boltuix commited on
Commit
1802faa
Β·
verified Β·
1 Parent(s): 00efefa

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +59 -66
README.md CHANGED
@@ -42,13 +42,14 @@ tags:
42
  - knowledge-graph
43
  pretty_name: CoNLL-2025 NER Dataset
44
  size_categories:
45
- - 100K<n<1M
46
  task_categories:
47
  - token-classification
48
  ---
49
 
50
  ![Banner](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgQCDz3ZEB5_uZjHkWhalOavBmWdYYZUlDOfCl8S70_SrQgcg946ydgmtmNaQmfO0knYV4GCAbWveZruwBgUyqKYcVrKY2R7Ief3ZxVIoYhllw-W8LKPA06IYlGQASl_ahxeW8PM5MVGXpht17YBqwAKo5suSrQA4EB4EY6cnS65Bp1hLKwJXAyZN8kycY/s16000/1.jpg)
51
 
 
52
  # 🌍 CoNLL 2025 NER Dataset β€” Unlocking Entity Recognition in Text
53
 
54
  [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
@@ -60,9 +61,7 @@ task_categories:
60
 
61
  This **6.38 MB** dataset is lightweight, developer-friendly, and ideal for advancing **natural language processing (NLP)**, **information extraction**, and **text mining**. Whether you're building chatbots πŸ€–, analyzing news articles πŸ“°, or structuring data for AI πŸ› οΈ, this dataset is your key to unlocking structured insights from text.
62
 
63
- > **Note**: The dataset link (`https://huggingface.co/datasets/boltuix/conll2025-ner`) is a placeholder. Please replace it with the correct Hugging Face or repository URL once available.
64
-
65
- **[Download Now](#download-instructions)** πŸš€
66
 
67
  ## Table of Contents πŸ“‹
68
  - [What is NER?](#what-is-ner) ❓
@@ -137,6 +136,9 @@ NER powers applications by extracting structured data from unstructured text, en
137
 
138
  ---
139
 
 
 
 
140
  ## NER Tags & Purposes 🏷️
141
 
142
  The dataset uses the **BIO tagging scheme**:
@@ -148,51 +150,52 @@ Below is a table of the 36 NER tags with their purposes and emojis for visual ap
148
 
149
  | Tag Name | Purpose | Emoji |
150
  |------------------|--------------------------------------------------------------------------|--------|
151
- | B-CARDINAL | Beginning of a cardinal number (e.g., "1000") | πŸ”’ |
152
- | B-DATE | Beginning of a date (e.g., "January") | πŸ—“οΈ |
153
- | B-EVENT | Beginning of an event (e.g., "Olympics") | πŸŽ‰ |
154
- | B-FAC | Beginning of a facility (e.g., "Eiffel Tower") | πŸ›οΈ |
155
- | B-GPE | Beginning of a geopolitical entity (e.g., "Tokyo") | 🌍 |
156
- | B-LANGUAGE | Beginning of a language (e.g., "Spanish") | πŸ—£οΈ |
157
- | B-LAW | Beginning of a law or legal document (e.g., "Constitution") | πŸ“œ |
158
- | B-LOC | Beginning of a non-GPE location (e.g., "Pacific Ocean") | πŸ—ΊοΈ |
159
- | B-MONEY | Beginning of a monetary value (e.g., "$100") | πŸ’Έ |
160
- | B-NORP | Beginning of a nationality/religious/political group (e.g., "Democrat") | 🏳️ |
161
- | B-ORDINAL | Beginning of an ordinal number (e.g., "first") | πŸ₯‡ |
162
- | B-ORG | Beginning of an organization (e.g., "Microsoft") | 🏒 |
163
- | B-PERCENT | Beginning of a percentage (e.g., "50%") | πŸ“Š |
164
- | B-PERSON | Beginning of a person’s name (e.g., "Elon Musk") | πŸ‘€ |
165
- | B-PRODUCT | Beginning of a product (e.g., "iPhone") | πŸ“± |
166
- | B-QUANTITY | Beginning of a quantity (e.g., "two liters") | βš–οΈ |
167
- | B-TIME | Beginning of a time (e.g., "noon") | ⏰ |
168
- | B-WORK_OF_ART | Beginning of a work of art (e.g., "Mona Lisa") | 🎨 |
169
- | I-CARDINAL | Inside of a cardinal number (e.g., "000" in "1000") | πŸ”’ |
170
- | I-DATE | Inside of a date (e.g., "2025" in "January 2025") | πŸ—“οΈ |
171
- | I-EVENT | Inside of an event name | πŸŽ‰ |
172
- | I-FAC | Inside of a facility name | πŸ›οΈ |
173
- | I-GPE | Inside of a geopolitical entity | 🌍 |
174
- | I-LANGUAGE | Inside of a language name | πŸ—£οΈ |
175
- | I-LAW | Inside of a legal document title | πŸ“œ |
176
- | I-LOC | Inside of a location | πŸ—ΊοΈ |
177
- | I-MONEY | Inside of a monetary value | πŸ’Έ |
178
- | I-NORP | Inside of a NORP entity | 🏳️ |
179
- | I-ORDINAL | Inside of an ordinal number | πŸ₯‡ |
180
- | I-ORG | Inside of an organization name | 🏒 |
181
- | I-PERCENT | Inside of a percentage | πŸ“Š |
182
- | I-PERSON | Inside of a person’s name | πŸ‘€ |
183
- | I-PRODUCT | Inside of a product name | πŸ“± |
184
- | I-QUANTITY | Inside of a quantity | βš–οΈ |
185
- | I-TIME | Inside of a time phrase | ⏰ |
186
- | I-WORK_OF_ART | Inside of a work of art title | 🎨 |
187
- | O | Outside of any named entity (e.g., "the", "is") | 🚫 |
 
