: CoNLL-2025 NER Dataset
|
44 |
size_categories:
|
45 |
-
-
|
46 |
task_categories:
|
47 |
- token-classification
|
48 |
---
|
49 |
|
50 |

|
51 |
|
|
|
52 |
# π CoNLL 2025 NER Dataset β Unlocking Entity Recognition in Text
|
53 |
|
54 |
[](https://opensource.org/licenses/MIT)
|
@@ -60,9 +61,7 @@ task_categories:
|
|
60 |
|
61 |
This **6.38 MB** dataset is lightweight, developer-friendly, and ideal for advancing **natural language processing (NLP)**, **information extraction**, and **text mining**. Whether you're building chatbots π€, analyzing news articles π°, or structuring data for AI π οΈ, this dataset is your key to unlocking structured insights from text.
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
**[Download Now](#download-instructions)** π
|
66 |
|
67 |
## Table of Contents π
|
68 |
- [What is NER?](#what-is-ner) β
|
@@ -137,6 +136,9 @@ NER powers applications by extracting structured data from unstructured text, en
|
|
137 |
|
138 |
---
|
139 |
|
|
|
|
|
|
|
140 |
## NER Tags & Purposes π·οΈ
|
141 |
|
142 |
The dataset uses the **BIO tagging scheme**:
|
@@ -148,51 +150,52 @@ Below is a table of the 36 NER tags with their purposes and emojis for visual ap
|
|
148 |
|
149 |
| Tag Name | Purpose | Emoji |
|
150 |
|------------------|--------------------------------------------------------------------------|--------|
|
151 |
-
| B-CARDINAL
|
152 |
-
| B-DATE
|
153 |
-
| B-EVENT
|
154 |
-
| B-FAC
|
155 |
-
| B-GPE
|
156 |
-
| B-LANGUAGE
|
157 |
-
| B-LAW
|
158 |
-
| B-LOC
|
159 |
-
| B-MONEY
|
160 |
-
| B-NORP
|
161 |
-
| B-ORDINAL
|
162 |
-
| B-ORG
|
163 |
-
| B-PERCENT
|
164 |
-
| B-PERSON
|
165 |
-
| B-PRODUCT
|
166 |
-
| B-QUANTITY
|
167 |
-
| B-TIME
|
168 |
-
| B-WORK_OF_ART
|
169 |
-
| I-CARDINAL
|
170 |
-
| I-DATE
|
171 |
-
| I-EVENT
|
172 |
-
| I-FAC
|
173 |
-
| I-GPE
|
174 |
-
| I-LANGUAGE
|
175 |
-
| I-LAW
|
176 |
-
| I-LOC
|
177 |
-
| I-MONEY
|
178 |
-
| I-NORP
|
179 |
-
| I-ORDINAL
|
180 |
-
| I-ORG
|
181 |
-
| I-PERCENT
|
182 |
-
| I-PERSON
|
183 |
-
| I-PRODUCT
|
184 |
-
| I-QUANTITY
|
185 |
-
| I-TIME
|
186 |
-
| I-WORK_OF_ART
|
187 |
-
| O
|
|
|
|
|
188 |
|
189 |
**Example**
|
190 |
-
For `"Microsoft opened in Tokyo on January 2025"`:
|
|
|
191 |
- **Tokens**: `["Microsoft", "opened", "in", "Tokyo", "on", "January", "2025"]`
|
192 |
- **Tags**: `[B-ORG, O, O, B-GPE, O, B-DATE, I-DATE]`
|
193 |
|
194 |
-
---
|
195 |
-
|
196 |
## Installation π οΈ
|
197 |
|
198 |
Install dependencies to work with the dataset:
|
@@ -209,12 +212,10 @@ pip install datasets pandas pyarrow
|
|
209 |
## Download Instructions π₯
|
210 |
|
211 |
### Direct Download
|
212 |
-
-
|
213 |
- Load it with pandas πΌ, Hugging Face `datasets` π€, or your preferred tool.
