Create movielens.py
Browse files- movielens.py +90 -0
movielens.py
ADDED
|
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
import os
|
| 4 |
+
from functools import partial
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
from typing import Dict, Iterable
|
| 7 |
+
|
| 8 |
+
import datasets
|
| 9 |
+
from datasets import DatasetDict, DownloadManager, load_dataset
|
| 10 |
+
import pandas as pd
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
AVAILABLE_DATASETS = {
|
| 14 |
+
'small': 'https://files.grouplens.org/datasets/movielens/ml-latest-small.zip',
|
| 15 |
+
'full': 'https://files.grouplens.org/datasets/movielens/ml-latest.zip',
|
| 16 |
+
}
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
VERSION = datasets.Version("0.0.1")
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class MovielensDataset(datasets.GeneratorBasedBuilder):
|
| 23 |
+
"""MovielensDataset dataset."""
|
| 24 |
+
|
| 25 |
+
BUILDER_CONFIGS = [
|
| 26 |
+
datasets.BuilderConfig(
|
| 27 |
+
name=data_name, version=VERSION, description=f"{data_name} movielens dataset"
|
| 28 |
+
)
|
| 29 |
+
for data_name in AVAILABLE_DATASETS
|
| 30 |
+
]
|
| 31 |
+
|
| 32 |
+
def _info(self) -> datasets.DatasetInfo:
|
| 33 |
+
return datasets.DatasetInfo(
|
| 34 |
+
description="",
|
| 35 |
+
features=datasets.Features(
|
| 36 |
+
{
|
| 37 |
+
"movieId": datasets.Value("string"),
|
| 38 |
+
"title": datasets.Value("string"),
|
| 39 |
+
"genres": datasets.Sequence(datasets.Value("string")),
|
| 40 |
+
"tag": datasets.Sequence(datasets.Value("string")),
|
| 41 |
+
}
|
| 42 |
+
),
|
| 43 |
+
supervised_keys=None,
|
| 44 |
+
homepage="https://grouplens.org/datasets/movielens/latest/",
|
| 45 |
+
citation="",
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
def _split_generators(
|
| 49 |
+
self, dl_manager: DownloadManager
|
| 50 |
+
) -> Iterable[datasets.SplitGenerator]:
|
| 51 |
+
downloader = partial(
|
| 52 |
+
lambda split: dl_manager.download_and_extract(
|
| 53 |
+
AVAILABLE_DATASETS[self.config.name]
|
| 54 |
+
)
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
folder = os.path.splitext(os.path.basename(AVAILABLE_DATASETS[self.config.name]))[
|
| 58 |
+
0
|
| 59 |
+
]
|
| 60 |
+
|
| 61 |
+
# There is no predefined train/val/test split for this dataset.
|
| 62 |
+
return [
|
| 63 |
+
datasets.SplitGenerator(
|
| 64 |
+
name=datasets.Split.TRAIN,
|
| 65 |
+
gen_kwargs={
|
| 66 |
+
"root_path": downloader("train"),
|
| 67 |
+
"split": "train",
|
| 68 |
+
"folder": folder,
|
| 69 |
+
},
|
| 70 |
+
),
|
| 71 |
+
]
|
| 72 |
+
|
| 73 |
+
def _generate_examples(
|
| 74 |
+
self, root_path: str, split: str, folder: str
|
| 75 |
+
) -> Iterable[Dict]:
|
| 76 |
+
split_path = Path(root_path) / folder
|
| 77 |
+
movies_file = split_path / "movies.csv"
|
| 78 |
+
movies = pd.read_csv(movies_file, sep=',', encoding='utf-8')
|
| 79 |
+
movies['genres'] = movies['genres'].str.split('|')
|
| 80 |
+
tags_file = split_path / "tags.csv"
|
| 81 |
+
tags = pd.read_csv(tags_file, sep=',', encoding='utf-8')
|
| 82 |
+
tags = tags.groupby('movieId').agg({'tag': list}).reset_index()
|
| 83 |
+
movies = movies.merge(tags, on='movieId')
|
| 84 |
+
for idx, row in movies.iterrows():
|
| 85 |
+
yield idx, {
|
| 86 |
+
'movieId': row['movieId'],
|
| 87 |
+
'title': row['title'],
|
| 88 |
+
'genres': row['genres'],
|
| 89 |
+
'tag': row['tag'],
|
| 90 |
+
}
|