 
188
 
189
  **Example**
190
- For `"Microsoft opened in Tokyo on January 2025"`:
 
191
  - **Tokens**: `["Microsoft", "opened", "in", "Tokyo", "on", "January", "2025"]`
192
  - **Tags**: `[B-ORG, O, O, B-GPE, O, B-DATE, I-DATE]`
193
 
194
- ---
195
-
196
  ## Installation πŸ› οΈ
197
 
198
  Install dependencies to work with the dataset:
@@ -209,12 +212,10 @@ pip install datasets pandas pyarrow
209
  ## Download Instructions πŸ“₯
210
 
211
  ### Direct Download
212
- - Access the dataset from the official repository (URL TBD).
213
  - Load it with pandas 🐼, Hugging Face `datasets` πŸ€—, or your preferred tool.
214
 
215
- > **Note**: The dataset link is currently unavailable. Replace `[https://huggingface.co/datasets/boltuix/conll2025-ner]` with the correct URL once available.
216
-
217
- **[Start Exploring Dataset](#quickstart-dive-in)** πŸš€
218
 
219
  ---
220
 
@@ -347,7 +348,7 @@ Tokenize further with `transformers` πŸ€— or `NeuroNER` for model training.
347
 
348
  ## Visualizing NER Tags πŸ“‰
349
 
350
- The chart below visualizes the estimated distribution of NER tags in the dataset. Since exact tag counts are unavailable, the data is illustrative. Use the provided Python script to compute actual counts and generate a precise visualization.
351
 
352
  <chartjs>
353
  {
@@ -368,9 +369,6 @@ The chart below visualizes the estimated distribution of NER tags in the dataset
368
  "display": true,
369
  "text": "CoNLL 2025 NER: Tag Distribution (Estimated)",
370
  "font": { "size": 16 }
371
- },
372
- "legend": {
373
- "display": false
374
  }
375
  },
376
  "scales": {
@@ -387,7 +385,7 @@ The chart below visualizes the estimated distribution of NER tags in the dataset
387
  }
388
  </chartjs>
389
 
390
- To compute and visualize actual tag counts:
391
 
392
  ```python
393
  import pandas as pd
@@ -401,21 +399,16 @@ df = pd.read_parquet("conll2025_ner.parquet")
401
  all_tags = [tag for tags in df["ner_tags"] for tag in tags]
402
  tag_counts = Counter(all_tags)
403
 
404
- # Prepare data for plotting
405
- labels = list(tag_counts.keys())
406
- values = list(tag_counts.values())
407
-
408
  # Plot
409
  plt.figure(figsize=(12, 7))
410
- plt.bar(labels, values, color="#36A2EB")
411
- plt.title("CoNLL 2025 NER: Tag Distribution", fontsize=16)
412
- plt.xlabel("NER Tag", fontsize=12)
413
- plt.ylabel("Count", fontsize=12)
414
- plt.xticks(rotation=45, ha="right", fontsize=10)
415
  plt.grid(axis="y", linestyle="--", alpha=0.7)
416
  plt.tight_layout()
417
  plt.savefig("ner_tag_distribution.png")
418
- plt.show()
419
  ```
420
 
421
  ---
@@ -468,8 +461,8 @@ The *CoNLL 2025 NER Dataset* excels with its **broad entity coverage**, **compac
468
  ## Community & Support 🌐
469
 
470
  Join the NER community:
471
- - πŸ“ Explore the dataset page (URL TBD) 🌟
472
- - πŸ› οΈ Report issues or contribute at the repository (URL TBD) πŸ”§
473
  - πŸ’¬ Discuss on Hugging Face forums or submit pull requests πŸ—£οΈ
474
  - πŸ“š Learn more via [Hugging Face Datasets docs](https://huggingface.co/docs/datasets) πŸ“–
475
 