|
214 |
|
215 |
-
|
216 |
-
|
217 |
-
**[Start Exploring Dataset](#quickstart-dive-in)** π
|
218 |
|
219 |
---
|
220 |
|
@@ -347,7 +348,7 @@ Tokenize further with `transformers` π€ or `NeuroNER` for model training.
|
|
347 |
|
348 |
## Visualizing NER Tags π
|
349 |
|
350 |
-
|
351 |
|
352 |
<chartjs>
|
353 |
{
|
@@ -368,9 +369,6 @@ The chart below visualizes the estimated distribution of NER tags in the dataset
|
|
368 |
"display": true,
|
369 |
"text": "CoNLL 2025 NER: Tag Distribution (Estimated)",
|
370 |
"font": { "size": 16 }
|
371 |
-
},
|
372 |
-
"legend": {
|
373 |
-
"display": false
|
374 |
}
|
375 |
},
|
376 |
"scales": {
|
@@ -387,7 +385,7 @@ The chart below visualizes the estimated distribution of NER tags in the dataset
|
|
387 |
}
|
388 |
</chartjs>
|
389 |
|
390 |
-
To compute
|
391 |
|
392 |
```python
|
393 |
import pandas as pd
|
@@ -401,21 +399,16 @@ df = pd.read_parquet("conll2025_ner.parquet")
|
|
401 |
all_tags = [tag for tags in df["ner_tags"] for tag in tags]
|
402 |
tag_counts = Counter(all_tags)
|
403 |
|
404 |
-
# Prepare data for plotting
|
405 |
-
labels = list(tag_counts.keys())
|
406 |
-
values = list(tag_counts.values())
|
407 |
-
|
408 |
# Plot
|
409 |
plt.figure(figsize=(12, 7))
|
410 |
-
plt.bar(
|
411 |
-
plt.title("CoNLL 2025 NER: Tag Distribution"
|
412 |
-
plt.xlabel("NER Tag"
|
413 |
-
plt.ylabel("Count"
|
414 |
-
plt.xticks(rotation=45, ha="right"
|
415 |
plt.grid(axis="y", linestyle="--", alpha=0.7)
|
416 |
plt.tight_layout()
|
417 |
plt.savefig("ner_tag_distribution.png")
|
418 |
-
plt.show()
|
419 |
```
|
420 |
|
421 |
---
|
@@ -468,8 +461,8 @@ The *CoNLL 2025 NER Dataset* excels with its **broad entity coverage**, **compac
|
|
468 |
## Community & Support π
|
469 |
|
470 |
Join the NER community:
|
471 |
-
- π Explore the dataset page
|
472 |
-
- π οΈ Report issues or contribute at the repository
|
473 |
- π¬ Discuss on Hugging Face forums or submit pull requests π£οΈ
|
474 |
- π Learn more via [Hugging Face Datasets docs](https://huggingface.co/docs/datasets) π
|
475 |
|
@@ -481,4 +474,4 @@ Your feedback shapes the *CoNLL 2025 NER Dataset*! π
|
|
481 |
|
482 |
**May 28, 2025** β Released with 36 NER tags, enhanced use cases, and visualizations.
|
483 |
|
484 |
-
**[Unlock Entity Insights Now](
|
|
|
42 |
- knowledge-graph
|
43 |
pretty_name: CoNLL-2025 NER Dataset
|
44 |
size_categories:
|
45 |
+
- 10K<n<100K
|
46 |
task_categories:
|
47 |
- token-classification
|
48 |
---
|
49 |
|
50 |

|
51 |
|
52 |
+
|
53 |
# π CoNLL 2025 NER Dataset β Unlocking Entity Recognition in Text
|
54 |
|
55 |
[](https://opensource.org/licenses/MIT)
|
|
|
61 |
|
62 |
This **6.38 MB** dataset is lightweight, developer-friendly, and ideal for advancing **natural language processing (NLP)**, **information extraction**, and **text mining**. Whether you're building chatbots π€, analyzing news articles π°, or structuring data for AI π οΈ, this dataset is your key to unlocking structured insights from text.
