#!/usr/bin/env python3 # -*- coding: utf-8 -*- import os from functools import partial from pathlib import Path from typing import Dict, Iterable import datasets from datasets import DatasetDict, DownloadManager, load_dataset import pandas as pd AVAILABLE_DATASETS = { 'small': 'https://files.grouplens.org/datasets/movielens/ml-latest-small.zip', 'full': 'https://files.grouplens.org/datasets/movielens/ml-latest.zip', } VERSION = datasets.Version("0.0.1") class MovielensDataset(datasets.GeneratorBasedBuilder): """MovielensDataset dataset.""" BUILDER_CONFIGS = [ datasets.BuilderConfig( name=data_name, version=VERSION, description=f"{data_name} movielens dataset" ) for data_name in AVAILABLE_DATASETS ] def _info(self) -> datasets.DatasetInfo: return datasets.DatasetInfo( description="", features=datasets.Features( { "movieId": datasets.Value("string"), "title": datasets.Value("string"), "genres": datasets.Sequence(datasets.Value("string")), "tag": datasets.Sequence(datasets.Value("string")), } ), supervised_keys=None, homepage="https://grouplens.org/datasets/movielens/latest/", citation="", ) def _split_generators( self, dl_manager: DownloadManager ) -> Iterable[datasets.SplitGenerator]: downloader = partial( lambda split: dl_manager.download_and_extract( AVAILABLE_DATASETS[self.config.name] ) ) folder = os.path.splitext(os.path.basename(AVAILABLE_DATASETS[self.config.name]))[ 0 ] # There is no predefined train/val/test split for this dataset. return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "root_path": downloader("train"), "split": "train", "folder": folder, }, ), ] def _generate_examples( self, root_path: str, split: str, folder: str ) -> Iterable[Dict]: split_path = Path(root_path) / folder movies_file = split_path / "movies.csv" movies = pd.read_csv(movies_file, sep=',', encoding='utf-8') movies['genres'] = movies['genres'].str.split('|') tags_file = split_path / "tags.csv" tags = pd.read_csv(tags_file, sep=',', encoding='utf-8') tags = tags.groupby('movieId').agg({'tag': list}).reset_index() movies = movies.merge(tags, on='movieId') for idx, row in movies.iterrows(): yield idx, { 'movieId': row['movieId'], 'title': row['title'], 'genres': row['genres'], 'tag': row['tag'], }