@@ -481,4 +474,4 @@ Your feedback shapes the *CoNLL 2025 NER Dataset*! 😊
481
 
482
  **May 28, 2025** β€” Released with 36 NER tags, enhanced use cases, and visualizations.
483
 
484
- **[Unlock Entity Insights Now](#download-instructions)** πŸš€
 
42
  - knowledge-graph
43
  pretty_name: CoNLL-2025 NER Dataset
44
  size_categories:
45
+ - 10K<n<100K
46
  task_categories:
47
  - token-classification
48
  ---
49
 
50
  ![Banner](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgQCDz3ZEB5_uZjHkWhalOavBmWdYYZUlDOfCl8S70_SrQgcg946ydgmtmNaQmfO0knYV4GCAbWveZruwBgUyqKYcVrKY2R7Ief3ZxVIoYhllw-W8LKPA06IYlGQASl_ahxeW8PM5MVGXpht17YBqwAKo5suSrQA4EB4EY6cnS65Bp1hLKwJXAyZN8kycY/s16000/1.jpg)
51
 
52
+
53
  # 🌍 CoNLL 2025 NER Dataset β€” Unlocking Entity Recognition in Text
54
 
55
  [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
 
61
 
62
  This **6.38 MB** dataset is lightweight, developer-friendly, and ideal for advancing **natural language processing (NLP)**, **information extraction**, and **text mining**. Whether you're building chatbots πŸ€–, analyzing news articles πŸ“°, or structuring data for AI πŸ› οΈ, this dataset is your key to unlocking structured insights from text.
63
 
64
+ **[Download Now](https://huggingface.co/datasets/boltuix/conll2025-ner)** πŸš€
 
 
65
 
66
  ## Table of Contents πŸ“‹
67
  - [What is NER?](#what-is-ner) ❓
 
136
 
137
  ---
138
 
139
+
140
+ ![Banner](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEihnG3bV5G-X9KgB-HKAykQNMtjCAePR-_VhZHoqeEqPMkglnMFfq6ASvRva0mCSau8-HrsCSGeOantUTUtr9CMkryfz0kny7WDswq0-xEbE6dFZnEBaMtxxJTEuTdNHvsD2A4p04kBAPbGt4AZcDGV2wlnsFrAeJV86I0FsO71pW8cuSz8abQgyiJU2-M/s16000/2.jpg)
141
+
142
  ## NER Tags & Purposes 🏷️
143
 
144
  The dataset uses the **BIO tagging scheme**:
 
150
 
151
  | Tag Name | Purpose | Emoji |
152
  |------------------|--------------------------------------------------------------------------|--------|
153
+ | B-CARDINAL | Beginning of a cardinal number (e.g., "1000") | πŸ”’ |
154
+ | B-DATE | Beginning of a date (e.g., "January") | πŸ—“οΈ |
155
+ | B-EVENT | Beginning of an event (e.g., "Olympics") | πŸŽ‰ |
156
+ | B-FAC | Beginning of a facility (e.g., "Eiffel Tower") | πŸ›οΈ |
157
+ | B-GPE | Beginning of a geopolitical entity (e.g., "Tokyo") | 🌍 |
158
+ | B-LANGUAGE | Beginning of a language (e.g., "Spanish") | πŸ—£οΈ |
159
+ | B-LAW | Beginning of a law or legal document (e.g., "Constitution") | πŸ“œ |
160
+ | B-LOC | Beginning of a non-GPE location (e.g., "Pacific Ocean") | πŸ—ΊοΈ |
161
+ | B-MONEY | Beginning of a monetary value (e.g., "$100") | πŸ’Έ |
162
+ | B-NORP | Beginning of a nationality/religious/political group (e.g., "Democrat") | 🏳️ |
163
+ | B-ORDINAL | Beginning of an ordinal number (e.g., "first") | πŸ₯‡ |
164
+ | B-ORG | Beginning of an organization (e.g., "Microsoft") | 🏒 |
165
+ | B-PERCENT | Beginning of a percentage (e.g., "50%") | πŸ“Š |
166
+ | B-PERSON | Beginning of a person’s name (e.g., "Elon Musk") | πŸ‘€ |
167
+ | B-PRODUCT | Beginning of a product (e.g., "iPhone") | πŸ“± |
168
+ | B-QUANTITY | Beginning of a quantity (e.g., "two liters") | βš–οΈ |
169
+ | B-TIME | Beginning of a time (e.g., "noon") | ⏰ |
170
+ | B-WORK_OF_ART | Beginning of a work of art (e.g., "Mona Lisa") | 🎨 |
171
+ | I-CARDINAL | Inside of a cardinal number (e.g., "000" in "1000") | πŸ”’ |
172
+ | I-DATE | Inside of a date (e.g., "2025" in "January 2025") | πŸ—“οΈ |
173
+ | I-EVENT | Inside of an event name | πŸŽ‰ |
174
+ | I-FAC | Inside of a facility name | πŸ›οΈ |
175
+ | I-GPE | Inside of a geopolitical entity | 🌍 |
176
+ | I-LANGUAGE | Inside of a language name | πŸ—£οΈ |
177
+ | I-LAW | Inside of a legal document title | πŸ“œ |
178
+ | I-LOC | Inside of a location | πŸ—ΊοΈ |
179
+ | I-MONEY | Inside of a monetary value | πŸ’Έ |
180
+ | I-NORP | Inside of a NORP entity | 🏳️ |
181
+ | I-ORDINAL | Inside of an ordinal number | πŸ₯‡ |
182
+ | I-ORG | Inside of an organization name | 🏒 |
183
+ | I-PERCENT | Inside of a percentage | πŸ“Š |
184
+ | I-PERSON | Inside of a person’s name | πŸ‘€ |
185
+ | I-PRODUCT | Inside of a product name | πŸ“± |
186
+ | I-QUANTITY | Inside of a quantity | βš–οΈ |
187
+ | I-TIME | Inside of a time phrase | ⏰ |
188
+ | I-WORK_OF_ART | Inside of a work of art title | 🎨 |
189
+ | O | Outside of any named entity (e.g., "the", "is") | 🚫 |
190
+
191
+ ---
192
 