|
63 |
|
64 |
+
**[Download Now](https://huggingface.co/datasets/boltuix/conll2025-ner)** π
|
|
|
|
|
65 |
|
66 |
## Table of Contents π
|
67 |
- [What is NER?](#what-is-ner) β
|
|
|
136 |
|
137 |
---
|
138 |
|
139 |
+
|
140 |
+

|
141 |
+
|
142 |
## NER Tags & Purposes π·οΈ
|
143 |
|
144 |
The dataset uses the **BIO tagging scheme**:
|
|
|
150 |
|
151 |
| Tag Name | Purpose | Emoji |
|
152 |
|------------------|--------------------------------------------------------------------------|--------|
|
153 |
+
| B-CARDINAL | Beginning of a cardinal number (e.g., "1000") | π’ |
|
154 |
+
| B-DATE | Beginning of a date (e.g., "January") | ποΈ |
|
155 |
+
| B-EVENT | Beginning of an event (e.g., "Olympics") | π |
|
156 |
+
| B-FAC | Beginning of a facility (e.g., "Eiffel Tower") | ποΈ |
|
157 |
+
| B-GPE | Beginning of a geopolitical entity (e.g., "Tokyo") | π |
|
158 |
+
| B-LANGUAGE | Beginning of a language (e.g., "Spanish") | π£οΈ |
|
159 |
+
| B-LAW | Beginning of a law or legal document (e.g., "Constitution") | π |
|
160 |
+
| B-LOC | Beginning of a non-GPE location (e.g., "Pacific Ocean") | πΊοΈ |
|
161 |
+
| B-MONEY | Beginning of a monetary value (e.g., "$100") | πΈ |
|
162 |
+
| B-NORP | Beginning of a nationality/religious/political group (e.g., "Democrat") | π³οΈ |
|
163 |
+
| B-ORDINAL | Beginning of an ordinal number (e.g., "first") | π₯ |
|
164 |
+
| B-ORG | Beginning of an organization (e.g., "Microsoft") | π’ |
|
165 |
+
| B-PERCENT | Beginning of a percentage (e.g., "50%") | π |
|
166 |
+
| B-PERSON | Beginning of a personβs name (e.g., "Elon Musk") | π€ |
|
167 |
+
| B-PRODUCT | Beginning of a product (e.g., "iPhone") | π± |
|
168 |
+
| B-QUANTITY | Beginning of a quantity (e.g., "two liters") | βοΈ |
|
169 |
+
| B-TIME | Beginning of a time (e.g., "noon") | β° |
|
170 |
+
| B-WORK_OF_ART | Beginning of a work of art (e.g., "Mona Lisa") | π¨ |
|
171 |
+
| I-CARDINAL | Inside of a cardinal number (e.g., "000" in "1000") | π’ |
|
172 |
+
| I-DATE | Inside of a date (e.g., "2025" in "January 2025") | ποΈ |
|
173 |
+
| I-EVENT | Inside of an event name | π |
|
174 |
+
| I-FAC | Inside of a facility name | ποΈ |
|
175 |
+
| I-GPE | Inside of a geopolitical entity | π |
|
176 |
+
| I-LANGUAGE | Inside of a language name | π£οΈ |
|
177 |
+
| I-LAW | Inside of a legal document title | π |
|
178 |
+
| I-LOC | Inside of a location | πΊοΈ |
|
179 |
+
| I-MONEY | Inside of a monetary value | πΈ |
|
180 |
+
| I-NORP | Inside of a NORP entity | π³οΈ |
|
181 |
+
| I-ORDINAL | Inside of an ordinal number | π₯ |
|
182 |
+
| I-ORG | Inside of an organization name | π’ |
|
183 |
+
| I-PERCENT | Inside of a percentage | π |
|
184 |
+
| I-PERSON | Inside of a personβs name | π€ |
|
185 |
+
| I-PRODUCT | Inside of a product name | π± |
|
186 |
+
| I-QUANTITY | Inside of a quantity | βοΈ |
|
187 |
+
| I-TIME | Inside of a time phrase | β° |
|
188 |
+
| I-WORK_OF_ART | Inside of a work of art title | π¨ |
|
189 |
+
| O | Outside of any named entity (e.g., "the", "is") | π« |
|
190 |
+
|
191 |
+
---
|
192 |
|
193 |
**Example**
|
194 |
+
For `"Microsoft opened in Tokyo on January 2025"`:
|
195 |
+
|
196 |
- **Tokens**: `["Microsoft", "opened", "in", "Tokyo", "on", "January", "2025"]`
|
197 |
- **Tags**: `[B-ORG, O, O, B-GPE, O, B-DATE, I-DATE]`
|
198 |
|
|
|
|
|
199 |
## Installation π οΈ
|
200 |
|
201 |
Install dependencies to work with the dataset:
|
|
|
212 |
## Download Instructions π₯
|
213 |
|
214 |
### Direct Download
|
215 |
+
- Grab the dataset from the [Hugging Face repository](https://huggingface.co/datasets/boltuix/conll2025-ner) π.
|
216 |
- Load it with pandas πΌ, Hugging Face `datasets` π€, or your preferred tool.
|
217 |
|
218 |
+
**[Start Exploring Dataset](https://huggingface.co/datasets/boltuix/conll2025-ner)** π
|
|
|
|
|
219 |
|
220 |
---
|
221 |
|
|
|
348 |
|
349 |
## Visualizing NER Tags π
|
350 |
|
351 |
+
Visualize the NER tag distribution to understand entity prevalence. Since exact counts are unavailable, the chart below uses estimated data for demonstration. Replace with actual counts after analysis.
|
352 |
|
353 |
<chartjs>
|
354 |
{
|
|
|
369 |
"display": true,
|
370 |
"text": "CoNLL 2025 NER: Tag Distribution (Estimated)",
|
371 |
"font": { "size": 16 }
|
|
|
|
|
|
|
372 |
}
|
373 |
},
|
374 |
"scales": {
|
|
|
385 |
}
|
386 |
</chartjs>
|
387 |
|
388 |
+
To compute actual counts:
|
389 |
|
390 |
```python
|
391 |
import pandas as pd
|
|
|
399 |
all_tags = [tag for tags in df["ner_tags"] for tag in tags]
|
400 |
tag_counts = Counter(all_tags)
|
401 |
|
|
|
|
|
|
|
|
|
402 |
# Plot
|
403 |
plt.figure(figsize=(12, 7))
|
404 |
+
plt.bar(tag_counts.keys(), tag_counts.values(), color="#36A2EB")
|
405 |
+
plt.title("CoNLL 2025 NER: Tag Distribution")
|
406 |
+
plt.xlabel("NER Tag")
|
407 |
+
plt.ylabel("Count")
|
408 |
+
plt.xticks(rotation=45, ha="right")
|
409 |
plt.grid(axis="y", linestyle="--", alpha=0.7)
|
410 |
plt.tight_layout()
|
411 |
plt.savefig("ner_tag_distribution.png")
|
|
|
412 |
```
|
413 |
|
414 |
---
|
|
|
461 |
## Community & Support π
|
462 |
|
463 |
Join the NER community:
|
464 |
+
- π Explore the [Hugging Face dataset page](https://huggingface.co/datasets/boltuix/conll2025-ner) π
|
465 |
+
- π οΈ Report issues or contribute at the [repository](https://huggingface.co/datasets/boltuix/conll2025-ner) π§
|
466 |
- π¬ Discuss on Hugging Face forums or submit pull requests π£οΈ
|
467 |
- π Learn more via [Hugging Face Datasets docs](https://huggingface.co/docs/datasets) π
|
468 |
|
|
|
474 |
|
475 |
**May 28, 2025** β Released with 36 NER tags, enhanced use cases, and visualizations.
|
476 |
|
477 |
+
**[Unlock Entity Insights Now](https://huggingface.co/datasets/boltuix/conll2025-ner)** π
|