193
  **Example**
194
+ For `"Microsoft opened in Tokyo on January 2025"`:
195
+
196
  - **Tokens**: `["Microsoft", "opened", "in", "Tokyo", "on", "January", "2025"]`
197
  - **Tags**: `[B-ORG, O, O, B-GPE, O, B-DATE, I-DATE]`
198
 
 
 
199
  ## Installation πŸ› οΈ
200
 
201
  Install dependencies to work with the dataset:
 
212
  ## Download Instructions πŸ“₯
213
 
214
  ### Direct Download
215
+ - Grab the dataset from the [Hugging Face repository](https://huggingface.co/datasets/boltuix/conll2025-ner) πŸ“‚.
216
  - Load it with pandas 🐼, Hugging Face `datasets` πŸ€—, or your preferred tool.
217
 
218
+ **[Start Exploring Dataset](https://huggingface.co/datasets/boltuix/conll2025-ner)** πŸš€
 
 
219
 
220
  ---
221
 
 
348
 
349
  ## Visualizing NER Tags πŸ“‰
350
 
351
+ Visualize the NER tag distribution to understand entity prevalence. Since exact counts are unavailable, the chart below uses estimated data for demonstration. Replace with actual counts after analysis.
352
 
353
  <chartjs>
354
  {
 
369
  "display": true,
370
  "text": "CoNLL 2025 NER: Tag Distribution (Estimated)",
371
  "font": { "size": 16 }
 
 
 
372
  }
373
  },
374
  "scales": {
 
385
  }
386
  </chartjs>
387
 
388
+ To compute actual counts:
389
 
390
  ```python
391
  import pandas as pd
 
399
  all_tags = [tag for tags in df["ner_tags"] for tag in tags]
400
  tag_counts = Counter(all_tags)
401
 
 
 
 
 
402
  # Plot
403
  plt.figure(figsize=(12, 7))
404
+ plt.bar(tag_counts.keys(), tag_counts.values(), color="#36A2EB")
405
+ plt.title("CoNLL 2025 NER: Tag Distribution")
406
+ plt.xlabel("NER Tag")
407
+ plt.ylabel("Count")
408
+ plt.xticks(rotation=45, ha="right")
409
  plt.grid(axis="y", linestyle="--", alpha=0.7)
410
  plt.tight_layout()
411
  plt.savefig("ner_tag_distribution.png")
 
412
  ```
413
 
414
  ---
 
461
  ## Community & Support 🌐
462
 
463
  Join the NER community:
464
+ - πŸ“ Explore the [Hugging Face dataset page](https://huggingface.co/datasets/boltuix/conll2025-ner) 🌟
465
+ - πŸ› οΈ Report issues or contribute at the [repository](https://huggingface.co/datasets/boltuix/conll2025-ner) πŸ”§
466
  - πŸ’¬ Discuss on Hugging Face forums or submit pull requests πŸ—£οΈ
467
  - πŸ“š Learn more via [Hugging Face Datasets docs](https://huggingface.co/docs/datasets) πŸ“–
468
 
 
474
 
475
  **May 28, 2025** β€” Released with 36 NER tags, enhanced use cases, and visualizations.
476
 
477
+ **[Unlock Entity Insights Now](https://huggingface.co/datasets/boltuix/conll2025-ner)** πŸš€